L,/%W'A/ﬁ‘/l& aé//:,%mge}
ﬂé// %M@WX@' e az% tg_g'«'/&rﬂ/

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

Dottorato di Ricerca in Ingegneria Meccanica

X1 Ciclo N.S. (2009-2012)

“Development of Solid Oxide Fuel Cell stack modébs
monitoring, diagnosis and control applications”

Ing. Dario Marra

Il Tutor Il Coordinatore
Ch.mo Prof. Cesare Pianese Ch.mo Prof. Vincenzogber
Il Co-Tutor

Dr. Ing. Marco Sorrentino






Alla mia famiglia,
alle persone a me care

e a tutti coloro che
nonostante le difficolta
perseguono i propri obiettivi






Table of Contents

ADSITACT ... Vii
AKNOWIEAGEMENTS....euiiiiiii e e e e e iX..
NOMENCIALUIE ... X
LISt Of FIQUIES .ttt Xiii
LiSt Of TADIES ..o Xviii
INTRODUGCTION ...t e e e eai e e e eees 19
Literature review on SOFC stack models ..........cccccvviiiiiiiiinnnnnnnn. 21
CONIIDULIONS ..o 92
THESIS OVEIVIEW ....ceiiiiiiieii ettt 30
CHAPTER 1SOFC PriNCIPIE...ceeiiiiiiiiiiie e e e e e e e e e e e 31
1.1 Working prinCiple ......oooveeeeiiiiiiii e 31
1.2 Cell Material...........ouuuimiiiiiiiiiiiieeee e 3.3
1.3 Fuel Cell TYPOIOGIES .....uoiiiiiieee et 35
CHAPTER 20ne-Dimensional SOFC Stack Modeling.................... 37
2.1 1-D model desCription ........coooeiiiiiiiieeeen e 37
2.1.1. Eletrochemical submodel.............coommiiiiiiiiiiiiiee 39
2.1.2. Simplified polarization losses sub-model..............cc........ 42
2.1.3. Conservation equations in co-flow configiomat................. 43
2.1.4. Conservation equations in counter-flow agunfation .......... 50
2.2 IEA model validation ............ccoooiiimemieeeee 52
2.3 CroSS-Validation ............eeeeiiiiiiiiiieeeciiiii e 57
2.3. 1. RESUILS ...t 8.5
2.4 DiagnostiC appliCatioN ......coeeeeeeiiiiiie e 62

2.4.1. Degradation model: parameter identification................... 62



Vi

A N \V (o To [ BT~ (1 o R UPPRN 63
2.4.3. RESUIS .....vvviiiiiiiiiiiiiiii e A0 B
CHAPTER 3Grey-box SOFC Stack modeling..........cccooveeeeeeuiennnnnnn. 69
3.1 Lumped MOdel ... 69
3.1.1. Stack heat flows sub-models.........cccceeeiiiiiiii 73
3.2 Lumped model reSultS ..........oooeiiiiiiii e 86
CHAPTER 4Black-box SOFC Stack modeling .............coocceeeiiinnnnns 91
4.1 Neural NEIWOIKS ........cooiiiiiieiieieii et eeeeeeeeees 91
4.1.1. Recurrent Neural NetwWork ...........ooeceeeceeeeeeeeiiiieeiis 92
4.1.2. Neural Networks Learning approach ............cccccvvvvvvnnnnns 92
4.1.3. Optimal network dimension.............cceeeeeiiiieeeiiiieeeeeiiiies 95
4.2 Steady-state Neural Network model of HEXIS SOFGtack.... 96
4.2.1. Neural Network input selection ..........cccuuuiiiiiiiinieeeeeeen, 97
4.2.2. Steady-state Neural Network ..........cceeueeiiiiiiiiieiiiinnnennee. 101
4.2.3. Training and Test data sets definition...............cccccceeennnn. 102
A.2.4. RESUIS ...coiiiieee s 106
4.3 Recurrent Neural Networks models of TOPSOE an¥TT
(HTC) SOFC StaCKS......ccceeeeiiiieiieeeeiee e e s s e e e e e e e e e eeeeeeeesnnnnnns 112
4.3.1. Topsoe StaCk RNN .........oooiiiiiiiiceemmme oo e e e eeee e 112
4.3.2. VTT (HTC) Stack RNN ........uuiiiiiiiiiiiieieiieeeeeeee e 116
4.3.3. RESUIS ... 120
CHAPTER B5CONCIUSIONS ....ccevviiiiiiiiiiiee e eeeeeen e eeeeeeeeees 125
CHAPTER GAPPENDIX.......uttiiiiiiiiiiiiiiiieieeee e e e e e s e ssseneseeeeeees 127
FaUIL dIAGNOSIS ...t 127
6.1 Fault Tree ANalYSIS........uuuveiiiiiiiiiieie e 130
6.2 Fault Detection and Isolation proCess.....cccceeevveeeeeeevveeeeeeninnns 132

REIEIENCES ... 135



vii

Abstract

In the present thesis different SOFC stack modalee theen presented.
The results shown were obtained in the general dvaonk of the
GENIUS project (GEneric diagNosis Instrument for F&D systems),
funded by the European Union (grant agreement n8128). The
objective of the project is to develop “generic’agihostic tools and
methodologies for SOFC systems. The “generic’ teefers to the
flexibility of diagnosis tools to be adapted tofdient SOFC systems.

In order to achieve the target of the project andavelop stack models
suitable for monitoring, control and diagnosis &milons for SOFC
systems, different modeling approaches have beepoped. Particular
attention was given to their implementability irdomputational tools for
on-board use. In this thesis one-dimensional (lgbgy-box and black-
box stack models, both stationary and dynamic wbreeloped. The
models were validated with experimental data predidby European
partners in the frame of the GENIUS project.

A 1-D stationary model of a planar SOFC in co-flawmd counter-flow
configurations was presented. The model was degdlgparting from a
1-D model proposed by the University of Salerno foo-flow
configuration (Sorrentino, 2006). The model wasssroalidated with
similar models developed by the University of Geaod by the institute
VTT. The cross-validation results underlined th&adility of the 1-D
model developed. A possible application of the Isiddel for the
estimation of stack degradation was presented.ré@sdts confirmed the
possibility to implement such a model for faultetsion.

A lumped gray-box model for the simulation of TORS&tack thermal
dynamics was developed for the SOFC stack of TORS®@IOse
experimental data were made available in the fraihéhe GENIUS
project. Particular attention was given to the prob of heat flows
between stack and surrounding and a dedicated ma@eproposed. The
black-box approach followed for the implementatiminthe heat flows
and its reliability and accuracy was shown to b#sfectory for the
purpose of its applications. The procedure adopieted out to be fast
and applicable to other SOFC stacks with differgebmetries and
materials. The good results obtained and the ldnitalculation time
make this model suitable for implementation in diagfic tools. Another
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field of application is that of virtual sensors &iack temperature control.
Black-box models for SOFC stack were also develojpregarticular, a
stationary Neural Network for the simulation of tHEXIS stack voltage
was developed. The analyzed system was a 5-catlk sperated up to 10
thousand hours at constant load. The neural netexnibited very good
prediction accuracy, even for systems with difféetechnology from the
one used for training the model. Beyond showinge#&nt prediction
capabilities, the NN ensured high accuracy in weproducing evolution
of degradation in SOFC stacks, especially thankieanclusion of time
among model inputs. Moreover, a Recurrent Neuraviik for dynamic
simulation of TOPSOE stack voltage and a similag @r a short stack
built by HTc and tested by VTT were developed. Btecks analyzed
were: a planar co-flow SOFC stack (TOPSOE) anchagyl counter-flow
SOFC stack (VTT-HTc).

All models developed in this thesis show high aacyrand computation
times that allow them to be implemented into diaggicoand control tool
both for off-line (1-D model and grey-box) and fon-line (NN and
RNNs) applications. It is important noting that thmeodels were
developed with reference to stacks produced bemifft companies. This
allowed the evaluation of different SOFC technodsgithus obtaining
useful information in the models development. Th&forimation
underlined the critical aspects of these system#h wegard to the
measurements and control of some system variapieigslg indications
for the stack models development.

The proposed modeling approaches are good canslidateaddress
emerging needs in fuel cell development and onmtileployment, such as
the opportunity of developing versatile model-bassals capable to be
generic enough for real-time control and diagnadislifferent fuel cell
systems typologies, technologies and power scales.
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Introduction

Solid Oxide Fuel Cells have gathered a large attenih the last decades,
mainly for the potential applications as stationpower generators and
APUs for transportation use (ground, marine, &QFC attractiveness
lies on both the high energy conversion efficiermnyd the zero toxic
emission levels (only the GOreleased by the hydrogen production
process is a concern). Other advantages are: nmragukael flexibility
and low noise (Sorrentino et al., 2009 (a); Huaagal., 2009; Singhal
and Kendall, 2004). Moreover, the high working temgtures provide
additional positive features, such as potential as6&SOFC in highly
efficient cogeneration applications. SOFCs are algtable for internally
reforming the fuel (e.g. natural gas, propane, an&h gasoline, Diesel,
etc.), thus making it possible to avoid the adoptmf both highly
sophisticated, expensive external reformer andirtplgy fuel storage
(Sorrentino et al., 2008).

The big challenges to promote the diffusion of S@f&Sed energy
conversion systems are mainly associated to prmofuctosts and
durability. The achievement of these targets wiltety contribute to
promoting the technology and finally starting a m@soduction phase.
Besides costs and performance, long-term stabifityan important
requirement for the commercial application of tHeF& technology. For
stationary applications the commercial lifetime uegment is generally
more than 40,000 h. In comparison, up to a 20,00fetime with more
frequent thermal cycles is required for auxiliarpwgr units in
transportation applications (Braun, 2002). Howevéiese lifetime
requirements have not been met yet: SOFC systetotppes still suffer
from a low reliability of both the fuel cell itsedind the complete system.
The state of health of the system is currentlyicliff to evaluate, because
SOFC operating conditions lead to a variety of ddgtion mechanisms
that weigh upon system lifetime. For the stationapplications, the
chemical instability at the interfaces is one &f Key issues, whereas the
thermo-mechanical instability is important in theansportation
applications because of frequent thermal cyclesnfb& and Dicks,
2003). It is therefore essential to increase thdetstanding in SOFC
systems degradation and faulty mechanisms (Arsaag 2010 (a)).
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To guarantee the safe operation of fuel cell systamd to support the
successful deployment of SOFC, it is necessaryakensystematic use of
specific computational tools for developing suiebtontrol and
diagnostic strategies.

The final aim of an SOFC fault diagnosis activiéytdo reach the required
criteria for a commercial application, which, besdhigh lifetime and
performance, include high reliability and safetyl auitable costs as well.
The desire to guarantee system availability anhbi#ity is the reason
why Fault Diagnosis methodologies are applied teisd different fields,
ranging from passenger cars and trucks to air¢rafisns and even to
stationary systems, such as power and chemicatsp(ésermann, 2004;
Rizzoni et al. 2008)

With particular regard to diagnostics, designerd asers always pay
interest in preventing the occurrence of faultarmy mechanism, machine
or energy conversion system. To this end, sevgrptaaches can be
taken, the most obvious of which is to stop thetesyswhenever an
abnormal functioning is observed, i.e., a fault determined as a
difference in the performance of the system frosneixpected behavior.
The ability to detect the occurrence of any faaiftg identify its cause, is
a critical task.

The basic idea of the present thesis is to devBlOpC stack models of
different typologies and with different model appcbes to be
Implemented into model-based diagnostic and contmls. The model-
based fault diagnosis (described in the Appends)based on the
comparison between the measured variables of asyséém and those
simulated by a model or a system of models thatodrre the real
system under nominal conditions, without fault oalimnction. The
comparison can be done in real time (on-line diag)®r not in real time
(off-line diagnosis). The mathematical models fgstem monitoring
require rapid calculation time and high accuracthim simulations. In the
case of on-line diagnosis calculation time mustldss than the actual
times, in the case of off-line diagnosis calculationes can be higher. A
similar argument is made for model-based contrgbliegtions. For
diagnostic and control applications a fundamergpkat is represented by
the models of the monitored system. In this thediferent models of
Solid Oxide Fuel Cell stacks are presented. Theeldped models have
different physical content, with different compligxi Three types of
models were analyzed: 1-D model, lumped grey-boxehand black-



Introduction 21

box models. The 1-D models have the dual charatieof being able to

be used in off-line diagnostic applications, asspreed in CHAPTER 2,

but can also represent a model generator of viexpkeriments for the

development of models with lower physical conteloimped models,

black -box models), in which case one speaks afahshical approach

(Sorrentino 2006, Sorrentino et al., 2008). Inrib&t section an extensive
literature research for SOFC stack models developpdrformed.

Literature review on SOFC stack models

In the past decades, a great number of researtchvastigated on SOFC
modeling and on the simulation of internal procesaking use of
physical representations. The models range from-dienensional (0-D)
to three-dimensional (3-D) with different featurasd point to different
research objectives. From the viewpoint of modekfion, 2-D and 3-D
modeling is typically concerned with the cell andck design issues
while 0-D and 1-D modeling is aimed at control pggs (at system-
level) such as prediction of both the transient astgéady-state
performance of fuel cell/stack and establishing tptimal operating
condition (Braun, 2002). Moreover, high dimensiomabdels require
information about material properties or electronloal parameters that
are not always available or might be difficult tetekmine. Even so, high
dimensional models are still helpful to learn theem@tion behaviour of
fuel cells of different geometry and very useful éoeating training data
for black-box modeling.

Physical models are mainly based on the knowledgehgsic-chemical
characteristics (electrically, chemically and kiragiwally), thus also
called as “white” models. They presents a high gareability level that
enables modeling SOFC stacks of different geomemtures, but
require a high computational effort. In contrakgre is another approach
only based on experimental database (no requirefoerdny physical
property), known as the black-box modeling. Blackbmodels are
developed particularly for control-oriented appficas, i.e. system
monitoring, online control and diagnosis. Nevertissl the high
dependency upon experimental data makes these snobkls
generalizable. Finally, grey-box modeling are p@disti physical and
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partially empirical, falling in between white anthbk-box approaches.
For the research target of the present thesisdiagnostic and control
applications) low dimensional models (0- and 1-B9 more appropriate
due to the less computational time in comparisorth wihe high
dimensional ones (2- and 3-D). Therefore the litemreview on SOFC
stack models was focused on 1-D, 0-D (grey-box)@adk-box models.

1-D SOFC stack models

In 1-D model, the fuel cell is usually treated asea of layers including
interconnects, air channel, electrodes, electrayte fuel channel (Bove
and Ubertini, 2008). Both gas composition and flate in each channel
are assumed to be constant and their mean valeesused in the
simulation. For planar SOFC, the main dimensiomesponds to the gas
channel and the direction is determined by theflgas It is necessary to
note that the fuel cell with cross-flow design cainbe simulated by 1-D
models. For tubular SOFC, the kept dimension isalliguhe tube axis
which coincides with the direction of the fuel asxdant flow (Bove and
Ubertini, 2006).

Magistri et al. (2004) built a one-dimensional miofite tubular SOFC,
where the cell coordinate x is the axis of the tudred its origin
corresponds to the bottom of the cell. The mainoktygses of the single
cell model are: 1) the cell is adiabatic, 2) th# eeltage is uniform and
all the chemical reactions within the anodic stresmm at equilibrium, 3)
the electrochemical reaction of;Hs taken into consideration; the
electrochemical reaction with CO is neglected. Tak model includes:
electrochemical performance, equilibrium of refamgiand shifting
chemical reactions, mass balances at the anodecattde, energy
balances of gases flows, energy balance of the &k of the solid
positive-electrolyte-negative (PEN) structure. e paper, the 1-D model
was described and the results were compared t@-hvenodel simulation
proposed by Costamagna et al., (2001). In both laptlee input data are:
geometrical characteristics, operating conditionget flow conditions
and gas and material properties. The models cosgashowed that the
temperature inside the stack was not uniform ahidpagh the average
value was acceptable, the maximum values wereitgho h

In Gubner et al., (2003, 2005) a so-called dyndmeitaviour model of an
SOFC was developed and verified. The model was htapaf
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reproducing the I-V-behaviour and the temperatus&idution in the gas
flow direction inside a cell operating under eitleer- or counter-flow
mode. It was found to be sufficiently accuraterfipid system simulation
(Gubner et al., 2006). The model enabled, e.g.igdes the gas flow
rates according to the maximum drawn current derend thereby to
prevent overheating of cell.

Aguiar et al. (2004) developed a 1-D dynamic mddebnode supported
intermediate temperature planar SOFC with direterival reforming.
This model predicted the SOFC characteristics bo#teady-state and in
transient operations. It is based on a mass andyermlances and
coupled to an electrochemical model. For the matmbe the molar flux
in the gas channels in the flow direction was cd@®d. In the fuel
channel, three reactions are taken into accountmgjhane steam
reforming; 2) water gas-shift; 3) and hydrogen etexhemical oxidation.
In the air channel only the reduction reaction efwas considered. In the
energy balance were included: the released heat #&lectrochemical
reactions and Ohmic losses; the convective heasfea between cell
components and gas streams; and the in-plane baduction through
cell components. The thermal flows between the PEN the
interconnect components were supposed to be cdmeduahd radiate.
However, in the gas channels, they were assumbd tmnvective in the
gas flow direction and from the gas channels to sodd parts
(perpendicular to flow direction).

Jiang et al. (2006) set up a 1-D dynamic modekftubular SOFC with
external reforming. The cell was divided into eletsealong the flow
direction. For each element, in the 4 control vasn{CVs) separated
along perpendicular axis: the fuel, the solid, teaction air and the
preheated air CVs. Several assumptions were madedahermal model:
1) for every element, the temperature within eavhwi@as uniform; 2) the
radiation and the conduction heat transfer wereadan into account; 3)
the convective heat transfer was assumed as the amlse of the
temperature gradient in the gas streams. The hewa¢rgted for the
reactions (shifting, reforming and electrochemiealiyl the Ohmic losses
were computed. The cell voltage at each element wafrm. An
equivalent circuit was built to evaluate the infige of the current path
length to the Ohmic loss. This model was capabl@reflicting SOFC
characteristics in both the steady and the trahs@mditions and showed
a good reliability. Results from the model showédtthigh pressure
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could improve the cell performance whereas higlperating temperature
reduced both the Nernst potential and the irreblsiosses (Ohmic,
activation and concentration).

Sorrentino (2006) developed a 1-D steady-state trfodeo-flow planar
SOFC. The model was divided into three sub-modglsnass balance; 2)
energy balance; 3) voltage. The model was basettie@ontrol volume
approach, according to which the cell was disceetim CVs in the flow
direction and divided into three layers: anode clehncathode channel
and cell (solid layer). The cell was assumed taslogotential and the
pressure drop across the fuel and air channelsweglected. The raditive
heat transfer and the heat conduction in the $ajier were neglected and
the stack was assumed to be adiabatic. The hea¢coon between solid
layer and gas streams and the energy transfer altieetreactants and
products were considered dominant in the energgnicel The model
showed a good accuracy in the simulation of SOR€&stand variables. It
was adopted to generate SOFC stack data to be insadhierarchic
modeling approach for control-oriented applicatiq@®rrentino et al.,
2008).

Cheddie et al. (2007) upgraded a 0-D real time mtmla dynamic 1-D
model in order to predict more accurately the tenajpee and pressure
variations along the gas flow direction. The reatet capability was
maintained by setting up several simplificationse tcurrent density
distribution was considered uniform and there wasnaed to compute
the cell current iteratively, thus resulting ineaduction of computational
effort. The overpotentials at each node were repldry the average one
across the cell. It was assumed that neither tagebr dynamic transient
occurred in the voltage change after a currentatian, so the transient
states were not taken into account. The gas comtem was considered
dependent only on partial pressure rather than kwd#ssure and
temperature. In thermal model, the heat generatims assumed to occur
in the PEN only. The heat conduction was negligiblehe fluid phase
due to the fact that the thermal conductivity ischntnigher in the solid
regions than in the fluid phases. The 1-D modehwit nodes was
proven to require 3.8 ms of computational time déach iteration. The
model validation showed that the limiting assummiaid not lead to the
significant simulating difference when comparing thwia more
comprehensive 1-D model without these assumptions.

Kang et al. (2009) modified a 1-D dynamic modeldgslanar SOFC with



Introduction 25

internal reforming by integrating two simplificatis: 1) the PEN,

interconnects and gas channels were integratedthigealong the

perpendicular direction, that is, the SOFC is cder®d to have only one
temperature layer; 2) the current density distrduis considered to be
uniform within the SOFC, and the cell voltage isgedmined by the

average gas molar fractions and cell temperaturbesd two

simplifications are similar to the assumptions ime@die’s modeling and
by introducing them, the SOFC model was greatlypsiftad in form.

Grey-box SOFC stack models

The main purpose of the 0-D (grey-box) modelingoigievelop model-
based tools aiming at optimal design, managementra and diagnosis
of SOFC units destined to a wide application aBarentino et al., 2009
(@)). These models are suitable for massive usenwtine main

characteristics of the system are already availaiiterefore the lack of
some physical knowledges (i.e. space descriptienfampensated by
introducing other information such as empiricaladdtherefore grey-box
models mix phenomenological description with sifigdi assumptions
and practical information In lumped models spatiatiations are not
taken into account (the transformations are comsti¢o define output
variables from input ones). In such an approaoh,sthgle elements, for
instance, compressors, heat exchangers, fuel refonpartial oxidizers,

and contaminant removal apparatus are simulatezlighr independent
sub-models (Bove et al., 2006). Furthermore, thikgwabeing easily

calibrated and modified for new developed materials

The grey-box approach is based on a priori knowdedgncerning the
process and on the mathematical relations whichritbesthe behavior of
the system. The starting point is a specific mastelicture based on
physical relations. The construction procedure gfea-box model based
on mathematical relations can be divided into d#ifé sub-tasks: basic
modeling, conduct experiment of the process, caiton and validation

(Sohlberg et al., 2003). In order to optimize desigpntrol and diagnosis
of SOFC systems, with particular regard to the rgangent of energy
and mass flows during system start-up and loadggsgrit is important to
simulate SOFCs in transient conditions. The devakam of these models
should meet the compromise between satisfactoryuracg and

affordable computational burden. The above compmentian be easily
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achieved by 0-D (i.e. lumped) modeling approacBés(tacharyya et al.,
2009).

Costamagna et al., (2001) described a hybrid systieene the SOFC was
simulated with the 0-D model approach. The balaegaations were
written as macroscopic balances, in form of fingguations. The
equations expressed a balance between inlet atet Botvs of mass and
energy in each component of the system; underdeitssumptions, they
allowed the evaluation of the average values of ghegsical-chemical
variables of each components and the electrochépectormance of the
group itself.

In Campanari’s 0-D SOFC model (Campanari, 2008 c#ll voltage was
a function of the current density, the operatingpgerature and pressure
as well as the reactants and product composition.

Bove et al. (2005) built a macro model in which lemic polarization
depends upon the material properties only. The apenit voltage and
the activation polarization were related to gascentration while the
concentration polarization was ignored. The meameot density was
regarded as an input variable.

Ferrari et al., (2004) and Magistri et al., (200@&de a transient analysis
of hybrid system based on SOFC. This system waslyneomposed of
three parts: the stack; the anodic recirculatiostesy with fuel feeding
and the cathodic side (air side) where turbo-mamlin and heat
exchangers. These researches allowed a deep gatesti of the Fuel
Cell Stack integrated with reformer and post-contnusiodels.

An Interesting lumped approach was followed by ®egigarchi and
Feliachi (Sedghisigarchi et al., 2004 (a)) for cohtand stability
enhancement of SOFC-based distributed generatedgli&igarchi et al.,
2004 (b)). Nevertheless, in Sedghisigarchi et(aD04 (a)) average cell
temperature was assumed as state variable, thuslloaing to provide
some basic information for balance of plant analysuch as temperature
of exhaust gases.

Sorrentino et al., (2008) proposed a hierarchicatleling approach to
derive a control-oriented lumped model of planarFSO The model
proposed is capable of simulating temperature athge dynamics as
function of the main operating variables (i.e. eatrdensity, fuel and air
utilizations, inlet and outlet temperatures) actelya The contribution of
(Sorrentino et al., 2008), differently than (Sedigmrchi et al., 2004 (a)),
does take into account temperature variation actiesschannels, thus
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being suitable to perform, at low computationaltcascurate balance of
plant analyses, including heat exchangers sizingaifgacharyya et al.,
2009). Thus, Sorrentino and Pianese (Sorrentiah,e2009 (a)) proposed
to extend the lumped approach presented in (Samceet al., 2008) to
the modeling of a fully integrated SOFC-APU (i.axéiary power unit).
This latter contribution was also proven to be d/dbr the development
of model-based diagnostics tools for mobile SOFQJARSorrentino et
al., 2009 (a)).

The 0-D approach was also applied to transient tmgdeof tubular
SOFC by Hajimolana et al., (2009), to develop suggategies aimed at
controlling voltage and cell-tube temperature bgperly acting on both
temperature and pressure of the inlet air flow.

Sorrentino and Pianese, (2009 (b)) presented almeynodel of a SOFC
unit. The core part of the model is the fuel cédick, made of planar co-
flow SOFCs and surrounded by a number of auxildg®yices, namely air
compressor/blower, regulating pressure valves, lxahangers, pre-
reformer and postburner. As a consequence of lawthl dynamics
characterizing SOFCs, a lumped-capacity model apgsed to describe
the response of fuel cell and heat exchangersatbdbange.

Black-box SOFC stack models

Most of existing models (1-D, 0-D) are based onsital conversion
laws and governing equations (Wang et al., 201Xkala et al. 2001,
Recknagle et al. 2003; Xue et al. 2005). Althougm@ useful for design
analysis and optimization of SOFC, they are too memfor control and
diagnosis of SOC system. This drawback impelled esoesearchers to
attempt black-box methods (Arriagada et al., 200Bakraborty, 2009;
Entchev et al., 2007; Goldberg, 1989; Huo et &0Q& Huo et al., 2008
Jang, 1993; Milewski et al., 2009). The black-bog mput-output (i.e.
mapping) models, derived through statistical daieett approach.
Contrary to physical models, they are not basedexplicit physical
equations but use large databases with experimeéata) which represent
the behaviour of the system as function of diffeéigrerating, control and
state variables. Any black-box model is built wilhcexploiting any
physical law but use only a set of input-outputpé&or training procedure
is used, instead. Black-box models range from waksegression based
approaches to complex artificial intelligence basews (e.g. Neural
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Network). It has been demonstrated that the blaxk+bodels based on
artificial intelligent approaches are very suitafile non-linear systems
(Patan, 2008). However, such models require a laageunt of
experimental data (i.e. training examples), whibbowd well represent
the behaviour of the system; therefore, the expartal burden for
collecting meaningful data may become excessivethodigh the
experimental load is the main drawback of artifigrgelligence-based
modeling techniques, their intrinsic high accuraepresents the most
attractive characteristic. These two opposite fegtuead to the main
trade-off to deal with when approaching the modglproblem to be
solved.

Arriagada et al. (2002) proposed a non-linear ftedl model by using
artificial neural networks (ANNs) for evaluating BO performance;
their model is a two-layer feed-forward network whooutputs are air
flow, current density, temperatures of outlet aid duel, average solid
and reversible voltage. The model was trained \é&kpropagation
algorithm with a reduced amount of input and cdrieaput data pairs
generated by a physical cell model. Comparing t@uis of the ANN
model with that of the physical model, the averagieies of the errors are
well below 1% and the maximum below 4%. Besidesabeuracy, the
ANN models are much faster and easier to use aitdbsi for the
generation of performance maps.

Milewski et al. (2009) used the same ANN structoféArriagada et al.
(2002) to simulate the SOFC behaviour (they exptbéxperimental data
for training and testing process). This SOFC mautelicts the output
cell voltage making use of 9 input parameters @nrdensity, cathode
inlet O, and N flow densities, anode Hand He flow density, anode
thickness, anode porosity, electrolyte thicknessd aalectrolyte
temperature). A hyperbolic tangent sigmoid tranffection was used as
the neuron activation function in the first layetereas a linear transfer
function was used in the output layer. The testegults show that the
ANN can be successfully used in modeling the sirsgikd oxide fuel
cell. However, its practical development suffereaf some drawbacks
such as the existence of local minima in the aasttdon to be minimized
during parameter identification and over-fitting.
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Contributions

In the present Thesis different models of SOFCkstare presented. The
models are developed with the purpose of being emphted into
diagnosis and control applications for SOFC systdfos this reason, the
modeling approach adopted is control-oriented tgpd 1-D, grey-box
and black-box models, both stationary and dynaraiwetbeen developed.
Specifically, the following models have been depeld:

1. 1-D stationary model of a planar SOFC in co-flovd aounter-
flow configurations. The model has been derivednfra 1-D
model developed by the University of Salerno (UN)JSA
Sorrentino, (2006). The model has been cross-uvalidavith
similar models developed by the University of Gef0AIIGE)
and by the institute VTT of Espoo (Helsinki, Fintgn

2.  Grey-box model for the simulation of the thermahdmic of a
planar co-flow SOFC stack produced by TOPSOE.

3. A black-box model based on a steady-state neurtalank to
simulate the stack voltage of a radial co-flow &O8tack
produced by HEXIS.

4.  Black-box models based on recurrent neural netwdiks
simulate the stack voltage of two SOFC stacks:pyoduced by
TOPSOE and another one produced by HTc and tegted b.

The purpose of this thesis is to give an overvidwthe models and
methodologies adopted for control and diagnosisliegipns. The
models developed have been validated with expetmhelata provided
by European manufactures. The research activitypkas conducted as
part of the GENIUS project, funded by the Europdanion. The
objective of the project is to develop diagnostiols and methodologies
for SOFC systems. In the general framework of tEN@®S project this
thesis is part of the development of mathematicatlets aimed at the
definition of model-based diagnosis.
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Thesis overview

The present thesis is structured as follows:

CHAPTER 1: SOFC principle and different fuel celthnologies and
materials description.

CHAPTER 2: One-dimensional stack model descriptowa cross-
validation with similar models.

CHAPTER 3: Development and experimental validabba grey box
lumped model for stack thermal dynamic simulation.

CHAPTER 4: Development and experimental validabémlack-box
stack models based on Neural Network and
Recurrent Neural Network.

CHAPTER 5: Conclusions.

CHAPTER 6 Appendix: Description of the Fault Diagisotechnique
based orrFault Tree Analysis.



CHAPTER 1 SOFC principle

1.1 Working principle

Fuel cells are electrochemical devices capablep¥erting the chemical
energy held by a hydrogen-rich fuel into electyiciBuch conversion is
direct, in that no intermediate combustion occuRgjéshekara, 2000).
Fuel cell working principle was discovered by Fried Schonbein, who
found the fuel cell principle in 1838. Based on &ubein publication

Grove started his research and built the first fedl in 1839 (Larminie

and Dicks, 2003). With referenc to SOFC, a singlek consists of three
main components: an anode, a cathode and a selitr@ite separating
the two electrodes. Oxygen and hydrogen (i.e. dlaetants) are supplied
to cathode and anode, respectively (see Fig. Wrider electrical load, at
the cathode surface the presence of perovskitdysanables oxygen
ionization (Eg. (1.1)). The solid electrolyte allewhe flux of oxygen ions
to the anode, where they electro-oxidize hydrodkuns releasing heat,
water and electrons (Eq. (1.5)). Since electroigtgerial ensures quasi-
zero electronic conductivity, electrons are forcted flow through

interconnect and external load towards the cathdlles closing the
electrical loop. In a SOFC the oxygen ions are fmnat the cathode
where the oxygen of the supplied air is reducederedis at anode
hydrogen rich gas is oxidized releasing electrortswmater (Eq. (1.2)), as
sketched in Fig. 1.1. At the anode hydrogen rick gaust be supplied
(any gas composition is tolerated by the anode nmaeexcept sulfur
compounds), in case of methane fuel, for examplethe presence of
steam must be considered other two reactions atatiozle: steam-
reforming (Eg. (1.3)) and water-gas shift (Eg. )L.deactions. This
feature allows the use of any reformate gas fraheeeimethane or liquid
fuels, therefore the gas composition may affect gagormance of the
cell. Another distinctive characteristic of SOFC tiee high operating
temperature (usually > 700°C), which representselevant feature
allowing the use of these systems for cogeneraifoneat for practical
applications. On the other hand, the high tempezatinvolved do not
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allow tight transient operations. This entails d@s in the thermal
regime, which in turn may cause mechanical strassi® materials.

2e [ ] LOAD}— e
HE,_ imn T 02, in
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H,+0™ - H,0+2¢” 45 1 O, +2e -O°
2 2 € — 72
Anode , Cathode
Solid
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- —>
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Catalyst Catalyst

Fig. 1.1 — SOFC basic principle

%OZ +2e - O (cathode)
H,+02% - H,0+2¢ (anode)
CH,+HO-3H,+CC (anode)
CO+HO-CQ+H (anode)
H,+20, - H,0+2€ + hea (fuel cell

(1.1)

(1.2)
(1.3)

(1.4)

(1.5)

To obtain the target electrical power, severalscatk assembled together
to form a stack, whose voltage and current outdatgend on the proper
combination of parallel and series electrical caioes among the cells.
Moreover, to guarantee the proper operations ofstaek some devices
(i.e. balance of plant — BoP) are required to pevihe right amount of
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reacting gases (i.e. air and reformate/hydrogenyedsas to manage the
outflow hot gases for heat recovery. Besides thergiormer, which

provides the reformate gas to the anode, the stdretpiipments of the
BoP are: a blower for cathodic air supply; a seheat exchangers, for
inlet gases heating and outlet gases heat recoeempypst burner, to
convert the residual anodic gas chemical energyhett; a set of valves,
for the fluid and thermal managements guarantebwif) performance
optimization and thermal stresses control of theckstmaterials. The
complex interaction among BoP and stack requirdsdesigned control

strategies to optimize system (Stack and BoP) pedoce as well as
advanced diagnosis algorithms for fault managenerdavoid failures,

which in turn may improve lifetime (Arsie et al.0QX0 a; Sorrentino and
Pianese, 2011; Marra et al., 2011).

1.2 Cell material

Specific materials must be selected for electrolyéectrodes and
interconnects. Basically, due to the high workiemperatures (i.e. in the
range 650-1000 °C), all components are made ohtuerbased materials.
Nowadays, the most relevant material for SOFC mbdte is Yttria
Stabilized Zirconia (YSZ). Such compound is obtdinkey doping
zirconia with yttria at very high temperatures .(i2400 °C) (Ormerod,
2003). Through this process, a considerable nundfeoxygen ion
vacancies are introduced in the original crystallistructure, thus
significantly increasing the ionic conductivity dtigh temperatures
(Bogicevic et al., 2001). Fig. 1.2 shows ionic coctivity as function of
temperature for YSZ and other electrolyte materiaésminie and Dicks
(2003) indicated that a minimum value of?8 cni* must be guaranteed
to attain acceptable power densities. ThereforeZ-#lgctrolyte SOFC
(see the corresponding, gray-circled line in Fig) has to be operated at
temperature at least as high as 700+750 °C (WetlzkT dfee, 2004).
Anode in SOFCs must comply with conflicting requments, such as
high electronic conductivity, resistance to botduang and oxidizing
species, good thermal match with electrolyte argh tporosity. These
characteristics are achieved with nickel cermetdasp obtained by
adding nickel particles to YSZ. Thermal mismatchcomponents is a
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major concern in SOFC, because the risk of mismaicleases with
amount of nickel added. Therefore, a satisfactmmmromise between
the above mentioned features has to be found. Tdlemsmatch is also
one of the main motivations that push SOFC reseascto develop
appropriate dynamic simulation tools (Selimovicakt 2005). During
transients, the intrinsic mismatch level may cau@®ponents crack if the
temperature gradient rise across the cell is neigaately controlled.
Another issue to be accounted for, when selectmagl@ material, is the
low resistance of nickel, a noble metal, to carlo@position. This is
particularly a concern in case of internal reforgnimf methane.
Researchers are currently working either on addiumther dopants or
introducing a separate catalyst for the activatibthe methane reforming
reaction (Ormerod, 2003). Regarding cathode madetizey are required
to guarantee the same characteristics as anode lmuteis addition they
must promote the formation of oxygen ions at theerface with the
electrolyte. To this end, the majority of SOFC depers utilize a
perovskite material, Strontium-doped Lanthanum Mauitg (LSM).

Similar considerations on thermal mismatch menticioe anode must be
taken in account for cathode as well (Ormerod, 20@3nally, the

primary requirement for interconnect is the higacglonic conductivity.

Considering the operating temperatures, ceramicenmatéd such as
lanthanum chromite are mainly used (Ormerod, 20B8).relatively low

operating temperatures, such as in anode supp&@ECs, metallic
interconnects also are suitable (Christiansen. e2@05).
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Fig. 1.2 - Conductivities of major SOFC electrolyte as function of average
operating temperature (Ormerod, 2003).

1.3 Fuel Cell Typologies

Several fuel cell typologies are available, eack wamth distinguishing
features and, thus, suitable for specific applwceti Following a
commonly used criterion (Fuel Cell Handbook, 200R)l cells are
mainly categorized according to electrolyte typg,shown in Tab. 1.1.
Among the fuel cells listed in the Tab. 1.1, itwerth mentioning that
phosphoric acid fuel cells (PAFC) are the only tggy that is already
commercialized for high-power stationary applicaio(Okano, 2003).
Nevertheless, the majority of actual researchesses on PEMFC and
SOFC, which are considered as the most promisieg dells for both
transportation and stationary applications (Somen006).
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PEMFC DMFC AFC
Polymeric Polymeric Potassium
Electrolyte :
membrane membrane hydroxide
Operating
Temperature 60-100 30-100 65-220
[°C]
Efficienncy [%] 35-50 20-40 45
Start-up Fast (1 min) Fast Fast
Change carrier H H* OH
Catalyst Platinum Platinum Platinum
External (but pure No need of
Fuel Reforming : P reforming, it runs External
H, is preferable) ;
with methenol
Automotive power
Appliclation and APU, portable| Portable power, Space
fields power, small-scale| Lap-top, phones P
stationary power
PAFC MCFC SOFC
Electrolyte Liquid phoshonc Liquid molten Ceramic
acid carbonate
Operating
Temperature 150-220 600-700 600-1000
[°C]
Efficienncy [%)] 40 45-50 45-60
Start-up Medium Slow Slow (20 min)
Change carrier H COs o
Catalyst Platinum Nickel Perovskite
Fuel Reforming External Internal or external Internal or
external
Automotive APU,
heavy-
Large vehicle . dutyvehicle
N . on-site :
Appliclation power, on-site . propulsion,
' . cogeneration, : .
fields cogeneration, ; marine and rail
; stationary power .
stationary power power, on-site
cogeneration,
stationary power

Tab. 1.1 — Main features of the mayor fuel cell typlogies (sources: Moran and
Shapiro, 2004; Fuel Cell Handbook, 2002; Rajashekar 2000;
Larminie and Dicks, 2003, Topsoe, 2002



CHAPTER 2 One-Dimensional SOFC
Stack Modeling

The one-dimensional (1-D) modeling of SOFC stadéved achieving a
satisfactory compromise between the conflictingdseef high model
precision and affordable computational time. Theowdedge of the
spatial distributions of current, temperature adtigl pressures in the
flow direction allows for accurate prediction ofllggerformance. On the
other hand, avoiding to solve the governing equation the other
dimensions results in significant reduction of camabional time. The
high physical content guaranteed by a 1-D approgebvides

considerable flexibility to account for differentlcgeometries, materials
and fuel feeds. The above features are particulasigful to perform
“virtual experiments” throughout the operating damaf an SOFC.

Therefore, the recourse to a 1-D model is partibulpromising for

SOFC-related optimization problems, such as parmmatentification

for off-line control and diagnosis. The parameteentification can be
useful for an adaptive control, or for a diagnosipplication, considering
for example the degradation of a SOFC stack.

In the next sections the entire 1-D model is désciiand the results
relative to IEA validation (Braun, 2002) and a c«eslidation with other
similar models are presented. Finally, is repodepossible application
for off-line diagnostic application of the 1-D mddie case of degradation
estimation in SOFC stack (Marra et al., 2010).

2.11-D model description

The one-dimensional (1-D) model developed and de=itrin this work

is an improvement of the cell model developed @&dmo, 2006). The
model is written using the Matlab© programming laage. The model
maintains a similar structure of the previous qeeticularly it consists of
a set of sub-models, namely energy, material amctreichemical balance.
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The model accounts for variations in the cell bycdetizing the domain

into computational elements along the cell lendfig.(2.1). At each

computational element, balances for mass, enerdyeéettric potential

are applied in a closed form. Main hypothesis agglifor the previous

model are kept. More precisely, the cell is assunwetbe isopotential

(Braun, 2002) and fully-stirred conditions are ddesed at the element
level. Assuming uniform distribution but no mixid air and fuel feed

gases, the two streams are treated separatelyrigstpgases. Pressure
drop across the fuel and air channels is safelyentgy (Burt et al.,

2004). Moreover the cell is considered adiabatic.

The main contributions to the model improvement barsummarized as
follows:

i) Introduction of the conductive heat exchange insthied trilayer.

i) Adoption of a different mathematical resolution thfe systems
equations.

iii) Extension of the model to counter flow configuratio

In the model developed the conductive heat exchangee solid trilayer
is considered. This allows to take into accounthbat exchange due to
effect of the temperature gradient in the streamwdsection. This is
particular relevant in counter-flow configuratiaand the model shows an
improvement in the performance, as it will be shomnthe cross-
validation tests described in the paragraph 2.3.

In the previous model the computation starts atitiet section of the
fuel/air flows and marches forward in the streanewdérection (Braun,
2002; Haynes, 1999). This computation mode has bewmenged,
developing a global method which accounts for #eolution of all the
equations referring to all the computational eletseammultaneously. The
new computation mode has several advantages.dfirall the model can
be adopted for different cell configuration, pauwtarly for counter flow
configuration. This was not possible with the poexd method because it
requires, as initial step, the knowledge of theegaand temperature
conditions in the first computational unit. This m®t possible in the
counter-flow configuration because the fuel and ialet sections are
opposite (Fig. 2.1). The global computation modarisimplicit method,
thus resulting more stable with numerical issué® disadvantage is only
the cache memory requirement, which grows Wthwhile for iterative
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marching technique the requirement is proportigadl, with N number
of computational cells. This problem is not reledvhecause the model
shows accurate results just with only 20 computalianits, as shown in
the result description. Finally this method reduttescomputational time.
After the introduction of the new numerical solatidechnique it is
possible to simulate the cell in counter-flow cguofiation (achievable by
changing some equations in the sub-models, asidedan the following
paragraphs). Therefore the generalization towaetlsconfiguration has
been generated in the fame of 1-D flows. Moreovhe tnew
computational configuration can be easily extene®D configurations
such as cross-flow.

The 1-D model developed is more flexible and gdiratale and it can be
adopted for different SOFC technologies.

v

Fuel channe|=——

Air channel <+
Fig. 2.1 — Cell computational discretization for canter flow configuration.

2.1.1.Eletrochemical submodel

The electrochemical sub-model evaluates SOFC woltagl power
along the cell. For each elemanthe current density is calculated by
Faraday’s law:

—_ r.OIX I:F me

Ji
A

(2.1)
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where N, is the number of electrons transferred per moteotilH; (i.e.

N,=2), ¢! is the reaction rate (mol™3 of the electro-oxidation reaction

and A (cnT) is the area of the single computational elemeat @' =
A/N). Multiplying the current density of each elemdytA', the total
current is found summing up the contributions friivaN computational
elements:

N . .
lsore =D (I &) (2.2)
i=1
With reference to Eqqg. (1.1), (1.2), (1.5), theaidpotential difference
between anode and cathode is evaluated using ttmstNEguation:

. AG! (T') RT Pho
E! - _ ox} s/ _ W s |p 2
Nernst neF neF { p'H \/E\J (23)

There are three major forms of polarization lossetivation, Ohmic and

concentration. A constant offset also contributethe total polarization,

which is the result of minor losses such as contesistance, internal

current and leaks. Following Chick et al., (20G8g offset was assumed
equal to 0.07 V. The sum of the different polaimas results in the

voltage drop from ideal Nernst potential to effeetioperating value.

Since interconnect and electrodes are isopoteggdlyoltage is constant
over the whole cell and can be estimated as

Veore = E -V _thm_\i/ _\i/Off: (2.4)

Nernst Act Conc
The total power drawn from the SOFC is calculated a

Eel = Vsore U sorc (25)

where ISOFC is given by Eqg. (2.2). The following three subismts deal
with the modeling of activation, Ohmic and concatitn polarization
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losses.

Activation polarization

Activation polarization represents the energy learto be overcome to
activate the electrochemical reactions occurrinthatelectrodes surface
(Fuel Cell Handbook, 2002). This amount of enemgyvitably causes a
significant voltage loss, which is usually modetatbugh the non-linear
relationship known as Butler—Volmer equation (Keegz002):

R (0
VAct_mSInh (ZJO(T;)] (2.6)

where & is the charge transfer coefficient aﬂgl is the exchange current
density.

Ohmic polarization

Ohmic polarization mainly depends on the electrooonductivity of
electrodes and the ionic conductivity of the elglgte. Such losses are
estimated summing up the contribution from each SQ@&rt (i.e. anode,
cathode and electrolyte), as follows:

|, :
| — i EDI
oo M)

Vom=2 Vo  k=[an,ca ¢
k

2.7)

Conductivities are estimated by means of corraiatioproposed in
literature (Chick et al., 2003) for second-generatceramic SOFC, in
which the materials of anode, cathode and elede&@ye, nickel-cermets,
strontium-doped lanthanum manganite and yttrial&ted zirconia,

respectively:

a,,=100C (2.8)

Uca(Ts) = Cl(Tg)z - Cz Tis+ C3 (2.9)
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g.,(Ts)= C,(Ti-273)2+ C, (T5- 273)+ G (2.10)

Concentration polarization

As fuel is depleted, hydrogen and oxygen partiglspures decrease at
anode and cathode, respectively. The depletiondapends on average
current density drawn from the cell. Therefore,tlas current density
increases, the partial pressures decrease anduelrgnan insufficient
amount of reactants are transported to the elezttod@his results in
significant losses until the voltage is reduced t(Singhal and Kendall,
2003; Larminie and Dicks, 2003). The values at Wigach phenomenon
occurs are known as anode and cathode limitingentsr This voltage
loss, which is dominant at high current densitiss;alled concentration
polarization and can be estimated as follows:

' i [ [ o
vc'om:—RDrs Y P [ P L Al (2.11)
2[F 2 ‘]cs ‘]as ﬁl—gzODJcs

The anode and cathode limiting currents (iJgs and J. respectively)

are computed as function of species diffusion coefits, following the
approach proposed in (Braun, 2002).

2.1.2.Simplified polarization losses sub-model

In the development of the 1-D model it was expbbite simplified
polarization losses sub-model. This decision whksertdor the purpose of
reduce the computational burden.

The activation and concentration losses were apmated as being equal
to the Ohmic loss of the electrolyte, thus the Ef4) is changed as
follows:

VSOFC = ENernst_ thm_ 20V Ohm (2.12)

whereVonm is computed through Eq. (2.7). The conductivinésanode,
cathode and electrolyte are estimated using tHewlg relationships
suggested by IEA (Braun, 2002):
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9501 ¢ -1150
an, IEA — TS. @Xp( TSI J (213)
420¢F -1200
= —[& :
ca,lEA TSI p( Tsl j (214)
_3.3401¢ - 1030
el,IEA — TSI Xp( TSI cj (215)

2.1.3.Conservation equations in co-flow configuration

Conservation of mass, energy and electric poteatialapplied to each
computational elements. Momentum equation was onsidered since it
is assumed that pressure drop across the cell eaneblected. The
structure of models was conceived in such a wagctmunt for internal
reforming of a partially pre-reformed methane fe€de fuel flowing in
the cell, which typically consists of a mixture l9§, CH,;, CO and HO,
undergoes steam reforming of CKEq. (1.3)), water-gas shift reaction
(Eqg. (1.4)), and electrochemical oxidation of(Hqg. (1.5)). The water gas
shift reaction Eq. (1.4) is assumed to be in eluidim, the corresponding
equilibrium constant being equal to:

—AG,, (Tsl) J

RO (2.16)

K it (Tsl) = eXp(

The equilibrium constant can also be expressedragion of the species
molar fractions, as follows (Massardo and Lub&liQ0):

L h:: + 3rrief + ri:hift - ricux] [Eni 6(13 +r shiﬂ}
K. = Xy, Do, = .htio_tl-i-_zrgef _ _nit;tlf Zriref .
Xco D(HZO nlcé + r;ef B rlshift nhzlo B rrlef B rls,hift + r'on

( Mo + 21 JEE Moy + 2! ]

ref ref

(2.17)

where I, , L and ¢ are, the reaction rates (mol/s) of the methane
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reforming Eq. (1.3) , water-gas shift Eq. (1.4) aiectro-oxidation Eq.
(1.5) reactions, respectivelyy,, is found solving the system of Eqq.

(2.16), (2.17), whiler} and r'rief are estimated via Faraday’s law and the

temperature/pressure dependent correlation propegeschenbach and
Riensche, (1994):

Lo

(= (2.18)
F [,

. 4274Ebic.44 [ @ (62000R M) (2.19)

Electric potential balance

Since the interconnect and the electrodes are a&sbtwnbe isopotential,
the voltage is constant over the whole cell, thietding the following
balance to be solved for each computational element

Eli\lernst _viAct_thm_ \}'Conc_ \i/OffseT V SOF% O (2-20)

Material balance

Applying conservation of mass to a generic conimume Q (see Fig.
2.2), the steady-state material balance for eaehispcan be expressed
as:

[OmNdv=0 j=[H, €H, H,0 co cq N g (2.21)

Anode and cathode are discretized in the flow timacas shown on Fig.
2.2, where inlet, outlet and source (or sink) mdlews are represented
for thei-th element and thg,-th andjc,-th specie. Applying Eq. (2.21) to
the discretized cell for all the species, the folltg material balances
result:
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i
nH2 riH +3D:ef +rsh|ft I’ox
=i — -1
r‘lCH4 = Ten, — rJref
anode 'mzo = hzo - 'Jéf - .lghift+ .lltf)x (2.22)
ol i
- r‘co"' 'J ~ Fenite
r‘COZ shlft
i -1
Ny, = HNZ
cathode i (2.23)
=1t -05
= Inlet i-1 i i+1 Outlet
nJQ I,‘]ij—1 nij Fuel Channel
il = _L_.
|
t ",
|
Solid trilayer
n
|
n’ i i
el Ni.
5 - 5
Air Channel

Fig. 2.2 — Discretized mass balance at theh element for co-flow configuration.

Boundary conditions of the system (2.22), (2.23) #re inlet flows,
estimated according to the operating fuel util@atand excess air factors:

r.]Hz,react — jDA\ Eli

y m,  FO i

f r.]Hz,react — jDA\ 1
ey, F T, 4 e,

pure H feed

refomate feed

(2.24)
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It is worth noting that the denominator of Eq. @.2or reformate feed
equals 4 times the methane flow at pre-reformeat.iflhis holds because
for each CH molecule, 4 H molecules can be obtained, as indicated by
reactions (1.3)-(1.5). The use of a pre-reformitags, to partially pre-
reform methane, is required to avoid sudden tentyperalecrease at cell
inlet caused by the endothermic reaction (1.3).

Energy balance

The energy balance is applied by dividing the catajanal element into

three separate control volumes, namely solid teilagnd fuel and air

channels (see Fig. 2.3). Further simplifying hyestdés are: cell

boundaries are adiabatic and radiative heat trabsfeveen solid trilayer

and metallic interconnects is assumed negligibléhohigh previous

works (Braun, 2002; Burt et al., 2004) report thia¢ radiative heat
transfer mechanism could enhance the model accurdbg heat

conduction in the solid trilayer in the flow diramt is considered, while
in the previous model (Sorrentino et al., 2008) weglected. Hence, the
dominant energy balance effects described in thedeinare the

convective heat transfer between solid trilayer &rel and air streams,
the heat conduction in the solid trilayer in flowedtion and the energy
transfer due to the reactants and products flows.

The steady-state energy balance for an open systsis as:

(jj_ltz - Ein B Eout +Q-L=0 (2.26)
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:— Fuel Channel |

Bl 1, g =i g —+— E!
f | rod eact Q' | f
P cony, s f
I_ ______ Y I
| I Q|+1
Ql—l -— «— COﬂd, <
cond, s | Solid trilayer |
I | =i
. 7/‘ ______ 7/ _____ | Eelectric
| |
g | = 3 I
i-1 | . Eo2 Qconv, s ¢ —_— Ezla
I Air Channel I

Fig. 2.3 — Energy balance at theth element for co-flow configuration.

Applying Eq. (2.26) to the three control volume®wh on Fig. 2.3, the
following energy balances hold for solid trilayduel channel and air
channel, respectively:

Erieact_ Eprod-l- EQ - Qconv,es e-tl- Q+iond_ l 1conE E electn:c (solid) (2-27)
Eif_l_ Ef - Eeact+ Eprw+ Qonves f=0 (fuel) (2-28)

Eil—l _ EL‘ EQ + Qonves =0 (air) (2.29)

The energy rates, associated with inlet and oufleivs and the
electrooxidation, reforming and water-gas shiftcteens, are calculated
as follows:

Elewer = Ny, (T) T+ oy, (T)+ By o( T) ] O, +

_ _ _ 2.30
[Meo T M Ry ()] D @20
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Epod = Nuo(T) Tyct| 30hy, (T)+ ho(T)| O, +
[hy, T heg, ()] O

— r:ox f
% _E 2o(-[;)

E: =, Oh, (T)+ R, O, () + o Oho( D+
r.'icoz H'Eq (Tif )i .rikoD'Eo (Tf)

B =, Ty, (T7)+ T, TRy, (1) + Mo0ho( TH+
o, Mo, T 1+ oo (T )

E, =1, Chy (1) + h, (D

B = O, (1) + /O, (T)

E(Ielectric = VSOFC DJI DAI

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

Convective heat transfer between solid cell and/direchannel is

computed as:

QOI"NQS' = Flfm-rs_ T)

Qonves— a F]aDA‘Jl-Fs_ T)

— N
h - Ul:kf
Dh

-

(2.38)

(2.39)

(2.40)
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h — Nu |:H(a
h, ——Dh (2.41)

The hydraulic diameter (lwata et al., 2000) and S¢itsnumber (Braun,
2002) are estimated as, respectively:

_ A
o) 242

N, =7.541(- 2.6I8+ 4.978% - 5.11%°+ 0.43)
+ 2.70ZB* + 0.5483° ) .

wherep is the ratio between channel height and chanrgthwFollowing
(Braun, 2002), the thermal conductivity of the gasxture, Kyas IS
calculated as function of the thermal conductiatyuel species:

S (2.44)

e Ik, )"20M,, I M )T (2.45)
jm [8[(1"‘ M /Mm)]l/2 |

wherek; (kn) andM; (M) are the molar mass and thermal conductivity of
thej-th (m-th) species, respectively.

Conductive heat in the solid trilayer in the flowedtion is computed as:

Q= AT

== 2.46
nd, s AX ( )
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Q;;ﬁqf%x Ao T TY) (2.47)

Where Q;f,ds and Ql;ﬁds refers to the conductive heat exchanged

between thei+1-th and thei-th computational element of the solid
trilayer, and betweenth element and thiel-th computational element of
the solid trilayer.

Agmss represents the cross-sectional area ek@dis the solid trilayer

conductivity. kS is assumed to be constant with cell temperature

W
iati dk.=1.67 —.
variations andk; K

2.1.4.Conservation equations in counter-flow
configuration
Mass balance
The mass balance equations for the counter-flowignration the mass
balance changes as follows (see Eq. (2.23)):
n, =i
cathode { oo

4, =t + 050, (249)
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0 = Inlet fue i-1 i i+1 N = Outlet fue
0 i-1 i Fuel Channel
N, | o
i
"
I
Solid trilayer
n
f N
nlJ 1 Jea nIJ r‘]jca
< < «—
Air Channel
0 = Outlet ai N = Inlet air

Fig. 2.4 - Discretized mass balance at theh element for counter-flow
configuration.

Energy balance

With reference to the energy balance equations tf@ co-flow

configurations (Eqqg. (2.27)-(2.29)), according e scheme of Fig. 2.5,
the energy balance equations in case of counter-ttonfigurations

change as follows:

Eriear;t - Eprod + EQ - Qonve-s 6-1|- Q%ond_ l :tlaonE E electr|=c (SOIid) (2'49)
Eif_l - Ef - Eeact + Eprod-l- Qonves f:O (fuel) (2-50)
E-E" By + Qunes 0 @) (2.51)
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:— Fuel Channel |
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Fig. 2.5 - Energy balance at thé-th element for counter-flow configuration.

2.2 IEA model validation

The model developed was validated with the IEA Bemark (Braun,
2002), considering both the co-flow and the coufita configuration.
The black-box electrochemical sub-model was adogteq. (2.12)-
(2.15)) in the simulations. The model was testedtwo operating
conditions: 1) fueled with methane, 2) fueled wpilwve hydrogen (Tab.
2.1), with different number of nodes. The benchnradults are reported
in Tab. 2.2 and in Tab. 2.3. The model outputs wectuded into IEA
limits, thus resulting validated. In Fig. 2.6 thi&ack temperature was
compared between co-flow and counter flow confiara for the case 1.
It is important noting that in counter flow-configwion the mean stack
temperature is greater than in co-flow configurai{d5 K), thus resulting
in a greater stack voltage (0.697 V in counter-flamd 0.643 V in co-
flow configuration). This effect is due the configtion of the gases
flows, in the case of counter flow configuratiohgtmaximum of stack
temperature is near the air inlet section (seeZ#®), thus also the current
density is maximum in the same zone (Fig. 2.7). Effect of the
maximum temperature near the inlet air sectiontéed faster reforming
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reaction of the methane, as is it clear in Fig. 2.8

Operating conditions case 1

Fuel Methane
Cell current density 0.3 [Alcnf]
Gas inlet temperature 900 [°C]
Air inlet temperature 900 [°C]
Fuel Utilization 85%
Excess air 7
Pressure 1 [bar]

Operating conditions case 2

Fuel Hydrogen
Cell current density 0.3 [Alcnf]
Gas inlet temperature 900 [°C]
Air inlet temperature 900 [°C]
Fuel Utilization 85%
Excess air 7
Pressure 1 [bar]

Tab. 2.1 — Operating conditions for IEA validation.
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Counter-flow configuration Co-flow configuration
Parameters
Benchmark Benchmark
(IEA data) SOFC Model (IEA data) SOFC Model
Number of
nodes 10 20 30 10 20 30
Voltage [V] 0.680 - 0.692 0.692| 0.696 0.697 0.633-0.649 0,621843| 0.643
Current density
[A/m?]
Max 5330 - 6554 5441 6351 6617 3040 - 366p 35@509| 3519
Min 994 - 1332 1253 1193 1174 1748 - 2508 24832 | 2409
Temperature
[°C]
Max 1062 - 1089 1087 1097 110 1021 - 1034 1035 5103035
Min 906 - 915 911 905 904 847 - 862 861 855 8
Outlet gas
temperature
[°C]
air 1018 - 1028 1034 1034 1034 1016 - 1026 1035 5103035
fuel 906 - 915 911 905 904 1021 - 1026 1035 1p35351

Tab. 2.2 — One-dimensional model validation with IB& benchmark in counter and
co-flow configurations (case 1).
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Counter-flow configuration Co-flow configuration
Parameters Benchmark Benchmark
(IEA data) SOFC Model (IEA data) SOFC Model
Number of nodes 10 20 30 10 20 30
Voltage [V] 0.709-0.730 | 0.714 0.7160.717 | 0.702-0.722| 0.703.706| 0.707
Current density
[A/m?]
Max 7107 - 8970 7151 8068 849p 3725 - 3957 387 3373711
Min 1080 - 1235 1160, 1122 1110 1020 - 136p 1168 9108036
Temperature [°C]
Max 1062 - 1084 1100 1099 109p 1048 - 1098 1p85 4108084
Min 904 - 913 909 904 903 909 - 930 922 911 908
Outlet gas
temperature [°C]
air 1064 - 1082 1099 1099 109p 1048 - 1067 1p85 4108084
fuel 906 - 914 909 904 903] 1048 - 1068 1085 1)8484]10

Tab. 2.3 - One-dimensional model validation with IR benchmark in counter and
co-flow configurations (case 2).
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Fig. 2.6 — Comparison between stack temperature pfites in co-flow and counter

flow configurations (case 1 of IEA validation)
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Fig. 2.7 - Comparison between current density prolfiés in co-flow and counter flow

configurations (case 1 of IEA validation)
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Fig. 2.8 - Comparison between Ckimolar faction profiles in co-flow and counter
flow configurations (case 1 of IEA validation)

2.3 Cross-validation

The 1-D model developed for planar counter-flowfgmration and with

heat conduction was compared with other similar efodieveloped by
other research centers (this comparison was peefbimthe frame work
of the EU project GENIUS). Particularly the modehsvcompared with
the model developed by the University of Genoa (GE) and by the
VTT center in Finland. One model (UNIGE) is dynapwehereas the
other two are steady-state models. With this bamkgs, only the steady-
state results were compared. The simulation exgerisnwere defined so
that would correspond to normal SOFC operating itmmd (in a

laboratory). The effects of three inputs were stddiaverage current
density {) was set at 0.3 A/chand0.35 A/cnf; the fuel utilization rate
(Ur) was set at 50% and 60%; the inlet gas temper&fyxg) was set at
700 °C and 750 °C. Six combinations of the pararsetgere examined,
resulting in six simulation experiments (see Tahl).2As the model



58 Chapter 2

results were significantly dependent on some assangpmade about the
cell solid phase, the simulations experiments weagle in two different
cases: i) the solid phase resembled a ceramic ialaterd ii) the solid
phase was closer to a metallic material.

Experiments Current density| Fuel Utilization Inlet Gas
number [Alcm?] [%] Temperature [°C]
1 0.3 50 700
2 0.35 50 700
3 0.3 60 700
4 0.3 50 750
5 0.35 60 700
6 0.35 60 750
Tab. 2.4 — Simulation experiments conditions
2.3.1.Results

In Fig. 2.9 and Fig. 2.10 are plotted the comparibetween the three
model of the average cell voltage and the cell maxn temperature in
two different configurations. In the configuratiommber 1 the cell solid
phase was considered to be composed in metallierraiatwhile in the
configuration number 2 it was supposed to be coegbds ceramic
material. The model results correspond to eachrathey well. The two
static models of UNISA and VTT are close to ideatiavith only minor
off-sets in the results. However, some resultsrgive the dynamic model
of UNIGE and those obtained with the two static eledvere notably
different when the operating conditions were subht tmore severe
gradients in temperature and current density afikese differences are
clearly evident in the current density and tempeeaprofiles showed in
Fig. 2.11 and Fig. 2.12.
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Average cell voltage (V)

0.82
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——UNSA 1
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3 Case (-)‘,f
Fig. 2.9 — The average cell voltage estimated byaltompared models. The x-axis
refers to the simulation experiments of Tab. 2.4 ahthe model number
given in the legend refers to either a metallic sl configuration (1) or a
ceramic solid configuration (2).

Maximum solid temperature (°C)
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Fig. 2.10 - The maximum cell temperature estimatety the compared models. The
x-axis refers to the simulation experiments of Tab2.4 and the model
number given in the legend refers to either a metht solid configuration
(1) or a ceramic solid configuration (2).
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Current density distribution [A/cm2]
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Fig. 2.11 — Example of current density profiles othe cell, estimated by the
compared models, in conditions: current density 03 A/cn?, fuel
utilization 60%, inlet gas temperature 750 °C and eramic solid phase.
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Fig. 2.12 - Example of cell temperature profiles othe cell, estimated by the
compared models, in conditions: current density 03 A/cn?, fuel
utilization 60%, inlet gas temperature 750 °C and eramic solid phase.
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The assumptions made on the solid phase had dicagrieffect on the

simulation results, especially on the cell tempeetand, consequently,
on the current density profiles. Fig. 2.13 showseaample of how the
estimated cell current density profiles change éeery model) when the
solid phase parameters were changed from metdbig) (to ceramic

(bottom). The main difference was that metallic enals were

significantly better thermal conductors than cemmmaterials. The

difference was also fortified by the porosity oétberamics. As results of
the improved heat transfer, the cell current dgngtofiles were

significantly smoother in the case when the solaswonsidered to be
closer to a metal than a ceramic material.

UNIGE UNISA VTT
06 T ! H ' '

0.4 f-eremeeemees

0.3 e me T

Current density [Ajcm?]

0.z

01

Current density [Afcmz]
=3
-~

Fig. 2.13 - Example of current density profiles ol#ined from simulation
experiments in solid phase configuration (top) anth ceramic
configuration (bottom) in the operating conditions: current density
0.35 Alcnf, fuel utilization 60%, inlet gas temperature 750 C.

The cross-validation of three independently 1-D E@kodels carried out
and the differences in the observed simulation ltesunderlined the
functioning of the 1-D model developed. The respissify using the 1-D
model for developing model-based fault detectianrtiBularly in the next
section is discussed the involving of the modeb iat model-based to
identify the cell degradation.
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2.4 Diagnostic application

The model was tested to verify the possibility teritify the Ohmic

resistance of the electrochemical black-box subehdtarra et al.,

2010).

The methodology was based on the inversion of a $@FC stack model
by means of an optimization algorithm. Modeling tézas allowed

simulating both co- and counter-flow planar SOFCthwia good

compromise between accuracy and computational hutties resulting

particularly suitable for implementation in optiration algorithms. The
target of this methodology was to identify the nmiquerameters that were
not directly measurable in the real SOFC system, electrolyte and
electrode Ohmic resistance. The optimization inpugge the real-system
measurable variables, such as stack voltage amdntumlet and outlet
mass flows and temperatures. Once unmeasurabl@ablesi were

identified, they had to be compared to correspandaierence values to
generate suitable residuals, depending on which GG@fack faulty

conditions should be eventually detected and iedladand the stack
degradation state should be estimated.

2.4.1.Degradation model: parameter identification

In the Ohmic resistance estimation, only the etdyte resistivity was
considered. This is dominant in an electrolyte-suga cell. In the
degradation model a coefficiedtwas identified to estimate the increase
in the electrolyte resistivity with respect to tmermal value. The
identification procedure is schematized in Fig42.lh a real system, for
on-field diagnosis, only measurable variables mhbst considered.
ThereforeV andTc were selected fdf identification.

3401d - 1030
Ue|:KE$ i exp[ T (j (2.52)

S S
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) VSOFC,meas
Uf (/) SO FC Ts,out,meas
A0
Jo  (Alcm?) System
Tin (° C) >_
p (bar) VSOFC,meas
Xfuel (/) 1'D SOFC Ts,out,meas
Xair (/) model
2 2
min Tsoutmeas™ Ts out simul| | YsoFG meas™ V' soFc simul
K Ts,out meas VSOFC meas

|

K(®)

Fig. 2.14 — Degradation parameter identification deeme

2.4.2.Model setup

1-D model was setup to simulate the real systefaulty conditions. Two
different scenarios were considered:

I a distributed increase of the electrolyte resistiias been set to
20%;
ii. a local increase of the electrolyte resistivity basn set to 20%.

The operating conditions and the geometric dataegrerted in Tab. 2.5.



64 Chapter 2

Cell data

Geometric data

Active Area 100 [cnf]
Anode thickness 50 [um]
Cathode thickness 50 [um]
Electrolyte thickness 500 [um]

Operating conditions

Cell voltage 0,6434 [V]
Cell current 30 [A]
Gas inlet temperature 900 [°C]
Fuel Utilization 85%
Excess air 7
Pressure 1 [bar]

Tab. 2.5 — 1-D model setup for degradation parametedentification. IEA
Benchmark (Braun, 2002)

2.4.3.Results

In case a distributed increase in cell resistioitgurs, the inverse model
yields a value ofK equal to 1.2001. The comparison of resistivity
distribution in normal and faulty operation is shom Fig. 2.15. This is
the first important result as it demonstrates hell resistivity estimation

in planar SOFC can be suitably identified via 1-Dbdeling, using
measurable variables as input. Moreover, Fig. xhéws that cell
temperature difference between normal and faulbditmns is maximum
at the cell outlet. Such an observation confirnesghitability of the outlet
temperature to monitor Ohmic-related distributedttain solid oxide fuel
cells. If the cell temperature is controlled by lased loop system the
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outlet temperature difference (see Fig. 2.16) wdaddlefeated. But there
would be an increase in the excess air at cathdde which is an input

of the inverse model (see Fig. 2.14), therefore dheve of resistivity

would be similar to that identified in faulty cotidns without a

temperature controller (red line in Fig. 2.15), Hlighting the difference

from normal conditions and therefore the presericefault.

35 I I I I I I I L L —
! ! ! ! K=1,2001 ! normal condition
! ! ! ! | — faulty condition
3011 NG ERRREREEEEE L - — s —"
| | | | | | |
| | | | | | |
| | | | | | |
25 - — — - 4T Lo N - - — [ [T - — - —_ [ J I - - — —
= ‘ | S o |
o | | 1 1 1 |
B, 20b-—commm— P N ION LT Global fault: resistivity |-~ _ |
2 ! ! ! ! ! increase of 20%
o | | | | |
150 - . e e A
| | | |
| | | |
| | | |
100 S i e S
| | | | | | | |
| | | | | | | | |
| | | | | | | | |
5 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
x [cm]

Fig. 2.15 - Cell resistivity spatial distribution n normal and faulty conditions for a
global increase of electrolyte resistivity.

When a local increase in cell resistivity is coesedl, the diagnosis
procedure yields a value #=1,0176, which is a medium value as the
fault should be distributed on the entire cell in¢green line in Fig.
2.17). It is important noting that in both faultpralitions considered,
which are substantially different, the diagnostiogedure can identify a
value of electrolyte resistivity, specifically thealue of K, which is
indicative of the deterioration of the cell. THevalues for the two cases
analyzed above are different (Tab. 2.6), but irhleatses it is possible to
discriminate the curves of electrolyte resistivity faulty and normal
conditions, thus allowing reliable detection ofalf in the cell.
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—— faulty condition

— normal condition

1350

13001 - -+

12501 - - -

M]oL

10

x [ecm]

Fig. 2.16 - Cell temperature spatial distribution n normal and faulty conditions

—— faulty condition

local fault simulation
— normal condition

30

100 -1

10

x [cm]

Fig. 2.17 - Cell resistivity spatial distribution n normal and faulty conditions for a

local increase of electrolyte resistivity
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Global increase of 20% of
electrolyte resistivity

Local increase of 20% of
electrolyte resistivity

K=1.2001

K=1.0176

Tab. 2.6 - Values oK for a global and local increase of 20% of

electrolyte resistivity
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CHAPTER 3 Grey-box SOFC Stack

modeling

The aim of the grey-box modeling is to develop nmdmesed tools aiming
at optimal design, management, control and diagnosiSOFC units
destined to a wide application area (Sorrentinal.e2009 (a)). The grey-
box method is based on a priori knowledge concerthie process and on
the mathematical relations which describe the biehaof the system.
This means that the starting point is a specifidehstructure based on
physical relations. The construction procedure gfey-box model based
on mathematical relations can be divided into d#ife sub-procedures:
basic modeling, experiment on the system, calibnatand validation
(Sohlberg et al.,, 2003). The flexibility of a grbgx model allows to
extract rules that describe the behaviour of aagevi

In order to develop SOFC stack models aimed aintipdementation into
control-oriented system models the lumped approgh considered the
most appropriate between all the possible grey-mes. In the lumped
models spatial variations are not taken into act@us 0-D models) and
they are based on simplified assumptions and pedcinformation. In
such a system, the single elements, for instanoejpressors, heat
exchangers, fuel reformer, partial oxidizers, ametaminant removal
apparatus are simulated through independent boxelmd@ove et al.,
(2006)). Furthermore, they allow being easily aalibd and modified for
similar systems with different technology (e.g.feliént materials). This
latter aspect is fundamental in the frame of the [irbject GENIUS,
whose main purpose is to develop “Generic diagaasstruments for
SOFC systems”. The “generic” term refers to theifigity of diagnosis
tools to be adapted to different SOFC systems.

3.1 Lumped model

The lumped model proposed was based on simpliasgumptions
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whose validity was supported by previous studiewmrtiag from the
modeling approach proposed Sorrentino et al., (22089(a), 2009(b)) a
dynamic lumped model to simulate thermal resporisSEGPSOE SOFC
stack, particularly the air temperature at cathmaléet, was developed.
The model was obtained considering the followingngifying
assumptions: i) negligible pressure drop acrossétigBurt et al., 2004);
i) the variation of gases’ sensible heat is naglciii) the dynamics of
both electrochemistry and mass transfer is muckerfathan thermal
dynamics (Achenbach, 1995); iv) since in planafloa- SOFC fuel, air
and solid temperatures do not differ significar(tlyata et al., 2000), the
temperature of the solid trilayer is assumed asesgmtative of the entire
control volume; Vv)Tca0utiS assumed as the state variable; vi) the outlet
fuel composition species are considered in chenaqallibrium and the
methane is supposed to be totally reformated hetcstack.

The SOFC thermal dynamics was modeled applyingordety to the
hypotheses, the energy conservation principle édumped stack control
volume (see Fig. 3.1). This allow describing the@aiyic behavior of the
SOFC stack as a first order system:

dT.

— = E ' $ OU#- Q_ VstachI stac (3'1)

K stack dt

\- _/ electrlc - stack stack
Ir‘]Hz,in’ n—<20 in? rLH4 in? rLO in? Oz in h

H out? HZO out? CQ out? © 'CQ, ou

an,in

el
I

I an, out . .

I 1° principle
n

O,,out? nNz,out

0y,in? " 'Np,in

0
ca,in LU =2 ca, out

SOFC stack
Fig. 3.1 — Lumped model control volume: 1° principd scheme.

Where Ky (UK is the lumped SOFC stack heat capacty;, and E,

are the gases flows energy at the inlet and ootldte stack respectively,
calculated as follows (Sorrentino, 2006):
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E.s,in = naninl:ﬁxl-lz,inmlz(-l;nin)-*_ )g-lzo,inljh-&o( -I;n ir)+
+XCH4,in E]I'kH4 (Tan,in )+ XCQ in Dh:o (Tam in)+ XCQ, irlj hCQ(Ta,ni :I (32)
+nca,in l:Exoz,in th (Tca in )+ XM ian (Tca in):|

E.s,in = I;\an, outtﬁ XI—E, outEhl-gz(Tan ou) + le ] ouDhlii (g Tan th
+XCH4,out EhCH4 (ran out)+ Xcq outEIh CC)(Tan OL)+ X (efe} oph (;& T an 0)1} (33)
+ r.]ca,out [E XQ, outEhQ (Tca 0ut)+ X N, ouDh N (Tca ou)il

Q represents the heat losses of the st¥ckH ., is the electric power
generated by the stack. In Eq. (3.1) the accunmriagrm on the left side

stack

dT;"’”‘ only accounts for the heat stored by the solid, @s a

consequence of hypothesis ii). Owing to the lumpatlre of Eq. (3.1)
and the simplifying modeling assumptions, it isuieed to identify the
model parameteKsacx Which was assumed to be equal to the heat
capacity of the solid parts) (i.e. cell trilayerdamterconnect) (Braun,
2002.

The mole flow rateq; and the gas concentrations at stack outlet are

calculated solving the system equati¢®gl). Wherefy, fL andf,, are
the reaction rates (mol/s) of the methane refornitog(1.3), water-gas
shift Eqg. (1.4) and electro-oxidation Eq. (1.5)at®ans respectively. The
concentrations at the anode outlet are considepetbet in chemical
equilibrium. TheKgpi is the equilibrium constant of the water gas shift
reaction Eq. (1.4) and according to the Eq. (2.B6)xalculated as a
function of the stack temperature at the outletisecwhich is considered
to be equal to the gas temperature at anode outlet.
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H,,out = r]Hz,in + 3|:rref + rshift_ rox

CO, out = CcQ in+ rref - r.shift

=} > O

CO,,out = hCQ, in+ rshift

b, out T Myoout™ M ow? Mg ou M, o= My ik (3.4)
+ rﬁHZO,in + rn’:HL‘,in + I;‘T?',‘O,in-'- h&z,in

X X Lh

shift —

3.

H, ,out CG,out _ I’]HZ, out CQ, out

XCO,out |j(Hz O, out hCO outEh H Q out

The main purpose of the models developed in thesishis for of
diagnostic, monitoring and control applications. the lumped model
developed the aim was to estimate the air temperatucathode outlet. In
the lumped model of Eq. (3.1) some variable werasueed and other
estimated by means of sub-models.

The lumped model parameters were identified andiatd on the stack
produced by TOPSOE, whose data were provided infrirae of the
GENIUS project. The data sets used to identify paeameters and to
validate the model were the data set 1 and the data2, which
correspond to the TOPSOE"“2and ¥ test rounds data respectively,
available in the GENIUS project (see Tab. 3.1).

The selection of measured and computed variables pexformed
evaluating the balance between costs of measuranggnimentation and
opportunities to substitute them with virtual seassavith appropriate
features (i.e. accuracy, computational burden).

In the system under consideration with referenceEtp (3.1) the
measured variables were: the stack current, theteyaperature at the
stack inlet, the gases composition at the staek anhd the stack voltage,
all the other variables were simulated.

Company Data set Thesis Data set GENIUS project
TOPSOE data set 1 "Ztest round
TOPSOE data set 2 "“3est round

Tab. 3.1 — Experimental data sets provided by TOPSB
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3.1.1.Stack heat flows sub-models

In order to estimate the heat flows in the stadtagk-box model based
on a multiple linear regression was developed. rieio to define the
structure of the black-box model the control voluofethe stack was
divided into two control volumes (see Fig. 3.2)eTheat flows model is
expressed as follows:

Q: K:l mText_Tca,ir> + KZ mText_ Tcam) (3-5)

WhereTey is the external temperature ahd jnandTca ourepresent the air
temperature at the inlet and outlet of the SOFCkstAccording to the
hypothesis iv) SOFC fuel, air and solid temperaud® not differ
significantly, thusT¢, i, and Tca out represent the temperature of the inlet
and outlet sections of the stack. The model of(Bd) is the sum of two
contributions to heat flows. The first term of ttight hand side represent
the heat flux between the stack inlet section &edetxternal environment

(Ql) and the second term represent the heat flux leet\wee stack outlet

section and the external environme@l (see Fig. 3.2). The global heat

flux between the stack and the external ambiemhaesweighted sum of
these two terms and the weights are expressedebgoifficientsK; and
Ko. These coefficients are function of the SOFC staglerating
conditions. The function dependencies with respgecstack operating
conditions are expressed by two multiple lineargsgions, described in

the next section.
\(gl QZ{/
" - T T T

[0
|
|
|
|
-]
|

u
|
|
|
|
"
Y I |

SOFC stack
Fig. 3.2 — Stack heat flows model scheme
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The model (3.5) can be considered as the full octixee heat flux
between the stack and the external environmentttaaddriving force”
can be expressed by an equivalent temperaturesatiffe:

Q:(K1+ Kz) m-l;xt_-rstackeg (3-6)

WhereTsatck eqiS @n equivalent lumped temperature of the staakn Eq.
(3.6) Tstackeq IS calculated as follows:

_ Q
Tstack. eq Text+ (Kl i Kz) (37)
Tstackeq 1S function of the operating conditions, andsitthe temperature
weighted between the inlet and outlet stack sestiemperatures.

Parameters identifications
TheK; andK; parameters were estimated for each operating twondiy
minimizing an error quantity derived after the carigpon between the

heat flows Q estimated on the real system (left hand side tefrrep
(3.5)) and the two heat flows expressed by thet tgind side term of EQ.

(3.5). In order to estimate the heat floé, 20 steady-state points were
selected from a data set 1 provided by TOPSOE. Woug to the

hypothesis (iii) the dynamics of both electrochangignd mass transfer
were considered much faster than thermal dynarttics, to choose the
steady-state points the stack temperature wasderesi (see Fig. 3.3). In

these points the heat Ioss@s were calculated from stack energy balance
(i.,e. EqQ. (3.1)) after imposing steady-state coadg (Eg. (3.8)):

daT . ) )
stack ;at’OUt = Es in_ E S out+ Q_ VstachI stac

dT.

ca,out _ 0
stack -
dt

(3.8)

Thus the heat losse§ in steady-state conditions is calculated as
follows:
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Q = Es in_ Es, out stackDI stac (39)

The selection of the steady-state points was lonite a little range of
stack temperature variation, as it is shown in Bi§. The warm-up and
shut-down phases were not included for two reasarteese phases there
were not steady-state points and the model wabrat#d to run in a
limited range of stack temperature near 750 °C.

Once the heat losses were estimated for the 2@yst#ate points, the
coefficients K; and K, were identify by minimizing the difference
between the left hand side and the right hand sid&q. (3.5). The
coefficientsK; and K, identified for the 20 steady-points selected are
reported in Tab. 3.2.

Ki[WIK] | Ko [WIK]
1,819 0,7083
0,9252 1,0671
0,2302 1,5966
0,0568 1,7139
0,9097 1,0917
0,1672 1,4483
0,7007 1,3104
0,681 1,8011
0,5007 1,5566
0,4008 1,4986
0,5433 1,6593
1,2286 0,8656
0,8282 1,1788
0,7902 1,2286
1,1738 0,9159
0,9188 1,0842
0,7632 1,2596
0,7418 1,3174
0,0335 2,1258
-0,0923 2,3541

Tab. 3.2 — Heat flows model parameters identified.
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In order to simulate the stack heat flows in alégible stack operations
continuously, the coefficient; andK; were correlated to the different
operating conditions by means of two multiple linesgressions. After an
analysis of the possible functional dependences, citefficients were

expressed as function of stack current densjty,{, stack voltage ..
), fuel utilization (FU ), and air utilization AU ):
Kl =f (jstack’v stack! FU ,AU )

(3.10)
K2 = f (jstack'v stack FU ’AU)

After a trial and error analysis of the possiblenbination of these
variable the optimal multiple linear regressionsave

K1 = C1 |]jstack + C2 wstack-l- C3 wstachj stacl-<'- C4 DFU + CSDAU
(3.11)

KZ = CG |]jstack + C7 w + C8 |3/staclljj stac-ki- C9 DFU+ QODAU

stack

The coefficients identified by minimizing Eq. (3.5epresent the
reference values to identify the 10 coefficienthd regressions expressed
in Eqg. (3.11). For the parameters identification dfX; and K, values
were selected randomly from the 20 available in.3aB. The models of
the Eq. (3.11) were validated on the other 8 stesaly points selected.
The comparison between the coefficierKs and K, estimated by
minimizing the energy balance of Eq. (3.5) andnested by the multiple
linear regressions of Eq. (3.11) are representé&dgn3.4 and Fig. 3.5 for
the coefficientk; and in Fig. 3.6 and Fig. 3.7 for the coefficiéit The
optimal results confirmed the good selection of wvheables to correlate
the dependency of the coefficierits and K, from the different stack
operating conditions.

The heat flowsQ estimated by the Eq. (3.9) for the 20 steady-giaiets
selected from the stack data set 1 provided by TalP#ere compared
with those estimated by the model (3.5), whereandK, were calculated
by the multiple linear regressions (3.11). Fig. 8r&l Fig. 3.9 show the
good results obtained {R0.9918). It is important noting that the results
represent only the model performance in steadgstanditions. In order
to evaluate the dynamic performance of the heatsflmodel, the model
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was tested for the entire transient and in ordetake into account the

, dT,
dynamic effect also the thermal storage teky,, ;atvf’“‘ of the Eq.

(3.1) was considered. The heat capacity of thek#gg.« was estimated
through the system geometrical and material infoiongprovided by the
manufacturer of the stack (TOPSOE) and by othetnpes of the

J
GENIUS project. The value obtained liigtack:1200E was used in the

Eq. (3.1). The estimated value of the stack hgahaty Ksiack Was further
confirmed by minimizing the error between the expental and
simulated data.

800 T T T T T T T T T

700 FWW—‘*—% F\‘*‘—G_Q‘W"\T

600 H

500

400

Tstack [‘C]

300

200 .

100} 5
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Fig. 3.3 — Steady-state points selection in the daset 1 of TOPSOE stack
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Heat flows sub-model results

In order to test the dynamic capability of the higaws sub-model of Eq.

(3.5), it was tested on two transients: the datalaad the data set 2 of
TOPSOE stack. In the results the left and the rigthé terms of the Eq.

(3.1) i.e.Q-K % with the term Es,out_Es T Vaad s Were

stack

compared. This grouping did not change the resbléezause it was
completely arbitrary, but allowed to put in a sengjroup the stationary
heat flows and the thermal dynamics terms. In tiweroterm the energy
flows to/from the stack were grouped togethers limportant noting that
in the results obtained the air temperature atockthoutlet was not
simulated, but measured on the real system. Tlabled to evaluate the
results obtained with the heat exchange model,outtithe influence of
the error due to temperature simulation itselftHis way there was no
error superposition, allowing an evaluation of tdmy heat flows model
only (Eqg. (3.5)), and not of the entire lumped mdése. (3.1)).

Fig. 3.10 shows the results obtained with the lexahange sub-model
with the data set 1. The dynamic results were éaglas shown in the
different time windows of Fig. 3.11, Fig. 3.12 aRig. 3.13. The peaks in
transient phases are well simulated as the diffedgnamics ramps. In
Fig. 3.13 it is possible noting how the model whtedo simulate even
small oscillation. The model was tested with thesaype of comparison
also for the data set 2. In Fig. 3.14 the resuitsioed are shown, there is
an offset between the two terms represented. Thsdue to a different
ASRestimated on the stack of the data set 2 thanegtanated on the
stack of the data set 1. This difference, evenh@ $ame operating
conditions, was probably due to different mateneded.

The model of heat exchange developed, being algeak box, showed a
low attitude during extrapolation, especially irseaf different materials
used in the stack. In order to reduce this offsetrian proportional to the
difference between thASRestimated in the stack of the data set 2 and
that estimated in the stack of the data set 1 waeduced in the heat
exchange model of Eq. (3.5). In Eq. (3.12) is regmbthe model of Eq.
(3.5) with the term proportional #SR.

Q: KlmText_Tca,in)-'- szText_ TC&OL)+ &DASI (3-12)

In this way the model turned out to be independadrihe value ofASR
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and acquired greater generalizability. The conftrama of the above
analysis is confirmed by Fig. 3.15, where the tssof the heat flows
sub-model are shown. The offsets are no longerepteand the error is
decreased considerably.

1500

1000

500

-500

stack d-rste\ck/dt [VV]
o

»” -1000
o -1500

-2000

-2500
0

Time [min] x10*

Fig. 3.10 - Comparison of heat losses mod®Ivs Time in dynamic conditions
calculated by regression and by energy balance ohd data set 1 of
TOPSOE stack.
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5000 6000 7000 8000
Time [min]
Fig. 3.11 - Comparison of heat losses mod®lvs Time in dynamic conditions
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<

x 10

1.6
Time [min]
Fig. 3.12 - Comparison of heat losses mod®Ivs Time in dynamic conditions

calculated by regression and by energy balance ohd data set 1 of
TOPSOE stack — time window [2000-8000] min.

calculated by regression and by energy balance ohe 2 test round

of TOPSOE stack — time window [12500-20000] min.
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Fig. 3.13 - Comparison of heat losses mod®lvs Time in dynamic conditions

calculated by regression and by energy balance ohd data set 1 of

TOPSOE stack — time window [2685-2775] min.
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600
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Time [min]
Fig. 3.14 - Comparison of heat losses mod®lvs Time in dynamic conditions

calculated by regression and by energy balance ohd data set 2 of
TOPSOE stack, before introduction of coefficient poportional to ASR

M uu\v_oﬁw._.u v_oﬁwx } mwo_O

1000 1200 1400

800

Time [min]
Fig. 3.15 - Comparison of heat losses mod®Ivs Time in dynamic conditions

calculated by regression and by energy balance ohd data set 2 of
TOPSOE stack, after introduction of coefficient prgortional to ASR
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3.2 Lumped model results

Once the heat flows model parameters were idedtifitee grey-box
model was tested on two different transients: theadet 1 and the data
set 2 of TOPSOE stack. In Fig. 3.16, is shown thienulation of air
temperature at cathode outlet of the data set lde&sribed before, it is
worth to note that the warm up and shut down teariswere not
simulated. Fig. 3.17, Fig. 3.18, Fig. 3.19 show résults of the model in
different time windows of the data set 1.

The results obtained show a great ability of thedehdo simulate both
stationary values and transients. The excellentltseeg transient phases
confirm the good estimation of the stack heat cap#Gack In the model
development and then in the results obtained, @icpkar sensitivity of
the model results with respect to the precisiorthef sub-model of heat
exchange was noted. This led to a sub-model witificently high
accuracy. In Fig. 3.18 and Fig. 3.19 model ressittswn errors in the
stationary phases. This error, which is less th#n 3 certainly to be
attributed to the approximation of the heat excleasigb-model.

The results obtained with the model in the simafatiof the air
temperature at cathode outlet with the data set Islaown in Fig. 3.20.
This transient tested the extrapolation ability mmbdel. The results
obtained are very good, both for stationary valaesl for transient
maneuvers. The introduction into the heat exchangdel of the term
proportional toASR as before discussed, allowed to make the model
more generalizable and thus good results alsotmagxiation phase were
obtained. The relative error for the transient adered is not more than
5%, as it is shown in the graph of Fig. 3.20.

The main feature of the lumped model is the fast r@tiable procedure
developed for the heat flows model and for thekstaermal dynamics.
Moreover it can be easily applied to other stacthwlifferent geometries
and materials.
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300(f -

X 104

Time [min]
Fig. 3.16 — Comparison between measured and simuéat air temperature at

cathode outlet in the data set 1 of TOPSOE stack.

—— measured
— simulated
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Fig. 3.17 - Comparison between measured and simuéat air temperature at

4000

3000

cathode outlet in the data set 1 of TOPSOE stackinte window [2000-

8000] min.
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Fig. 3.19 - Comparison measured and simulated aietnperature at cathode outlet

between in the data set 1 of TOPSOE stack, time wdow [18300-20100]

min.
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Fig. 3.20 - Comparison between measured and simuéat air temperature at

cathode outlet in the data set 2 of TOPSOE stack.

T T T T T

+ L l | |

| | I 1

| | | | |

| | L I L M

: I : :
Ll r—————— - - —— 1 _ _ _ _ [ —

| | | [ [

! : , , .

| ,r | | |

[ | T L

| L 1 |

| | [ | I

| | L | L
Il Hts B S S ]

| | T u L

| L T |

| | [ I T

| | | | |

| | | |

| -—r ! ! ! |
| ==

| [l T T T

| | | | !

| | [ | |

| h,| ! ! !

| L - u

| I T u

| | | | |
L L r-——~737~-~~=-- [N |

| | | | |

| | | | |

| | | | |

| | | | |

| | | | |

| | | | |
e | [E———

| | | | |

| | | | |

| | | | |

| | | | |

| | | | |

| | | | |

| | | | |
L L r-——~737~-~~=-- r- -7

| | | | |

| | | | [

| | | | |

| | | |

| | | | |

| | | | |

| S I

o < o™ N - o

(%] 10113

1200 1400

1000

600

400

200

Time [min]
Fig. 3.21 — Relative error between measured and sutated air temperature at

cathode outlet in the data set 2 of TOPSOE stack.
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CHAPTER 4 Black-box SOFC Stack

modeling

This chapter focuses on the experimental identiboaand validation of

different neural network estimators of SOFC outpaltage aimed at
enhancing on-field diagnosis and control of SOF&elaThe models are
based both on steady-state Neural Network (NN) anddynamic

Recurrent Neural Network (RNN). A NN was developed simulate

HEXIS SOFC stack voltage and two RNNs were develdpesimulate

TOPSOE and VTT (HTC) SOFC stack voltage.

4.1 Neural networks

An Artificial Neural Network (ANN or NN) is a noridear black-box
model able to perform a mapping between the inmator u and the
output vectory. The input data (i.e. the independent variabla® a
propagated from the input layer to the output dhepugh the hidden
layers, to generate the corresponding output sigral the dependent
variables). Each layer is composed of several altgmng processing units
(neurons) that work in parallel and are connectecheother to create a
flow of information from the input layer to the @ut one. These
elements can be considered as single output blaxkcbmputing units
with multiple inputs, where the output is obtainked processing the
weighted sum of the inputs with a transfer functimeamed activation
function, which is usually a non-linear monotonimd¢tion. A detailed
description of the Neural Network approach and anmehensive
analysis can be found in a previous work (Arsi@let2001) and in the
specific literature (Patterson, 1995; Haykin, 1998¢ht-Nielsen, 1987).
From the analogy with human brain behavior, NeiWaiworks are able
to reproduce a process from training examples @ueunputing
approach), rather than from a coded algorithm,itnukating the process
on the basis of a mathematical model (programmetboting approach)
(Arsie et al., 2001). Neural Networks are able ®aldwith highly
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uncertain input or noisy data and the experimenitia required to
achieve reliable models are reduced as compardd atliter black-box
modeling approaches (Patterson, 1995).

4.1.1.Recurrent Neural Network

Recurrent Neural Networks (RNNs) are derived fromtis Neural

Networks by considering feedback connections amtrg neurons.
Depending upon the feedback typology, which cahneeitnvolve all the
neurons or only those located in the output anditi@yers, RNNs are
classified into global, local or external recurrartural networks (Haykin,
1999) Thus, a dynamic effect is introduced into¢bmputational system
by a local memory process. Moreover, by retainihg nhon-linear
mapping features of the static networks, the RN& saritable for black-
box nonlinear dynamic modeling (Arsie et al., 200Bi)g. 4.1shows a
scheme of the proposed RNN model structure, asguthi@ vector of
input variablesu with lag space and one output variablg (Arsie et al.,

2010 (b)). For the current applications a nonlindsamamic output error
model (NOE) based on an external RNN was selected.

Fig. 4.1 — NOE Recurrent Neural Network scheme.

4.1.2.Neural Networks Learning approach

The parameters identification of any Neural Netwdakso Recurrent
Neural Network) is performed through a learninggess during which a
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set of training examples (experimental data) is@mnéed to the network to
settle the levels of the connections between tlitesi0The most common
approach is the error backpropagation algorithmtdues easy-to-handle
implementation. At each iteration the error betwdenexperimental data
and the corresponding estimated value is propadsdekward from the
output to the input layer through the hidden lay@tse learning process
is stopped when the following cost functidiean Squared Erro(MSBE),
reaches its minimum:

N
MSH®) =—2L _ 21( YO - y)? (4.1)
i=

Eq. (4.1) refers to steady-state NN, formally foecRrrent Neural
Networks the cost function to calculate M&Eis the following:

N
E0) = 2 (51:16)-y0)? (4.2

t=1

N is the size of the training pattern gathered firailable experiments.
The above functions (Eqqg. (4.1), (4.2)) can beiedrout in either a batch
or a pattern- by-pattern way. The former is usupfigferred at the initial
development stage, whereas the latter may be ati@pténe to enable
network weights adaptation in response to the exage variations of the
controlled/simulated system. The backpropagatiothateis a first-order
technique and its use for complex networks mighsedong training and
in some cases a loss of effectiveness of the puveedherefore, in the
current work both for the steady-state NN and v RNNs developed a
second-order method based on the Levenberg-Margugtimization
algorithm is adopted (Patterson 1995; Haykin 199@cht-Nielsen R.
1987; Ngrgaard et al. 2000; Ripley 2000). Moredwedimit the
occurrence of overfitting for the RNN, a regulatiaa term (Ngrgaard et
al., 2000) was added to Eg. (4.2), yielding theofeing new cost
function:
1
2N

Mz

E'(6)= 5 2 (9(t16)- () + - 7" wB (4.3)

1

wherea is the weight decay (Ngrgaard et al., 2000).
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The training process aims at determining NN and RNbdels with a
satisfactory compromise between precision (i.e. llsreeror on the
training-set) and generalization (i.e. small eroor the test-set). High
generalization can be guaranteed only if the tmgnidata-set is
sufficiently rich, so as to cover most of the sgst@perating domain.

As far as network structure and learning approaeh cencerned, the
precision and generalization goals are often inflabn The loss of
generalization due to parameters redundancy in mesttecture is
addressed in the literature as overfitting (Nel@2800). This latter may
occur in case of a too large number of weights,ctwvhin principle

improves NN (or RNN) precision but may cause gdiraton to

decrease. A similar effect can occur if networknireg is stopped after
too many epochs. Although this can be beneficiaprtecision, it may
negatively impact generalization capabilites and known as
overtraining.

Based on the above considerations and to ensureparpdesign of the
NN and RNNs developed in this thesis, the followistgps were
accomplished:

i) generate a training data set extensive enough ftaragtee
acceptable generalization of the knowledge retainélde training
examples,

i) select the proper stopping criterion to preventivaaing, and

iii) define the network structure with the minimum numbg
weights.

As for the impact of point i) on the current apgtion, the influence of
the main input variables (i.e. load and SOFC deggrad over time) was
satisfactorily taken into account when selecting thost appropriate
training set and network inputs. Point ii) was &$ded by using the early
stopping criterion (Ngrgaard et al., 2000). Thishteque consists of
interrupting the training process, once M&E computed on a data set
different from the training one stops decreasinber&fore, when the
early stopping is used, network training and tequire at least three data
sets (Haykin 1999): training-set, early stoppirgj-&et and generalization
test-set. According to the early stopping methdteraeach iteration of
the training algorithm, the error of generalizatisrevaluated. This error
is constructed in a similar manner to the errorrgndEq. (4.1)), but
calculated at the desired response of a new skdtaf What is expected is
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generally a situation like the one Fig. 4.2: the training error, which is
the value of the cost functidSE (Eq. (4.1)) applied to the training set,
is monotonically decreasing as the number of iteng increases, because
it uses a minimization algorithm the type described before. The
generalization error reducesly at the beginning of the process. Ain*
iterations it reaches a minimum and begins to es afterword. This is
determined by the ability of the network to wre the essential features
of the system at the beginning of the process, ithasapts to backgrour
noise. This phenomenon the above mention: overtraining not be
confused with the previously described overfittikgom EQ.(4.1) the
cost functionMSEis computed over the vector len¢N and the weights
are adjusted at each iteration of the optimizagoocess (i.e. trainin
epoch). At each epoch the Nand RNN) evaluates the complete set of
inputs belonging to the training patte This training procedure is known
as batch learning or epochwise training to distisigifron the on-line
training approache The batch learning is well suited for -line
applications as presentauthis thesi. On the other hand, in case of on-
line traning, the network parameters are updated while rieavork
processes the input data, thus being suitabledaptave applications ¢
NN (and RNN)(Haykin, 1999; Ngrgaard et al., 20(

A

Training and - = —. Training error
Test error — Test error

-----

Number of iterations

Fig. 4.2 — Comparisorbetween training and test error vs number of trainng
iteration (adapted from Patterson, 1995

4.1.3.0Optimal network dimensio
Once the basic input variables have been determitieel networlk
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structure can be selected by choosing the optionaloer of hidden layers
and neurons. Regarding the number of hidden layas Ilheen
demonstrated through the "universal approximati@otem” (theorem of
existence of neural networks applied by Kolmogo@ybenco, 1988 and
Hornik, 1989) that all continuous functions can d@gproximated by a
desired accuracy level by using a network with dm#den layer of

neurons. Once the number of hidden layer is fixedrte, the number of
hidden neurons must be defined. The level of acyuaghievable by the
NN (or RNN) can be improved by increasing the nundsdidden nodes.
An increase of the number of parameters occurs i risk of

overparametrization and a loss of model generadizatin the current
study, the trade-off between network accuracy angkedsion has been
accomplished performing a trial and error analysisa set of possible
structures.

4.2 Steady-state Neural Network model of HEXIS
SOFC stack

The SOFC stack modeled in this work is a 5-celts tey produced by
HEXIS. In Tab. 4.1 the main specifications are reggm (Mai et. al,

2011). The modeled stack operates at 850-900°CGansists of 100 cfm

cells containing disk-shaped electrolyte supportedls (ESC) and
metallic interconnects (MICs), see Fig. 4.3; thesenponents are of
planar design, with a round hole in the centreuNdtgas from the grid is
converted by a catalytic partial oxidation (CPOY aupplied to the cells
via the centre, while preheated air flows from thaside through four
opposite radial channels onto the metallic intenemt. Both cathodic and
anodic gas have parallel radial flows moving towaite stack periphery,
thus the stack may be classified as a radial-plamaflow. A post

combustion takes place in the surrounding ared@efstack (Mai et al.,
2011).



Chapter 4

97

Fuel cell
Output about 95 W
Type Solid oxide feul cell (SOFC)
Fuel Natural gas
Fuel processing Catalytic partial oxidation (CPQO)
Configuration Radial co-flow
Tab. 4.1 - Main specifications of the 5-cells tesig.
a)
Fis
{Hy, L0} Matabie
NIy TScior
Ao
Elacirolita
To — Cathade
ARorborngs

Hr

hMetame

I rwwscine

c)

Fig. 4.3 - a) stack sketch; b) metallic interconneé¢MIC); c) electrolyte supported
cell (ESC) (Mai et al., 2011).

4.2.1.Neural Network input selection

For the definition of the input variables of a dmwx model, the
knowledge of the main phenomena occurring into $igstem being
modeled is required; from a methodological pointvaedw the authors
have exploited the experience gained in other reBea devoted to the
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black-box modeling of energy systems (Arsie et 2006). In the model
developed, the stack voltage was the output andag mapped with
respect to the input variables of the model. Bettascribing the physical
relationship among stack voltage and operating,trobnand state

variables, It is worth noting that an accurate ctede of these variables
was performed to avoid data redundancy, whichiin toay determine an
increase of model's parameters leading to a losgeoferality of the

model (Arsie et al., 2006). At the same time theuis were selected to
provide all the information necessary for the simioh of the output. For
an effective selection of the input variables, thain electrochemical
processes, described in the CHAPTER 2, were ariljgeugh the study
of the voltage models.

The electrochemical models highlight the functiodapendence of the
stack voltage to some physical quantities. In d éadl these variables
change along the flows directions and their spatiistributions are

governed by energy, mass and momentum balancesrioccinside the

cell. With reference to the steady-state 1-D matbleloped, the SOFC
stack voltage was expressed as a function of flewiog variables:

V, = f(jstack’T T T

s air cain ' fuel apin ' sin X K, anin X CQ anin X

CO am ? %H anjn?
. . ) (4.4)
XHZO,an,in ’XOZ,ca, in mfuel an in ’mailz cain )

The input species at the anode inlet were supptsdie in chemical
equilibrium and their concentrations , in) were supposed to be related
to the temperature€l{e anin Of the gas blend coming from the CPO pre-
reformer and entering the anode. According to kiyigothesis Eq. (4.4)
can be simplified as follows:

Vo = T(stace i cain T et anin T

air caint | fuel anin M g anin M cad (4.5)

According to the hypothesis assumed for the modgdgsed in literature

(Sorrentino et al., 2008), for a co-flow configuoat the temperature of
the stack was supposed to be equal to that ofrtbdeaand cathode gas
streams. Thus only the fuel inlet temperature veasiclered and the stack
voltage was expressed as follows:

Sin
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Vs = f(Jstack’Tairwin mfuel anin maircaig (4'6)
The stack was fed by methane, which was reformexigih a CPO. The
fuel mass flow considered as input to the model thesmethane mass
flow at the CPO inlet.

The choice of the methane flow rate at CPO inlet aot directly to the
anode was linked to the difficulty to measure, thethane flow rate
directly at the anode inlet. The methane (and hyein flow rates at the
anode inlet are linked to the CPO conversion e@ficy. The two main
factors that ffect CH, to H, conversion of the CPOfficiency are the
catalyst bed temperature and the ratio of the aetst(CH and Q)
(Recupero et al., 1998 and Zhu et al., 2001). Aper CPO operating
temperature, the amount of hydrogen created depamdle supply rate
of CH, and the CPO air to fuel ratio, i.e., the oxygerddon ratio. The
oxygen to carbon ratio also influences the amouhieat produced in the
CPO, which then féects the CPO catalyst bed temperature and the
temperature of the gas blend coming from the pi@smeer and entering
the anode Tueran,in)- IN the present work the conversion efficien€yhe
CPO and thus the methane and hydrogen flow ratasate inlet were
assumed to be function of the methane flow rat€R®D inlet and of the
gas blend temperature of CPO outlet.

m T

fuel ,an,in) (47)

According to the hypothesis assumed the stackg®itan be expressed:

fud ,an,in = f2 (rTEH4,CPO,in !

Vs = f ( jslack’Tair, cg in? m CH,, CPQ im m air ca ir‘) (4.8)

As already introduced, the SOFC stacks are chaiaeteby complex
degradation phenomena during their life causingdmction of the stack
voltage. The stack degradation is usually dividet two main classes:
the steady state degradation due to the agingaok tomponents, which
can not be avoided. The degradation can be acteder caused by
transient operating conditions, e.g. redox- andntioecycling or BoP
failures (Larrain et al. 2006). Degradation preess are still not
completely understood and thus cannot be explictilydelled with a
black-box mapping model, unless large dedicatedemx@nts are
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available, but model generality may not be guaehtdn order to

account for the degradation the time was considased further input of
the model. Finally the stack voltage was expressed function of anode
inlet temperature, stack average current densi®Q @hlet fuel methane
mass flow, air mass flow at cathode inlet and time:

Vs = f ( jstack'Tair, cg in? m CH,, CPQ im m air ca i t) (49)

The degradation causes an increase in cell polemzdosses, whose
effect is the rotation of the current-voltage (I&)rves in time, as shown
in Fig. 4.4. The effect of natural degradation agiis present both in the
IV curves and in long-term sets. Therefore, theetishconsidered as an
index of the degradation. A sketch of the inputpotitstructure of the
model is shown in Fig. 4.5, where the links amanmut, intermediate and
output computing elements (i.e. neurons) are report

VI profiles - Training set

0.875 ‘ ‘ ; ‘ ‘ ‘
; ; ; ' | A after 1580 h

0.75Mya - A [ ~-| x after6290h |
LW | | O after8685h

0625 Sfagy Y if N after 19220 h U

Stack voltage [/]
o
a1

0.375F-----t---- oo

0.25f -----t---o-dooo oo

50 100 150 200 250 300 350
Current density [mA/cmz]

0.125
0

Fig. 4.4 - Stack Voltage vs Current Density at diffrent operating hours
(Training_set, VI profiles).
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Average Current Density

[

Anode Inlet Temperature

-

CPO Inlet Methane Mass Flow =

Cathode Inlet Air Mass Flow _

Time

[

Fig. 4.5 - Sketch of the input-output model; the sticture of the neural networks is
described into section 2.

4.2.2.Steady-state Neural Network

A multi-layer-perceptron-feed-forward (MLPFF, Pasen, 1995) neural
networks was adopted to develop an accurate maatelpffedicting
HEXIS SOFC stack voltage, as shown on Fig. 4.5. MERarameters
identification was performed through a second-ordethod based on the
Levenberg-Marquardt to minimize Eq. (4.1) (Pattarsi®95; Haykin
1999; Hecht-Nielsen R. 1987; Ngrgaard et al. 20Ripley 2000).
According to the early stopping criteria (descriliethe paragraph 4.1.2),
tree data sets were selected: training-set (see#@ljy stopping test-set
(set B) and generalization test-set (set C). Fig.sthows the evolution in
time of the NN MSE on both set A and set B, highiligg how the
learning process for the NN SOFC model here deeelapas as long as
53 epochs. Such an interruption occurred becawsedtimation error on
set B (i.e. early stopping data set) stopped dstrgaas shown on Fig.
4.6, thus clearly indicating that the overtrainipgobblem would have
occurred if further training epochs had been pentat. According to the
"universal approximation theorem" the number ofdleid layer was fixed.
In order to prevent the NN training from the abalecussed overfitting
issue, in the current work the optimal trade-offw®en network accuracy
and dimension was accomplished through a paramemaysis by
varying the number of hidden neurons from 3 to TbBis study was
performed after the selection of the training sé&tpse details are given in
the following section, leading to the definitionaheural network with 5
neurons in the hidden layer. According to the Niature shown in Fig.
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4.5 the neural network has 5 inputs, 5 hidden meurad 1 output;

therefore the parameters of the model are 36, athwlB0 weights,

connecting the neurons and 6 biases, 1 per eadlomeéu the hidden

layer and 1 on the output neuron.

In the following section the strategy adopted teuza proper selection of
training and test sets is presented and discuasietail.

0.1

— Training error (set A)

0.01

MSE [/]

0.0001

0001 N 1 L R TR .

0.00001
0 10 20 30 40 50 60

Number of epochs [/]

Fig. 4.6 - NN MSE of training-set and early stoppig test-set vs number of epochs.

4.2.3.Training and Test data sets definition

As anticipated above and according to the systemtification theory
(Ljung, 1999), two sets of data should be usediferNN training and for
the generalization test, respectively. To guarantde highest
generalization the two sets should be independentleeir selection must
be performed carefully. Same principle applieshi® ¢arly stopping data
set, which may be a sub-set of either the traiminthe test sets. Owing to
the low extrapolation capabilities of the NN, it éssential that the
training set spans the domain of each input vagisbits largest extent. It
is worth recalling that the input variables werdested following the
guidelines drawn in the paragraph 4.2.1 and, aa@grtb that analysis,
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the methane flow rate, the air flow rate, the terapge of the reformate
fuel, the current density and the time were chasemput variables for
the neural network model. After the input varialdetection, the training
set must be generated in such a way to reflectddta independence
principle just drafted; it has to guarantee thehbgj generalization with
the minimum amount of training data, to avoid aacyrlosses due to,
e.g., the occurrence of overfitting. The selectainthe training set is
therefore critical and a trade-off between high bamof measures and
high information content of the database has tosdleed. Advanced
methodologies, such as experimental design (Piaaede Rizzo, 1996;
Esposito et al., 2012), can support the designxpéemental campaigns.
Nevertheless, the generation of new data entailgnahysis of costs and
time needed to build the new data set, on the dthed the system might
not be on operation and available data must be. ¥8edn databases are
already populated, several methodologies rangingm fr easy-to
implement random-based selection up to complex ,osiesh as active
selection of informative data (Arsie et al., 20@k) more general data
mining techniques (Gargano and Raggad, 1999; Leke Sau, 2001),
might be implemented.

SOFC stacks, which accounted for the system degyoadaver time. For
this reason the data selected for the developmériheo model (i.e.
training data) contained data measured continuausdy a time period of
few thousand hours. The Training_set (see Tab. w&y recorded at
Hexis premises and contains the measurements adgurer a long time
interval (see Fig. 4.7). Such a data set consfstwa data groups: in the
first set (see red circles in Fig. 4.7) all the mpi@g conditions are
constant, whereas in the second one several vettagent (VI) curves
(blue stars) are available at different time inédésy for these latter data
groups the stack control variables vary accordmghe different values
imposed to stack current, spanning the currenteadngm zero to its
maximum value. The availability of long term and Wata makes the
training data very appealing since the experimendata holds
simultaneously the knowledge about the degradgirocess (long term
data) and the behaviour of the stack at differentent levels (VI curves),
respectively. As a matter of fact, the availabibfyV| profiles recorded at
different times also contributes to providing ftbkknowledge content on
degradation effect, as shown in Fig. 4.4, wherestbpe variation in the
VI relationship due to increasing degradation ¢dleamerges. Thanks to
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the non-linear capabilities of the neural netwdhe combined influence
of degradation and input variables change can tmilated with high

accuracy through the same model. Thus the effegtadation on SOFC
stack performance can be accounted also outsidedimnal operating

region, making the model well suited to simulate #tack under faulty
conditions, i.e. operations that are not expectethd normal operations.
Such capabilities are the key features of modeddamonitoring and

diagnosis algorithms and represent the first stepvatds the

implementation of prognostics algorithm for staié&time forecast.

To improve the generalization of the neural netwal&ta measured on
two different stacks belonging to the same famiilg. (same material and
geometry, Technology 1 in Tab. 4.2) were considdoedthe network

parameters identification. The training set wasstacted by joining the
VI curves and long term data of the two stacks mgilog to Technology
1. Care was given to cover the entire domain okthek operating points,
this was achieved by comparing the domains of tbdahinputs of the

training set with those of the other data set ($e$$). When building the
training set, a balance between VI curves and teng test was pursued
by selecting all the VI curves and varying afterdvéite number of long
term data to be included. Indeed it is mandatorgvoid that long series
of data at constant operation polarize the behaviiuthe model;

moreover, the knowledge to be transferred to thevork has to be

balanced among the main processes considered dotréiming. The

optimum ratio between VI and long term points wa$ireed through a
trial and error process, evaluating the generatinagrrors on different
test sets. The choice of long term data was donéoraly by selecting

single points from the entire data set. It is wantiting here that this
procedure is valid for static neural network, wiasréor dynamic neural
network the time sequence has to be considereithidage the dynamics
of the system to be modelled (Ngrgaard et al., 2808ie et al., 2006).

Once the training data set was created, the sulmiséte early stopping
was built by picking-up randomly the 12% of theadat

After the training, the generalization capabilifytee neural network was
tested on four additional data-sets, whose dat& wet used during the
training. These data were recorded at Hexis ondifferent stacks, one
with the same technology considered for the tragire. Technology 1 in
Tab. 4.2) and another one with a different techgwldi.e. different

material and geometry, Technology 2 in Tab. 4.2her&fore, the
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generalization capabilities of the model were priypehecked by testing
the ability of the neural network to reproduce WMk curves and the
voltage output of the long term sets. Overall, tieéwork was tested on
the 4 test sets shown on Tab. 4.2, consisting \éf 2urves and 2 long
term sets.
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Fig. 4.7 - VI curves and long term Voltage data (Taiining_set).

VI data Long Technology
Term data

Training YES YES 1
set

Test_set_1 YES 1
Test_set_2 YES 2
Test_set_3 YES 1
Test_set_4 YES 1

Tab. 4.2 - Features of the experimental data-setsed for neural
network training and validation.
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4.2.4.Results

The neural network voltage simulator showed exnoell@ccuracy for
different VI profiles, as it is shown in the comigan between simulated
and experimental (i.e. measured) data of Fig. ABFg. 4.9, where the
generalization capabilities of the trained netwoslere verified on
Test_set_1 (see Tab. 4.2). The data set considefad. 4.8 and Fig. 4.9
belongs to an SOFC stack of the same technologyTechnology 1) as
the one used for the training. In Fig. 4.9 and Bid0, it is possible to
note how the neural network, thanks to the inclusbtime among the
input variables, well simulates the change in \bfpe slopes, due to the
"natural” degradation of the stack. Such a relevi@ature of the
developed neural network should be also attribtiethe correct choice
of the training set, which allowed a good coverafehe domain of
model inputs, and the correct balance between theuwes and long
term data shares in the training set.

The following validation task consisted of furthmymparative analyses,
conducted on VI curves measured for a stack offfardnt technology
from that used for training (i.e. Test_set_2 in T4l2). Even in this case
the network showed excellent results, as it casd®n in Fig. 4.11 and
Fig. 4.12. This result actually indicates a goodwoek ability when
extrapolating with respect to the training domain.

Also the accuracy attained by the neural networkomig-term data was
relevant, as shown in Fig. 4.13 and Fig. 4.14, thidustrate the
comparison of experimental and simulated data ost Bet 3 and
Test_set_4 (see Tab. 4.2), respectively. The n&twas able to simulate
the entire trajectory of performance degradatiohictv as usual for fuel
cells is expressed in terms of gradual reductiostatk voltage in time,
while keeping the load constant. In Fig. 4.13sitwiorth noting that the
network, at the end of the experimental trajectovgs only capable of
simulating an average voltage reduction trend; saidbehavior can be
explained considering that the developed netwoikti$nsically a static
nonlinear model, thus not being able to precisepraduce some
dynamic manoeuvres. Nevertheless, the inclusidma among the input
variables still ensures obtaining good predictioh expected stack
degradation in the next operating hours.

The results shown and discussed above are certairflgir trade-off
between the two different types of data, VI prdfilend long term data



Chapter 4 107

trajectories. It is important remarking here thiaé thetwork could be
trained with a more pronounced tendency towardsoorniee other type of
data, depending on what is the targeted prediatifegmation that has to
be guaranteed in SOFC monitoring.
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Fig. 4.8 - Comparison between measured and simulatestack voltage on Test _set 1
(VI curves).
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4.3 Recurrent Neural Networks models of TOPSOE
and VTT (HTC) SOFC stacks

In the present paragraph two black box models basdglecurrent Neural
Network are presented: a RNN to simulate TOPSO&kstaltage and a
RNN to simulate VTT (HTC) stack voltage. The daterevprovided by
TOPSOE and VTT (HTC) in the frame of the EU proj&ENIUS.
Recurrent Neural Networks were derived from stiigtiral Networks by
considering feedback connections among the neurand, nonlinear
dynamic output error models (NOE), as discussdtienparagraph 4.1.1.
This choice was motivated by the need of i) modgthre non linearity of
stack voltage, ii) enhancing dynamic features tprowme model accuracy
during transient operation and iii) reducing thepemmental burden
requested for model identification (Ngrgaard et 2000; Arsie et al.,
2006). This latter feature is particularly impottan case of on-board
model update, which may be accomplished along #alsdei single
transient. The algorithms used to train and vatéidae Recurrent Neural
Network models described in the next sections viiased on the work
performed by the University of Salerno over thd @escade towards the
development of both static and dynamic neural netsvofor the
simulation of complex energy systems. For a moteiléel description of
the background on RNN the reader is addressecetbitiiography at the
end of this document (Arsie et al., 2006, 2007,2010) and to the
references therein.

4.3.1.Topsoe Stack RNN

TOPSOE stack had a planar co-flow configuration iameas fueled with
methane and hydrogen. The stack was tested forO2dvdutes (see Fig.
4.15). According to the 1-D model decrypted in Gkaj2, 8 input were
selected to the RNN: current density; stack tentpezaair cathode inlet
temperature, air inlet flow rate, methane inletwfloate, hydrogen inlet
flow rate, nitrogen flow rate and water inlet floate. In Fig. 4.17 the
transients relative to the 8 inputs selected amwah It is important
noting that in real system the stack temperatucailshbe difficult to be
measured. The anode inlet temperature should gras alternative to
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the stack temperature as input to the RNN, duéstaajor simplicity to
be measured in the real system. Unfortunately, etgerimental data
provided had an error in the anode inlet tempeeatlihus the stack
temperature was selected instead of anode inlgideature.

For the RNN structure the number of hidden layes fged to one. In
order to prevent the RNN training from the abovecdssed overfitting
issue, in the current work the optimal trade-off®en network accuracy
and dimension was accomplished through a paramemalysis by
varying the number of hidden neurons from 5 toTt# input lag spaces
dimensions were selected considering the diffecaatacteristic dynamic
time of the different inputs of the RNN. The priplet was based on the
concept that a slower dynamic correspond to a g@réag space and vice-
versa. In the TOPSOE stack RNN for the temperatthieslag spaces
were set to 3 (slow dynamic); on the other hand dament density,
voltage and flows, the lag spaces were set tos2 (fgnamic). According
to the RNN structure shown in Fig. 4.18 the intérsaucture is
composed by 20 neurons of the input layer, 8 neumnothe hidden layer,
and 1 neuron in the output layer. There are 17&rpaters in the neural
network (168 weights and 9 biases).

The TOPSOE data (the data set 1 with referenceatm B.1) used to
identify the RNN model were splitted into two datt, as showed in Fig.
4.16. The training set was selected in such a wayant an acceptable
coverage of the voltage-current domain and of ndgimamic operations.
This was fundamental to avoid extrapolation of RN The training set
size represents the 64% of the entire data sethaenigst set the remaining
36%.
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Fig. 4.16 - Topsoe stack voltage splitting into tiaing and test set.
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Fig. 4.18 - Schematic of Topsoe RNN architecture.

4.3.2.VTT (HTc) Stack RNN

The data used to identify the RNN model were aeguiby VTT on a

stack provided by HTc. The data set used to ideratifd validate the

model corresponds to thé%est round provided by VTT (HTc) in the
framework of GENIUS project. The stack presenteduanter-flow planar

configuration and it was fueled with methane andrbgen. According to

the 1-D model described and the RNN developed fOP3OE stack

before, 8 input were selected to the RNN: curremsiy; fuel anode inlet
temperature, air cathode inlet temperature, agtifibow rate, methane
inlet flow rate, hydrogen inlet flow rate, nitrogéow rate and water inlet
flow rate (see Fig. 4.22). It is important notingat the anode inlet
temperature was selected instead of stack temperatu
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The VTT (HTc) RNN architecture was the same asahe adopted on
TOPSOE stack, the only difference is the anodé telmperature instead
of stack temperature, as shown in Fig. 4.19

The VTT (HTc) experimental transient (25000 minjteshown in Fig.
4.20, was divided into 2 groups: one for the tragnset and one for the
test set (see Fig. 4.21). The training set sizeesgmts the 60% of the
entire data set and the test set the remaining 40%.training set has
been chosen in order to cover as much as possiblerdltage-current
domain and the main dynamic operations.
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Fig. 4.19 - Schematic of VTT (HTc) RNN architecture
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4.3.3.Results

The results for the training (time window 7800-2@0fin) of the
TOPSOE RNN are plotted in Fig. 4.23 and comparetl experimental
data. The test set, plotted in Fig. 4.24, indicétesgood RNN accuracy
in simulating SOFC transients, thus confirming RNiability for the
TOPSOE stack experimented during the data setel ffhtest round in
GENIUS project). The RNN showed optimal capabitidysimulate stack
voltage during the transients (see Fig. 4.25). Tdasfirms the correct
choice of the training set inside the data sethe @° test round in
GENIUS project).

The results of the training set (time window 10@BBO0 min) of VTT
(HTc) RNN are plotted in Fig. 4.26 and comparechveixperimental data.
The results of the test set (belonging to tA&tést round in GENIUS
project), plotted in Fig. 4.27, are very satisfagtdcSome minor offsets
occur in the test set, but their impact is alwagsifded within a safe
range of +/- 2%.

Fig. 4.28 shows the comparison between TOPSOE and (WMTc) load
domain, which highlights the larger domain covebsdthe latter set of
experimental data set. Due to the intrinsic feauné neural network
models, whose extrapolation capability are limiéed dependent by the
training set selection, the VTT (HTc) RNN was expédcto have higher
generalization capabilities, thus ensuring highenfggmance during real-
time monitoring. It is worth to note that for thewglopment of dynamic
neural network the training set has to be designesdich a way to cover
all the possible maneuvers and operating conditiones transient only.
The training set design represent a critical phasethe RNN
development.
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CHAPTER 5 Conclusions

In the present work different SOFC stack modelsehlagen presented.
The results shown were obtained in the general dvaonk of the
GENIUS project (GEneric diagNosis Instrument for F&D systems),
funded by the European Union (grant agreement n8128). The
objective of the project is to develop “generic’agihostic tools and
methodologies for SOFC systems. The “generic’ teefers to the
flexibility of diagnosis tools to be adapted tofdient SOFC systems.

In order to achieve the target of the project andavelop stack models
suitable for monitoring, control and diagnosis &milons for SOFC
systems, different modeling approaches have beepoped. Particular
attention was given to their implementability irdomputational tools for
on-board use. In this thesis one-dimensional (lgbgy-box and black-
box stack models, both stationary and dynamic wbreeloped. The
models were validated with experimental data predidby European
partners in the frame of the GENIUS project.

A 1-D stationary model of a planar SOFC in co-flawmd counter-flow
configurations was presented. The model was degdlgparting from a
1-D model proposed by the University of Salerno foo-flow
configuration (Sorrentino, 2006). The model wasssrealidated with
similar models developed by the University of Geaod by the institute
VTT. The cross-validation results underlined th&adility of the 1-D
model developed. A possible application of the Isiddel for the
estimation of stack degradation was presented.r@sdts confirmed the
possibility to implement such a model for faultetion.

A lumped gray-box model for the simulation of TORS&tack thermal
dynamics was developed for the SOFC stack of TORS®@IoOse
experimental data were made available in the fraihé¢he GENIUS
project. Particular attention was given to the prob of heat flows
between stack and surrounding and a dedicated maa@eproposed. The
black-box approach followed for the implementatminthe heat flows
and its reliability and accuracy was shown to b#stetory for the
purpose of its applications. The procedure adopieted out to be fast
and applicable to other SOFC stacks with differgebmetries and
materials. The good results obtained and the lanitalculation time
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make this model suitable for implementation in diagfic tools. Another
field of application is that of virtual sensors &iack temperature control.
Black-box models for SOFC stack were also developegbarticular, a
stationary Neural Network for the simulation of tHEXIS stack voltage
was developed. The analyzed system was a 5-catlk eperated up to 10
thousand hours at constant load. The training sets vehosen
appropriately, to balance the information deriveahf the VI curves and
from the long term data acquisition. Indeed, thst fsets (i.e. VI profiles)
bring the knowledge on SOFC stack performance,enthié second ones
(i.e. long term data) provide information on theelation affecting the
electrochemical processes occurring into the stable neural network
exhibited very good prediction accuracy, even f@tams with different
technology from the one used for training the mo@&syond showing
excellent prediction capabilities, the NN ensuréghhaccuracy in well
reproducing evolution of degradation in SOFC stadspecially thanks
to the inclusion of time among model inputs. Mor@ova Recurrent
Neural Network for dynamic simulation of TOPSOEcktaoltage and a
similar one for a short stack built by HTc and ¢esty VTT were
developed. The stacks analyzed were: a planarowo-BOFC stack
(TOPSOE) and a planar counter-flow SOFC stack (VAITG). The two
RNNs had the same structures with 177 parametesstifiéd. The
training sets were selected to cover all the ptssperating conditions
and all the possible dynamic maneuvers.

All models developed in this thesis show high aacyrand computation
times that allow them to be implemented into diaggicoand control tool
both for off-line (1-D model and grey-box) and fon-line (NN and
RNNs) applications. It is important noting that theodels were
developed with reference to stacks produced bemifft companies. This
allowed the evaluation of different SOFC technodsgithus obtaining
useful information in the models development. Th&forimation
underlined the critical aspects of these system#h wegard to the
measurements and control of some system variapieigsyg indications
for the stack models development.

The proposed modeling approaches are good canslidateaddress
emerging needs in fuel cell development and onmtileployment, such as
the opportunity of developing versatile model-bassals capable to be
generic enough for real-time control and diagnadislifferent fuel cell
systems typologies, technologies and power scales.



CHAPTER 6 APPENDIX

Fault diagnosis

The final aim of a fault diagnosis activity is teach the required criteria
for a commercial application, which, besides higifetime and
performance, include high reliability and safety auitable costs as well.
The desire to guarantee system availability anhb#ity is the reason
why Fault Diagnosis methodologies are applied teess different fields,
ranging from passenger cars and trucks to air¢rafins and even to
stationary systems, such as power and chemicatsp{ésermann, 2004;
Rizzoni et al. 2008).

To guarantee the safe operation of fuel cell systamd to support the
successful deployment of SOFC, it is necessaryakensystematic use of
specific computational tools for developing suiebtontrol and
diagnostic strategies.

With particular regard to diagnostics, designerd asers always pay
interest in preventing the occurrence of failurdsaoy mechanism,
machine or energy conversion system. To this eederal approaches
can be taken, the most obvious of which is to shapsystem whenever
an abnormal functioning is observed, i.e., a fasltdetermined as a
difference in the performance of the system frosneitpected behavior.
The ability to detect the occurrence of any faautgl identify its cause, is
a critical task.

Fault diagnosis methods aim to satisfy the follayiequirements: a)
monitoring incipient faulty conditions to avoid alpt failure, as well as
severe damages; b) diagnosing faults in the agtgicocess components
or sensors; c¢) detecting faults in closed loopssarervising processes in
transient states. The fault diagnosis process wagothree activities: i)
fault detection to indicate the presence of faaitd the time of detection;
i) fault isolation to determine the location ofethfaults after their
detection; iii) fault identification to determinéd size of the faults and
their time-variant behavior. The present work mgaiidicuses on steps i)
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and ii).

The fault detection process is composed of two npdiases: residual
generation and residual analysis (see Fig. 6.1¢. résidual provided by
the first process consists of the difference betwbe known (measured
or nominal) and the “faulty” value of the same wahie. The purpose of
the second phase, residual analysis, is to evathateesidual and draw
conclusions regarding the presence of a fault. Ehdone by comparing
the residual with a threshold value. If the resideaceeds the threshold,
an analytical symptom is generated and a fauletedaed; otherwise, the
system is working properly, and no symptoms areiobtl (Arsie et al,

2010 (a)).

faults
% % % Noise

u Actuators Process Sensors Y

normal
behavior

Residual
generation

Residual
analysis

symptom
ye———p NO FAULT

Fault
e e detection;

FAULT ISOLATION

l

FAULT
IDENTIFICATION

Fig. 6.1 — Fault Diagnosis scheme.
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The most common residual generation methods areedivinto three
categories: signal-based, analytical model-basealyledge based.
Signal based techniques rely on comparative assegwhthe status of a
system under testing with other known occurrenced eonsider a
directly measurable variable. By assuming speciaihematical models
for the measured signal, suitable features areuledéd such as
amplitudes, phases, spectrum frequencies and atorelfunctions for a
certain frequency band width of the signal.

Model-based techniques more commonly involve thscajation of a
system through mathematical models of the phydaaé governing its
behavior (Isermann, 2004; Isermann, 2006; Rizebiil. 2008, Witczak,
2003). The model-based fault diagnosis is basetborparing on-line the
real behavior of the system with the results oletiby a mathematical
model. The most common model-based methods are mptea
estimation, state observers and parity equati@esriann, 2006).

In the case of modeling uncertainty, or the preseont vague or
incomplete knowledge about the system, an altemmadi required, which
is not based upon the existence of an exact matieahanodel of the
system. In this framework, Fault Diagnosis can besiered within a
knowledge-based approach, in order to combine $tatikinowledge with
any model knowledge which may be available (Rizzenial., 2008;
Isermann, 2006).

The final result of the detection process is ttmeefa set of analytical
symptoms, or fault signatures, which are contaimed matrix, i.e. the
fault signature matrix (FSM), with the symptomstlie columns and the
faults in the rows. Fault isolation and identifioat procedures consider
as inputs all the available symptoms. To perforraséhtasks, if no
information is available on the fault-symptom cdtigs, experimentally
trained classification methods can be applied ¢diaation methods). If
the fault symptom causalities can be expressedenform of if-then
rules, reasoning or inference methods are appbcébisie et al., 2010

(a)).
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6.1 Fault Tree Analysis

The Fault Tree Analysis (FTA) is a deductive metilody aimed at

determining logical occurrence of undesired eventsch could result in

either system or component faults. The processsdtam the fault to be

analyzed (i.e., top event) and, through a top/dapproach, all the

possible combinations of causes (i.e., events)carsidered. The links
between different events are expressed by Booldatians. The analysis
proceeds until no developable events (i.e., basats) are individuated,
to which are associated specific symptoms. Thec#dgrelationships

between the events are graphically representedti®eawhich has at the
top the fault to analyze and at the bottom the ¢gmp. Tab. 6.1 shows
the terminology adopted in the fault tree developime

Fig. 6.2 shows a fault tree example, in which tdtf(top event) can be
caused either by event 1 or event 2. The everg taused by the
contemporary occurrence of the basic events 1 gné.Zsymptoms). On

the other hand, the event 2 is correlated to just ®ymptom (i.e. basic
event 3).

In the development of a diagnostic tool the fauket analysis is

particularly important to understand both causesl agmptoms of

specific faults, through a physical knowledge of gystem/component.
Once the symptoms are identified, and in case theseassociated to
either measured or estimated system variablespibssible to define a set
of parameters to be monitored in the FDI process.

The complexity of an SOFC system suggests to aedle faults at the

component level. The following sub-sections repdines faults that are

most likely to occur. In this work the faults atthdoP (i.e. air blower,

air pre-heater, pre-reformer, post-burner, pipg/beh air compressor and
air pre-heater) and stack levels are taken intowtc(Arsie et al., 2010

(a)).
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Appendix
basic event/ | A basic initiating fault requiring
Q no further development or the
symptom :
corresponding symptom

Specific conditions or

O conditioning
restrictions that a
event . pply to any
logic gate

An event which is no further
undeveloped | developed either because it is jof
Q insufficient consequence or
event ) .
because information is
unavailable

_ _ A fault event that occurs
top/intermediate because of one or more
event antecedent causes acting
through logic gates

Indicates that the tree is
developed at the occurrence i
A transfer other pages. it is used to avoid
extensive duplication in a fault

tree

=)

Q and Output fault occurs if all of the
input faults occur

Q or Output fault occurs if at least
one of the input faults occurs

Tab. 6.1 - Fault Tree symbols and related descripins.
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Fault
(top event)

Event 1 Event 2

Fig. 6.2 - Fault Tree example developed through ap-down approach (refer to
Tab. 6.1 for the list of symbols).

6.2 Fault Detection and Isolation process

The Fault Detection and Isolation process (FDi)listrated in Fig. 6.4.
According to this scheme after the identificatidntlte system faults, a
fault tree analysis for each system componentvsldped. In the FTA of
a component is taken into account also the intert of other
components, which are directly linked to it. Frohistanalysis a set of
system variables is identified. The definition bétfinal set of variables
to be monitored requires a trade-off between theistmess of the method
guaranteed by the physical analysis of componeRTA) and their
interactions at system level, and the costs evialuator on-field
application of the SOFC system. Once the finalofestystem variables is
defined, it is possible to generate thault signature matrix(FSM)
(Isermann, 2006). This matrix has on the rows ffstesn faults; and on
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the columns (or vice versa) the symptogassociated to the defined set
of variables. According to the FTA at componentleand the knowledge
of components interactions at system level, ink&& at each fault is
associated a vector of symptoms, which is 1 iffyptom is associated
to that fault and O otherwise. Every symptoms veatost be different
from each other, thus it is possible to isolatevacally a fault. The FSM
is the final result of the FDI process, which alfothe fault isolation at
system level. In the on-line diagnosis the pres&icymptoms indicates
the occurrence of a fault in the systefault detectioh. A possible
candidate method for SOFC system application cbald parity equation
approach. According to this approach the defingédtsystem variables
is observed in the real system and compared wdin éguivalent ones of
a system model, which simulates the system in naiminon faulty)
condition. The difference of signals between trgteay and the model are
expressed by residuals(Rizzoni et al., 2008; Isermann, 2006; Witczak,
2003). If a residual exceeds its relative threslaokymptom is generated
(s=1 if rj > threshold s=0 otherwise). During on-line SOFC operation if
a symptom is different from O a fault is detect&d.isolate it, the vector
of the symptoms associated to the set of variaBlesmpared with all
vectors in the FSM, thus it is possible isolatefthdt in the system.

Symptom | Symptom | Symptom | Symptom
St 2 S S
Fault f; 0 1 1 0
Fault f, 0 1 1 0
Fault f3 1 0 1 1

Fig. 6.3 — Fault Signature Matrix.
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Physical
knowledge of
components
Possible FTA Components
(at component observable
system faults X

level) variables
Components
interaction at
system level

Trade-off Cost
between N
evaluation for
robustness of )
on-field
method and A
costs pp

Definition of Definition of

L) Fault final set of

Signature observable

Matrix variables
Real system

Signature Symptoms (parity equation
Matrix method)

l

Fault isolation

Fault Fault detection I

System model

Fig. 6.4 — Fault Detection and Isolation process lseme.
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