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Introduction

The study of cause-specific mortality in the adaldreld

is one of the main sources of information for palbiealth
monitoring. Among the number of challenges thatdnee

be addressed, two of them are the main aims ofntbik.
First, the World Health Organization manages a e€aus
specific mortality database, based on the Intesnati
Classification of Diseases (ICD). The ICD changewcke
times between 1950 and 2010 in order to account for
progress in science and technology and to achiewe m
refined cause descriptions. Thus, the ICD revisifien
causes major discontinuities in trends in mortahtyd
morbidity statistics, requiring then an appropriate
correction for any time series analyses or forecast
Second, models for trends in mortality rates fdfedent
ages and sexes as well as for different countnesoten
based on the assumption of independence between the
causes of death. Actually, in literature we canfiod
models taking into account both the questions. &muris

to suggest a new method developed considering
simultaneously the ICD changes (discontinuitiesthe
data) and the dependence among several causesatbf de
To this end, basing on an extension of the Lee He€Ca
Model (Lee R.D. and Carter L., 1992) we mitigate th
structural breaks in mortality rates and contexyutie
VECM (Vector Error Correction Model) is used in erd

to project the cause-specific time component oflibe-
Carter model. This methodology allows to includageo
term stationary relations between the differentseauof
death, that is cause-of death dependence in th&lmor
forecasting model. Results are compared to the more



traditional forecasting approach based on ARIMA
processes.

In particular we show that the proposed method yred
more precise projections in order to better undecsthe
cause — specific mortality. This is crucial in diént
topics for example in social security, health, eeci
economic strategies, having implications in diffdre
decision choices.

The application in pricing assessment of the metlonyy
here discussed is developed in the insurance amkinop
filed, in order to design tailored and more induadi
contracts. In particular several insured loangt buihin

the critical illness policy model are proposed gmided.
The new products insure the loan, covering the ttsk
suffer several dread disease and/or the eventsae o&
death for a specific cause. The inclusion of theefiein
case of a specific cause of death does not involve
additional cost to the life office beyond the @t illness
benefit. On the contrary the new designs ensurs les
expensive conditions in comparison with the stathdar
policy and are very appealing from the market paht
view, looking for more and more personalized anéagh
clauses.

The layout of the thesis is as follows. In Chagtethe
problems related to the evaluation and the prextictor
cause — specific deaths are exposed from a critical
viewpoint. Chapter 2 illustrates the new methodeher
proposed, aimed to mitigate the structural breakd a
capture the dependencies among all causes of death.
Based on a recent work of Haberman S. and Villegas
(2014), we adjust the mortality time series mitiggtthe
break points. Then, after having shown that theseau



specific deaths are competitive risks, the VectoroiE
Correction Model is studied in its application tbet
adjusted probabilities to the aim of forecastingiitfiuture
trend. Chapter 3 is dedicated to the applicationthef
proposed methodology in the actuarial pricing assesit.
Specifically, we price different new proposals fiesured
loan, in which the loan is saved in case of spe@fients
as the cause — specific deaths. To this aim wethise
death and survivor probabilities correctly calceitht
taking into account contextually structural breaksd
dependences among causes of death, accordinglythveith
topic of the work.
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Chapter | — Modelling for cause — specific mortality

Chapter |

MODELING FOR CAUSE — MORTALITY

1.1 Introduction

Models for trends in mortality rates for differeages and
sexes as well as for different countries are oftased on
the assumption that past trends in historical daif&
continue in the future. Mortality trends and rethte
fluctuations determine changes in the causes othdgea
These causes have different age patterns and hawns
different trends over recent years. At the sameetim
systematic changes in causes of death have beemamom
across the industrialized economies.

Recent literature has addressed the issue of cqeEic
mortality analysis. In particular, Wilmoth J.R. @B
shows how taking into account causes of death can
influence projected trends and effectively hightgghow
cause of death influence is hidden in aggregatdd. da
Tuljapurkar S. et al. (2000) show how mortality ldess
have had common trends in the G7 countries, altmoug
there is evidence of variability in those trendsoih H. et

al. (2006) also demonstrate the difficulties redate the
projections obtained by the decomposition of the
population according to causes of death. MaccheZomit

al. (2007) examine how the standard Lee-Carter nede
not suitable for the analysis by causes of dedtbrris M.

et. al. (2010) discuss the factors driving moryatihanges
based on causes of death.

-10-



Chapter | — Modelling for cause — specific mortality

The modelling of cause — specific mortality is aywe
delicate focus and it gives origin to a lively deban the
scientific community. In particular, we want tayhlight
that two different types of problems come out frtime
decomposition of the mortality time series in diffiet
causes of death.

The first one is the presences of some structunedks
affecting the estimation of the historical and faéure
trend of cause — specific mortality. In particudwe WHO
(World Health Organization, 2009) has revised the
international  classification of diseases (ICD)
approximately every 20 years since 1900. The perpds
revision is to stay abreast of advances in mediciaihces,
changes in medical terminology and to ensure the
international comparability of health statisticsowever,
the ICD revision often causes major discontinuities
trends of mortality and morbidity statistics bemusf
changes in classification rules for selecting ulyileg
causes of death. The ranking of leading causesathds
also affected by this revision.

The second problem consists in the dependencesgamon
all causes of death. All the mortality models cdesithe
(quite unrealistic) hypothesis of independencesveen
them.

These discontinuities lead not only to a misintetgtion

of trends in mortality, but also to misinformatiabout the
changes in life expectancy (Kochanek K.D. et &94).
Furthermore, without properly correcting these
discontinuities, trends in age-specific death-rateay
become biased; this distortion may lead to unridiab
forecasts of life expectancy. In the following seas we
analyze the most popular models to estimate therdut

-11-
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trend of mortality, focusing on the criticalitiehety
present in forecasting cause - specific mortality.

1.2 The Lee — Carter Model

The Lee-Carter model (1992) and its extensions baea
used by actuaries for multiple purposes. Essewtitte
model assumes that the dynamic of mortality treowky
the time is only ruled by a single parameter called
mortality index. The mortality forecast is based the
index extrapolation obtained through the selectéran
appropriate time series model. Box-Jenkins modsts)
known as autoregressive moving average process ARIM
(Box G.E.P. and Jenkins G.M., 1976), are usualgdumn
forecasting.

The model's basic premise is that there is a linear
relationship among the logarithm of age-specifiatbe
ratesm, . and two explanatory factors: the ageand time

t. Information is distributed in age intervals, soet
interval starting in age x will be calledk"age interval”.
The equation describing the model is the following:

My = exp(ax + ﬁxkt + gx,t) (1)
In (mxt) =ay + ﬁxkt T Ext (2)
where:

* m,. is the age-specific death rate for thiaterval
and the yeat;
* a, Is the average age-specific mortality;

-12-
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* k; is the mortality index that describes the
variation in the level of mortality to;

* B, is a deviation in mortality due to changes in the
index;

* & Is the random error.

To evaluate the parametgy we impose:
Yike =0, (3)
the following equation holds:

:gtl 11’1 (mx,t) = HO(X + BX Eitl kt + Ztitl Ex,t (4)

Posinge, = 0 and beingny, observable from life tables,
we can calculaté&, as follows:

T2, In (mye) =

”#t =In (]_[:‘;tl mX't)“l = Oy (5)
Posing:

LxBx =1 (6)

it is possible to evaluate the paramétgby means of the
following equation:

Yx=oln (myy) = Dm0 0+ Ke X0 Bx + Xm0 Ext (7)

Beinge, = 0, we can write:
ke = Xxloln (my ) — Xl ax (8)

-13-
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Finally, we can calculate the paramefigrwith a simple
regression in formulas (1) and (2).

The model assumes the constancy,pfindfy in respect

of t and k. is the only parameter to project. The
k. description will be made by means of an appropriate
ARIMA process, determined using a procedure Box-
Jenkins. According to the model, the mortality rate
follows a linear trend on the basis of an ARIMA10),
which fits well the representation of the index letion
over time. Following Box G.E.P. and Jenkins G.M.
(1976), the model is the following:

kt = kt—l —C — Et (9)
where:

* k; is the index of time;
e cis adrift parameter;
* & Isthe term error at time

Basing on the characteristic equation of the m¢&eive
can determine the mortality tables:

_ ZmX,t

qx = 2y and py=1-—0qx (10)

whereq, andp, indicate respectively death and survival
probability rates.

The Lee — Carter model is fitted to a matrix of age
specific observed forces of mortality using singualue
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decomposition (SVD). Specificallyy, Bx andk, have to
minimize:

Yoee(In(myr) — ay — Beke)” (11)

It is worth mentioning the characteristic equatmnthe
model (2) is not a simple regression model, siheget are

no observed covariates in the right-hand side. The
minimization consists in taking fat, the row average of
theln(m, ) and to gep, andk, from the first term of an
SVD of the matrixIn(m,,) — a,. This yields a single

time-varying index of mortalitf, (Alho J.M., 2000).
Before proceeding to modeling the paraméieas a time
series process, thk,’s are adjusted (takin@, and By
estimates as given), to reproduce the observed auonfb
deaths),, Dy +; k. is the solution of the following equation
(Lee R.D. — Carter L., 1992):

Zx Dx,t = Zx Ex,t exp(ax + ﬁxkt + gx,t) (12)

At this point, k; is estimated again, so that the obtained
death rates (with the previously estimai@d and f3,),
applied to the actual risk exposure, produce thal to
number of deaths observed in the data for the yaadsr
consideration. There are several advantages to mhéke
second-stage estimation of the paramktetn particular,

it avoids sizable discrepancies between predicted a
actual deaths (occurring because the first stégased on
logarithms of death rates). The original Lee — @&art
method was used to aggregate (sexes combined) tdS da
Carter and Lee (1992) implemented their model fates
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and females separately, showing that the two dsicrga
series are best treated independently. Wilmoth (1996)
applied Lee — Carter methods to forecast Japanese
mortality and also experimented some variants  th
model. Lee R.D. and Nault F. (1993) applied LeeaH&
methods to model Canadian mortality.

It should be noted that the Lee — Carter method choe
attempt to incorporate assumptions about advances i
medical science or specific environmental changes;
information other than previous history is takertoin
account. This means that this approach could bblera
forecast sudden improvements in mortality due te th
discovery of new medical treatments or revolutignar
cures including antibiotics. Similarly, future deteations
caused by epidemics, the apparition of new diseastse
aggravation of pollution cannot enter the model.

The Lee—Carter methodology is a mere extrapolatibn
past trends. All purely extrapolative forecastauass that
the future will be in some sense like the past. &om
authors (see, e.g. Gutterman S. and Vanderhoof I.T.
(2000)) severely criticized this approach becauseems

to ignore underlying mechanisms. As pointed out by
Wilmoth J.R. (2000), such a critique is valid offiysuch
mechanisms are understood with sufficient precidimn
offer a legitimate alternative method of predictidrhe
understanding of the complex interactions of soaiadi
biological factors, which determine mortality lesés$ still
imprecise. This means that the extrapolative ambroa
particularly compelling in the case of human matyal

-16-
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1.3 The Poisson log-bilinear Lee Carter
model.

According to Alho J.M. (2000), the basic Lee — @art
model (1992) is not a well suited construction adj@cted

life tables. The main drawback of the OLS (ordinkast
square) estimation via SVD is that the errors asumed
homoskedastic.

This is due to the assumption that the errors areally
distributed.

The logarithm of the observed force of mortalitymsich
more variable at older ages than at younger oneaulse

of the much smaller absolute number of deaths @grol
ages. Because the number of deaths is a countitigpma
variable, according to Brillinger D.R. (1986), tReisson
assumption appears to be plausible. In order twgivent
the problems associated with the OLS method (see
Brouhns N., Denuit M. and Vermunt J., 2002), we now
consider:

Dy ~ Poisson(Ex,t(mx,t))
with:
My = exp(ay + Byk:) (13)
where the parameters are still subjected to thstraints
Yik:=0,Y,8,=1. The force of mortality is thus
assumed to have the log-bilinear fotm(m, ) = a, +

Bik:. The meaning of the,,S,, and k, parameters is
essentially the same as in the classical Lee eCarbdel.
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Instead of resorting to SVD for estimating, B4, andk;,

we now determine these parameters by maximizing the
log-likelihood based on the Lee — Carter Poissap lo
bilinear model, which is given by:

L(a, ﬁf k) = Zx,t[Dx,t(ax + .Bxkt) - Ex,texp(ax +
+L,k:)] + constant 14)

Because of the presence of the bilinear tgy#y, it is not
possible to estimate the proposed model with $tls
packages implementing Poisson regression.

Goodman (1979) was the first who proposed an iterat
method for estimating log-linear models with bikme
terms. In iteration step + 1, a single set of parameters is
updated fixing the other parameters at their carren
estimates using the following updating scheme.

aL™ /a6

Hhv+l) — glv) _ %= /97
o 0 002L(v)/962’

(15)

whereL® = L (§ @),

In our application, there are three sets of paramsgt
a,, By, and k,. The updating scheme is the following

(Brouhns N. et al. 2002), starting Wirﬁﬁo) =0, ﬂ}o) =1,
andl?ﬁo) = 0 (random values can also be used),

LwH1) A ZeDxe=DTD)  swa1) | ) ~@el)

Ay =0y — ~y.0® x - Px kt -
t¥xt

=k (16)

-18-
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=Ww+1)\pW+1)

r+2) _ p(w+1) _ ZeDxe—Dyr )Py A(W+2) _ A(v+1)
o=k ~Xe DB I
ASH-Z) — "JEU+1) (17)
s@+3) _ sw+2)  Se@ue-DSFRTTY i3y | . (w42)

x - - = 0y ’

x —Ztﬁg:z)(kng))z i

]'ét(v+3) — ]'ét(v+2) (18)

where 5,5? = E,rexp(a, + fyks), are the estimated
number of deaths after iteration step The procedure
stops when the log-likelihood function has a sugfitly
small increment. After updating thle, parameters, we
have to impose two constrainty,; k; = 0,Y, 8, =1,
which are the same constraints as in the Lee—Carter
parameterization. The evaluationsaf and §, are used
with the forecasted, to generate the life table functions.

1.4 Criticalities in these background for
modeling cause-specific mortality.

The models presented in the preceding sectiongjudte
unfit to describe mortality by causes of death.sthr
these models assume the independence betweerediffer
causes of death. This unrealistic assumption pexiac
systematic overestimation or underestimation of the
mortality phenomenon.

Moreover, the classification of the diseases hasnbe
adapted over the years through the “bridge codisjat,
2011). The ranking of leading causes of death $® al
affected by this revision that produces structbrabks in

-19-
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the mortality series. These discontinuities leatdamy to

a misinterpretation of trends in mortality, but aalto
misinformation about the changes in life expectancy
because the mortality time series is not statianary

-20-
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Chapter Il

SOLUTIONS TO THEORETICAL
PROBLEMS IN MODELING MORTALITY
BY CAUSE OF DEATH

2.1 Introduction

As in Villegas A. et al (2014), in any country, rtadity
rates and indices such as life expectancy usually v
among subpopulations. Subpopulations can diffeh ea
other for gender, geographic area, cause — spelghths,
socioeconomic variables (e.g., occupation, level of
education, or income) and so on. These differentahd

in particular those related to cause — specific tatity,
pose important challenges to design public polides
tackling social inequalities, as well as pensiostayms
and to manage longevity risk in pension funds antlay
portfolios.

The models that we discussed in the previous chapée
quite unfit for describing the cause — specific tality.
First, as mentioned, they do not take into accdtet
discontinuity caused by the ICD. In addition, tfesgume
the independence between the different causes ath.de
These two problems as well as causing a wrong
interpretation of mortality also do not produceaalequate
mortality trend forecasting.

Here we consider contextually the two questionsags
focused separately in literature. To this aim, gsivell-
known criteria and models, we suggest a methodology
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representing an extension of the procedure propbged
Arnold S. and Sherris M. (2013).

Following the guide lines of this paper, we suggéest
method here presented can be synthesized as folksies
first step we will adjust the data about mortalityth
respect to the structural breaks; as a secondvatepse
the procedure VECM (Vector Error Correction Model)
order to project the cause-specific time compomnérhe
Lee-Carter model: in this way we can include loegyt
stationary relations between the different causedeath
and thus cause of death dependence in the mortality
forecasting model.

The new application of VECM to cause—specific demath
propose takes into account contextually the disoaities

and the dependencies between causes.

The procedure is illustrated and analyzed in sévera
numerical evidences (Arnold S., Passannante V4201
Data concerning mortality, disaggregated for causies
death, are available at the Mortality Database
administered by the World Health Organization [Z009
(WHO), containing several demographic informatian a
the number of deaths for many countries over tee 38
years for five-year age groups. The aggregatechdeatd
survival) probabilities have been got by means of a
Poisson Log Bilinear regression (see Brouhns Nalet
2002) on the Lee Carter model (see Lee and Ca9f2)1
Causes of death are defined by the International
Classification of Diseases (ICD), which ensures
consistencies between countries. In this sectibcaases

of death are considered divided by macro classes.

The ICD changed three times between 1950 and 2006,
from ICD-7 to ICD-10, in order to take into account

-22-
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changes in science and technology and to refine the
classification. As consequence the raw data are not
directly comparable for different periods.

We compare the obtained results about mortalith whe
more traditional forecasting approach based on ARIM
processes.

Our study is based on the U.K. population becabse t
widest range of information is available. We coesithe
U.K. population divided for sex and for six diffete
causes (Infection and Parasitic “I&P”, Cancer, Glatory
System, Respiratory System, External and Other).

In the following we show that, modeling the caude o
death dependence, a long-run equilibrium relatignsh
exists among all causes (divided by six macro ekssich

as Cancer, Circulatory System, Respiratory System,
Infection and Parasitic, External and Other causks
death) for the U.K. population. The consideratidrthe
cointegrating relations produces positive effects tbe
forecasting, as shawn in Arnold, S., Passannantg, V
2014. If past trends are expected to continueerfikure,
including them in the model instead of modeling heac
cause in isolation, assists in forecasting futu@tatity
rates (Arnold, S., Sherris M., 2013).

This work confirms then that cointegration is a
worthwhile tool in understanding and improving caus
specific mortality forecasts. In what follows we liwi
consider separately the two aspect of discontinaity
dependence in the data.
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2.2 About the discontinuity: smoothing the
structural breaks

Several mortality data cause changes may affectecau
specific time trends, thus altering the interplietatand
the forecasting.

There are some quantitative methods that detectpabr
changes ("jumps”) and estimates correction factbeg
may be used for further analysis. One way to smtwth
jumps of the mortality indek;in correspondence of the
time of the ICD updating is represented by thenspli
regression. In this work, we use the new model in
Haberman S. and Villegas A., 2014.

The model was presented in the IME Conference én th
2013 by Villegas A.

The model is inspired by the procedures introdulogd
Ray G. et al. (2011). The authors use a splinetiman
order to smooth the mortality time series.

The Authors assume that the number of deaths are
independent Poisson responfgs ~ Poisson(eytliyt)

Let S ={sy,s,..,s,} be the times at which coding
changes occur. In order to account for the codiranges,
we assume as in Haberman S. et al., 2014, thébibe of
mortality is given by:

108 fyr = @y + Bk + T, 0 FD (0) (21)
where;:

e a,pB, andk, are the some parameters of the
standard Lee — Carter Model in equation (2);

-24-
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« fO@) =1, <t<s is an indicator function
valued at timet taking the valued if no new
classification occurs int and the valuel
otherwise. The indekmeans the numbers of ICD
coming true in the considered period;

. 5,5” measures the magnitude of coding change at

age x;
(@ k) = {ax + biPo ke — by} (22)
(Boke) = {5 Buboke) 123

(62 ke} = {89 + aipe ke — asf O (),
i=1,..,h (24)

Transformation(22) and(23) are the original ones from
the Lee-Carter basic model, whilst the family of
transformation defined bg24) are induced by the new

parameter§,§i) (Haberman S. et al., IME 2013).
In order to ensure the complete characterizatiorthef
model, the following constraints need to be imposed

ke, =0 (25)
2B =1 (26)

wheret,, is the observed last period. In the model the
underlying mortality trend is captured only by whilst

parametersS,Ei) captures the discontinuities in mortality
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trend induced by the changes in the coding systietheo
causes of death. In order to accomplish this, wethe
family of transformation defined in formu({@4).

As we said before, inspired by the procedure intced
by Ray G. et al. (2011), we set the constanis =

1, ..., h, by fitting the model

ke =g + I 6PFO () + €, (27)

whereg(t) is a continuous function fitted by a thin plate
penalized regression spline ands an error term.

Given constants;,i = 1, ..., h from model(27), we can
write:

ke —> ke— X a,fO) (28)

6351) ) 6}El)f(l) + aiﬂx i = 1, ,h (29)

The only parameter to be projected through a praeed
Box — Jenkis, useful for determining an appropriate
ARIMA, is ki.According to the model, the mortality rate
has a linear trend on the basis of an ARIMA (0,1,0)
which is well adapted in the representation of the
evolution of the index over tim&, therefore refers to the
following model (Lee R.D. and Carter L., 1992):

ke =k —c—e (30)
Again on the basis on the date presented in theegeg
section, but specializes in particular on a spedéuse of

death (circulatory system), we have got the folltuyvi
figures 1, 2, 3 and 4. In Figure 1, it is possiidebserve
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Chapter Il — Solutions to theoretical problems
in modeling mortality by cause of death

an example (referred to the cause of death rekatade
circulatory system) of fitting of the parametess3, and

k.. Figure 2 shows the fitting trend of the mortality
index k; with respect to that observed (that has two jumps
exactly in the years in which the ICD changed): as
evident, no more jumps are present in the gragjurés 3
and 4 show the trends in the case of respiratastesy. In

the numerical application we will place greater eags

on this point. With these graphs we can see hownéve
transformation transfers the jumps in mortality douelata

production changes to thﬁéi) parameters and leavks
representing the underlying mortality trend pluse th
fluctuations around this trend.

Fig. 1 - Fitting parameters Circulatory System, HV Model.
Source: Source: Arnold S. and Passannante V., Long-Run Analysis of Cause-of-Death
Mortality, Presentation Maf 2014, 2-4 April 2014

Circulatory-Males

o, + BE‘) B

Period
— 19511067
— 19681078
— 19792003 0.06-

2529 3034 3539 4044 4549 5054 5550 6064 6560 7074 7579 8084 2520 034 3530 4044 4549 5054 5550 6064 6560 7074 7579 8084

K

Fig. 2 - k,with the coding changes for different group age, Circulatory System HV
Model.

-27-



Chapter Il — Solutions to theoretical problems
in modeling mortality by cause of death

Source: Source: Arnold S. and Passannante V., Long-Run Analysis of Cause-of-Death
Mortality, Presentation Maf 2014, 2-4 April 2014
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Fig. 3 - Fitting parameters Respiratory System, HV Model.
Source: Source: Arnold S. and Passannante V., Long-Run Analysis of Cause-of-Death
Mortality, Presentation Maf 2014, 2-4 April 2014
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Source: Source: Arnold S. and Passannante V., Long-Run Analysis of Cause-of-Death
Mortality, Presentation Maf 2014, 2-4 April 2014
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2.3 About the dependence: Vector
Autoregressive Models and Vector Error
Correction Models

The Vector Autoregressive model (VAR hereaftenhis
technique used to model the multivariate time serie
focuses on the joint behavior of the vector element
e = V1o Yie - Yie)'» With dimension(kx1) and the time

t =1,..T. The model represents the multivariate version
of anAR(p) process. The VAR model was introduced in
a famous work of Sims C.A. (1980), in which heicrzted

the model of simultaneous equation, the most popula
model in microeconomics in those years. In genaral
VAR model of order p, VARp) can be expressed as
follows:
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YVe=CH+AYe1t ot Apyip U (31)

where A, are the matrices of the coefficientExK),

¢ = (¢y, ..., c)"is the vector of the intercepi&x1), & is

a K-dimensional white noise process, where theanag—
covariance matrix is not singular.

To test the eventual stationeries of a (ARprocess it is
sufficient to check that all the eigenvalues of thatrix
A; are minor then one in absolute value. Algebraycall
this is the stationary condition:

det(ly —Ajd— - —A,AP) £ 0, |A| <1 (32)

wherel,, is the identicaK—dimensional matrix whil& is
the K —dimensional eigenvalues vector. In particular, the
VAR(p) process is stationary if all the eigenvalues ef th
matrix in companion form are in the unit circle wirthen
one in absolute value.

If the polynomial in (32) has a unit root (i.e.,eth
determinant is zero), then some or all of the \des are
integrated. For convenience we assume that theyatare
most I(1).

If the variables have a common stochastic trends it
possible to find linear combination of them thag &0).

In that case they arecointegrated The following
definition holds:

Definition 1. A set of I(1) variables is cointegrated if a
linear combination exists, that is 1(0).

Occasionally it is convenient to consider systertiwibth
[(1) and 1(0) variables.
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Although the model (31) is general enough to explai
variables with stochastic trends, it is not the hsastable
type of model if the interest centers on the cgrdagon
relations: this happens because the cointegragifagions
do not appear explicitly in the VAR form.

The VECM form

Ay, = Ny, + LAY, 1+ -+ [ 1Ay prq T Us (33)

IS a more convenient model setup for cointegration
analysis. In (33) (see Lutkepohl H., 2005):

M=—(— A, ——Ap)
and

I ==l + -+ A,) for=1,..,.p—1
The VECM is obtained from the levels VAR form (31
subtractingy;_, from both sides and rearranging terms.
Becausedy, does not contain stochastic trends (this
happens by virtue of our assumption that all theabtes
can be at most I(1)), the terfty;_, is the only one that
includes I(1) variables.

Hence,lly,_; must also be 1(0). Thus, it contains the
cointegration relation. ThEs (j = 1,...,p — 1) are often
referred to as the short — run or short — termrpatars,
andIly,_, is sometimes called the long — run or long —
term part. The model in (33) will be abbreviated as
VECM(p — 1). Of course, it is also possible to determine
the 4; levels parameter matrices from the coefficients of
the VECM.

More precisely:
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A1:I—;L+ H+1kJAl:B_B—1 |f 1:2,...,p_1,
and

A

p — " Ip-1-

If the VAR(p) process has unit roots, that is:
det(ly —AjA— - —ApAP) =0 forA=1

the matrixil = — (I, — A; — - — A,) is singular.
Suppose that the ramk (IT) of the matrixII is equal ta .
ThenIl can be written as the product of the matrigces
and B, both with dimensionk x r), such thatrk(a) =
rk(B) =r.

We can write:
= ap'.

This equation holds if we multiply both sides 3y ;. In
particular, the process is I(0) (cf. Johansen 1%@&tpause

it can be obtained by premultiplyindy,_; = of'yi_;
with (a’a)~ta’ . Hence,B'y,_; contains cointegrating
relations. It follows that there anre= rk(I1) linearly
independent  cointegrating relations among the
components of,. The rank ofll is therefore referred to
as the cointegrating rank of the system, ghds a
cointegration matrix.

For example, if there are three variables with two
cointegrating relationér = 2), we have
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My,_y = af'y,y =

(11 aqy }’1,t—1
I azz] b ][0
(a31  a3p :821 :822 ﬁ32 y3't_1

= |A21€C -1 T A2€Ca¢ 1
[d31€C1 -1 T A32€C 1

[A11€C1t—1 T+ a1zecz,t—1]
)

where

eCit-1 = P11Y1,e-1 + B21Y2,t-1 + B31Y3,6-1

and

eczt—1 = P12Y1,e-1 + B22YVz,e-1 + Ba2Yz -1
The matrixa is sometimes called tHeading matrix In
fact it contains the weight attached to the coiragg
relations in the individual equations of the modehe
matricesa and f are not unique, so there are many
possiblea and f matrices containing the cointegrating
relations or linear transformations of them. Intfatcsing
any nonsingular(r x r) matrix B, we obtain a new
loading matrixa and cointegration matrigB'~t, which
satisfies the following equation? = aB(BB'™") .
Consequently, cointegrating relations cannot beaeted
purely from the observed time series. Some nonsampl
information is required to identify them uniquely.
The model (33) contains several special casegltsdrve
to be pointed out. If all variables are 1(0), ang K, the
process is stationary. #f= 0, the termlly,_; disappears
in (33). In that case)y, has a stable VAR representation.
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In other words, a stable VAR representation eXwtghe
first differences of the variables rather than theels
variables.

The VECM in (33) also indicates that, for a coimsgmg
rankr > 0, the vector of first differences of the variables,
Ay,, does not have a finite order VAR representation.

2.4 Deterministic Terms

Several extensions of the basic models (31) anjl 483
proposed in literature.

Usually it is necessary to represent the main
characteristics of a data set of interest. A véeialould
include a deterministic term, such as an intercafinear
trend term or seasonal dummy variables. A first way
include deterministic terms in the model is simmyadd
them to the stochastic part, as in the followingression

is showed

Ve =de +x; (34)
Here d, is the deterministic component, ang is a
stochastic process that may have a VAR or VECM
representation, as in (31) or (33). In other words:

xt = Alxt_l + -+ Apxt_p + ut or

Axt = th—l + I—:'let—l + -+ rp_let_p+1 + Ue.

On the assumption, for instance, thais a linear trend
term, that is:
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dt = 60 +61t

such a model setup implies the following VAR(p)
representation fay,

Ve =Vo+vit + A1y o+ Apxep + U (35)

This representation is easily derived by left-nphiing
(34) with :

A(L) = Iy = AyL — -+ — A, LP

where L is the lag operator, as usually indicatéating
that:

A(L)x; = u;
and rearranging terms, we find that:
v = A(1)8 + (XF_1j4;)6;
and
v, = A(1)6;.

Hence,v, andv; satisfy a set of restrictions implied by
the trend parameter§, ands; and the VAR coefficients.
Alternatively, one may view (35) as the basic model
without restrictions forv; (1 =0,1). In that case, the
model can, in principle, generate quadratic treihdél)
variables are included, whereas in (34), with a
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deterministic termd, = §, + 6;t, a linear trend term is
permitted only.

If we have a polynomial of q order, we can find a
polynomial of (g —1) order as follows (Beveridge -
Nelson Decomposition)

C(L)y=C(1)+C*"(L)u, (36)
Posing:

C(1) =[p Hal]

and
Se =d¢ +uy
we have:
ye = [BiHal]se + C*(L)ue (37)

wheres; is a random walk I(1) and H is an invertible
matrix with rank(n — r).
In general, if we consider this polynomial form:

de = 8o + 81t + 8,2 + -+ 4 5,tP (38)

it is not necessary that the polynomigls, has a p order.
In practice we have the following five cases:

a) d; = 0. In this case there is not a trend.

b) d; = 8y, a6, =0. There is not a trend in the
VAR but there is a drift in the VECM.
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C) d; =06y a8, # 0. There is a drift in the VAR
and in the VECM.

d) d; =6, + 6:t,a)6; = 0. There is a linear trend in
the VAR and in the VECM.

e) d; =6, +6:t,a16; #0. There is a quadratic
trend in the VAR and a linear trend in the VECM.

In what follows the aim will be to identify the tgpof
deterministic trend to include in the process.

2.5 Likelihood ratio test in I(1) models

This section contains a description of a reducetk ra
regression and explains how this procedure is epglb
derive estimators and test statistics for modeh wérious
restrictions on the deterministic terms.

The technique of reduced rank regression was intedl

by Anderson T.W. and Rubin H. (1949) in connection
with the analysis of limited information maximum
likelihood and generalized to the reduced rankesgjon
model by Anderson T.W. (1951). An excellent sounte
information is the monograph by Reinsel G.C. anduVe
R.P. (1998), which contains a comprehensive suofey
the theory and history of reduced rank regressiunh its
many applications.

The statistical analysis of all the multivariate dats is
made by the same procedure, called a reduced rank
regression, applied in the context of independemd a
identically distributed variables (Anderson T.W951)

and has been applied for stationary processes fAlamd
Reinsel G.C., 1988) and for nonstationary processes
(Johansen S. and Juselius K., 1990).
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RegressingU; and V;, on Z; to form residualsR;
andR,.and solving the reduced rank regression (Johansen
S., 1988), we can write:

Rut = O{IB’th + u, (39)
Posing:
S;j=T '¥1Ry Ry ,witht=1,..,T (40)

We can solve the eigenvalue problem
|ASyy — SvuSJ&Suvl =0 (41)

for eigenvalued > 4, > --- > 4, > 0, and eigenvectors
w = (Wy, ..., Wp).
The vectorsw;'s satisfies the following equation:

AiSpuWi = SyuSuu SuvWi (42)
and are normalized as follows:
w'Spw =1
so that
W'SpuSiaSuyw = diag(y, ..., A,).

The reduced rank estimators are giverby (w4, ..., w,)
and@ = S,,f.
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Each of the five cases a, b, c, d, e mentioneca 2.4
can be estimated by reduced rank regression.

Now we proceed with testing the cointegration rankler
specific hypothesis on the deterministic part ot th
process. Following Johansen S. (1988), let’s canmsid

M= ap

when there is an unrestricted linear term in theRVA
model written as a reduced form of an error coivect
model. The Gaussian errors in equation (39) giigesto a
likelihood analysis leading to a regression, and the
analysis this is seen to be a reduced rank of ssgne of

U, = AX; on V; = X;_; corrected for lagged differences,
constant and linear term. The estimator of the rerro
covariance matrix is given by (Johansen S., 1994):

Lt (1) = |8y T2y (1 = A) (43)
Dividing (43) by a similar expression posing r =vge
find that the likelihood ratio tedt,,,(r) = Lyax(p) Of

the model with a quadratic trend in the VAR andnadr
trend in the cointegration versus the unrestricted
autoregressive model, is given by:

—T X741 log(1—24;) (44)

The same analysis holds for a model including tseind
the variables but no trend in the cointegratingtrenh.

In the analysis for a model without trends we ardyrect
for the lagged differences.

Thus in all three cases, following Johansen S.4),9%e
get the test statistic (44), but with differentexgalue.
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In the model with a trend in the cointegrating tiela the
statistical analysis consists in a reduced rankes=gon of
AX; corrected for legged differences and the constant.

2.6 Testing the absence of trend in the
trend stationary components

In this section we compare the model with a quadrat
trend in the variables against the model without a
quadratic trend but with a linear trend in the tegmation.
Following Johansen S. (1994), the likelihood ratst
statistic is given by:

L:nax (r) — L?nax (r) /E;nax (p) L:nax (p)
Lmax (r) Lmax (r) /Lmax (p) Lmax (p)

Hence a comparison of “a model without trend in the
cointegration but with trends in the variables” iagh“a
model with a trend in the cointegrating relations”
possible. We will use the test statistic is eqaal t

T ¥y log{(1—2)/(1 - A7} (45)

wich allows for a comparison of the model withongnid
in the cointegration but with trends in the varesbagainst
the model with a trend both in the cointegratinigtiens
and in the variables.

In or case the likelihho ratio test can be exprsse

Linax()  Linax(1)/Linax(0) Ly (0)
Linax(™) " Linax(")/Linax(0) Linax (0)
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And analogously the test statistic is:
TXilog{(1—2)/(1 -4} (46)
2.7 Model Specification

In specifying VAR models or VECMs it is necessaoy t
specify the lag order and, for VECMs, also the
cointegrating rank. To this aim, some statistical
procedures are available and will be discussedhe t
following. Because unrestricted VAR models and VEECM
usually involve a substantial number of parameters
desirable to impose restrictions for reducing the
dimension of the parameter space and thereby irepire/
precision in the estimations. If the VAR has a uoibt
and all the variables are integrated of the sarderpthere
could be some stationary cointegrating relations, a
previously set.

2.7.1 Determining the autoregressive order

In determining the lag order of a dynamic model cae
use the same procedures available for univariatéetao
At this stage it is useful to focus on the VAR fo(B1)
because the cointegrating ranis usually unknown when
the choice of the lag order is made. One possible
approach is to start from a model with some prafipdc
maximum lag lengthp,.xand apply sequentially some
tests to determine a suitable model order. Gerzedli
versions of the criteria in the univariate caseavalable

to that purpose. The general approach is againitto f
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VAR(m) models with ordersm =0, ...,pmex and to
choose an estimator of the orgeithat minimizes the
preferred criterion. Many of the criteria in curreumse
have the general form:

Cr(m) = log det (£,(m)) + c;p(m) (47)

wheredet (.) denotes the determinant, log is the natural
logarithm, $,(m) =T1¥7_, 4,4, is the residual
covariance matrix for a model of order, c; is a sequence
depending on the sample siZeandp(m) is a function
that penalizes large VAR orders. For instaro@n) may
represent the numbers of parameters that have to be
estimated in a VAR (m) model. The term
log det (3,,(m)) measures the fit of a model with order
m. Because there is no correction for degrees edfven

in the covariance matrix estimator, the log deteant
decreases whem increases. As in the univariate case,
the sample size has to be held constant; henceuthber

of presample values set aside for estimation isrdened

by the maximum ordey,,, -

The following criteria are direct generalizationt the
corresponding criteria for univariate processes:

+ Akaike's Information Criteria
- 2
AIC(m) = log det (3, (m)) + Tsz

e Hannan-Quinn Criterion
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2loglogT
2209091

HQ(m) = log det (5, (m)) + T

* Schwarz Criterion

- logT
SC(m) = log det (3, (m)) + Tsz

e Final Prediction Error
- 2
FPE(m) = log det (3,,(m))(1 + Tsz)

Model selection criteria can also be used for idigng
coefficients that may be replaced by zero or other
exclusion restrictions.

2.7.2 Dickey — Fuller test

In order to identify the order of integration ofime series
there are several statistical tests. The first amesidered
in this work is the Dickey — Fuller test.

Consider theAR(p) model:

Ve = Y1t T ApYrp T U (48)
the process is integrated when

al)=1-a;——a,=0

We are interested in testing the hypotheses: 0. To test
this null hypothesis against the alternative ofigterity
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of the process, it is useful to reparameterize rtiuelel.
Subtractingy,_, from both sides, we have:

Ayr = @y, 4 + 259;11 Of;AYt—j + U (49)
where® = —a(1) anda; = —(aj41 + -+ a). In this

model the test of the hypothesis is
Hy: @ = 0 versusiH;: @ < 0.

This test, called augmented Dickey — Fuller (ADE$tt
statistic is based on the t-statistic of the coeffits®
from an OLS (Ordinary Last Square) estimation I@ul
W.A., 1976 and Dickey D.A. and Fuller W.A., 1979).
Critical values have been obtained by simulatiow, ey
are available in Fuller W.A. (1976) and, DavidsonaRd
MacKinnon J.G. (1993).

If the order of integration of a time series anence, the
number of unit roots in the AR operator, are netcl we
should calculate the first difference series so yrianes
until the series becomes stationary. Then a upit test is
performed for the series. If the unit root is régek; a unit
root test is applied to the series, which is ddfered one
time less than in the previous test. If again & wot is
rejected, the procedure is repeated until a uit cannot
be rejected.

2.7.3 KPSS test

In this section we are going to investigate thegnation
proprieties of a serigg testing the null hypothesis that
the process is stationary Hy: y,~I1(0) ) against the
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alternative that it i$(1) (Hq: y.~I(1). Kwiatkowski D.,
Phillips P.C.B., Schmidt P. and Shin Y. (1992) dedi a
test for this pair of hypothesis. Assuming thatr¢hisn’t a
term representing the linear trend, the startinigtps the
following process:

Ve =X t 2t

wherex; is a random walk,
X¢ = Xe_q + Vg, Ve~1id (0, 02),

andz; is a stationary process.
In this framework the test of the hypothesis isodlews:

Hy:02 = 0 versusH;: o2 > 0.

If H, holds, y, is composed of a constant and the
stationary processz;: hence, y, is also stationary.
Kwiatkowski D. et al. (1992) have proposed thedwiing
test statistic:

T
1 N S?
t=1 ~

where S, =¥:;w; with w,=y,—y and 62 an
estimator of

T
62 = Tlim T-1 Var(z Z)
t=1
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that is an estimator of the long — run variancethsd
processi2. If y, is a stationary process, is1(0). If y, is
1(1), the numerator will grow without bounds and the
statistic becomes large for large sample sizes.

2.8 Specifying the cointegrating rank

If some of the variables af€1), a VECM is the suitable
modeling and the cointegrating rankas to be chosen in
addition to the lag order. For this choice, we uaa some
procedures based on likelihood ratio test. Theotalhg
sequence of hypothesis may be considered:

Hy(0):rk(IT) = 0 versus H;(0):rk(IT) > 0
Hy(1):rk(IT) = 0 Versus H,(1):rk(I1) > 0

Ho(K—1):rk(IT) =K—-1 versus H;(1k—1):rk(Il) =K
(50)

The testing sequence terminates, and the corresmpnd
cointegrating rank is selected when the null hypsith
cannot be rejected for the first time. If the finstll
hypothesis in this sequend&,(0), cannot be rejected, a
VAR process implemented considering the first
differences is considered. At the other end, iftladl null
hypotheses can be rejected, includihgK — 1), a levels
VAR process should be considered for the analysis.
Under Gaussian assumptions, the likelihood raatissic
under Hy(r,) is nonstandard. To present the tests, the
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model (34) is a convenient point of departure.
Specifically, we first consider the model:

yt = 60 + 61t + xt (51)
where x; is a VAR process. [6; =0, there is just a
constant mean and no deterministic trend term.hat t

casey; — 6, = x;, and thusly, = Ax;; from the VECM
form of x;, the mean adjusteg has the VECM form:

Ay = M(ye-1 — o) + 259;11 I; Ay j + uy (52)

or, if an intercept term is used,

p-1
Ay = vy + Ily,4 + Z [ Ay, j+us =
=1

-

= S+ B Ay (53)
where
m = [1,v5]is (K X (K + 1)) withvg = —116,.

Notice that, due to the absence of a determiniséind
term, the intercept can be absorbed into the ogiatn
relations: thus,IT* = af* has rankr . Both VECM
versions can be used for testing the cointegratamk.
Johansen S. (1995) considers the intercept ver&an
and provides critical values for the likelihoodioatest,
which is known agrace test.

The test statistic has the following form:
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LR(r) = =T Xy 41108 (1 — &) (54)

where thel;’s are the eigenvalues obtained by applying
RR regression techniques to (53).

2.9 Model Checking

Many statistical tools exist for checking whethegigen
VAR model or VECM provides an adequate
representation of the process underlying the tiemes of
interest. As in the univariate case, many of theenbased

on the residuals of the final model. In what followe
show the Portmanteau test for investigate on thieluals
autocorrelation and a test to check the residual’s
normality.

2.9.1 Portmanteau test for autocorrelation

A formal test for residual autocorrelation may laesdxd on
the Portmanteau or adjusted Portmanteau stafl$tectest
checks the null hypothesis

Hy: E(ug,u'c—41) =0, i=1,..,h>p
against the alternative that at least one autocovee

and, hence, one autocorrelation is nonzero. The tes
statistic has the form:



Chapter Il — Solutions to theoretical problems
in modeling mortality by cause of death

h
Q=T tr(( 5 605"
j=1

where

P

— 7=1vT ’
G =T Xe=ir Ut e-1-

Suppose thau; are residuals from a stabléAR(p)
process. Then, under the null hypotheglg, has an
approximate y?(K2(h — p)) — distribution. Following
Hamilton J. D. (1994), a modified statistic withtgitially
superior small sample properties is the adjusted
Portemanteau statistic:

h
Q=12
=1

which is similar to the Ljung — Box statistic (B&E.P
and Jenkins G., 1970) for univariate series. Ircqca, the
choice ofh may be critical for the test result. Afis

chosen too small, thg?- approximation to the null
distribution may be very poor, whereas a lahgmay

result in a loss of power.

1 ArA-1A A1

2.9.2 Test for non normality

Multivariate tests for non normality can be consted by
generalizing the Jarque — Bera tests. The ideaois t
transform the joint normal distribution in order abtain
independent components and then apply the testihéor
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univariate series to the independent componentgerGi
the residualsti;,(t =1,...,T) of an estimated VAR
process or VECM, the residual covariance matrix is
estimated as:

Z =T‘1i(at - ) (@~ )
t=1

u

The test on non normality can be based on the sk&svn
and kurtosis of the standardized residudlg =
@, B |

The standardization of the residuals was proposed b
Doornik J.A. and Hansen H. (1994).

b, = (b11; ---;blk)’

with
T
by =T ) (@50)°
t=1
and
bz = (bzp -"'bzk),
with

by = T! Z{=1(ﬁkt)4

Possible test statistics are:

-50-
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SS% = Tb,1b1/6
and if we define théK X 1) vector3, = (3, ...,3)’
s =T(by — 3) (b2 — 3x)/24

Both statistics have asymptogé- distributions under the
null hypothesis of normality.

2.10 Forecasting VAR Processes and
VECMs

The forecast of the vector processes is completely
analogous to the forecast of the univariate presesEhe
levels VAR form (31) is useful in forecasting thariable

y:. At first we assume that the process parametezs ar
known. Suppose that thg’'s are generated by an
independent white noise process. For example,vialig
Hamilton J.D. (1994), at the origihof the forecast, ah

- step ahead forecast is obtained as:

Yrnt = A1Yren-1r + o+ ApYrin—pir (55)
where

Yr+jir = Yr+j forj < 0.

The corresponding forecast error is:

Yr+h = Yr+hT = Ureh T PrUrip_q + o+
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+ Pp_qUriq (56)
and, by successive substitutions, it can be shbafn t
¢S = §=1 @5_]' A], S = 1,2 vy (57)

with @, = I and4; = 0 for j > p [Lutkepohl (1991, Sec.
11.3)].u; is the 1 — step forecast error in period 1, and

the forecast are unbiased; that is, the forecastsehave
expectation 0. The MSE matrix of &n step forecast is

Z(h) = E{(yr+n — Yranr) ren — Yrenr)'} =
y
= Y09 3, P (58)

If u; is an uncorrelated white noise and is not necigsar
independent over time, the forecasts obtained via a
recursion as in (55) are just the best linear fasesc

The forecast MSES.,(h) for a stationary process
converge to the unconditional covariance matriy,of

If the procesy, is Gaussian, that ia.~iid N(0, Y.,), the
forecast errors are also multivariate normal. Usinig
result, the following forecast intervals can beabBshed:

[yT+h|T - Cl_%ak(h)JYk,T+h|T - Cl_“Uk(h)] (59)

2

Here c,_« is the (1 —%) 100 percentage point of the
2
standard normal distributiory, r,,r denotes thé —th
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component o7, anday (h) is the standard deviation
of theh - step forecast error for thgh component of,.

If the process is moldable as a VECM, to the aim of
forecasting it may be rewritten in VAR form.
Alternatively, equivalent forecasting equations che
obtained directly from the VECM.

If deterministic and/or exogenous variables aresqmg
the formula must be extended. Because the future
development of the deterministic variables is knpthey
are particularly easy to handle. They may simplatéed

to the stochastic part.

We have worked under the assumption that the psases
known, but this assumption is unrealistic in prEeti
Following Hamilton J.D. (1994), denoting the optima
step forecast byr.nr as in (55) and providing its
counterpart based on estimated coefficients bytavie
have:

Pranr = AaPrin—ar + -+ Apdren—pir (60)
where
Jrejir = yr+jforj<o0

and thed;s (i = 1, ...,p) are estimated parameters. The
corresponding forecast error is:

Yrn — Irenr = [Yren — Yranr] + [Yranr — Iranr] =

= Y120 D urinj + [Yremr = Irenr) (61)
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The first term on the right side of the equatiorl)(6
involves future residuals, with t > T only, the second
term is determined by present and past variableslif
past variables have been used for the estimatiéoildws

that the two terms are independent,iis an independent
white noise. Moreover, under standard assumptitires,
differenceyr pjr — Yr+nr is small in probability as the
sample size used for estimation gets large andvikie
coefficients are estimated more and more precisely.
Hence, the forecast error covariance matrix is:

Z(h) = E{(yr+n — Vr4nr) Uren — Irenr)'} =
y
=2y(h) +0(1)

The quantityo(1) denotes a term tending to zero with
increasing sample size. Correction factors for dast
MSEs and forecast interval may become more
complicated, depending on the terms to be incluibed
addition to the VAR part.

2.11 Empirical Application

In this chapter we will discuss about the best way
forecast the cause — specific mortality rates.

This work aim is to propose a method for mitigatthg
jumps caused by the reclassification ICD droppihg t
hypotheses of independence between all causestif.de
By means of models and processes known in litezatue
build some innovative steps to follow in order to
overcome these two restrictive problems. In paldiGuhe
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study is based on an extension of the standard-Lee
Carter model for smoothing the mortality series
(Haberman S. and Villegas A, 2014 - hereinafter
mentioned as HV Model) and on the VECM (Vector Erro
Correction Model), analysed in order to project liveg-
term stationary relation between the different esuef
death.

In our opinion the proposed method provides a bette
understanding of trends in aggregate mortalitysraed
implies improvements in the forecasting processijrg
considered the long-run relationships between &use
based on historical data.

Once the specific death rates are forecasted, we ca
compute the resulting forecasted mortality ratesl an
compare them with the results of the Lee Carter éllod
when they are forecasted with an ARIMA processes. W
will show that the proposed method produces the
preferable projections in order to calculate thaltoentral
death rates.

To this aim we have to modeling the cause — specifi
mortality through four different steps, as follows:

1) Smoothing on the mortality rates with an extension
of the Lee — Carter Model

2) Capturing the possible dependences among the
cause — specific deaths with the VECM.

3) Forecasting the mortality index with the ARIMA
models and the VECM (only if there are several
stationary cointegrating relations between them).

4) Use the better prevision in order to calculate the
future trend of mortality rates.
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2.11.1 Data and purposes

Data concerning mortality, disaggregated for causies
death, are available at the Mortality Database
administered by the World Health Organization [Z009
(WHO) while the aggregated data (all causes) cagdbe
from the Human Mortality Database (HMD), containing
several demographic information as the number afide
for many countries over the last 50 years for frear age
groups. The aggregated death (and survival) prbtedi
have been got by means of a Poisson Log Bilinear
regression (see Brouhns N. et al 2002) on the LateC
model (see Lee R.D. and Carter L. 1992).

Causes of death are defined by the International
Classification of Diseases (ICD), which ensures
consistencies between countries. In this sectibcaases

of death are considered divided by macro classhks. T
ICD changed three times between 1950 and 2006, from
ICD-7 to ICD-10, in order to take into account cas in
science and technology and to refine the classificaAs
consequence the raw data are not directly compafabl
different periods. Using U.K. mortality data died by
cause — specific deaths, we show that our methbibiex

the best results compared with the ordinary metfood
modeling mortality model and the ARIMA in terms of
goodness of fit and ex post forecasting performance
considering the dependencies. Indeed, after thestdgnt

on the mortality index, we then use the VECM'’s &ide
projections of cause - specific mortality rates difie
expectancies. In particular, using selection detesuch as
Akaike's Information Criteria (AIC), Hannan-Quinn
Criterion (HQ), Schwarz Criterion (SC), Final Pretthn
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Error (FPE), we select the lag order of the VAR d\e
Autoregressive). Several unit root tests on theabées
considered are discussed; in particular a procassbhe
defined stationary if its VAR has all its roots side the
complex unit circle (Hamilton J.D.,1994 and Lutkbpo
K., 2005). Therefore, if this polynomial has a requal to
unity, some or all the variables are integratedroer one
and there might be cointegrated relations amongithe
Unit root tests, such as the Kwiatkowski-Phillips-
Schmidt-Shin test (KPSS), the Augmented Dickey+#+tull
test (ADF) or the Phillips-Perron test (PP), arefulstools

in order to check for the stationarity of the vhles.
KPSS tests the null hypothesis that the variablevisl or
trend stationary, while in the ADF and PP test tiod
hypothesis of a unit root, and thus, the null hizests of
non-stationarity. If the variables are stationadgnoted
I(0) (integrated of zero order meaning that the
autocovariance is decaying to 0 sufficiently quygkla
VAR(p) is suitable. If the variables arg&(0), the
Johansen's procedure is applied to find the nunaber
cointegrated relations. Two test statistics are roomly
used in order to find the number of cointegratddti@ns:
the trace test and the maximum-eigenvalue test.

The trace test compares the null hypothesis tleaie thre r
cointegrated relations against the alternative of n
cointegrated relations, where n corresponds totimeber

of variables under observation anek n.

The maximum-eigenvalue statistic tests the null
hypothesis of r cointegrated relations against the
hypothesis of + 1 cointegrated relations. If the variables
arel(1) and if there is no cointegrationVaR(p — 1) on
the first difference is estimated. Otherwise, the
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appropriate VECM should be found. For validating th
model a test for residual autocorrelations and non-
normality is used.

Once the specific death rates are forecasted, we ca
compute the resulting forecasted mortality ratesl an
compare them with the results of the Poisson log —
bilinear Lee Carter Model, when they are forecastet

an ARIMA process. We show that the VECM produces
the best forecasts.
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2.11.2 Cause-Specific Mortality smoothing

In this section we estimate the parameters of the
Haberman - Villegas Model applied to the cause —
specific deathin particular we will adjust thk, series in
order to prepare them for the cointegration analy8s
previously explained, the adjustment is due to the
discontinuities in the data due to the reclassifice.
They have took place in several Countries at differ
times, as reported in Table 1.

Table 1. ICD Changes

Country ICD change Year Country ICD change Year
ICD7-8 1968 ICD7-8 1968
USA ICD8-9 1979 Australia ICD8-9 1979
ICD9-10 1999 ICD9-10 1998
ICD7-8 1968 ICD7-8 1969
Japan ICD8-9 1979 Sweden ICD8-9 1987
ICD9-10 1995 ICD9-10 1997
ICD7-8 1968 ] ICD7-8 1969
Switzerland
France ICD8-9 1979 ICD8-10 1995
ICD9-10 2000 ) ICD7-8 1969
Singapore
ICD7-8 1968 ICD8-9 1979
Italy
ICD8-9 1979 ICD7-8 1969
ICD7-8 1968 Norway ICD8-9 1986
U.K. ICD8-9 1979 ICD9-10 1996
ICD9-10 2001
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The following set of figures from 5 to 28 concelthge

representation of the fitted parametegspy, k¢ andSS).

of the model in (21).

Each group is referred to male and female U.K.
population divided for different causes of death. |
clockwise, the first subplot shows the trend of skien of

the two parameters, and6,§i). Beinga, constant with
respect tot over the whole observed period, the four

curves are referred to the 4 different value§§8fgot in

the four intervals: 1950-1967, 1968-1978, 1979-2000
2001-20009.

The second subplot shows the trend of the pararfigias
function ofx and the third reports the adjustedirend as
function oft.

The three wvertical red segments point out the
reclassification time: as evident, no more jumpsg ar
present in the graph.

The 4 subplots in the other figures (Adjusted for
different ages) highlight this trend and in par@ushow
how the discontinuities have been mitigated. As an
example they are referred to 4 different age iratisr¢40-

44, 50-54, 60-64, 70-74): the light dots are thpustéd
values ofk,, the big dots are the observed data and the
continuous line represents the fitted data.

We show the same quantities in the case of both sex
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Fig. 5 - I&P (U.K., Male population) - Fitting parameter
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Fig. 7 - Cancer (U.K., Male population) - Fitting parameter
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Fig. 9 - Circulatory (U.K., Male population) - Fitting parameter
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Fig. 10 - Circulatory (U.K., Male population) - Adjusted Kk, for different ages
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Fig. 11 - Respiratory (U.K., Male population) - Fitting parameter
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Fig. 13 - External (U.K., Male population) - Fitting parameter
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Fig. 15 - Other (U.K., Male population) - Fitting parameter
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Fig. 16 — I&P (U.K., Female population) - Fitting parameter
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Fig. 18 — Cancer (U.K., Female population) - Fitting parameter
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Fig. 20 - Circulatory (U.K., Female populatio) - Fitting parameter
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Fig. 22 — Respiratory (U.K., Female populatio) - Fitting parameter
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Fig. 24 — External (U.K., Female populatio) - Fitting parameter
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Fig. 27 — Other (U.K., Female populatio) - Fitting parameter
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These figures illustrate the outputs we got thraughhe
procedure using the Model of Haberman S. and §ake
A. applied to the cause — specific mortality.
Data for U.K. are available from 1950 to 2009. tdey to
compute a back testing analysis on khérends we will
restrict the sample. To this aim we consider aqgkri

1950-2001. After capturing the dependences amoag th

causes of death using the procedure illustrateskeation
2, we will forecast the mortality rates and we will
compare them with the real data and with their ARI§
forecast. In Table 2 we report the evaluatiokohfter the
adjustment for the six causes considered. Tablko®/s
the same quantities in the female case.

Table 2: Kt Adjusted (U.K. Male population, age 2589)

1&P Cancer Circulatory | Respiratory External Other
1950 | 336.253.815 0.9851339 160.167.506 156.624.748 529.538.742 | 6.814.580.077
1951 | 319.607.039 | 11.886.972 167.844.878 200.242.355 564.722.116 | 7.417.550.752
1952 | 295.987.179 | 12.009.202 159.258.074 155.171.448 519.598.798 | 6.629.722.507
1953 | 277.039.644 | 12.503.850 156.677.792 170.831.909 579.940.435 | 6.055.365.895
1954 | 264.616.438 | 13.831.401 158.582.222 149.173.776 629.373.491 | 6.336.665.779
1955 | 246.959.861 | 14.676.676 159.895.506 164.042.447 612.859.334 | 6.247.295.214
1956 | 225.770.613 | 15.168.594 160.109.448 164.103.402 637.843.941 | 5.829.558.781
1957 | 211.999.636 | 15.852.411 155.241.769 172.701.881 604.260.501 | 5.133.041.346
1958 | 195.911.310 | 16.415.779 159.347.845 166.583.289 602.858.469 | 5.019.398.865
1959 | 178.846.230 | 17.336.064 154.019.155 175.455.005 612.980.388 | 4.498.484.141
1960 | 164.534.582 | 17.875.804 | 156.878.647 | 151.655.742 | 567.517.887 | 4.349.075.976
1961 | 155.923.636 | 18.300.090 158.660.776 177.621.566 569.608.637 | 4.250.086.925
1962 | 144.688.875 | 19.623.682 161.068.255 172.848.325 591.569.146 | 4.132.148.774
1963 | 138.887.891 | 19.913.382 163.912.924 179.870.488 589.829.277 | 4.026.063.103
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1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993
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117.639.974

101.748.295

103.499.355

83.229.495

79.326.914

67.402.089

47.445.450

37.169.659
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125.073.157

126.041.602

121.728.971

116.142.165

112.394.663

108.611.598

105.070.873

104.423.083

99.582.112

96.306.432

155.963.241

157.512.335

168.200.306

148.111.969

151.856.457

164.302.531

154.351.352

127.652.391

141.566.197

133.180.461

123.821.906

122.527.245

131.794.233

112.027.586

112.933.324

109.639.631

99.870.847

90.539.462

95.455.457

89.692.575

78.547.918

89.844.120

82.576.634

66.124.220

67.966.828

75.652.028

59.985.791

56.736.768

48.892.550

52.867.836

546.704.463

524.091.479

510.860.433

463.526.662

465.905.344

443.883.938

430.518.552

387.142.983

356.420.958

347.083.700

350.716.366

305.320.513

310.877.080

263.470.328

308.530.505

293.280.667

272.173.519

237.947.725

224.473.822

201.238.571

171.083.893

190.281.461

182.385.071

125.103.820

108.677.403

0.84606013

0.76202128

0.26077836

0.23971824

0.22689215

3.015.523.527

3.200.141.195

3.157.579.360

2.304.724.719

2.586.610.558

2.426.052.089

1.672.628.048

1.366.624.832

1.913.494.989

1.756.532.793

1.997.951.769

1.378.695.600

1.488.252.305

0.841809994

0.514822336
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0.477478870
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0.072914775
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1994 -39.854.180 18.172.083 88.054.052 34.981.664 -0.10145364 | -0.493852156
1995 -16.119.934 17.317.349 86.526.780 47.536.296 -0.28953703 0.200859462
1996 -23.511.528 15.360.762 81.902.868 38.704.168 -0.33444848 | -0.001449109
1997 -31.189.324 13.635.721 75.527.691 40.323.131 -0.21752818 0.148588441
1998 -34.875.554 13.478.966 72.722.232 35.309.679 -0.42444081 0.412287940
1999 -25.887.287 11.379.451 67.843.292 45.083.367 -0.25150724 0.868878441
2000 -30.951.004 0.9871767 59.666.214 34.799.406 -0.24649344 0.329306432
2001 -24.979.343 0.8013715 53.826.730 25.957.943 -0.20422115 0.510934433
2002 -21.640.843 0.7602224 49.770.640 24.933.254 -0.59723875 0.720461155
2003 -13.322.788 0.6270362 44.809.343 31.207.273 -0.19658056 0.941892092
2004 -13.975.038 0.5037456 34.886.250 19.360.007 -0.01336516 0.446392686
2005 0.7246603 0.3430953 27.521.294 19.917.497 0.07339119 0.481601064
2006 36.230.204 0.2728323 18.924.895 10.225.490 -0.01105043 0.380932392
2007 40.986.136 0.1817249 12.530.686 0.7497018 -0.08477443 0.417673975
2008 20.472.631 0.1222587 0.7731234 0.8436780 -0.11146009 0.706985951
2009 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.000000000
Table 3: Kt Adjusted (U.K. female population, age 3-89)
1&P Cancer Circulatory | Respiratory External Other
1950 | 306.147.648 | 17.932.392 24.706.259 49.018.534 841.660.875 524.104.904
1951 | 293.799.539 | 15.070.223 25.302.680 107.229.961 884.522.313 543.972.326
1952 | 272.019.439 | 14.734.471 23.506.537 34.069.673 786.794.669 451.496.193
1953 | 259.393.937 | 12.887.728 23.281.824 61.506.640 884.656.908 387.930.049
1954 | 250.460.355 | 13.117.304 22.992.952 22.707.325 975.231.963 408.297.977
1955 | 235.657.764 | 12.554.384 23.281.827 41.339.169 985.944.291 416.423.970
1956 | 220.094.274 | 12.278.292 22.984.730 44.740.681 1.013.393.570 | 373.295.005
1957 | 210.895.969 | 10.871.747 22.097.838 36.854.835 963.624.582 303.710.043
1958 | 200.341.428 | 11.312.896 22.586.384 36.868.213 998.401.859 295.218.085
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1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988
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181.702.856

174.108.838

172.787.595

163.717.934

156.814.503

140.083.714

142.032.082

145.757.406

133.123.141

134.500.441

129.161.793

112.758.577

103.947.019

106.840.182

103.750.377

113.037.303

101.046.275

97.967.144

82.845.846

87.726.344

79.165.802

75.196.938

70.883.814

72.993.434

68.994.274

59.249.765

62.918.429

45.012.858

59.431.843

53.955.141

10.664.002

10.808.073

10.841.846

10.753.935

10.162.353

11.467.673

10.887.962

11.866.392

12.232.267

12.294.129

13.302.927

13.048.331

13.440.461

13.906.567

14.414.326

15.624.188

15.615.321

18.112.201

17.516.074

17.711.840

19.659.139

19.711.399

18.368.905

20.634.926

20.633.082

20.886.860

21.483.820

20.246.527

21.364.484

21.907.949

21.970.470

21.955.834

22.264.875

22.081.898

22.213.792

20.573.763

20.772.278

20.678.304

19.809.896

19.694.556

19.335.567

18.922.793

18.553.991

18.957.028

18.666.227

18.351.445

17.952.592

17.855.210

17.160.830

17.079.046

16.955.627

16.233.430

15.571.389

15.237.102

14.907.798

14.011.563

14.234.042

13.541.267

12.809.476

12.561.164

54.551.035

20.757.310

57.449.798

55.331.465

66.546.255

31.773.612

32.377.586

54.660.141

29.964.607

44.382.735

38.816.411

42.520.894

17.349.501

34.298.754

34.293.133

29.537.650

29.955.822

54.462.294

33.615.278

36.089.055

37.162.091

31.964.088

29.348.850

35.123.079

31.191.044

19.831.543

36.854.799

32.730.370

16.953.211

24.058.510

1.000.622.468

987.270.553

971.190.568

997.071.564

1.021.538.352

962.540.788

935.133.265

938.135.325

891.307.438

871.677.399

877.841.000

847.161.333

805.442.057

756.272.097

757.530.624

736.575.125

703.406.916

672.813.629

638.568.191

640.768.684

630.829.470

564.773.961

502.141.323

468.885.883

438.457.369

371.854.033

374.112.763

331.027.301

215.260.469

200.616.132

247.920.637

232.295.010

226.711.868

211.385.977

227.097.294

0.83075461

0.97122888

0.84497512

0.11899745

0.11720160

0.12644362

-0.75188241

-0.65889027

-0.16417524

-0.63783931

-0.45187338

-0.80957752

-131.217.432

-183.241.378

-166.058.498

-0.88490175

-152.129.684

-199.017.632

-178.254.968

-200.644.489

-293.266.455

-175.112.520

-191.852.983

-238.619.539

-219.975.156
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1989 56.566.522 22.774.483 12.215.144 37.253.961 143.505.489 -187.958.863
1990 54.987.196 21.119.004 11.618.055 23.374.388 0.94781100 -238.161.948
1991 57.012.623 20.291.865 11.469.177 28.075.193 0.92979269 -280.940.405
1992 52.970.659 19.958.996 10.867.338 19.598.541 0.28617069 -331.079.635

1993 56.198.115 19.366.372 10.630.648 24.100.420 0.27241019 -275.349.809

1994 62.208.902 18.779.260 9.601.938 0.8200386 -0.19531348 -272.046.319
1995 67.873.228 17.644.446 9.424.086 21.949.246 -0.09239692 -131.960.498
1996 64.419.691 16.040.150 8.962.270 17.762.693 -0.34094589 -131.942.894
1997 48.658.051 14.855.080 8.323.541 23.923.656 -0.09849879 -0.86194271

1998 54.983.458 13.740.624 8.179.517 19.212.599 -0.25344129 -0.05639918

1999 42.015.961 12.727.202 7.590.422 30.401.252 0.13279377 0.37809699

2000 41.008.649 10.527.282 6.499.172 20.516.358 0.13829643 -0.14054475

2001 29.450.035 0.9838004 5.919.445 13.567.136 0.14697337 0.53882197
2002 20.584.806 0.8958127 5.665.381 19.353.333 -0.15433918 0.81561008
2003 16.322.333 0.6999716 5.461.873 29.634.169 0.52448562 167.014.112

2004 0.9256991 0.5116823 4.147.886 17.384.115 0.60046259 0.77920541

2005 | -15.892.269 0.4914102 3.296.559 21.924.071 0.53473820 0.67295938

2006 | -36.268.929 0.3611531 2.145.886 10.727.252 0.39894083 0.17880144

2007 | -42.289.621 0.3259963 1.509.788 0.9540164 0.19582415 0.49368661

2008 | -12.458.279 0.2564461 1.137.819 12.789.115 0.47322613 105.283.027

2009 0.0000000 0.0000000 0.000000 0.0000000 0.00000000 0.00000000

The next step will be the cointegration analysis. |
particular if all the variables have unit roots d@hdre is a
stationary cointegrating relation between ke we will
forecast each of them in the VECM form. After tha
will compare the VECM forecast with the ARIMA
forecast.
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2.11.3 Dependence analysis.

Going along the procedure presented in section) (2.3
again, first of all we have to select the lag of MAR
through several criteria (AIC, Hannan-Quinn Criber
Schwarz Criterion, Final Prediction Error).

With some tests (KPSS, ADF, PP) it is possiblede &
the characteristic polynomial has unit root. KP8§d the
null hypothesis that the variable is trend stattgnavhile
ADF and PP test the null hypothesis of a unit ribe
null hypothesis of non-stationary). If the VAR hasit
roots and all the variables are integrated of #mesorder,
the VECM could be used. The Johansen's procedure is
applied to find the number of cointegrated reladioif
there is not cointegration HAR(p —1) on the first
difference could be more appropriate. Finally, if a
variables ard(0) a VAR(p) is suitable. In Table 4 we
report the lag order of the Vector Autoregressivecpss
obtained through the four criteria discussed isticec
2.7.1

e Lag order of the VAR

Table 4:VAR(p)

U.K. Male Population U.K. Fem&lepulation
AIC(n) | HQ(n) | SC(n) | FPE(n) AIC(n) | HQ(n) SC(n)| FPE(n)
2 1 1 1 1 1 1 1
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The eigenvalues are bigger than one in absoluteeval
This means that the VAR could explode because its
characteristic polynomial has unit roots.

¢ Unit roots tests

Tables from 5 to 10 show that for both sex all the
variables are not stationary bitl) except for the
k¢ respiratory fOr female population. In order to make a
good analysis we don’t have to consider it for the
cointegration analysis.

Figures 29 and 30 report the trend kgfon the first
differences for both sex and for the six causesdeath.
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MALES

Table 5: Augmented Dickey — Fuller test, U.K. Popultion

CAUSES OF DEATH ADF LAG ORDER P - VALUE
1&P -0.9381 3 0,9402
Cancer -0.4784 3 0,9798
Circulatory System 2.0119 3 0,99
Respiratory System -2.33 3 0,4414
External -1.2111 3 0,8936
Other -1.0549 3 0,9219

Table 6: Phillips - Perron, U.K. Population

CAUSES OF DEATH PP LAG ORDER P - VALUE
&P -1.7203 3 0,9737
Cancer -0.2694 3 0,99
Circulatory System 1.2455 3 0,99
Respiratory System -38.1031 3 0,01
External -7.3597 0,6793
Other -2.5195 0,9523
Table 7: KPSS, U.K. Population
CAUSES OF DEATH KPSS LAG ORDER P - VALUE
1&P 2.3031 3 0,01
Cancer 1.163 3 0,01
Circulatory System 2.6937 3 0,01
Respiratory System 3.0345 0,01
External 3.0138 3 0,01
Other 2.4834 3 0,01
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FEMALES

Table 8: Augmented Dickey — Fuller test, U.K. Popuation

CAUSES OF DEATH ADF LAG ORDER P - VALUE
&P -2.8242 3 0,2416
Cancer 0.1599 3 0,99
Circulatory System 1.0873 0,99
Respiratory System -4.6381 3 0,01
External -2.1588 0,5106
Other -1.0109 3 0,9288

Table 9: Phillips - Perron, U.K. Population

CAUSES OF DEATH PP LAG ORDER P - VALUE
&P -7.5514 3 0,6677
Cancer 1.362 3 0,99
Circulatory System 1.3336 3 0,99
Respiratory System -74.9722 3 0,01
External -5.8541 3 0,7705
Other -2.6035 0,95
Table 10: KPSS, U.K. Population
CAUSES OF DEATH KPSS LAG ORDER P - VALUE
1&P 2.7215 3 0,01
Cancer 0.5891 3 0.02363
Circulatory System 2.9883 3 0,01
Respiratory System 2.1376 0,01
External 2.9435 0,01
Other 1.5903 3 0,01
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Fig. 29 - K, First Difference, U.K., Male Population
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Fig. 30 - K, First Difference, U.K., Female Population
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» Cointegration Analysis

The Johanson’s procedure shows a linear trend en th
cointegration and in the variables. With trace tastl

maxmum eigenvalue test it is possible to know the
number of cointegrating relationships.

Table 11: Trace Test, U.K. Male Population

h | n-h stat 10% 5% 2.5% 1%

4 1 0.05041928 2.70 3.84 5.25 6.98
3 2 6,18016087 | 15.74 | 18.08 | 20.26 | 22.40
2 3 24,83020039 | 31.67 | 34.27 | 36.98 | 40.10
1 4 51,09236539 | 50.62 | 54.02 | 57.01 | 61.03
0 5 96,15921357 | 73.73 | 77.61 | 81.29 | 85.56

Table 12: Maximum — Eigenvalues Test, U.K. Male Papation

h | n-h stat 10% 5% 2.5% 1%

4 1 0.05041928 2.70 3.84 5.25 6.98
3 2 6,12974159 | 14.64 | 16.69 | 18.84 | 20.88
2 3 18,65003953 | 21.44 | 23.75 | 25.68 | 28.31
1 4 | 26,26216499 | 27.39 | 29.93 | 32.22 | 35.57
0 5 | 45,06684818 | 33.45 | 36.46 | 39.00 | 41.87

-83-



Chapter Il — Solutions to theoretical problems
in modeling mortality by cause of death

Table 13: Trace Test, U.K. Female Population

h | n-h stat 10% 5% 2.5% 1%

4 1 0.2883353 2.70 3.84 5.25 6.98
3 2 9,5286355 | 15.74 | 18.08 20.26 22.40
2 3 | 39,2167916 | 31.67 | 34.27 36.98 40.10
1 4 | 83,8383564 | 50.62 | 54.02 57.01 61.03
0 5 |155,0295236 | 73.73 | 77.61 81.29 85.56

Table 14: Maximum-Eigenvalues Test, U.K. Female Payation

h n-h stat

10% 5% 2.5% 1%
4 1 0.2883353 2.70 3.84 5.25 6.98
3 2 9,2403001 | 14.64 | 16.69 18.84 20.88
2 3 29,6881561 | 21.44 | 23.75 25.68 28.31
1 4 44,6215648 | 27.39 | 29.93 32.22 35.57
0 5 71,1911673 | 33.45 | 36.46 39.00 41.87

Tables 11 and 12 show one cointegrating relationheé
male case; tables 13 and 14 indicate two relatioribe
In particular we can observe a
guadratic trend in the variables and a linear trenthe
cointegration for males and females (see Johansen’s
procedure). Table 15 and 16 report the result eftdsts

female population.

on residuals discussed in section 2.9.
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Table 15: Tests on Residuals of the Fitted VECM, BD-2001,

Males in U.K.
Type of test Name of Test S\t/z:[lljgc P value
Autocorrelation | Portmanteau (15 lagg) 38338 0.02
Portmanteau (25 lags 62478 0.01
Normality Skewness 2. 0.70
Kurtosis 14.0 0.36
Both 16.1 0.58

Table 16: Tests on Residuals of the Fitted VECM, BD-2001,
Females in U.K.

Type of test Name of Test S\t/z:[lljgc P value
Autocorrelation | Portmanteau (15 lagg) 369.35 0,04
Portmanteau (25 lags 60137 0,03
Normality Skewness 1.98 0.88
Kurtosis 15.2( 0.09
Both 17.19 0.34

The null hypothesis of no autocorrelation among the
residuals is tested through the Portmanteau statigth a

lag of 15 and 25, whose results are in Table 15 X6d
The skewness statistic, the Kkurtosis statistic, and
combination of these are used to test the normafitye
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residuals. As indicated , the normality of the desis is
accepted by the three tests.

As indicated in Table 15 and 16, the normality loé t
residuals is accepted by the three tests.

* Forecasting

The fitted model is now used to forecast causeipec
mortality rates. Since data are available until 20the
forecasts are compared to actual mortality, whigkegus
some indications on the model forecasting perfoceaan
Figures 32-34 shows the forecasted mortality r&t@s
the fitted VECM compared with the actual data (blue
lines). The curve represents the fitted model u2®01
and the resulting forecasts from 2002 to 2009. fligre
trend is well captured by the model for the six sesmu
However, to better evaluate the model performaiias,
necessary to compare the results with the outcarhes
more traditional approach, the AutoRegressive hatiegl
Moving Average (ARIMA) process.

As for the VECM, ARIMA processes are fitted ovee th
period 1950-2001 and used to forecast mortalityl unt
2009. Since the approach developed in Pandit Srid. a
Wu S.M. (2001) is followed, the nonstationarity time
variables is first removed by differencing the aaies. In
our case to ensure stationarity we will operatehenfirst
differences of each cause-specific death rate utieg
tests KPSS, ADF and PP.

ARIMA(k,1,K — 1) models are then successively fitted
to each age-standardized cause-specific log-deatt r
increasingk by one. Pandit S.M. and Wu S.M. (2001)
suggest the use of the F-criterion to decide wmddlel is
the most suitable between ARIMA(k,1,K — 1) and an
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ARIMA(k + 1,1, k), as this criterion tests the assumption
that some of the coefficients in a model are re®d to
zero.

Finally, noncorrelation among the residuals of fiteed
model is checked. The best fitting ARIMA models
resulting from this procedure are used for forengst
cause — specific rates.

The Portmanteau test indicates no significant tesid
autocorrelation with lags of 5, 10, 15, 20, and 25.

The forecasting performance of the two models ithér
evaluated through the mean absolute percentage erro
statistic (MAPE), the average of the absolute pesge
gap between the forecasted and observed death Tates
average is made for a specific year over the faueses.
Table 17 compares the results for the VECM and ARIM
models.

The forecasts of the VECM are much closer to thaaic
death rates than the forecasts of the ARIMA praegss
particular in the long - run. Indeed, the MAPE isadler
for the VECM (see Arnold S. and Sherris M. 2013140
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Fig. 31 - Total death rates in log scale, U.K. Male
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Fig. 33 - Total death rates in log scale, U.K. MaJ&5-69
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Figures 31 to 34 show some examples of the totaihde
rates in log scale in different case. In particularthe
figures 31 and 33 we have fixed the years and we ha
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plotted the curve taking into account only the age
population, while in the figures 32 and 34, forfeliént
groups age, we have fixed the forecasted years.

Table 17: Mean Absolute Percentage Error

Male Female

VECM | ARIMA VECM | ARIMA
2002 | 1,32% | 0,72% 2002 | 1,08% 0,76%
2003 | 1,40% | 1,03% 2003 | 1,63% 1,31%
2004 | 1,55% | 1,42% 2004 | 1,44% 1,47%
2005 | 1,78% | 1,72% 2005 | 1,74% 1,83%
2006 | 2,43% | 2,46% 2006 | 1,84% 2,04%
2007 | 2,53% | 2,55% 2007 | 2,17% 2,31%
2008 | 3,17% | 3,21% 2008 | 2,40% 2,42%
2009 | 3,30% | 3,35% 2009 | 2,85% 2,93%

It shows that the forecast with the Vector errarection
model is good, especially in the long run.
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2.11.4 Conclusions

In this chapter the new idea introduced by Arnolca&d
Sherris M., in modeling cause - specific mortality
presented. It consists in a new application of VEGM
cause-of-death mortality and introduces a new nioglel
approach for cause-specific mortality that take$o in
account dependencies between causes. To this iasm, f
we have mitigated the discontinuity points causgdhe

ICD reclassifications; after we have captured the
dependences among all causes of death. This innevat
procedure is able to capture long-run trends arel th
stationary relationships between the variablesofgirun
equilibrium relationship is shown to exist betweka six
main causes of death for U.K. females and males,
providing an approach to model the cause-of-death
dependence. This work confirms then that cointemgmat
analysis, after the adjustment on the mortalityeidis
worthwhile in understanding and improving cause-
specific mortality forecasts.
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Chapter Il

DREAD DISEASES AND CAUSE —
SPECIFIC MORTALITY: NEW FORM OF
INSURED LOAN

3.1 Introduction

In many industrialized countries, the progressive
population ageing process determines a significant
incidence of the diseases, which strongly increagés
age. Today's individuals are expected to live lontpan
previous generations, but part of these extra yehitte
may not necessarily be healthy years. There are two
outlooks of ageing and morbidity that contradicthea
other. TheMorbidity Compression Hypothesisredicts
that health problems will occur at higher ages.egia
rectangularizationof the health profiles (Schoder J. et al.
2011).

On the contrary, theMorbidity Expansion Hypothesis
predicts the gradual medicalization of society ths
longevity improves (Gruenberg E.M., 1977, OlshanBsy
et al., 1991, Doblhammer G. et al., 2001). Anyway
debate on the topic is ongoing.

In any of the two cases the morbidity phenomenath b
in the increasing concentration at higher ages thgsis
and in the spread effect over wider age intervats galls
for a deep consideration, particularly in the irswe
perspective.
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The financial impact of the diseases due to coets f
healthcare, rehabilitations, temporary and perm@anen
assistance led to a supplementary insurance fothhea
current health systems, pay-as-you-go. Variousselsf
products have been developed by the insurancetiydos
specifically fulfil the needs of an ageing popuwatifacing
the health risks. In particular, insurance compastart to
offer coverage on financial contracts, by evalugtihe
exposition to long-term biometric risks such as taldy
and morbidity. For instance, products protectingdirs
and borrowers in the event a borrower ever stopped
making payments for serious diseases or for death,
going to have great diffusion. At present, it caa b
observed that private insurers show more sengilthian
social insurance in considering the question o€ lif
insurance coverage in case of specific cause dahdeal

in the need of weight and balance the emergingtineal
risks principally related to the ageing. The insgea
industry traditionally proposes protection plansigeed

to give comprehensive financial support to the ldeat
event. A relevant case of a financial contract rgilp
affected by this risk is the insured loan. The caxctt in its
standard form, concerns the guarantee of the regatym
provided by an insurance company in case of the
borrower’'s death during the loan duration due tgy an
cause. The insured loan is protected against dafatie
sense that if default occurs insurance company pail
the lender what is owed. In this chapter we are@ao
consider insured loans plans covering criticakedises and
cause specific death. The idea is to perform cotteh
schemes in which the actuarial side is tailoredtloa
specific profile of the insured. The work focuses the
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insured loan product design when the borrower is a
private person. In particular, the aim is to prapoew
contractual models in which the insured loan iseced in
case of the borrower’s death due to a specificecans/or
critical illnesses. Aim of the work is pricing tipeoposed
products for inserting the results in the completred
loan amortization schedule. Nevertheless it is dppe to
point out that these new products have to be déyefu
priced. The structural breaks in the cause specific
mortality time series indicate the difficulty ingaficting
cause specific mortality rates. Also the causedeath are
competing risks. To perform this phase the moxtahtes
have been adjusted and predicted in the chapter 2.

The chapter is organised as follows. Section 3.2ns
outline of the main characteristics of the standasdired
loan contract. Financial and actuarial detailsaaralysed.
Section 3.3 focuses on the new trend of designing
contracts “specialised” according to specific decdlise

or specific illness. Within this section the newoghcts
are introduced and formally described. In sectichtBe
numerical application is illustrated and the newdurcts
are priced. The results are illustrated in seviaalles and
commented in subsection 3.4.2. Section 3.5 is dloau

on some new perspective for going on in the devetoyp

of the research in this subject.

3.2 Standard Insured Loan Contract
Typically in the standard amortization method the
borrower refunds the lender paying instalmentseabgic

intervals. Usually the amortization goes on foroa of
years and this circumstance makes the operati@ctatf
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by the insolvency risk due to all the events reldte the
duration of the human life, whatever the age atass the
borrower is. For these reasons it is efficieningert in
the contract an insurance policy for covering tis& that
the debtor dies before having completely extingestihe
debt. Broadly speaking, if the borrower dies beftre
contract expiry, the insurer pays to the lander the
outstanding loan balance evaluated at that time. [dan
becomes an insured loan and the insolvency risktdue
the debtor’s eventual death is cut down. In Coppblaet

al. 2009 a wide financial analysis of the insurednl is
developed: formulas for single and periodic premsum
benefits and reserves are provided within the dhsi
analysis. In that paper the Authors deep the nmsMyais
aspects, stopping in particular over the Model Raskl
the Mortality Risk, the first due to the randomnesshe
choice of the mortality rate set and the secondtdube
random deviations of deaths from the expected salue
considering pooling technique rather unfeasiblethe
specific matter in hands. Following Coppola M. ét a
2009, supposing the borrower/insured’s debt is one
monetary unit, we can write:

YR2o PrAsg = 1 (62)

being A}m the actuarial present value of a k-year pure

endowment of 1 monetary unit paid in case of lijean
insured agea, given by the following expression:

A = v(0,k) s (63)
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with ,p, the survival probability of an insured ageat
inception to be alive at time while v(o, k) is the value in
t=0 of 1 at time k. The annual anticipated paymeépts
include the principal repaidy, the interest paid, on the
outstanding balanceD,_; valued at timek — 1, the
actuarial premium covering the outstanding loaraihed
at the beginning of each year, if the death octefsre
the expiration date.

In the following subsection we will concern witheth
financial structure oPy, just observing that the actuarial
premium and the loan instalment can be paid togdthe
one counterparty (i.e. a bank) or separately tolehder
and to an Insurance Company. These two circumstance
will not have any consequence on the financial ¢ksis
we are going to describe. The financial descriptighbe
developed in a deterministic environment, evenhgé t
stochastic approach for depicting the evolutiotinme of
the interest rate curve could be easily implememnitgiain

a numerical application.

3.2.1 Insured loan: installment and
actuarial premium analysis.

Consider that the borrower (agepwill repay 1 monetary
unit to the lender im years by means of constant
instalments paid at the end of each year, at andixed
annual rate of interegtor a variable oné,. For sake of
simplicity we will present the payments componenthe
fixed rate hypotheses. The constant annual payment
amount R, = R and the outstanding loan balandg
valued at the end of yearare respectively:
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Ry=R=— D, = =4 (64)
n|

having indicating witha;;, as usually, the present value of
a periodic (annual) constant unitary income atehd of
each period and for n periods, at a fixed interatt. By
means of the insurance component, if the borrovies d
during the contract duration, the insurer will rega the
lender the obligations still due by the borrowertlaat
time. We will assume that this payment operatioh e
done at the end of the year in which the eventealtd
occurs. If the death event happens at time—1 <t <

h, 0 < h <n,what is due to the lender consists in the
outstanding balance at tinke— 1 plus the annual interest
on this sum. The valuB, of the benefit payable at tinke
(h=1,2,..,n) if the insured-borrower ager at issue
dies during théh-th year and the probability of this event
are respectively (Coppola M. et al., 2009):

1,
By = a_man—h+1| h-1/19x (65)

whered;, —;57; refers to the anticipated case.

The constant actuarial premium the borrower/insynays
at the beginning of the first m yeaB{ m <n,0<h <
m — 1) if alive, is given by:

1
/me,h = /me = a__l/mnx (66)

in which:
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1 -
/mTx = d—_|2}’=01 j/%=1i/19x (67)

If k, isthe curtate future lifetime of the insured agedt
issue, in the case of anticipated constant anrajahpnts,
the flow X, at the beginning of yeak is given by the
following scheme:

( —/mPxn ky=h 0<h<m-1

G%@qﬁTh—1s@<h 1<h<n

with h = 0,1, ...,n; B, = 0. (68)

3.3 Cause of death and diagnosis event:
impact on loan repayment.

The cost of funding health care for elderly is cambusly
growing due to the increasing life expectancy. fdpc is
pregnant in the insured loan financial managemirda.
critical iliness is diagnosed, the affected indiatl could
not be able to completely or partially perform the
engagements in his working activity and, in thecsje
case of the onset during the loan duration, thislcco
involve the inability to fulfil the obligation asxpected.
Moreover, remaining within the traditional insurkzhn
contract, setting the coverage in case of the hars
death, it is interesting to study the case of dhdepecific
cause. The result is a tailor-made contractual form
providing lower costs for the insured and the issu©ur
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idea is to propose an insured loan form in which th
insurance coverage involves critical illness diagso
and/or death specific cause.

In the basic n-year term insurance, usually inaluchethe
loan amortization process, the insurer pays thesfiieih
the insurer dies within the (or h < n) years of the loan
duration, without specification about the death seau
Nevertheless the n-year term insurance can be figukci
with regard to a specific death cause. As welhim Ibasic
critical illness insurance (Pitacco E. et al., 199Be
insurer pays a lump sum upon the occurrence ondsg
of the pre-specified dread diseases. Typically, the
contractual options within the critical illness geal
scheme are the Stand Alone and the AcceleratedfirBhe
covers the insured just in case of diagnosis okgtes,
while the second guarantees payments in casenafssl
and in case of death.

The work focuses on insured loans in which suctseau
specific insurance products are included, in orter
explore new scenarios tending to personalize tla lo
contractual forms.

Aim of the analysis will be the pricing of the aatial
insurance coverage we propose and next the drawpng
of the amortization schedule in which the annual
instalment includes both the actuarial premium &mel
financial repaying process.

3.3.1 New proposals for insured loans

In what follows we pose the borrowed capital eqadl at
time O while the amount the insurer will pay undiee
specified contractual conditions is the amount stiled,
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that is the residual debt valued at the time oflibeefit
payment in case of the borrower’s death. It is ofyme to
note that all the contracts in the following aresigaed
taking into account the main aim of the operatihat is
the resolution of the debt in case if the borrower
insolvency. This implies contracts built accorditagthe
amortization schedule and consequently the anahgsds
a discrete approach.

Death Specific Insured Loan — SpellLThe idea is to
design a product in which the loan is saved in cddbe
borrower’s death for a specific cause. The deatlseas
precisely defined in the contract, for instanceh&nic
heart disease, stroke, lower respiratory infectiamsl
chronic obstructive long disease. In our numerical
application we consider the death for circulatoygtem
problems.

The value of the insurer's obligations,.;;, valued at
time O is given by:

_1 %R c
Asper, = Zﬁzéa—_h'v(O, h + 1)h/1q9(c ) (69)

n|

where h/lq,(f)is the probability that an insured agedt

issuedies between agesth and x+h+1 because of a
specific cause and(0,h + 1) is the discount factor for
valuing int=0 one monetary unit im+1. Knowing the
valueAg,,, it is possible to set the equation involving the
insured’s obligations:

Asper, = Zﬁ;é P,v(0,h) ppy (70)
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where ,p, is the probability thak is alive at agec + h
andPy, is the premium the insured pays at the beginnfng o
yearh.

Standard Critical lllness Loan (Stand Alone) - SCéa
Here the insurance protection inserted in the tmArcerns
the coverage of the risk to suffer a particularcjesl
disease.

The equation concerning the insurer obligationlovas:

—1 %n=h d
Ascirsa = ﬁ:(l)a__hlv(o'h + 1)h/1WaE ) (71)

n|

in which , ,,w " is the probability that the insured aged x
at issue checks a specified diagnasisluring the year
h,h + 1.

The insured’s obligations are given by the equation

_ d
Ascirsa = Xhzo Pav(0,h) ppy (1 - h—1/1W)£ )) (72)
in which:
d .
oW =0 if h="0 (73)

Standard Critical lllness Loan (Accelerated) — SGILIn
this case the insurer will pay the amount if theured
suffers a specified disease or dies for any catisieath.
The premium flow provides an accelerated beneficivh
covers the policyholder, both in case of a spetifietical
illness and in case of death for any cause.
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The following equations hold:

—1 9w ~
Ascira = Zizo = V(0 h+ D) (n18x) (74)

n|

in which ,, 14, is the probability of the sum of two

compatible events, both referred to the agessh, x +
h + 1, specifically to die for any cause of death andéor
suffer a specified illness.

Concerning insured’s obligations we can write:

Ascira = Zhoo Pav(0, h) 1y (1 - h—1/1W)£d)) (75)
with the position in (73).

3.4 Numerical applications

3.4.1 Data source

The empirical analysis we are going to perform his t
section aims to develop the amortization schedides
loans covered in case of death or/and criticaégdiof the
borrower as clarified in subsection 3.3.1. We will
determine the global instalment periodically due thg
debtor-insured, inclusive of both the payment anmidan
repaying the loan and the actuarial premium for the
insurance coverage. We will assume different loan
durations (10-20 years) and that the debtor-insiged40
and 60 years old person in 2014. The study wildbee
referring to diverse cohorts (males, females, smgke
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non-smokers) in order to point out how the différeasic
characteristics impact on the contract pricing. Du¢he
availability of the data, we will refer to the U.K.
population and will consider the circulatory system
according to the diagnosis rates. Again, data fdf. ik
available from 1950 to 2009. The diagnosis ratesafo
Stand Alone cover and for a Full Accelerated caaar be
downloaded from the Continuous Mortality Investigat
Bureau (CMI) and concern in particular the Circoigt
System diseases (Brett P. and Du Toit J., 2007ja Da
concerning mortality disaggregated for causes affdare
available at the Mortality Database administeredthosy
World Health Organization [2009] (WHO), the
aggregated data (all causes) can be got from theaHu
Mortality Database (HMD), containing demographic
information as the number of deaths for many coesitr
over the last 50 years for five-year age groupda da
concerning death for any cause and/or diagnosis
(accelerated from) are available in the Workingd?ait.
The aggregated death (and survival) probabilitiaseh
been got by means of a Poisson Log Bilinear regness
(see Brouhns N. et al 2002) on the Lee Carter m(seel
Lee and Carter 1992). The cause — specific mortalies,

in our case the Circulatory system, have been giigu
the model of Haberman S, and Villegas A., IME 208&»
2.11.2). Finally, we have forecasted the aggregated
mortality with an ARIMA model and the mortality eat
concerning to circulatory system with the VECM ider

to capture the dependencies among all causes ¢ dea
(see section 2.11.3).
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3.4.2 Actuarial premiums

In this practical application we will take into acmt the
specific death cause and/or illness cause “cironjat
system illness”, taken out from International
Classification of Diseases (ICD). For developinge th
actuarial analysis, we have determined the adjusted
mortality indexes (in chapter 2) for each cohortl dhe
specified illness and project them along the loaration.
The procedure is quite complex and need some
specifications.

Once specified the cohort under consideration, fittse
step is the calculation of the annual mortalityesat
attainable as the ratio between the number of deati

the number of survivors at the beginning of theryea

The diagnosis rates represent the principal endyatoof

a program of work carried out by the CMI 2011 Cati
lliness Committee to develop tables of criticahdlés
diagnosis rates based on recent UK insured lives
experience, together with  sufficient supporting
information to enable appropriate practical use by
actuaries involved in this business. The diagnosiss,
divided by age, sex, smokers and non-smokers for
durations of 5 years, are at present available doty
“cancer and circulatory system illness”. Coherentiyh

this information, we consider the same specifictllea
cause. It is crucial to observe that the ICD chdnipeee
times between 1950 and 2009, from ICD 7-8, ICD&hé

ICD 9-10; this happened for taking into accountnges

in science and technology and for refining the
classification. So data are not directly comparasdeh
other when referred to these different periods. As
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Haberman et al. IME 2013 show, it is possible taasth
mortality rates across the various classificatidese
chapter 2).

3.4.3 Empirical evidences and illustrations

The first step of our analysis is to evaluatgfy, k; and

6)((‘) (see Appendix A). Substituting these parameters in
the characteristic equation of the model (14) ieasy to
determinate and to forecasy; trough the VECM process
in order to calculate the global instalment peadly due

by the debtor-insured in the 2014.

The second step is to develop the amortizationdedbe
for loans covered in case of death or/and critibass of
the borrower as clarified in subsection 3.3.1.

The following groups in the next section of tabteport
the constant premiums payable in all the contradétums
considered in subsection 3.3.1, respectively inctiee of
UK Female and Male population. We fixed the loan
annual interest raté= 0.07 and the technical actuarial
valuation rate- = 0.02. The contracts are issued in 2014.
In particular in the table group 16, table 16.bersfto
SpelL and the premium is determined by formulas6d
70. This case is compared with the standard forin Sl
(Standard Insured Loan), providing the coveragease

of death for any cause, whose premium values atabie
16.a (see formula 66). As expected, premiums fékmnw
only a specific cause of death is considered, even
“important” as the combination of cancer and ciatoity
system illness is.

Tables 17.a and 17.b concern the forms indicated as
SCILsa and SCILa for Female non-smokers, in 18d an
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18.b there are the same results in the Female smoke
case. The premiums have been calculated by fornfdlas
to 75. It is self-evident how cheap the coveragm ithe
Specific Insured Loan case and how it increasetheaf
population refers to smokers.

We observe in which measure the highest premiutimais
one referred to SClLa the contract offering the esid
coverage: in this case the insurer will pay whabtwsed
from the amortization schedule in case of death &foy
cause) and in case of the specific illness diagnosi
Moreover, the diagnosis rates for female non-snwker
aged 40-70 are higher than the corresponding anthéo
female smokers. As consequence in the case of &CILs
female non-smokers will pay more than the female
smokers. This evidence works only in the Stand Alon
cases. In the Accelerated coverage this effect is
compensated by the expected behavior of the death
probabilities and is not visible.

Tables numbered 19 — 20 — 21 contain the same s/alue
referred to the Male population. A comparison betve
the two groups points out the general lower prensidion

the females. In spite of this, it is interestinghighlight
that in the considered age interval the female srankers
have diagnosis rates slightly higher than the nmaie-
smokers. This circumstance turns into higher premsiu
for serious illness coverage in the case of fenmale-
smokers.
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3.4.4 Some final considerations

In the SCILa contract the weight’'s event can bareged

by quantifying the premiums payable in cases of
incompatibility of events. In the below tables yoan see
that the premiums is affected by this hypothesis.
Continuing to investigate this point, consider éxample
the case of a SpeClLa in cases of incompatibilgyveen
cause — specific death event and the illness eviemmy

be noted (see tables below) that the premium is eve
higher than the premium calculated for the Scilat th
covers a range of events much wider.

Actuarial Periodic Premium —
Female NS. Issue Time 2014, r = 2%, i = 7%,
C = 200000 — Compatible events

Specific Critical lliness Loan (Accelerated) - SjieC

Age at entr
& K v/ 40 60
Duration
10 283.85 2095.32
20 560.70 3513.64

Standard Critical lliness Loan (Accelerated) - S€IL

Age at entr
& K v/ 40 60
Duration
10 328.08 2606.21
20 663.43 4189.65
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Actuarial Periodic Premium —
Female S. Issue Time 2014, r = 2%, i = 7%,
C = 200000, Compatible events

Specific Critical lllness Loan (Accelerated) - SplesC

Age at entry/ 40 60
Duration
10 506.17 3140.46
20 966.05 5072.00

Standard Critical lliness Loan (Accelerated) - SEIL

Age at'entry/ 40 60
Duration
10 550.57 3656.02
20 1069.6 5756.04

Actuarial Periodic Premium —
Male NS. Issue Time 2014, r = 2%, i = 7%,
C =200000 — Compatible events

Specific Critical lliness Loan (Accelerated) - SpeClLa

Age at entry/

40 60
Duration
10 325.18 1368.05
20 543.45 2189.11
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Standard Critical llness Loan (Accelerated) - SCILa
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Age at entry/ 40 60
Duration
10 352.79 1586.03
20 598.90 2531.23

Actuarial Periodic Premium —
Male S. Issue Time 2014, r = 2%, i = 7%,
C =200000, Compatible events

Specific Critical lliness Loan (Accelerated) - SpeClLa

Age at entr
& . v/ 40 60
Duration
10 375.46 1694.00
20 645.33 2672.06

Standard Critical lliness Loan (Accelerated) — SCILa

Age at ent|
& ) v/ 40 60
Duration
10 403.07 1912.60
20 700.85 3015.47




Table 16. Actuarial Periodic Premium -

Female. Issue Time 2014, r = 2%, i = 7%, C = 200000

Table 16.a Standard Insured Loan — SIL

Age at ent
& K v/ 40 60
Duration
10 90.19 749.04
20 175.95 1320.07

Table 16.b  Specific Insured Loan — Spell

Age at ent
& K v/ 40 60
Duration
10 62.65 532.64
20 120.72 981.14

Table 17. Actuarial Periodic Premium -

Female non smokers. Issue Time 2014, r = 2%, i = 7%, C = 200000

Chapter Il — Dread Diseases and cause — specific mortality: new form
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Table 17.a Standard Critical lliness Loan (Stand Alone) — SCILsa

Age atent
& K v/ 40 60
Duration
10 262.38 831.53
20 422.28 1198.74
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Table 17.b Standard Critical lllness Loan (Accelerated) - SCILa

-112-

Age at ent
& A v/ 40 60
Duration
10 285.62 925.37
20 456.98 1424.16

Table 18. Actuarial Periodic Premium —

Female smokers. Issue Time 2014, r = 2%, i = 7%, C = 200000

Table 18.a Standard Critical lliness Loan (Stand Alone)- SCILsa

Age at ent
& A v/ 40 60
Duration
10 213.79 805
20 273.18 925.80

Table 18.b Standard Critical lllness Loan (Accelerated) - SCILa

Age at entr
& . v/ 40 60
Duration
10 352.21 1304.30
20 580.70 2034.17
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Table 19. Actuarial Periodic Premium -
Male. Issue Time 2014, r = 2%, i = 7%, C = 200000

Table 4.a Standard Insured Loan — SIL

Age at ent
& K v/ 40 60
Duration
10 108.23 1251.55
20 231.06 2106.08

Table 19.b  Specific Insured Loan — SpelL

Age at ent|
& A v/ 40 60
Duration
10 64.87 746.67
20 129.59 1440.78

Table 20. Actuarial Periodic Premium -
Male non smokers. Issue Time 2014, r = 2%, i = 7%, C = 200000

Table 20.a Standard Critical lliness Loan (Stand Alone) — SCILsa

Age at ent
& A v/ 40 60
Duration
10 218.68 1339.71
20 429.84 2049.66
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Table 20.b Standard Critical lliness Loan (Accelerated) — SCILa

Male smokers. Issue Time 2014, r = 2%, i = 7%, C = 200000

Age at entr
& K v/ 40 60
Duration
10 260.27 1515.15
20 498.18 2373.22

Table 21. Actuarial Periodic Premium -

Table 21.a Standard Critical lliness Loan (Stand Alone) - SCILsa

Table 21.b Standard Critical lliness Loan (Accelerated) - SCILa

Age at ent
& K v/ 40 60
Duration
10 440.72 2378
20 834.17 3590.64

Age at ent
& K v/ 40 60
Duration
10 547.70 2975
20 1035.35 4686.70

3.4.5 Amortization schedule

The global obligations of the borrower/insured arfiom
the amortization schedule, for what concerns mmarfcial
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obligations, and from the premiums calculated ibl&éd.6

- 21 of the preceding section, for what concerns th
insurance coverage. He will pay the sum between the
constant financial installment and the specificnuren
referred to the chosen insurance contract. As ample,

in Table 7 we report the amortization schemes twfaa
issued in 2014 at a fixed rate of 7% , initial deift
C=200000 and with duration 10 years (Table 7.a) 2(d
years (Table 7.b).

Table 22.a. Amortization Schedule. Issue Time 2014, r = 7%, C = 200000, n = 10

Maturity Financial Instalment Payment due in case of insolvency
1 28475.50 214000.00
2 28475.50 198511.21
3 28475.50 181938.21
4 28475.50 164205.10
5 28475.50 145230.66
6 28475.50 124928.02
7 28475.50 103204.22
8 28475.50 79959.72
9 28475.50 55088.10
10 28475.50 28475.50
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Table 22.b. Periodic Amortization Schedule.
Issue Time 2014, r = 7%, C = 200000, n = 20

Payment due i . Payment due
i . . Financial .
X Financial in X in
Maturity Maturity | Instalmen
Instalment case of R case of

insolvency insolvency
1 18878.59 214000.00 11 18878.59 141876.95
2 18878.59 208779.91 12 18878.59 131608.26
3 18878.59 203194.41 13 18878.59 120620.75
4 18878.59 197217.95 14 18878.59 108864.10
5 18878.59 190823.10 15 18878.59 96284.51
6 18878.59 183980.65 16 18878.59 82824.33
7 18878.59 176659.19 17 18878.59 68421.95
8 18878.59 168825.25 18 18878.59 53011.41
9 18878.59 160442.95 19 18878.59 36961.41
10 18878.59 151473.85 20 18878.59 18878.59

In these Tables we report in particular the cornstan
installment due by the borrower in case of insotyen
throughout the loan duration (Il column) and thgmant

due by the insurer in case of the borrower’s insoty, if

this event happens during the year preceding the afa
valuation (11l column).

As an example, in the case of SCILsa, Female non-
smokers, the global annual obligation is showedable
23.a. It is possible to appreciate the contributidrthe
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illness diagnosis coverage inclusion in the glamabunt
to pay if compared with results in Table 23.b, nefd to
the traditional SIL contractual form.

Table 23.a. Global annual obligation, Insured Loan and Stakidne — SClLsa
Female non smokers, C=200000, i=7%, r=2%

Age at entry/ 0 60
Duration
10 28738.88 29307.03
20 19300.87 20077.33

Table 23.b.Global annual obligation. Standard Insured Loanlk S
Female non smokers, C=200000, i=7%, r=2%

Age at entr
& K v/ 40 60
Duration
10 28565.69 29224.54
20 19054.54 20198.66

Table 23.c. Global annual obligation. Specific Insured LoarspelL
Female non smokers, C=200000, i=7%, r=2%

Age at ent
& i v/ 40 60
Duration
10 28538.15 29008.14
20 18999.31 19859.73
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Table 23.d. Global annual obligation. Insured Loan and Acceted - SClLa
Female non smokers, C=200000, i=7%, r=2%

Age at ent
& A v/ 40 60
Duration
10 28761.12 29400.87
20 19335.57 20302.75

Concluding, Table 23.c and 23.d show the global
obligations in the same general conditions and ha t
SpellL and SCILa cases, for which a cause - spetath
and a dread disease are considered.

3.4.6 Future developments

The present chapter focused on the conjoint coretide

of the financial product loan to private personsl dne
insurance coverage in case of specific causes dathd
and iliness).

On the hand the loan is very much diffused anduiseq
often affected by very long duration; this circuarste
involves a strong insolvency risk due to criticdith@sses

or death of the borrower. On the other hand, we can
observe the general tendency in specializing imag&a
contracts particularly in the more advanced Coastrihis
happens in order to offer products more efficient a
cheaper from both the counterparty’s points of view
Moreover we can add that this kind of contractsraose

and more computable in light of the increasing eixtd
specific data. So the idea was to propose such new
insurance coverage within the standard financianlo
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This aim has been followed projecting the causeiipe
mortality rates and the specific illness diagnaates. In
this procedure the relevant question of the disnaities

in the mortality rates due to the reclassificaidrthe data
(ICD) has been fronted using a recent model able to
mitigate the jumps in the data themselves (seé&réimel of

k. in chapter 2). Also, the problem of the dependsci
among all causes of death has been solved using the
Vector Error Correction Model. It has been possitie
infer the projected data, to price the proposedrectual
forms and to build the final borrower/insured pawte
scheme.

Our method was found to be important and innovaitive
order to treat the cause-specific mortality.

Future research in this topic is connected with the
increasing interest in the specialization of thsunance
contracts. We will propose new forms covering
insolvency not due to death or iliness but to otleévant
circumstances as the layoff of the borrower.
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Appendix A

k; Adjusted, U.K. Male

1950 12.1977876 1971 12.4145334 1992 8.2976822
1951 12.8102253 1972 12.6904397 1993 8.1065012
1952 12.2684860 1973 12.4656538 1994 7.3969949
1953 12.1184357 1974 12.4076806 1995 7.1976506
1954 12.3434419 1975 12.2165739 1996 6.7186600
1955 12.4498179 1976 12.1661159 1997 6.0844991
1956 12.5201623 1977 11.8762173 1998 5.8743422
1957 12.2954990 1978 12.0086165 1999 5.3293180
1958 12.5672436 1979 11.9541044 2000 4.6259069
1959 12.2978883 1980 11.5486727 2001 4.2128824
1960 12.5374733 1981 11.0304712 2002 3.8810680
1961 12.6532095 1982 10.8691593 2003 3.4273460
1962 12.8941351 1983 10.8104845 2004 2.6481309
1963 13.1062926 1984 10.6015930 2005 2.0328041
1964 12.5960099 1985 10.6031243 2006 1.4724464
1965 12.8437346 1986 10.2144737 2007 0.9690608
1966 12.9091201 1987 9.7744505 2008 0.5843431
1967 12.6318339 1988 9.4982290 2009 0.0000000
1968 12.7746919 1989 9.1183347

1969 12.7620518 1990 8.8219476

1970 12.6047098 1991 8.6959803
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B U.K. male
2529  0.05294683
30-34  0.07070276
35-39  0.07944927
40-44  0.08837821
45-49  0.10160989
50-54  0.10283334
55-59  0.09876937
60-64  0.09162840
65-69  0.07704875
70-74  0.06950730
75-79  0.06339855
80-84  0.05181474
85-89  0.05191260

of insured loan
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a, + (Yg), U.K. male

1950-1967 1968-1978 1979-2000 2001-2009
25-29  0.11303276  0.040601754  -0.145563019
30-34 -0.12293424  -0.147652071 -0.295445332
35-39  -0.09762152 -0.080292606 -0.215212331
40-44 -0.18371761 -0.035992759  -0.184990402
45-49 -0.32627183 -0.131575616 -0.227023633
50-54 -0.30869869 -0.139023822 -0.171763923
55-59 -0.26081963 -0.127540138 -0.103104130
60-64 -0.25229734 -0.094350307 -0.057377670
65-69 -0.17141002 0.033268294  0.037702526
70-74 -0.17884584  0.049276301  0.057494502
75-79  -0.20438922 -0.003802946  0.010218412
80-84 -0.13314614  0.021280044  0.004776052

O O O O O O o o o o o o o

85-89 -0.25499646 -0.075789166 -0.143625854
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k; Adjusted, U.K. Female

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

13.3375463
13.6595987
12.5803721
12.4041885
12.2233294
12.4088270
12.2216342
11.6256691
11.9706934
11.5937203
11.5645851
11.7220943
11.5965470
11.6902031
10.7610055
10.8393640
10.8161283
10.3378527
10.2691241
10.0553331
9.8260319

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

9.5876877
9.8415085
9.6958699
9.5207536
9.3121571
9.3113648
8.8669877
8.8257368
8.8060686
8.3950143
7.9950923
7.8211612
7.6370548
7.1412711
7.3073607
6.8944353
6.5094327
6.4194935
6.2874514
5.9050147
5.8218406

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

5.5109556
5.3757906
4.8537976
4.7408648
4.4761107
4.1249926
4.0494654
3.7391840
3.1560290
2.8715188
2.7722109
2.6513063
1.9576415
1.5706113
1.0105467
0.7594275
0.5973817
0.0000000
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B, U.K. Female

25-29 0.11100454
30-34 0.09460693
35-39 0.07674190
40-44 0.06682523
45-49 0.07020482
50-54 0.05079537
55-59 0.04244109
60-64 0.05290371
65-69 0.06202858
70-74 0.08302418
75-79 0.09841643
80-84 0.09784256
85-89 0.09316467
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a, + 6;0, U.K. Female

25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84
85-89

1950-1967
-0.359994
-0.261023
-0.081888
0.002921
-0.101574
0.005708
0.047817
-0.057976
-0.133052
-0.331728
-0.491019
-0.483591
-0.587518

1968-1983
-0.298346
-0.193566
0.010041
0.144483
0.148102
0.268018
0.309479
0.214545
0.144693
-0.009771
-0.141285
-0.140406
-0.210611

1984-1992
-0.26892
-0.09773
0.02371
0.04638
0.05075
0.15539
0.26768
0.26904
0.20730
0.06786
-0.06813
-0.09906
-0.19493

1993-2000
-0.13299
-0.09332
-0.01741
0.04523
0.01383
0.06797
0.11469
0.11936
0.13577
0.08491
-0.02285
-0.05599
-0.20397

2001-2009

O O O O O O o o o o o o o
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