Search-Based Software
Maintenance and Evolution

Advisor:
Prof. Andrea De Lucia
Dott. Rocco Oliveto

Annibale Panichella

4/16/2014 Search-Based Software Maintenance and Testing

Search-Based Software Engineering

«The application of meta-heuristic search-based optimization
techniques to find near-optimal solutions in software engineering
problems.»

1. Problem Reformulation: reformulating typical SE problems as
optimization problems

2. Fitness Function: definition of functions to optimize

3. Optimization Algorithms: applying search algorithm to solve
such functions
- Genetic Algorithms
- Hill climbing
- Simulated Annealing
- Random Search
- Tabu Search
- Particle Swarm Optimization

4/16/2014 Search-Based Software Maintenance and Testing

Why SBSE?

Large Search Space Presence of conflicting goals

Maintainability

Performance

4/16/2014 Search-Based Software Maintenance and Testing

Optimization Problem

min f(x) =sin((x — 1)) +1

fx)

Minimize

Local Optimum

Global Optimum

0] 1 2

4/16/2014 Search-Based Software Maintenance and Testing

Genetic Algorithms (GAs)

min f(x) =sin((x —1)8) + 1

ftx)
3 -
2
1 @ X @
0 ;
0 1 2
4/16/2014 Search-Based Software Maintenance and Testing

Genetic Algorithms (GAs)

min f(x) =sin((x —1)8) + 1

ftx)

3 .

2

1

A+ B
2
0 ;
0 1 2
4/16/2014 Search-Based Software Maintenance and Testing

Genetic Algorithms (GAs)

min f(x) =sin((x —1)8) + 1

ftx)
3 .
2
1
0 ;
0 1 2
4/16/2014 Search-Based Software Maintenance and Testing

Genetic Algorithms (GAs)

min f(x) =sin((x —1)8) + 1

fx)

3

4/16/2014 Search-Based Software Maintenance and Testing

Genetic Algorithms (GAs)

min f(x) =sin((x —1)8) + 1

fx)

3

l Yes
4/16/2014 Search-Based Software Maintenance and Testing

Genetic Algorithms (GAs)

min f(x) =sin((x —1)8) + 1

fx)

3

l Yes
4/16/2014 Search-Based Software Maintenance and Testing

Genetic Algorithms (GAs)

min f(x) =sin((x —1)8) + 1

fx)

3

l Yes
4/16/2014 Search-Based Software Maintenance and Testing

Genetic Algorithms (GAs)

min f(x) =sin((x —1)8) + 1

fx)

3

l Yes
4/16/2014 Search-Based Software Maintenance and Testing

Genetic Algorithms (GAs)

min f(x) =sin((x —1)8) + 1

fx)

3

l Yes
4/16/2014 Search-Based Software Maintenance and Testing

Genetic Algorithms (GAs)

min f(x) =sin((x —1)8) + 1

fx)

3

\ |

l Yes
4/16/2014 Search-Based Software Maintenance and Testing

Main Contributions

Search-Based
Program
Comprehension

Multi-Objectives
Defect Prediction

: ")‘ A Multi-Objective
Search-Based Test Test Syite

Data Generation Optimization

4/16/2014 Search-Based Software Maintenance and Testing

Main Contributions

Search-Based
Program

Multi-Objectives

, Defect Prediction
Comprehension

: "} Multi-Objective
Search-Based Test Test Suite
Data Generation Optimization

4/16/2014 Search-Based Software Maintenance and Testing

Program Comprehension

public class LoadConfiguration extends AbstractHandler ({

IWorkbench wb = PlatformUI.getWorkbench () ;
IWorkbenchWindow window = wb.getActiveWorkbenchWindow () ;

public LoadConiguration() | “Software that is not comprehended
} cannot be changed”- Rajlich and
@override Wilde - ICPC 2002

public Object execute (ExecutionEvent event) throws ExecutionException {
IWorkbench wb = PlatformUI.getWorkbench () ; —
IWorkbenchWindow window = wb.getActiveWorkbenchWindow () ;

IWorkbenchPage page = window.getActivePage();
IEditorPart editor = page.getActiveEditor();

//reading the instantiation variable in SCM
ResourceSet resourceSet = new ResourceSetImpl () ;

IFile filel;

tryl 40% to 60% of the maintenance

filel = (IFile) editor.getEditorInput ().getAdapter (IFile.class); .]
Jeatch (Exception exc) L effort is devoted to understanding
printError ("Please select a State Chart Model", window);
peturn null; the software to be modified -
SCMDiagram scd = null;
Resource scdResource - resourceSet.createResource () ; Dorfman and Thayer — IEEE Software
try { . .
scdResource.load (null) ; Englneerlng 1996
scd = (SCMDiagram) scdResource.getContents() .get (0);

} catch (IOException e) { —

printError ("Corrupted State Chart Modell file", window);
scdResource = null;
return null;

a4/ Search-Based Software Maintenance and Testing

Information Retrieval

Software Term Stop Word Morphological Term
Artefacts Extraction Removal Analysis Weighting

e e e o e o=

Distance

Function

4/16/2014 Search-Based Software Maintenance and Testing

Information Retrieval

Software Term
Artefacts Extraction

Stop Word

Removal

Special Chars.
Digits
White spaces

Software Maintenance task:

Traceability Recovery
Source code labeling
Bug duplication
Feature Location

4/16/2014

Stop-word function
Java stop-word list
English stop-word list
ltalian stop-word list

Distance

Function

Cosine Similarity

Jaccard Distance

Euclidean Distance
Jensen-Shannon Divergence

Morphological Term
Analysis Weighting
No Stemmer Boolean
Porter Stemmer tf
English Snowball Stemmer tf-idf
Italian Snowball Stemmer Log(tf+1)
Entropy
dide... .. dn

-

IR Model pumm——

tm
Term-by-document matrix

Vector Space Model

Latent Semantic Indexing
Latent Dirichlet Allocation
Jensen-Shannon Divergence

Search-Based Software Maintenance and Testing

What is the right IR process?

On the Equivalence of Information Retrieval Methods
for Automated Traceability Link Recovery

It is not possible to build a set of guidelines
G for assembling IR-based solutions for a

given data set

P\mm.d online 30 August J]I‘ m\hﬂc- , Online Library {wilevonlinelibrarv. com. DOL 10, 100%/smr. 1564
l){)l mmm nwnn 9285-5 . .
‘ e [

Labeling source code with information retrieval tibale Panichella®

'““‘“"“"“" o ’ Different dataset require different IR
parameters

Annibale Panichella - Sebastiano Panichella
the use of information
orturately, because of
jed traceabilty recovery

Heves links that are not
ral metheds to improve
the textual conent of
f eritical tenms). In this
Abstract To support program comprehension, software artifacts can be labeled— e of wor i the = R
p s sualzation tools—wilh a sel of represenaive words, st an » ezimical |f t | | | b t d | R t h f t
Doy e 2 bl S0 el 1 b obaind i o sppoech, (e T not well Calibrated, ecnniques perrorm wors
Jf IR-based traceability

than simple heuristics. A. De Lucia, M. Di Penta, R.

s for Labeling Source Code Arifacts xing: Jensen-Shannon
EE

Oliveto, A. Panichella, and S. Panichella — Empirical
I— Software Engineering

¥ textual information

alot of effort in the
wed 1o the aralysis of
support activities such

zohesion and coupling

© Springer Science+Business Media New York 2013

ormation wetrieval (IR)
, eg. [13-15]. The
lifacts that are mainly
ifacts, including UML
pinain terms 1o define

i mpmmtn unisannio.it xes all the artifuets in

Ukl httpy/www.rcost.unisannio imdipenta
chella

: spanichella@unisannio.it

- htp://www.ing unisanmio.it/span

tesche (15), Tualy

m ience and Territory, Un
r da Fonte Ls .pp.m 8609 Pesche (18), ltaly

roceo.oliveto@unimol
URL hutp://www.distat.unimol.it/people/oliveto/Home. html

Published online: 13 November 2013 £) Springer

I — —

sity of Molise,

Search-Based Software Maintenance and Testing

Predicting the performances?

Term
Extraction

Stop Word
Removal

Morphological
Analysis

Term
Weighting

Distance
Function

4/16/2014 Search-Based Software Maintenance and Testing

Special Chars.
Digits
White space

Stop-word function
Java stop-word list
English stop-word list
ltalian stop-word list

No Stemmer

Porter Stemmer

English Snowball Stemmer
Italian Snowball Stemmer

Boolean
tf

tf-idf
Log(tf+1)
Entropy

LSI (k)
LDA (alpha, beta, n, k)

Cosine Similarity
Hellinger Distance

Term
Extraction

Stop Word
Removal

Morphological
Analysis

Term
Weighting

Distance
Function

4/16/2014

Special Chars.
Digits
White space

Stop-word function
Java stop-word list
English stop-word list
ltalian stop-word list

No Stemmer

Porter Stemmer

English Snowball Stemmer
Italian Snowball Stemmer

Boolean
tf

tf-idf
Log(tf+1)
Entropy

LSI (k=3)
LDA (alpha, beta, n, k)

Cosine Similarity
Hellinger Distance

Search-Based Software Maintenance and Testing

Term Special Chars.
Extraction Digits
White space
Stop-word function Term 2
Stop Word Java stop-word list
. . A
Removal English stop-word list
Italian stop-word list ,\DOC 1
I \
:. Y]
No Stemmer] .\‘ , l,'
Morphological Porter Stemmer A \ . / ,"
Analysis English Snowball Stemmer - ,:' ““‘ “‘ =' “’)/\ Y,
Italian Snowball Stemmer Y. oy s)(
L ke W 4\ Doc2
\ @ § s/ el
o Bfoolean \ /l / /A_’,
t - 19/
4
Weighting tf-idf 4 R
Log(tf+1)
Entropy Term 1
LSI (k=4)
LDA (alpha, beta, n, k)
Distance Cosine Similarity
Function Hellinger Distance

4/16/2014 Search-Based Software Maintenance and Testing

Term
Extraction

Stop Word
Removal

Morphological
Analysis

Term
Weighting

Distance
Function

4/16/2014

Special Chars.
Digits
White space

Stop-word function
Java stop-word list
English stop-word list
ltalian stop-word list

No Stemmer

Porter Stemmer

English Snowball Stemmer
Italian Snowball Stemmer

Boolean
tf

tf-idf
Log(tf+1)
Entropy

LSI (k=4)
LDA (alpha, beta, n, k)

Cosine Similarity
Hellinger Distance

Term 2
_.Docl _
,a \\ Cd ~
I, . \\ ,, S,
’ \ \
1 1
v i \
\ U4
e 7 |e |
Soan”’ || 1
1
=TT \]
T e TN 1Doc 2
1 \
\ . ,' \ . [I
\\ . ,, \\ '/
\~~___—’ _Il
>
Term 1

Search-Based Software Maintenance and Testing

Predicting the performances?

4/16/2014 Search-Based Software Maintenance and Testing

Search-Based Solution (LSI-GA)

1) Problem Reformulation: Finding the IR process which maximize the quality of
clusters

2) Solution Encoding

IR
Technique Settings

Term
Weighting

Morph.
Analysis

Stop word
removal

Identifier
Splitting

Char.
Pruning

No Simple Eg%'Sh
S Camel wor‘(’j Porter t-idif
LEE list

3) Fitness Function: Silhouette Coefficient

. . . _1 on separation(d;)—cohesion(d;)
F{X)=Silhouette Coefficient (X) Tn =1 max{separation(d;), cohesion(d;)}

4) Solver: Genetic Algorithms

4/16/2014 Search-Based Software Maintenance and Testing

Empirical Evaluation

1) Traceability Recovery

Artifacts
System N. Links
Type Number Total
o Use Case 30
EasyClinic 77 83
Code Classes 47
. Use Case 58 174 546
eTour . .
Code Classes 116 3) Bug Report Duplication
] Code Classes 33
Hrust JSP 116 143 >8 System N. Bug Rep. N. Duplication

Eclipse 225 44

—

2) Feature Location

System KLOC Files Methods Features
jEdit 104 503 6,413 159
JabReg 74 579 4,607 39

4/16/2014 Search-Based Software Maintenance and Testing

Empirical Evaluation

1) Traceability Recovery

Artifacts
N. Links
Number Total
o Use Case 30
EasyClinic 77 83
Code Classes A7
Use Case 58
eTour 174 246
Code Classes 116
] Code Classes 33
ITrust 149 5a
ISP 116

4/16/2014 Search-Based Software Maintenance and Testing

Empirical Evaluation

1) Traceability Recovery

Artifacts Experimented techniques:
System N. Links
Type Number Total
L Use Case 30 1. LSI-GA
EasyClinic 77 83 . .
Code Classes 47 2. Previously published IR process
Use Case 58
eTour 174 246 3. ldeal IR process
Code Classes 116
] Code Classes 33
iTrust 149 58

JSP 116

[Performance metrics:

Average precision

4/16/2014 Search-Based Software Maintenance and Testing

Results

Comparison

Average Precision

EASYCLINIC ETOUR ITRUST
Systems

B Reference MW LSI-GA M Ideal

LSI-GA outperforms baseline (p-value < 0.05)
Ideal is statistically better than LSI-GA

4/16/2014 Search-Based Software Maintenance and Testing

Configuring LDA using GAs

How to Effectively Use Topic Models for
Software Engineering Tasks?
An Approach Based on Genetic Algorithms

Annibale Panichella®, Bogdan Dir?,

Rocco Olivetn?,

Massimilano Di Penta®, Denys Poshynanyk®, Andrea De Lucia'

University of Salerno, Fisci
*The College of William and Mary, Wi
*University of Molise, Pesche (

AUniversity of Sanni

Abstraci—Information Retrieval (IR} methads, and in .-mn
r topic models, have recontly boen wed (0 spport ewent
e el Btk by ety ol sl
retric al and analysis. In all thes: approaches. topic models have
been used on software artifacts in & amilar manner as they
were used on natural

l.mm rescarch jnveaigaod this sssumption snd showsd that

ree code

@ e maturid laaguags st e pagar Nl o8 s mew
fundamental finding and propuses 3 novel solution o adapt,
configure and cfectively us o topic modeling technique, namely
Latent Dirichiet Allocation (LDA), "

(GA) to determine u near-optimal for LDA in
the context of three differvat SE tasks: (1) traceaility link
recovery. (2) feature location, and (3) softwary ariifact labeling.
The resulis of our empirical stvdies domonsirate that LDA-GA

to previously published results, heuristics, and the results of 3
ial search.

Index Terms—Textusl Anslysis in Software Engincering, La-
tent Dirichlet Allocation, Genetic Algoritms.

L INTRODUCTION

A significant amount of research on applying Information
Retrieval (IR) methods for analyzing lextual information in
software artifacts [1] has been conducted in the SE community
in recenl years. Among the popular and promising IR tech-
miques used, we enumerate Lalent Semantic Indexing (LSI)
[2] and Latent Dirichlei Allocation (LDA) [3]. The latier is
a probabilistic statistical model that estimates distributions of
latent topics from textual documents. 1t assumes that these
documents have been generated using the probability distribu-
thon of these topics, and that the words in the documents were
generated probabilistically in a similar manner.

A number of approaches using 1S and LDA have been

4/16/2014

0 (SA), laly
shurg, VA, USA
Italy
. Benevento, ltaly

proposed 1o suppor software engineering tasks: feature o
cation [4], change impact analysis [3], bug localization [6],
clone detection [7]. traceability link recovery (8], 9], expert
developer recommendation [10]. code measurement [11], [12],
antifact summarization [13]. and many others [14]. [15]. [16]
In all these approaches, L.DA and LSI have been used on
software ariifacts in a similar manner as they were used on
natural language documents (Le., using the same settings
configurations and parameiers) because the underlying as-
sumption was that source code (or other software antifacts)
and natural language documents exhibit similar properties.
Mare specifically, applying LDA requires setting the number
of topics and oiher parameters specific 1o the particular LDA
implementation. For example, the fast collapsed Gibbs sam-
pling generative model for LDA requires setfing the number
of ierations n and the Dirichlet distribution parameters o
nd 7 [17). Even though LDA was successfully used in the
IR and natural language analysis community, applying it on
software data, using the same parameter values used for natural
language texl, did not always produce the expecied results
[18]. As in the case of machine learning and optimization
techniques, a poor parameter calibration or wrong assumplions
about the natr of the data could lead to poor Tesults [19].
Recent rescarch has challenged this assumption and showed
that text extracted from source code is much more repet-
itive and predictable as compared 1o naural language text
[20}. According io recent empirical findings, “corpus-based
savisiical language modeis capuae a high level of local
regularity in sofbware, even more so than in English” [20]
This fundamental new rescarch finding explains in part why
these fairly sophisticated IR methods showed rather low per-
formance when applied on software dala using parameters and
configurations that were generally applicable for and tested on
naiural language co
This paper builds on the finding that text in software artifacts
has different properties, as compared to natural linguage fext,
thus, we need new solutions for calibrating and configuring
LDA and LSI io achieve better (acceptable) performance on
software engineering tasks. This paper introduces LDA-GA,

A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D.
Poshyvanyk, A. De Lucia

How to Effectively Use Topic Models for
Software Engineering Tasks? An Approach
based on Genetic Algorithms. ICSE 2013
—

Search-Based Software Maintenance and Testing

Other works on P.C.

* A De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella Labeling Source Code with Information
Retrieval Methods: An Empirical Study. Journal EMSE 2013

* A De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella Applying a Smoothing Filter to Improve IR-
based Traceability Recovery Processes: An Empirical Investigation. Information and Software Technology

(2012).

* G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, S. Panichella Improving IR-based Traceability Recovery
via Noun-based Indexing of Software Artifacts. Journal of Software: Evolution and Process (2012).

* B. Dit, A. Panichella, E. Moritz, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lucia Configuring Topic Models for
Software Engineering Tasks in TracelLab. TEFSE 2013

* G.Bavota, A. De Lucia, R. Oliveto, A. Panichella, F. Ricci, G. Tortora The Role of Artefact Corpus in LSI-based
Traceability Recovery. TEFSE 2013

* A Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D. Poshyvanyk, A. De Lucia When and How Using
Structural Information to Improve IR-Based Traceability Recovery. CSMR 2013

* G.Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto and A. Panichella. TraceME: Traceability Management
in Eclipse. ICSM 2013

4/16/2014 Search-Based Software Maintenance and Testing

Other works on P.C.

A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella Using IR Methods for Labeling Source Code
Artifacts: Is It Worthwhile? |ICPC 2012

* A.De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella Improving IR-based Traceability Recovery Using
Smoothing Filters. ICPC 2011. Best Paper Award

* G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, S. Panichella Traceability recovery using numerical
analysis. WCRE 2009.

* G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, S. Panichella On the Role of the Nouns in IR-based
Traceability Link Recovery. ICPC 2009.

* G.Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto and A. Panichella. Enhancing Traceability
Management in Eclipse via Information Retrieval and User Feedback Analysis. ECLIPSE

4/16/2014 Search-Based Software Maintenance and Testing

Main Contributions

Search-Based

Program .
Comprehension .

: "} A Multi-Objective
Search-Based Test Test Syite

Data Generation Optimization

Multi-Objectives
Defect Prediction

4/16/2014 Search-Based Software Maintenance and Testing

Bugs are everywhere...

Unable to mount Avatar

e Error mounting: mount: wrong fs type, bad option,
bad superblock on /dev/loopo,
missing codepage or helper program, or other error
(could this be the IDE device where you in Fact use
ide-scsi so that sro or sda or so is needed?)
In some cases useful info is Found in syslog - try
dmesg| tail orso

An unknown error message 'APIEpicFail’,
was received from the device.

(@.9 GTAIVFATAL ERROR: MMA10

e 2

] 006
ShuwAlI‘

Software Update

(Software Update found the following new or updated 13
n) software for your computer.

Click the checkbox to select the software vou want to install:

The installation has encountered a

(@) problem. None of the checked updates

were successfully installed.

Update menu and open the package from the
Deskiap.

| |
i
|
| I
|
i
| |
| |
| To try again, choose Download Checked Items in the |
i i
|
| |
|
| |
|
|

Status: Falled

Search-Based Software Maintenance and Testing

Practical Constraints

4/16/2014 Search-Based Software Maintenance and Testing

Defect Prediction

Spent more resources on
components most likely to fail

—

4/16/2014 Search-Based Software Maintenance and Testing

Defect Prediction Methodology

—> Predictors

G
— Past Defects Prone

Class1
Predicting , Class2
Model Class3

New Project Predictors T ClassN

4/16/2014 Search-Based Software Maintenance and Testing

Defect Prediction Methodology

s work on

All the existing predicting model
precision and not on cost

We need COST-oriented Models

4/16/2014 Search-Based Software Maintenance and Testing

Multi-objective
Defect Prediction

4/16/2014 Search-Based Software Maintenance and Testing

Multi-objective Reformulation

1) Problem Reformulation: Finding the logistic regression coefficients (a,b,c,...)
that optimize cost and effectiveness

a+bmy+cmy,+..

Logit = c

1+e a+bmy+cmy,+..

2) Objectives Function:

-

min Cost = ZPredl. -LOC,

max Recall = ZPredl. - Bug,

\

3) Solver: Multi-objective Genetic Algorithms (NSGA-II)

4/16/2014

Search-Based Software Maintenance and Testing

Multi-objective Genetic Algorithm

Multiple otpimal solutions (models)
can be found

Pareto Optimality: all solutions that

_F
; A - k
" —8 are not dominated by any other
qc"} 5 e L solutions form the Pareto optimal set
) O O [
= S
O
% 8 & B Multiple objectives are
= o O _ optimized using Pareto
§ L - efficient approaches
= L] ﬁ
Cost

Search-Based Software Maintenance and Testing

4/16/2014

Empirical Evaluation

Context: Experimented Algorithms:
#Defect- % Defect-
SIS gy, BETE Prone 1. Multi-objective cross-project Logistic
Classes Classes .
Regression
Ant 745 166 22% 5 Traditional oct Logist
camel 965 188 19% . Tradi |opa cross-project Logistic
vy 352 40 11% Regrfa§5|on o | N
jEdit 306 75 250 3. Traditional within-project Logistic
Logdj 205 189 92% Regression
Lucene 340 203 60% 4. Clustering (local) cross-project defect
Poi 442 281 64% prediction
Prop 661 66 10%
Tomcat 858 77 9% _
Xalan 910 808 99% Performance metrics:

Cost = # LOC to analyze
Effectiveness/Recall = % defect-prone
classes identified

4/16/2014 Search-Based Software Maintenance and Testing

Results

jEdit Log4j

100% 100%
90% 90%
80% - 80%
70% - 70%

— 60% - + — 60%
:ﬁ 50% - S 50%
“ 0% - “ 40%
30% - X 30%
20% - 20%
10% - 10%
0% © \ | | | | 0%

0 25 50 75 100 125

OMulti-Objective Logistic + Single-Objective Logistic AClustering Logistic XWithin Project Logistic
e

4/16/2014 Search-Based Software Maintenance and Testing

Multi-Objective Defect Prediction

Multi-Objective Cross-Project Defect Prediction

R G. Canfora, A. De Lucia, M. Di Penta, R.
P —— Oliveto, A. Panichella, S. Panichella

S Test Verif. Reliah, 000D, €
Published oaline in Wiley et SN wikycom. DOL 10.1002seve

s Multi-Objective ~ Cross-Project Defect
E‘:_E Defect Prediction as a Multi-Objective Optimization Problem P re d lCth n. / C 5‘ 7‘ 2 7 0 7 3

o gt dell Gerardo Canfora’, Andrea De Lucia®, Massimiliano Di Penta’, Rocco Oliveto®,
[y Annibale Panichella*?, Sebastiano Panichella’
of proiding th
el the main " University of Sannic, Via Traiana, 52100 Benevervo, lualy
o dlionms 3t iniver siry of Salerno, Via Ponse don Melilio, $4084 Fisciano (SA), lialy
of ey - S Univer ity of Molise, Comrada Forse .appone, 86080 Pesche (151, haly
o
of e mspe ctao|
Resmlts of 2
Preas: ropectel
o the maincbxy SUMMARY
predicters. Alia.
termtic appread Appeoaches o defect prediction i af idenif g sotware endites having highlkihood o xbibi it
prieme wpe hat should there fore be better . approaches.
unl\ allow 10 plnm.l' an implicit wmpmmm- mmen cost ... inspection cosl) and eflectiveness ..
Keysards-Crod ability 10 identify defect prone softwan: entities). However, b e ey mnmﬁg

eplsimiion, s objectives, and recent work showed that, when considering cost and effectiveness as separaie objectives,

P e kUi anfora e Luclia | Penta

indicated this was challenging due (o data heterogenei . / . / . / .
In this paper we formalze the delect predicion probem o a mul-objeckive optimization probien.

Defect pacdiq Specifically, we propose an approach, coined as MODEP (Multi-Objective DEfect Predicton, for defect . . .
prone software prediction based on malti-objective forms of machine learning lechiiques. logistc regrossion and decision
—— irees. specifically—trained using a genetic algorithm. The malli-objective approach allows soflwase AV . | . |
els can heip & engineers 1o choose predictors achieving 4 specific compromise between the number of likely defect-prone / /
pection o o Cies, or the nmmber of B tht the asaiysis woud likely disoover (efloctvemess), and LOC 10 be

zediiested (which can be considered as a proxy of the cost of cods inspection) M M M . M

s cprarieg o s e ndhcan i qumsba D Pred lCt[O n as M u [tl' O b ectl ve
bawme detaa g superiority of the multi-objective approaches with respect to single-objective predictors, and its capability

arutacs bt ¢ 1o suggest software engineers the most swilable rules given the desimd cost-efiectiveness tarpet. Also,

Basili v al 1 the proposed approach outperforms an aliemalive approach for cross-project prediction, based on local

Tt i Tt A it oo e Optimization Problem.

Received

—— KT WO e st e, ot o o 4 Submitted as Special Issue on Journal
i 1. INTRODUCTION S TVR

Defect prediction models aim at identifying likely defect-prone softwar components, in order to
prionitize Quality Assurance (QA) activities. The main reason why such models are required can
be found in the limited time or resources available. reason for which QA teams have 1o focus
their attention on a subset of software entities only, trying to maximize the number of discovered

defects. Existing defect prediction models try to identify defect-prone artifacts based on product or
process metrics. For example, Basili er al. [1] and Gyimothy et al. [2] use Chidamber and Kemerer
(CK) metrics [3] to build defect prediction models based on logistic regression o neural networks.

Moser e al. [4] use process metrics, e.g.. elated to the number and kinds of changes occurred on
software artifacts. Ostrand er al. 5] and Kim et al. [6] perform prediction based on knowledge
about previously occurred faults. Also, Kim er al [7] used their S2Z algorithm [8, 9] to identify

Copyright © 0000 John Wiky & Sons, Lid
Prepared using SNTAUIN.IS [Version: 20100313 v2.00]

4/16/2014 Search-Based Software Maintenance and Testing

4/16/2014

Main Contributions

Search-Based
Program
Comprehension

Multi-Objectives
Defect Prediction

¥ A Multi-Objective
Search-Based Test Test Syite

Data Generation Optimization

Search-Based Software Maintenance and Testing

GAs in Software Testing

fx)

Diversity is essential to
2 the genetic algorithm
4 because it enables the

algorithm to search a

larger region of the

space.

GAs in Software Testing

® Low Diversity
® High Diversity

e
™

Diversity is essential to
the genetic algorithm
because it enables the
algorithm to search a
larger region of the

space.

GAs in Software Testing

® Low Diversity
® High Diversity

e
™

Diversity is essential to
the genetic algorithm
because it enables the
algorithm to search a
larger region of the
space.

~ Population drift

Triangle Program

public class Triangle {

public String check (double a, double b,

double c) {
1. if(a == Db)
{
2. if(a == c)
3. return ‘equilater’;
else
4, return ‘isoscele’;
}
else
{
5. if(a == || b == c)
6. return ‘isoscele’;
else
7. return ‘scalene’;

4/16/2014 Search-Based Software Maintenance and Testing

public class Triangle {

public String check (double a, double b,

double c) {

1. if(a == Db)

{
2. if(a == ¢)
B equilater’;

else
4 . return ‘isoscele’;

}

else

{
5. if(a == Il a == [l b == c)
6. return ‘isoscele’;

else
7. return ‘scalene’;

4/16/2014 Search-Based Software Maintenance and Testing

public class Triangle {

public String check (double a, double b, Branch distance
double c) {

1. if(a == b) » (a2 == b) -> abs(a - b)

{
2. if (a == c) > (a == c) -> abs(a - c)
B equilater’;

else
4 . return ‘isoscele’;

}

else

t min f(a,b,c) =2 * abs(a - b) +
5. if(a == Il a == Il b == ¢)
6. return ‘isoscele’; +-abs(a-c)

else
7. return ‘scalene’;

4/16/2014 Search-Based Software Maintenance and Testing

public class Triangle {

public String check (double a, double b, Branch distance
double c) {
1. if(a == b) » (a2 == b) -> abs(a - b)
{
2. if(a == c) > (a == c) -> abs(a - c)
B equilater’;
else
4 . return ‘isoscele’;
}
else
t min f(a,b,c) =2 * abs(a - b) +
5. if(a == Il a == Il b == ¢)
6. return ‘isoscele’; +-abs(a-c)
else
7. return ‘scalene’;
} Test Case 4
} Triangle t= new Triangle();
} String s=t.check(2,2,2)

4/16/2014 Search-Based Software Maintenance and Testing

Triangle Program

c=2 a, bel-14]

1) Flat seach space

‘ 2) Several Local optimal

3) Only one global
optimum

Branch Distance

4/16/2014 Search-Based Software Maintenance and Testing

GAs Simulation

a, b e [-30;30]
c=2

Mutation Rate = 0.10
Population = 50
Crossover = single-point

Premature convergence
(genetic drift)
?—

Branch Distance

4/16/2014 Search-Based Software Maintenance and Testing

Injecting Diversity
during the Evolution

B e—
D

i

What is the evolution direction?

¥ P(t) = Population at
generation t

- b _ . _ X1

4/16/2014 Search-Based Software Maintenance and Testing

N

What is the evolution direction?

i P(t) = Population at
generation t
5 1 -
Ao e
7
*1 T ";' P(t+k) = Population
. o ey after k generations
2 | @
Ry
®q M
..co.o- $‘ .?:~ . | | X1
2 S 2L TR 2 3 a 5
:O. !
-2 -

4/16/2014 Search-Based Software Maintenance and Testing

;ﬁK— =
G

2
:

What is the evolution direction?

i P(t) = Population at
generation t
3 .
Ao e
s
ok y - ";' P(t+k) = Population
. o ey after k generations
2 ‘ @
e Py Evolution Directions
.loﬁ% ge *’e
° L %
..0..:- $‘ﬂ.f?:~ | | | X1
2 Yooi'og e 1 2 3 4 5
:0. !
-2 -

4/16/2014 Search-Based Software Maintenance and Testing

Why?

R\ y
\ 7
\ - PRe
-
o l"
i
0 i
\
\
\
\\
X |
X1
3 4 5

P(t) = Population at
generation t

P(t+k) = Population
after k generations

Fvolution Directions

Orthogonal Individuals

4/16/2014

Search-Based Software Maintenance and Testing

How? Singual Value Decomposition

Population at generation t

Pt :Ut'zt'Vt

s | Pt—i—k: V1

e P(t) = P(t+k)

Population at generation t + k

t

P+k:U

PINPRY 4

t+k “tvk Vitk

The currect evolution
direction is proportional to

V=Via—-V
§22t+k—2t
ﬁ

4/16/2014 Search-Based Software Maintenance and Testing

Using SVD for Evolution Direction

4/16/2014 Search-Based Software Maintenance and Testing

Using SVD for Evolution Direction

Ut+k ’ (Zt+k + f) : (Vt+k + V)T

4/16/2014 Search-Based Software Maintenance and Testing

Using SVD for Evolution Direction

4/16/2014

Then, we construct a new orthogonal population as follows

Ut+k ’ (Zt+k + f) : (Vt+k + V)T

",ﬂ'
#"'/ﬁ).
o)
RO
Q/Q(D\:c’}\o(\,;"'ﬂ \
SN\ *. Orthogonal
3 “Direction

®

Upre* Ceprg +Z) - Vg + V)T

Search-Based Software Maintenance and Testing

Integration SVD with Standard GA

Initialize
population

Selection » Rank Scaling Selection

 Single-point crossover

Mutation e Uniform mutation

Terminate?

Yes

4/16/2014 Search-Based Software Maintenance and Testing

SVD + Standard GAs

Initialize
population

4/16/2014

Selection

Mutation

Terminate?

Select best 50%
of individuals

Generate an orthogonal
sub-population

Replace the worst 50%
of individuals with new
sub-populations

Search-Based Software Maintenance and Testing

Simulation on Triangle Program

Standard GA SVD-GA

Branch Distance
Branch Distance

4/16/2014 Search-Based Software Maintenance and Testing

Empirical study

No. Name Coverage Goals

P1 ArithmeticUtils 99

Pe Armays & Experimented Algorithms:

P3 Beta 90 1. SVD-GA

P4 CreditCardValidator 32 2 R-GA

P5 Complex 126 3. R-SVD-GA

P6 FastMath 60 4. Standard GA

P7 Fraction 108

P8 IPAddressValidator 243

79 tUbecomposition o Performance metrics:

P10 KalmogorovDistribution >0 Effectiveness = % covered braches
P QRBecomposition e Efficiency/cost = # executed statements
P12 Quadratic 7

P13 RootsOfUnity 27

P14 SaddlePointExansion 16

P15 Sort 70

P16 Tomorrow 107

P17 TriangularDistribution 50

4/16/2014 Search-Based Software Maintenance and Testing

RQ1: Does orthogonal exploration improve the effectiveness of
evolutionary test case generation?

100
90
Q
oo
© 80
Q
>
S
= 70
O
c
©
o 60
2
50
40
P1 P2 P4 P5 P6 P8 P10 P11
BMGA HBER-GA mSVD-GA2 mER-SVD-GA

4/16/2014 Search-Based Software Maintenance and Testing

RQ2: Does orthogonal exploration improve the efficiency of L —=1
evolutionary test case generation?

600 80

— — 70
3 500 3
c c

Q o 60
g 400 “E-’

s E 50
N N

U S 40
L% 300 ._%

** ¥ 30
+ 200 7

S S 20

100 10

0 0

P7 P8 P15 P16 P10 P12 P13 P14
OGA HER-GA ESVD-GA BER-SVD-GA B GA EBR-GA BESVD-GA HER-SVD-GA
. — e

4/16/2014 Search-Based Software Maintenance and Testing

Orthogonal exploration

Estimating the Evolution Direction of Populations
to Improve Genetic Algorithms

R P ¥ it Mo B P Dt D £ b R B, B Bt

Estimating the Evolution Direction of Populations
to Improve Genetic Algorithm. A. De Lucia , M.
Di Penta, R. Oliveto, A. Panichella

GECCO 2012

Orthogonal Exploration of the Search Space in
Evolutionary Test Case Generation

Ly 33
Wil

irs §

éi‘Ei

i

i

Hi

i
12

T TIl
| | r

Orthogonal Exploration of the Search Space in
Evolutionary Test Case Generation F. M. Kifetew,
A. Panichella, A. De Lucia, R. Oliveto, P Tonella

ISSTA 2013

i Lt Mache e TaEs Se W
Categories and Subject Descriptors
D015 |Sefiware Enpimermg; Tsrg o (nhapang
General Terms

Reianiey Vemacson

Reywords

Sarch e Mg (55 Gl RUTANE, CT0pEE SXDIGIE

4/16/2014 Search-Based Software Maintenance and Testing

Main Contributions

Search-Based
Program
Comprehension

Multi-Objectives
Defect Prediction

&

r Multi-Objective
Search-Based Test Test Suite
Data Generation Optimization

4/16/2014 Search-Based Software Maintenance and Testing

Software Evolution

Software continuously changes (evolves):
* Add new functionalities

* Removing old functionalities

e Bug fixing activities

e b
“ VN ¥ . . _
' _ \" W -~ e 4
\ U/ oo =
<N230I1> 1.5 <N2301> 1.6 <anN23CIo> an23QI1o 2.2 an2301o 2.3 <nN23012 3.0 an23012 4.0 QAnN23012
CupCake Donut 2.0 & 2.1 Eclair Froyo Gingerbread HoneyComb lee Cream Sandwich 4.1 & 4.2 jelly bean
Time

4/16/2014 Search-Based Software Maintenance and Testing

Regression Testing

Software before changes Software after changes

(J Test Case 1 (J Test Case 1
() Test Case 2 () Test Case 2
() Test Case 3 () Test Case 3
O .. .

(I Test Case nV (O Test Casen

4/16/2014 Search-Based Software Maintenance and Testing

1000 machine-hours
to execute 30,000
functional test cases
for a software

product...
—

Mirarab, et al. The effects of time constraints on test case prioritization:
A series of controlled experiments. TSE 2010

4/16/2014 Search-Based Software Maintenance and Testing

Test Suite Optimization

Code
Coverage
. 4
I
I
[
[
1
(]
N
E
X
(40)
=
I
I
[
i
I >
€¢==== Minimize ====Execution
Cost

4/16/2014 Search-Based Software Maintenance and Testing

Multi-Criteria Regression Testing

sre optimized

Multiple Objectives “oaches

using Pareto efficient app

Multiple otpimal solutions can be
found

A

Coverage
C

by any other solutions

form the Pareto optimal set

Multi-Objective Paradigm

~

Pareto Efficient Multi-Objective Test Case Selection

Shin Yoo and Mark Harman

s Colege Landon
d, n
WC2R2LS, UK

{Shin. Yoo, Mark.Harman} @kcl.ac.uk

ABSTRACT
Provious work has trosicd st cese scloslon s 4 single
shjeeshvo opumbation problem. This paper imroduces the
enncopt of Parowo officlonsy Lo vast cam smioeslon. Tha Parmo
efficlont pproach takes muliplo chjoetvos sush o codo cov-
, pest sl dowsesion himary and cvcomion coex, and
snnsEruess & gmup of noa-dominaung, oquvalonly opeimal
tos casn subses. Tha papar dwseribos the pownilel ban-
et of Pasows oficien: muhlobjocthe we. s soioetlon,
llstrauing with cmpirical studles of two & throe ohjeesive
Iormuissions

1. INTRODUCTION

‘Regromsion wening 1s tha Lo pecformed In order & guar-
Ao thas nowly Introduced changes In & schwars do moe
affcet. the unchanged peris of the mitwam. One posiial
Epproach 10 rogremion waing b tho rees-all moud, In
Which the tostor Smply evoemas ol of W oxising Lo case
0 ensurs that the now n . Unbanunaely,
this Is A very oxpemsive procec ume Imiuwkns foree @
EONSIUATALIN O LOSE 2080 SHOLKN &5 FrOMLIANON Lo
niqus(1, 2, 8, 13, I7, 19, 24, 22).

o, s BCKUON W0CNNIGUIS Y G FOGEn (0 TUmbe of
o, s 10 b oeused, whilo sty Ing U wosuing roquirc-
MIOTE GENOWd. by & LERL TN, TS CIs PrELaaLion
LCATIGUOS ErY W OFTIOr LG WEL CLAH N SUZT A WAY 1K
INCORSE N TRLE O SAMTY M-C00owicn.

1 B OIS LESITE, LIKET AT NN MUK L. Cri-
WA, FUr CXATEp, QNTRTCNL WESS Of WeLing, Sten &S me-
thmad vesing and sirucsuml beEng, raquir iferen wewing
ertuarta. (3. Thero s can be cases where 14 & bmellcal for
thesessor oo comsider mulklple e criseris bocsuse Wesingle
most ldeal s extucrion ks smply sncbulnabie. For coam-
pl, wessors face whe problom sha the reel ful doteion
Informatlon et Lo known sl the rogresston tsting s
sctunlly Mnishod. Code coversge b5 one possibio SUrrogaLS
o edoquacy eriverton thes b5 usod In piace of Gl desac-
tham, but § s moe the anly one. Bosuss one cnnce be

Termimion t= ke digal o b copien of & or et of s ek fox
e—— kbt o provided thet e

cerualn of o link Borwom code eoverage and Tl dowetkn
1 would bo nasursl o syppkmon coversge whh ocher et
erlteri, for crample, pas fult deoedon hisary.

Of course, tho qually af the W daw s Do the omly
concorn. s s o al the eeamal eriwria, bocuus
‘the wholn purpoen of v e sckeilon and priorizadkn s
10 achlovn morn effidom. ening In wrms of whe e One
Imporuans cos driver, considercd by e reserchirs |13,
20 & tho Eecutkm Umo of the L sule.

In ander 1o provkdn Ancmaid SUppent 10 the sdocom
o don 10m doaa It cherofare sooms Inovlkabio that &
‘multk-cjese Gpproach s roquired thas & capabln of 1ak-
ing Inco Accoum the subuouks Inborom In bdaneing many,
[PAESIDIY COMPASING A CONNKCUNG CLRCNS. EXISIN Ap-
ProAchis s rograssian st case sclocuicn. (and prioriualn
DaD Boon SN CECUVY ARPIOGEE L MRV SOUERL 1
opimie & singhe o Jove funcion.

FU 12 FrIOMEELI- PIOEe, 1o hes DR et Work
O A& TN CEJOCND COTAAKN [13], HIAL LR Accoum af
cOvOmge and £ost, USINE & MIGI COJOCLIVG Of COVGTAgR per
TN oL HOWCVO, tis GPRCOAC CONMAWE LU TND CE-
Jocstves imo & singke cbjesve. Whers thern are mulilpie
Compaung and coafliesing objecsives te opumtaiicn -

mg objoctives, ll of Which the solwans orginser meoks 1
optimtse.

This papar prescnia the first mshi-cboesivs formulason
of e s casa sclociion. proliem, showing how multiple ob-
Jocubves can o opyimtsed using & Parmo clficlem. approach.
We baliov thes such an approach s woll sulied 1o i ro-
Fmslon e cass sokecskm problom, bocsuse i & lkaly thas
& e will wam 1o cpumis sovrsl possibla conlieting
commran.

Tha petmary comribuions of this paper & as follows:

L. "IN papor mLrodueds A MR-l RO formulsen af
‘b rogremicn. . cas sdoctkm probn and lrEnan-
VRSN LhM WIED NG OIS A TG OGJRCIN ST
kon thas comiblns soverage and com. AN & L ob-
UV FOMIALICN AL COMETES SOVCTARR. £OR DD
Tault hiwory. The formulaskm fciiase o thoaniesl

GTENL O W OpUmANY Of We grady wam
A0 allows us 1 esiabikh & ruadoship bewen he
- ama

cloremcen e 3 gl
7ok e disributd for o cors mezcial hriag ard hmi e
ot i e sl Toc i

s e
o T % ey 43 Lo, LR
oy 347 ACK X 3COCOLH KA 8555

4/16/2014 Search-Based Software Maintenance and Testing

st case selveuon.

2. Tho peper prosoms throe sigorlthms far siving the
4 and e checutve Instancos af (i b s ske-

Multi-Criteria Regression Testing

There is no clear winner

schedule2
o | S
—_ — A ---0
© |
o
S :
© } 3 & ©
% e " -' g g N i
[<b] ¥ - Q !
= . > ‘
3 A 3 /
2 -' g =] |
S g A g ° / -4 Additional Greedy
S e % Additional Greedy e
= % VNSGA-II ~
; & NSGA-I &
:
g ¢ 4 3 1
o T : I I I T | [I | | |
0 20000 40000 60000 80000 0 200 400 600 800 1000 1200
Gt Cost

—‘——

4/16/2014 Search-Based Software Maintenance and Testing

Multi-Criteria Regression Testing

There is no clear winner Population Drift

schedule2
=N AN
&
” 5 |
g ° g
© o
= >
3 S
® L]
3 3
o 8 4 : O
o L -# Additional Greedy
] A X VNSGA-II
E 5 A NSGA-II
o
3] 4 &
P | : | | | | | T T | T |
0 20000 40000 60000 80000 0 200 400 600 800 1000 1200
. Cost

—‘———

4/16/2014 Search-Based Software Maintenance and Testing

Multi-Criteria Regression Testing

There is no clear winee

40 petter?

()]
()]
o
5 WeEe
>
o
3 Can
g <
o (=)
O
(oY}
o
8 ‘ — |
g0U 1500 2000
Cost

4/16/2014 Search-Based Software Maintenance and Testing

Diversity Injection in NSGA-II

Initialize
population

Non Dominated Sorting Algorithm
Crowding Distance
Tournament Selection

Selection

« Multi-points crossover

Mutation Bit-flip mutation

Terminate?

Yes

4/16/2014 Search-Based Software Maintenance and Testing

Diversity Injection in NSGA-II

Generate orthogonal Use orthogonal design methodology to
initial population generate well diversified initial population

Selection

Mutation

Terminate?

4/16/2014 Search-Based Software Maintenance and Testing

SVD + NSGA-II

Generate orthogonal Use orthogonal design methodology to
initial population generate well diversified initial population

Selection Select best 50%
of individuals

Generate an orthogonal
sub-population

Mutation

Replace the worst 50%
No of individuals with new
sub-populations

— Terminate?

Yes

4/16/2014 Search-Based Software Maintenance and Testing

Empirical Evaluation

Experimented Algorithmes:

Software systems:

1. SVD-NSGA-II + Init. Pop

No. Name LOC Test Suite Size 2. NSGA-II
1 bash 59,846 1,200 3. Additional Greedy Algorithm
2 flex 10,459 567
3 grep 10,068 808 Problems:
4 gzip 5,680 215 1. 2-objectives
5 printtokens 726 4,130 * Execution Cost
6 printtokens? 520 4,115 ’ .Cod-e Coverage
7 schedule 412 2,650 2. 3_ObJeCt|_/eS_
* 2-objectives + Past Faults Coverage
8 sechedule2 374 2,710
9 sed 14,427 360 .
0 6199 13583 Performance metrics:
Space , , . .
g # Pareto optimal solutions
M vim 122,169 975

% hypervolume = % detected faults per
unit time

4/16/2014 Search-Based Software Maintenance and Testing

Results

RQ1: To what extent does SVD-NSGA-II produce near optimal solutions,
compared to alternative techniques?

flex printtokens
90% - 100% -
80% ® GUNINBoB, cosessscs o 90% o .O/Q e o
70% 80% .
60% 70% :
X X °
E’o >0% * NSGA-II i o g
© © 50% ¢
o 40% g
Q Additional Greedy S 40%
" 30% C e Additional Greed
09 itional Greedy
20% o SVD-NSGA-II 30%
° 20% ® VNSGA2-Il
10% 10% « SVD-NSGA-II
O% I I I O% T T T 1
0 3000000 6000000 9000000 0 5000 10000 15000 20000
Cost Cost

4/16/2014 Search-Based Software Maintenance and Testing

Results

RQ1: To what extent does SVD-NSGA-II produce near optimal solutions,
compared to alternative techniques?

400

w 350

S

S 300

=

§ 250

©

£ 200

2150

5 100

Y J_I

; =B
<z¥ & & & & & 0& &
O S < Q S
N QQ§ °
B Add. Greedy B NSGA-II B SVD-NSGA-II

4/16/2014 Search-Based Software Maintenance and Testing

Results

RQ2: What is the cost-effectiveness of SVD-NSGA-II compared to the
alternative techniques?

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

% Detected faults per unit cost

B Add. Greedy B NSGA-II ESVD-NSGA-II
y__

4/16/2014 Search-Based Software Maintenance and Testing

Diversity in T.S. Optimization

On the Role of Diversity Measures for Multi-objective Test Case Selection

Andrea De Lucia!, Massimiliano Di Penta®, Rocco Oliveto?, Annibale Panichella!

Improving Multi-Objective Test Case Selection
by Injecting Diversity in Genetic Algorithms

Annibale Panichella, Rocco Oliveto, Massimiliano Di Penta, Andrea De Lucia

Abstract—A way 1o reduoa the cost of regression testing consists of selacting or prioritzing subsats of test cases from a st
e g

gorithms, is.,

greedy and Mult-Objecive Genelic Algorims (MG/GAS), have also boan proposed to tackle this problem. However, pravious
work has shown that thara is o claar winnar batwoan gready and MOGAS, 2nd that thair combination doas ot necassarily
duce betiar resuls. In this paper wa show thal the optimaliy of MOGAS can ba signiicanty improved by dversifying the

solutions (subtest cases) encounBred during the saarch process. Spaciically, we introduce new MOGA,

coined as DV-GA

(Dharsity basad Ganatic Algorithm), based on the machanisms of orthogonal design and orthogonal avolution that incroasa
diversily by injecting new orthogonal individuals. Results of an empirical study conducted cver 11 programs show that DN-GA
outperiorms bath the gredy aigorithms and radiional MOGAS from the optimaly Doint of view. Moreoier, the solutions (sub-est
suies) providad by DIV-GA are abia 1o detect more faults than the othar algorithms, while keaping the same tast exacution cost.

Index Terms—Tast Casa Selection; Pl gression Testing; Optimal Design; Genetic Algorihms; Empirical Studies.

1 INTRODUCTION

Regression testing consists of re-testing software that
has been modified. Such an activity is required to
verify whether new changes have introduced errors
into unchanged parts, endangering their behaviors [1].
Re-testing the whole software system by executing
all the available test cases might be too expensive
and unfeasible, especially for large systems [2] [3]
Specifically, running some test suites can take hours,
even days, so developers cannot exercise the system
instantly or in reasonable time [4] The problem is
clearly amplified by the growth of the test suites as
the system evolves.

Several strategies have been proposed to reduce the
effort of regression testing [1] by selecting a (possibly
minimal) subset of test cases from the test suite with
respect to some testing criteria [5], [6], [7], [8], [0, [10L.
[11] [12], [13], [14], [15] [16], [17], or pricritizing their
execution with the purpose of first executing those
revealing faults earlier (18] [19] [20], [21], [16]. In
general, solving these problems requires to (i) chose
some testing criteria to be satisfied, and (i) use an
optimization technique to select/order the test cases
on the basis of the chosen criteria. For example,
widely used criteria are code coverage [5] [18], [9]
program modification [14], [13], [22], execution cost
[16], [19], [20], or past fault information [91, [16], [23].

The ftest suite optimization problem has been

= A Panichella, A. De Lucia, Unioersity of Salerno, Fisciano (SA), taly.
E-mail apanichele@unisa i, adeuciagnisa it

= M. Di Penta, Uinicirsity of Sannic, Benevonto, Maly.
E-mail dpentadumisamioil.

= R Cliveto, University of Molise, Pesde (IS), laly.
E-mail: rocco ioetoiaimol it

+

also formulated as a eombination of multiple—often
contrasting—criteria. Results have highlighted that
‘when using multiple criteria the optimization of test
suite is mome effective than when using individual
ones [0, [111 [16], [23], [24]. The simplest way to
combine different criteria is to conflate all the criteria
in a single-objective function to be optimized [5], [18]
[19] [20]. Although such an approach is widely used
when solving multi-objective optimization problems,
this may produce less optimal results compared to
Parsto-efficient methods. Thus, Yoo and Harman [16],
[23] treated the test suite optimization problems us-
ing Pareto-efficient multi-objective genetic algorithms
(MOGAS) to deal with multiple and contrasting ob-
jectives. Empirical results indicated that in some cases
MOGAs provide better solution. However, there is no
a clear winner between single-objective and MOGAs
[16] and their combination is not always useful to
achieve better results [23]

We conjecture that MOGAs were not able to over-
come single-objective techniques due to the phe-
nomenen of genetic drif, ie., a loss of diversity in
the Genetic Algorithm (GA) population [25]. In the
presence of a limited diversity in the population,
MOGAs generate offsprings not diversified enough
with respect to their parents. As a consequence, some
parts of the search space are left unexplored. In such
a scenario MOGAs can prematurely converge within
some sub-optimal region [26, [27], [28] [29], [25]

Promoting diversity between test cases is a key
factor to improve the optimality of GAs [28]. An
intuitive stral to promote diversity consists of
adding a diversity-aware fitness function to maximize
the diversity with Tespect to a coverage criterion,
as done by De Lucia et al [17] for code coverage.

1 [9] and
GAIL An
the search-
‘erform the
hat greedy
to achieve

Yoo and
sorithm by
reto fronts.
using GA.
s the solu-
‘e of multi-
number of
ompromise
low testing
a problem,
‘population
4 on fitness
wiled areas
lioning the
b ensure a
; partitions.
riest case
r only one
ge but not
© space is
mechanism
aching the

wrinsiokens,
v, we have
¥ Yoo and
the density
variants of
he original
speed and

—

ﬁ

multi-
M. Di
International
Workshop on Automation of Software Test (AST
2012

—

On the role of diversity measures for
objective test case selection A. De Lucia,
Penta, R. Oliveto, A. Panichella.

Improving Multi-Objective Search Based Test Suite
Optimization through Diversity Injection. A.
Panichella, R. Oliveto, M. Di Penta, A. De Lucia. In
major revision at |IEEE Transactions on Software
Engineering (TSE).

Search-Based Software Maintenance and Testing

Summary

Search-Based
Program
Comprehension

Multi-Objectives
Defect Prediction

: ")‘ A Multi-Objective
Search-Based Test Test Syite

Data Generation Optimization

4/16/2014 Search-Based Software Maintenance and Testing

Thanks!

Question?

Search-Based Software Maintenance and
Testing

4/16/2014

