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Introduction 
 
The study of cause-specific mortality in the actuarial field 
is one of the main sources of information for public health 
monitoring. Among the number of challenges that need to 
be addressed, two of them are the main aims of this work. 
First, the World Health Organization manages a cause-
specific mortality database, based on the International 
Classification of Diseases (ICD). The ICD changed three 
times between 1950 and 2010 in order to account for 
progress in science and technology and to achieve more 
refined cause descriptions. Thus, the ICD revision often 
causes major discontinuities in trends in mortality and 
morbidity statistics, requiring then an appropriate 
correction for any time series analyses or forecasts. 
Second, models for trends in mortality rates for different 
ages and sexes as well as for different countries are often 
based on the assumption of independence between the 
causes of death.  Actually, in literature we cannot find 
models taking into account both the questions. Our aim is 
to suggest a new method developed considering 
simultaneously the ICD changes (discontinuities in the 
data) and the dependence among several causes of death. 
To this end, basing on an extension of the Lee – Carter 
Model (Lee R.D. and Carter L., 1992) we mitigate the 
structural breaks in mortality rates and contextually the 
VECM (Vector Error Correction Model) is used in order 
to project the cause-specific time component of the Lee-
Carter model. This methodology allows to include long-
term stationary relations between the different causes of 
death, that is cause-of death dependence in the mortality 
forecasting model. Results are compared to the more 



traditional forecasting approach based on ARIMA 
processes. 
In particular we show that the proposed method produces 
more precise projections in order to better understand the 
cause – specific mortality. This is crucial in different 
topics for example in social security, health, socio-
economic strategies, having implications in different 
decision choices.  
The application in pricing assessment of the methodology 
here discussed is developed in the insurance and banking 
filed, in order to design tailored and more individual 
contracts.  In particular several insured loans built within 
the critical illness policy model are proposed and priced. 
The new products insure the loan, covering the risk to 
suffer several dread disease and/or the event in case of 
death for a specific cause. The inclusion of the benefit in 
case of a specific cause of death does not involve 
additional cost to the life office beyond the critical illness 
benefit. On the contrary the new designs ensure less 
expensive conditions in comparison with the standard 
policy and are very appealing from the market point of 
view, looking for more and more personalized and cheap 
clauses. 
The layout of the thesis is as follows. In Chapter 1, the 
problems related to the evaluation and the prediction for 
cause – specific deaths are exposed from a critical 
viewpoint. Chapter 2 illustrates the new method here 
proposed, aimed to mitigate the structural breaks and 
capture the dependencies among all causes of death. 
Based on a recent work of Haberman S. and Villegas A. 
(2014), we adjust the mortality time series mitigating the 
break points. Then, after having shown that the cause – 



specific deaths are competitive risks, the Vector Error 
Correction Model is studied in its application to the 
adjusted probabilities to the aim of forecasting their future 
trend. Chapter 3 is dedicated to the application of the 
proposed methodology in the actuarial pricing assessment. 
Specifically, we price different new proposals for insured 
loan, in which the loan is saved in case of specific events 
as the cause – specific deaths. To this aim we use the 
death and survivor probabilities correctly calculated 
taking into account contextually structural breaks and 
dependences among causes of death, accordingly with the 
topic of the work.  
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Chapter I 
 

MODELING FOR CAUSE – MORTALITY 
 

1.1    Introduction 
 

Models for trends in mortality rates for different ages and 
sexes as well as for different countries are often based on 
the assumption that past trends in historical data will 
continue in the future. Mortality trends and related 
fluctuations determine changes in the causes of deaths. 
These causes have different age patterns and have shown 
different trends over recent years. At the same time, 
systematic changes in causes of death have been common 
across the industrialized economies.  
Recent literature has addressed the issue of cause-specific 
mortality analysis. In particular, Wilmoth J.R. (1995) 
shows how taking into account causes of death can 
influence projected trends and effectively highlights how 
cause of death influence is hidden in aggregated data. 
Tuljapurkar S. et al. (2000) show how mortality declines 
have had common trends in the G7 countries, although 
there is evidence of variability in those trends. Booth H. et 
al. (2006) also demonstrate the difficulties related to the 
projections obtained by the decomposition of the 
population according to causes of death. Maccheroni C. et 
al. (2007) examine how the standard Lee-Carter model is 
not suitable for the analysis by causes of death. Sherris M. 
et. al. (2010) discuss the factors driving mortality changes 
based on causes of death.  
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The modelling of cause – specific mortality is a very 
delicate focus and it gives origin to a lively debate in the 
scientific community.  In particular, we want to highlight 
that two different types of problems come out from the 
decomposition of the mortality time series in different 
causes of death.  
The first one is the presences of some structural breaks 
affecting the estimation of the historical and the future 
trend of cause – specific mortality. In particular, the WHO 
(World Health Organization, 2009) has revised the 
international classification of diseases (ICD) 
approximately every 20 years since 1900. The purpose of 
revision is to stay abreast of advances in medical sciences, 
changes in medical terminology and to ensure the 
international comparability of health statistics. However, 
the ICD revision often causes major discontinuities in 
trends of mortality and morbidity statistics because of 
changes in classification rules for selecting underlying 
causes of death. The ranking of leading causes of death is 
also affected by this revision.  
The second problem consists in the dependences among 
all causes of death. All the mortality models consider the 
(quite unrealistic) hypothesis of independences between 
them.  
These discontinuities lead not only to a misinterpretation 
of trends in mortality, but also to misinformation about the 
changes in life expectancy (Kochanek K.D. et al., 1994). 
Furthermore, without properly correcting these 
discontinuities, trends in age-specific death-rates may 
become biased; this distortion may lead to unreliable 
forecasts of life expectancy. In the following sections we 
analyze the most popular models to estimate the future 
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trend of mortality, focusing on the criticalities they 
present in forecasting cause - specific mortality. 
 

1.2    The Lee – Carter Model  
 
The Lee-Carter model (1992) and its extensions have been 
used by actuaries for multiple purposes. Essentially, the 
model assumes that the dynamic of mortality trends over 
the time is only ruled by a single parameter called 
mortality index. The mortality forecast is based on the 
index extrapolation obtained through the selection of an 
appropriate time series model. Box-Jenkins models, also 
known as autoregressive moving average process ARIMA 
(Box G.E.P. and Jenkins G.M., 1976), are usually used on 
forecasting.  
The model’s basic premise is that there is a linear 
relationship among the logarithm of age-specific death 
rates ��,� and two explanatory factors: the age �, and time �. Information is distributed in age intervals, so the 
interval starting in age x will be called "	x age interval”. 
The equation describing the model is the following: 
 ��,� = 
��(
� + ���� + ��,�)              (1) 
 ln	(��,�) = 
� + ���� + ��,�                                          (2) 
where: 
 

• ��,� is the age-specific death rate for the � interval 
and the year �;  

• 
� is the average age-specific mortality;  
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• �� is the mortality index that describes the 
variation in the level of mortality to �; 

• �� is a deviation in mortality due to changes in the 
index;  

• ��,� is the random error.  
 

To evaluate the parameter α� we impose:  
 ∑ k�� = 0,                                                                        (3) 
 
the following equation holds: 
 
∑ ln	(m�,�)������ = nα� + β� ∑ k������� + ∑ ε�,�������             (4) 
 
Posing ε�,� = 0 and being m�,� observable from life tables, 
we can calculate α!� as follows: 
 
∑ "#	($%,&)&�&'&� # = ln ()∏ m�,������� +�

�, = α!�                           (5) 

 
Posing:  
 ∑ β�� = 1                                                                        (6) 
 
it is possible to evaluate the parameter k� by means of the 
following equation:  ∑ ln	(m�,�).��/ = ∑ α�.��/ + k� ∑ β�.��/ + ∑ ε�,�.��/         (7) 
 
Being ε�,� = 0, we can write: 
k0 � = ∑ ln	(m�,�).��/ − ∑ α�.��/                                         (8) 
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Finally, we can calculate the parameter β� with a simple 
regression in formulas (1) and (2). 
The model assumes the constancy of α� and β� in respect 
of � and k� is the only parameter to project. The k�	description will be made by means of an appropriate 
ARIMA process, determined using a procedure Box-
Jenkins. According to the model, the mortality rate 
follows a linear trend on the basis of an ARIMA (0,1,0), 
which fits well the representation of the index evolution 
over time. Following Box G.E.P. and Jenkins G.M. 
(1976), the model is the following: 
 �� = ��23 − 4 − ��                                                          (9) 

 
where: 
 

• �� is the index of time �; 
• 4 is a drift parameter;  
• �� is the term error at time �. 

 
Basing on the characteristic equation of the model (2) we 
can determine the mortality tables: 
 

q� = 6$%,&
67$%,& 				and			p� = 1 − q�                                   (10) 

 
where q� and p� indicate respectively death and survival 
probability rates. 
 
The Lee – Carter model is fitted to a matrix of age - 
specific observed forces of mortality using singular value 
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decomposition (SVD). Specifically, α�, β� and k� have to 
minimize:  
 

∑ )ln)��,�+ − 
� − ����+6�,�                                        (11) 
 
It is worth mentioning the characteristic equation of the 
model (2) is not a simple regression model, since there are 
no observed covariates in the right-hand side. The 
minimization consists in taking for 
;� the row average of 
the ln)��,�+ and to get �<� and �0� from the first term of an 
SVD of the matrix ln)��,�+ − 
�. This yields a single 
time-varying index of mortality �0� (Alho J.M., 2000).  
Before proceeding to modeling the parameter �� as a time 
series process, the k�’s are adjusted (taking α!� and β0� 
estimates as given), to reproduce the observed number of 
deaths ∑ D�,�� ; k0 � is the solution of the following equation 
(Lee R.D. – Carter L., 1992):  
 ∑ >�,� = ∑ ?�,��� 
��(
� + ���� + ��,�)                     (12) 
 
At this point, �� is estimated again, so that the obtained 
death rates (with the previously estimated 
;� and �<�), 
applied to the actual risk exposure, produce the total 
number of deaths observed in the data for the years under 
consideration. There are several advantages to make this 
second-stage estimation of the parameter ��. In particular, 
it avoids sizable discrepancies between predicted and 
actual deaths (occurring because the first step is based on 
logarithms of death rates). The original Lee – Carter 
method was used to aggregate (sexes combined) US data. 
Carter and Lee (1992) implemented their model for males 
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and females separately, showing that the two decreasing 
series are best treated independently. Wilmoth J.R. (1996) 
applied Lee – Carter methods to forecast Japanese 
mortality and also experimented some variants of this 
model. Lee R.D. and Nault F. (1993) applied Lee – Carter 
methods to model Canadian mortality. 
It should be noted that the Lee – Carter method does not 
attempt to incorporate assumptions about advances in 
medical science or specific environmental changes; no 
information other than previous history is taken into 
account. This means that this approach could be unable to 
forecast sudden improvements in mortality due to the 
discovery of new medical treatments or revolutionary 
cures including antibiotics. Similarly, future deteriorations 
caused by epidemics, the apparition of new diseases or the 
aggravation of pollution cannot enter the model.  
The Lee–Carter methodology is a mere extrapolation of 
past trends. All purely extrapolative forecasts assume that 
the future will be in some sense like the past. Some 
authors (see, e.g. Gutterman S. and Vanderhoof I.T. 
(2000)) severely criticized this approach because it seems 
to ignore underlying mechanisms. As pointed out by 
Wilmoth J.R. (2000), such a critique is valid only if such 
mechanisms are understood with sufficient precision to 
offer a legitimate alternative method of prediction. The 
understanding of the complex interactions of social and 
biological factors, which determine mortality levels is still 
imprecise. This means that the extrapolative approach is 
particularly compelling in the case of human mortality. 
 
 



Chapter I – Modelling for cause – specific mortality 

-17- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3    The Poisson log-bilinear Lee Carter 
model. 

 
According to Alho J.M. (2000), the basic Lee – Carter 
model (1992) is not a well suited construction of projected 
life tables. The main drawback of the OLS (ordinary last 
square) estimation via SVD is that the errors are assumed 
homoskedastic. 
This is due to the assumption that the errors are normally 
distributed.  
The logarithm of the observed force of mortality is much 
more variable at older ages than at younger ones because 
of the much smaller absolute number of deaths at older 
ages. Because the number of deaths is a counting random 
variable, according to Brillinger D.R. (1986), the Poisson 
assumption appears to be plausible. In order to circumvent 
the problems associated with the OLS method (see 
Brouhns N., Denuit M. and Vermunt J., 2002), we now 
consider: 
 

>�,�	~	ABCDDBE)?�,�(��,�)+ 
 
with: 
 
 ��,� = 
��(
� + ����)                                               (13) 

 

where the parameters are still subjected to the constraints ∑ �� = 0� , ∑ �� = 1� . The force of mortality is thus 
assumed to have the log-bilinear form ln	(��,�) = 
� +����. The meaning of the 
�, ��, and �� parameters is 
essentially the same as in the classical Lee - Carter model. 
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Instead of resorting to SVD for estimating α�, β�, and k�, 
we now determine these parameters by maximizing the 
log-likelihood based on the Lee – Carter Poisson log-
bilinear model, which is given by: 
 
F(
, �, �) = ∑ G>�,�(
� + ����) − ?�,�
��(
� +�,�+����)H + 4BED�IE�                             (14) 

 
Because of the presence of the bilinear term ����, it is not 
possible to estimate the proposed model with statistical 
packages implementing Poisson regression.  
Goodman (1979) was the first who proposed an iterative 
method for estimating log-linear models with bilinear 
terms. In iteration step J + 1, a single set of parameters is 
updated fixing the other parameters at their current 
estimates using the following updating scheme. 
 

K0(L73) = K0(L) − MN(O)/MQ
MQRN(L)/MQR,                                          (15) 

 
where F(L) = F(L))K0(L)+. 
 
In our application, there are three sets of parameters, 
�, ��, and ��. The updating scheme is the following 

(Brouhns N. et al. 2002), starting with 
;�(/) = 0, �<�(/) = 1, 

and �0�(/) = 0 (random values can also be used), 


;�(L73) = 
;�(L) − ∑ (TU,V2TWU,V(O)V )
2∑ TWU,V(O)V

,				�<�(L73) = �<�(L),			�0�(L73) =
= �0�(L)            (16)     
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 �0�(L76) = �0�(L73) − ∑ (TU,V2TWU,V(OX�)V )YWU(OX�)
2∑ TWU,V(O)(YWU(OX�))RV

, 
;�(L76) = 
;�(L73),
�<�(L76) = �<�(L73)								          (17) 
 

�<�(L7Z) = �<�(L76) − ∑ (TU,V2TWU,V(OXR)V )[0U(OXR)
2∑ TWU,V(OXR)([0 V(OXR))RV

, 
;�(L7Z) = 
;�(L76),
�0�(L7Z) = �0�(L76)                (18) 
 

where  >W�,�(L) = ?�,�
��(
� + ����),	 are the estimated 
number of deaths after iteration step J. The procedure 
stops when the log-likelihood function has a sufficiently 
small increment. After updating the �� parameters, we 
have to impose two constraints, ∑ �� = 0� , ∑ �� = 1� , 
which are the same constraints as in the Lee–Carter 
parameterization. The evaluations of 
� and �� are used 
with the forecasted �� to generate the life table functions.  
 

1.4   Criticalities in these background for 
modeling cause-specific mortality. 

 
The models presented in the preceding sections are quite 
unfit to describe mortality by causes of death. Firstly, 
these models assume the independence between different 
causes of death. This unrealistic assumption produces a 
systematic overestimation or underestimation of the 
mortality phenomenon.  
Moreover, the classification of the diseases has been 
adapted over the years through the “bridge coding” (Istat, 
2011). The ranking of leading causes of death is also 
affected by this revision that produces structural breaks in 
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the mortality series. These discontinuities lead not only to 
a misinterpretation of trends in mortality, but also to 
misinformation about the changes in life expectancy 
because the mortality time series is not stationary. 
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Chapter II 
 

SOLUTIONS TO THEORETICAL 
PROBLEMS IN MODELING MORTALITY 
BY CAUSE OF DEATH  
 

2.1   Introduction 
 

As in Villegas A. et al (2014), in any country, mortality 
rates and indices such as life expectancy usually vary 
among subpopulations.  Subpopulations can differ each 
other for gender, geographic area, cause – specific deaths, 
socioeconomic variables (e.g., occupation, level of 
education, or income) and so on. These differentials, and 
in particular those related to cause – specific mortality, 
pose important challenges to design public policies for 
tackling social inequalities, as well as pension systems 
and to manage longevity risk in pension funds and annuity 
portfolios. 
The models that we discussed in the previous chapter are 
quite unfit for describing the cause – specific mortality. 
First, as mentioned, they do not take into account the 
discontinuity caused by the ICD. In addition, they assume 
the independence between the different causes of death. 
These two problems as well as causing a wrong 
interpretation of mortality also do not produce an adequate 
mortality trend forecasting. 
Here we consider contextually the two questions, always 
focused separately in literature. To this aim, using well-
known criteria and models, we suggest a methodology 
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representing an extension of the procedure proposed by   
Arnold S. and Sherris M. (2013). 
Following the guide lines of this paper, we suggest the 
method here presented can be synthesized as follows. As a 
first step we will adjust the data about mortality with 
respect to the structural breaks; as a second step we use 
the procedure VECM (Vector Error Correction Model) in 
order to project the cause-specific time component of the 
Lee-Carter model: in this way we can include long-term 
stationary relations between the different causes of death 
and thus cause of death dependence in the mortality 
forecasting model.  
The new application of VECM to cause–specific death we 
propose takes into account contextually the discontinuities 
and the dependencies between causes. 
The procedure is illustrated and analyzed in several 
numerical evidences (Arnold S., Passannante V., 2014). 
Data concerning mortality, disaggregated for causes of 
death, are available at the Mortality Database 
administered by the World Health Organization [2009] 
(WHO), containing several demographic information as 
the number of deaths for many countries over the last 50 
years for five-year age groups. The aggregated death (and 
survival) probabilities have been got by means of a 
Poisson Log Bilinear regression (see Brouhns N. et al 
2002) on the Lee Carter model (see Lee and Carter 1992).   
Causes of death are defined by the International 
Classification of Diseases (ICD), which ensures 
consistencies between countries. In this section, all causes 
of death are considered divided by macro classes. 
The ICD changed three times between 1950 and 2006, 
from ICD-7 to ICD-10, in order to take into account 
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changes in science and technology and to refine the 
classification. As consequence the raw data are not 
directly comparable for different periods.  
We compare the obtained results about mortality with the 
more traditional forecasting approach based on ARIMA 
processes. 
Our study is based on the U.K. population because the 
widest range of information is available. We consider the 
U.K. population divided for sex and for six different 
causes (Infection and Parasitic “I&P”, Cancer, Circulatory 
System, Respiratory System, External and Other).  
In the following we show that, modeling the cause of 
death dependence, a long-run equilibrium relationship 
exists among all causes (divided by six macro classes such 
as Cancer, Circulatory System, Respiratory System, 
Infection and Parasitic, External and Other causes of 
death) for the U.K. population. The consideration of the 
cointegrating relations produces positive effects on the 
forecasting, as shawn in Arnold, S., Passannante, V., 
2014. If past trends are expected to continue in the future, 
including them in the model instead of modeling each 
cause in isolation, assists in forecasting future mortality 
rates (Arnold, S., Sherris M., 2013). 
This work confirms then that cointegration is a 
worthwhile tool in understanding and improving cause-
specific mortality forecasts. In what follows we will 
consider separately the two aspect of discontinuity and 
dependence in the data. 
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2.2   About the discontinuity: smoothing the 
structural breaks  
 

Several mortality data cause changes may affect cause-
specific time trends, thus altering the interpretation and 
the forecasting.  
There are some quantitative methods that detect abrupt 
changes ("jumps”) and estimates correction factors that 
may be used for further analysis. One way to smooth the 
jumps of the mortality index k�in correspondence of the 
time of the ICD updating is represented by the spline 
regression. In this work, we use the new model in 
Haberman S. and Villegas A., 2014. 
The model was presented in the IME Conference in the 
2013 by Villegas A.  
The model is inspired by the procedures introduced by 
Ray G. et al. (2011). The authors use a spline function in 
order to smooth the mortality time series.  
The Authors assume that the number of deaths are 
independent Poisson responses ��� ∼ ��	

��(
�� ����� 
Let � = �
�, 
�… , 
�	�  be the times at which coding 
changes occur. In order to account for the coding changes, 
we assume as in Haberman S. et al., 2014, that the force of 
mortality is given by: 
 log ��� =	�� +  �!� + ∑ #�($�%($��$&� ('�                      (21) 

where:  

• ��,  �  and !�  are the some parameters of the 
standard Lee – Carter Model in equation (2); 
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• %($�('� = ()*+, ≤ ' < 
$  is an indicator function 
valued at time	'  taking the value 0  if no new 
classification occurs in '  and the value 1 
otherwise. The index		 means the numbers of ICD 
coming true in the considered period; 
 

• #�($� measures the magnitude of coding change at 
age x;  

 1��2,!�3 4 = ��� + 5� �, !� − 5��                                   (22) 
 

1 �7,!�3 4 	= 8 �9:  �, 5�!�;                                                (23) 

 

8#�(<�7 ,!�; = 8#�($� + =$ �, !� − =$%($�('�;,					 	 = 1, … , ℎ                                                                     (24) 
 
Transformation (22� and (23� are the original ones from 
the Lee-Carter basic model, whilst the family of 
transformation defined by (24� are induced by the new 

parameters #�($� (Haberman S. et al., IME 2013). 
In order to ensure the complete characterization of the 
model, the following constraints need to be imposed: 
 !�B = 0                                                                          (25) ∑  �� = 1                                                                      (26) 
 
where 'C  is the observed last period. In the model the 
underlying mortality trend is captured only by !�  whilst 

parameters #�($�  captures the discontinuities in mortality 
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trend induced by the changes in the coding system of the 
causes of death. In order to accomplish this, we use the 
family of transformation defined in formula (24�.  
As we said before, inspired by the procedure introduced 
by Ray G. et al. (2011), we set the constants =$, 	 =1, … , ℎ, by fitting the model 
 !� = D('� + ∑ #�($�%($��$&� ('� + E�                                (27)                     
 
where D('� is a continuous function fitted by a thin plate 
penalized regression spline and E� is an error term.  
Given constants =$, 	 = 1, … , ℎ from model (27�, we can 
write: !�  		!� − ∑ =$%($�('��$&�                                     (28) 
 #�($�            #�($�%($� + =$ �									 = 1,… , ℎ                    (29) 
 
The only parameter to be projected through a procedure 
Box – Jenkis, useful for determining an appropriate 
ARIMA, is k�.According to the model, the mortality rate 
has a linear trend on the basis of an ARIMA (0,1,0), 
which is well adapted in the representation of the 
evolution of the index over time. k� therefore refers to the 
following model (Lee R.D. and Carter L., 1992): 
 !� = !�G� − H − 
�                                                        (30) 
 
Again on the basis on the date presented in the preceding 
section, but specializes in particular on a specific cause of 
death (circulatory system), we have got the following 
figures 1, 2, 3 and 4. In Figure 1, it is possible to observe 
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an example (referred to the cause of death related to the 
circulatory system) of fitting of the parameters αJ, βJ and k� . Figure 2 shows the fitting trend of the mortality 
index		k� with respect to that observed (that has two jumps 
exactly in the years in which the ICD changed): as 
evident, no more jumps are present in the graph. Figures 3 
and 4 show the trends in the case of respiratory system. In 
the numerical application we will place greater emphasis 
on this point. With these graphs we can see how the new 
transformation transfers the jumps in mortality due to data 
production changes to the δJ(L�  parameters and leaves k� 
representing the underlying mortality trend plus the 
fluctuations around this trend. 
 

Fig. 1 - Fitting parameters Circulatory System, HV Model. 

Source: Source: Arnold S. and Passannante V., Long-Run Analysis of Cause-of-Death 

Mortality, Presentation  Maf 2014, 2-4 April 2014  

 

Fig. 2 - MNwith the coding changes for different group age, Circulatory System HV 

Model. 
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Source: Source: Arnold S. and Passannante V., Long-Run Analysis of Cause-of-Death 

Mortality, Presentation  Maf 2014, 2-4 April 2014  

Fig. 3 - Fitting parameters Respiratory System, HV Model. 

Source: Source: Arnold S. and Passannante V., Long-Run Analysis of Cause-of-Death 

Mortality, Presentation  Maf 2014, 2-4 April 2014  

 

Fig. 4 - MNwith the coding changes for different group age, Respiratory System, HV 
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Source: Source: Arnold S. and Passannante V., Long-Run Analysis of Cause-of-Death 

Mortality, Presentation  Maf 2014, 2-4 April 2014  

2.3   About the dependence: Vector 
Autoregressive Models and Vector Error 
Correction Models 

 
The Vector Autoregressive model (VAR hereafter) is the 
technique used to model the multivariate time series: it 
focuses on the joint behavior of the vector element, O� = (O��, O�� …	OP��′, with dimension (!R1� and the time t = 1, …T. The model represents the multivariate version 
of an UV(W� process.  The VAR model was introduced in 
a famous work of Sims C.A. (1980), in which he criticized 
the model of simultaneous equation, the most popular 
model in microeconomics in those years. In general a 
VAR model of order p, VAR(W�  can be expressed as 
follows: 
 

40-44 50-54

60-64 70-74

0.00005

0.00010

0.00015

0.00020

0.00025

2e-04

4e-04

6e-04

8e-04

0.001

0.002

0.003

0.002

0.004

0.006

0.008

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000
year

µ x
t

Respiratory - Males



Chapter II – Solutions to theoretical problems  

in modeling mortality by cause of death  

  

 

-30- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O� = H + U�O�G� +	…+ UXO�GX + Y�                          (31) 
 
where UX  are the matrices of the coefficients (ZRZ� , H = (H�, … , HP�′ is the vector of the intercepts (ZR1�, Ɛ� is 
a K-dimensional white noise process, where the variance–
covariance matrix is not singular. 
To test the eventual stationeries of a VAR(1) process it is 
sufficient to check that all the eigenvalues of the matrix A�  are minor then one in absolute value. Algebraically 
this is the stationary condition:  
 \
 '](P − U�^ − ⋯− UX^X` ≠ 0, |^| < 1                   (32) 

 
where IP is the identical Z–dimensional matrix while λ is 
the Z –dimensional eigenvalues vector. In particular, the 
VAR(p) process is stationary if all the eigenvalues of the 
matrix in companion form are in the unit circle minor then 
one in absolute value. 
If the polynomial in (32) has a unit root (i.e., the 
determinant is zero), then some or all of the variables are 
integrated. For convenience we assume that they are at 
most I(1).   
If the variables have a common stochastic trend, it is 
possible to find linear combination of them that are I(0). 
In that case they are cointegrated. The following 
definition holds: 
 
Definition 1. A set of I(1) variables is cointegrated if a 
linear combination exists, that is I(0). 
Occasionally it is convenient to consider system with both 
I(1) and I(0) variables. 
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Although the model (31) is general enough to explain 
variables with stochastic trends, it is not the most suitable 
type of model if the interest centers on the cointegration 
relations: this happens because the cointegrating relations 
do not appear explicitly in the VAR form. 
The VECM form  
 dO� = 	eO�G� + f�dO�G� +⋯+ fXG�dO�GXg� + Y�   (33) 

 
is a more convenient model setup for cointegration 
analysis. In (33) (see Lutkepohl H., 2005): 
 Π = −((P − U� −⋯− UX� 
and 
 f$ = −(U$g� +⋯+ UX�                        for 	 = 1,… , W − 1 
The VECM is obtained from the levels VAR form (31) by 
subtracting O�G�  from both sides and rearranging terms. 
Because dO�  does not contain stochastic trends (this 
happens by virtue of our assumption that all the variables 
can be at most I(1)), the term eO�G� is the only one that 
includes I(1) variables. 
Hence, eO�G�  must also be I(0). Thus, it contains the 
cointegration relation. The f$
	(i = 1, … , W − 1� are often 
referred to as the short – run or short – term parameters, 
and eO�G� is sometimes called the long – run or long – 
term part. The model in (33) will be abbreviated as jklm(W − 1�. Of course, it is also possible to determine 
the Un levels parameter matrices from the coefficients of 
the VECM.  
More precisely: 
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U� = f� + 	e + (P, U$ = f$ − f$G�		    if						1 = 2, … , W − 1, 
 
and 
 UX = −fXG�. 
 
If the VAR(p) process has unit roots, that is: 
 \
 '](P − U�^ − ⋯− UX^X` = 0%�o	^ = 1 
 
the matrix e = −]IP − A� −⋯− Ap` is singular.  
Suppose that the rank o!(e� of the matrix e is equal to o. 
Then e can be written as the product of the matrices � 
and  ,	both with dimension (!	R	o�,	such that o!(�� =o!( � = o. 
We can write: 
 
 e = 	� q. 
 
This equation holds if we multiply both sides by O�G�. In 
particular, the process is I(0) (cf. Johansen 1994) because 
it can be obtained by premultiplying Πy�G� = 	αβqy�G� 
with (αqα�G�αq . Hence, βqy�G�  contains cointegrating 
relations. It follows that there are o = o!(e�  linearly 
independent cointegrating relations among the 
components of O�. The rank of e is therefore referred to 
as the cointegrating rank of the system, and   is a 
cointegration matrix. 
For example, if there are three variables with two 
cointegrating relations (o = 2�, we have 
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eO�G� = 	� qO�G�	 = 
 

= s��� ������ ����t� �t�u v
 ��  ��  t� ��  ��  t�w s

O�,�G�O�,�G�Ot,�G�u =								 
= s���
H�,�G� + ���
H�,�G����
H�,�G� + ���
H�,�G��t�
H�,�G� + �t�
H�,�G�u, 
 
 where 
 
H�,�G� =  ��O�,�G� +  ��O�,�G� +  t�Ot,�G� 
 
and 
 
H�,�G� =  ��O�,�G� +  ��O�,�G� +  t�Ot,�G� 
The matrix � is sometimes called the loading matrix. In 
fact it contains the weight attached to the cointegrating 
relations in the individual equations of the model. The 
matrices �  and   are not unique, so there are many 
possible �  and   matrices containing the cointegrating 
relations or linear transformations of them. In fact, using 
any nonsingular (o	R	o�  matrix B, we obtain a new 
loading matrix �  and cointegration matrix  x′G�, which 

satisfies the following equation:  e = 	�x] xqG�`q. 
Consequently, cointegrating relations cannot be extracted 
purely from the observed time series. Some nonsample 
information is required to identify them uniquely. 
The model (33) contains several special cases that deserve 
to be pointed out. If all variables are I(0), and o = Z, the 
process is stationary. If o = 0, the term eO�G� disappears 
in (33). In that case, dO� has a stable VAR representation. 
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In other words, a stable VAR representation exists for the 
first differences of the variables rather than the levels 
variables.  
The VECM in (33) also indicates that, for a cointegrating 
rank o > 0, the vector of first differences of the variables, dO�, does not have a finite order VAR representation. 
 

 2.4   Deterministic Terms 
 

Several extensions of the basic models (31) and (33) are 
proposed in literature. 
Usually it is necessary to represent the main 
characteristics of a data set of interest. A variable could 
include a deterministic term, such as an intercept, a linear 
trend term or seasonal dummy variables. A first way to 
include deterministic terms in the model is simply to add 
them to the stochastic part, as in the following expression 
is showed: 
 O� = \� + R�                                                                (34) 

 
Here \�  is the deterministic component, and R�  is a 
stochastic process that may have a VAR or VECM 
representation, as in (31) or (33). In other words: 
 R� = U�R�G� +⋯+ UXR�GX + Y� or 
 dR� = 	eR�G� + f�dR�G� +⋯+ fXG�dR�GXg� + Y�. 
 
On the assumption, for instance, that Y� is a linear trend 
term, that is: 
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 \� = #{ + #�' 
 
such a model setup implies the following VAR(p) 
representation for O� 
 O� = |{ + |�' + U�O�G� +⋯+ UXR�GX + Y�              (35) 

This representation is easily derived by left-multiplying 
(34) with : 
 U(}� = (P − U�} −⋯− UX}X 
 
where L is the lag operator, as usually indicated. Noting 
that: 
 U(}�R� = Y� 
 
and rearranging terms, we find that: 
 |{ = U(1�#{ + ]∑ iUnXn&� `#� 
 
and 
 |� = U(1�#�. 
 
Hence, |{  and |� satisfy a set of restrictions implied by 
the trend parameters  #{ and #� and the VAR coefficients. 
Alternatively, one may view (35) as the basic model 
without restrictions for |$	(1 = 0,1� . In that case, the 
model can, in principle, generate quadratic trends if I(1) 
variables are included, whereas in (34), with a 
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deterministic term \� = #{ + #�', a linear trend term is 
permitted only.  
If we have a polynomial of q order, we can find a 
polynomial of (~ − 1�  order as follows (Beveridge – 
Nelson Decomposition) 
 l(}� = l(1� + l∗(}�Y�                                               (36) 
 
Posing: 
 l(1� = � ����q � 
 
and 
 
� = \� + Y� 
 
we have: 
 O� = � ����q �
� + l∗(}�Y�                                          (37) 
 
where 
� is a random walk I(1) and H is an invertible 
matrix with rank (n − r�. 
In general, if we consider this polynomial form: 
 \� = #{ + #�' + #�'� +⋯+ #X'X                               (38) 
 
it is not necessary that the polynomial α�q δp has a p order.  
In practice we have the following five cases: 
 

a) \� = 0. In this case there is not a trend. 
b) \� = #{, ��q #{ = 0 . There is not a trend in the 

VAR but there is a drift in the VECM. 
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c) \� = #{, ��q #{ ≠ 0. There is a drift in the VAR 
and in the VECM. 

d) \� = #{ + #�', ��q #� = 0. There is a linear trend in 
the VAR and in the VECM. 

e) \� = #{ + #�', ��q #� ≠ 0 . There is a quadratic 
trend in the VAR and a linear trend in the VECM. 

 
In what follows the aim will be to identify the type of 
deterministic trend to include in the process.   
 

2.5   Likelihood ratio test in I(1) models  
 
This section contains a description of a reduced rank 
regression and explains how this procedure is applied to 
derive estimators and test statistics for model with various 
restrictions on the deterministic terms. 
The technique of reduced rank regression was introduced 
by Anderson T.W. and Rubin H. (1949) in connection 
with the analysis of limited information maximum 
likelihood and generalized to the reduced rank regression 
model by Anderson T.W. (1951). An excellent source of 
information is the monograph by Reinsel G.C. and Velu 
R.P. (1998), which contains a comprehensive survey of 
the theory and history of reduced rank regression and its 
many applications. 
The statistical analysis of all the multivariate models is 
made by the same procedure, called a reduced rank 
regression, applied in the context of independent and 
identically distributed variables (Anderson T.W., 1951) 
and has been applied for stationary processes (Ahn S. and 
Reinsel G.C., 1988) and for nonstationary processes 
(Johansen S. and Juselius K., 1990). 
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Regressing U�  and V�  on Z�  to form residuals R�� 
and	R��and solving the reduced rank regression (Johansen 
S., 1988), we can write: 
  V�� = 	� qV�� + Y�                                                       (39) 
 
Posing:  
 �$n = �G�∑ V���� V′��   , with ' = 1, … , �                    (40) 
 
We can solve the eigenvalue problem 
  |^��� − ������G����| = 0                                               (41) 
 
for eigenvalues 1 > ^� > ⋯ > ^X > 0, and eigenvectors � = (��, … , �X�.  
The vectors wL′s satisfies the following equation: 
 ^$����$ = ������G�����$                                               (42) 

 
and are normalized as follows: 
 �q���� = (; 
 
so that 
 �q������G����� = \	=D]^�, … , ^X`. 
 
The reduced rank estimators are given by  � = (��, … , ��� 
and �� = ��� �. 
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Each of the five cases a, b, c, d, e mentioned in sect. 2.4 
can be estimated by reduced rank regression. 
Now we proceed with testing the cointegration renk under 
specific hypothesis on the deterministic part of the 
process. Following Johansen S. (1988), let’s consider 
 Π = αβ′  
 
when there is an unrestricted linear term in the VAR 
model written as a reduced form of an error correction 
model. The Gaussian errors in equation (39) gives rise to a 
likelihood analysis leading to a regression, and for the 
analysis this is seen to be a reduced rank of regression of U� = ∆X� on  V� = X�G� corrected for lagged differences, 
constant and linear term. The estimator of the error 
covariance matrix is given by (Johansen S., 1994): 
 }���G� �⁄ (o� = |���|∏ (1 − ^$��$&�                                      (43)  
Dividing (43) by a similar expression posing r = p, we 
find that the likelihood ratio test L ¡J(r� = L ¡J(p�  of 
the model with a quadratic trend in the VAR and a linear 
trend in the cointegration versus the unrestricted 
autoregressive model, is given by: 
 −�∑ £�D(1 − ^$�X�g�                                                     (44) 
 
The same analysis holds for a model including trends in 
the variables but no trend in the cointegrating relation. 
In the analysis for a model without trends we only correct 
for the lagged differences.  
Thus in all three cases, following Johansen S. (1994), we 
get the test statistic (44), but with different eigenvalue.  
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In the model with a trend in the cointegrating relation the 
statistical analysis consists in a reduced rank regression of ∆X� corrected for legged differences and the constant. 
 

2.6   Testing the absence of trend in the 
trend stationary components  

 
In this section we compare the model with a quadratic 
trend in the variables against the model without a 
quadratic trend but with a linear trend in the cointegration. 
Following Johansen S. (1994), the likelihood ratio test 
statistic is given by: 
 }���∗ (o�}���(o� =

}���∗ (o�/}���∗ (W�}���(o�/}���(W�
}���∗ (W�}���(W� 

 
Hence a comparison of “a model without trend in the 
cointegration but with trends in the variables” against “a 
model with a trend in the cointegrating relations” is 
possible. We will use the test statistic is equal to: 
   �∑ £�D�(1 − ^$�/(1 − ^$∗�X�g�                                       (45) 

 
wich allows for a comparison of the model without trend 
in the cointegration but with trends in the variables against 
the model with a trend both in the cointegrating relations 
and in the variables. 
In or case the likelihho ratio test can be expressed: 
  

}���� (o)
}���∗ (o) = }���� (o)/}���� (0)

}���∗ (o)/}���∗ (0)
}���� (0)
}���∗ (0) 
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And analogously the test statistic is: 
   
� ∑ £�D�(1 − ^$�)/(1 − ^$∗���                                          (46) 
 

2.7   Model Specification 
 
In specifying VAR models or VECMs it is necessary to 
specify the lag order and, for VECMs, also the 
cointegrating rank. To this aim, some statistical 
procedures are available and will be discussed in the 
following. Because unrestricted VAR models and VECMs 
usually involve a substantial number of parameters, it is 
desirable to impose restrictions for reducing the 
dimension of the parameter space and thereby improve the 
precision in the estimations. If the VAR has a unit root 
and all the variables are integrated of the same order, there 
could be some stationary cointegrating relations, as 
previously set.   
 

2.7.1   Determining the autoregressive order 
 
In determining the lag order of a dynamic model we can 
use the same procedures available for univariate models. 
At this stage it is useful to focus on the VAR form (31) 
because the cointegrating rank r is usually unknown when 
the choice of the lag order p  is made. One possible 
approach is to start from a model with some prespecified 
maximum lag length, p ¡J and apply sequentially some 
tests to determine a suitable model order. Generalized 
versions of the criteria in the univariate case are available 
to that purpose. The general approach is again to fit 
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VAR(m) models with orders ¥ = 0, … , W���  and to 
choose an estimator of the order W  that minimizes the 
preferred criterion. Many of the criteria in current use 
have the general form:  
 
lo(¥) = £�D \
'	(∑3�(¥)) + H�¦(¥)                        (47) 
 
where det	(. ) denotes the determinant, log is the natural 
logarithm, ∑3�(¥) = �G�∑ Y��Y��q��&�  is the residual 
covariance matrix for a model of order ¥, H� is a sequence 
depending on the sample size �, and ¦(¥) is a function 
that penalizes large VAR orders. For instance, ¦(¥) may 
represent the numbers of parameters that have to be 
estimated in a VAR (¥)  model. The term 
log det	(∑3�(¥)) measures the fit of a model with order 
m. Because there is no correction for degrees of freedom 
in the covariance matrix estimator, the log determinant 
decreases when ¥ increases.  As in the univariate case, 
the sample size has to be held constant; hence, the number 
of presample values set aside for estimation is determined 
by the maximum order W���. 
The following criteria are direct generalizations of the 
corresponding criteria for univariate processes:  
 

• Akaike's Information Criteria	 
 

U(l(¥) = £�D \
'	(∑3�(¥)) +
2
�¥Z

� 
 

• Hannan-Quinn Criterion 
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�ª(¥) = £�D \
'	(∑3�(¥)) +
2£�D£�D�

� ¥Z� 

 
• Schwarz Criterion 

 

�l(¥) = £�D \
'	(∑3�(¥)) +
£�D�
� ¥Z� 

 
• Final Prediction Error 

 

«�k(¥) = £�D \
'	(∑3�(¥))(1 +
2
�¥Z

�) 
 
Model selection criteria can also be used for identifying 
coefficients that may be replaced by zero or other 
exclusion restrictions.   

2.7.2   Dickey – Fuller test 
 
In order to identify the order of integration of a time series 
there are several statistical tests. The first one considered 
in this work is the Dickey – Fuller test. 
Consider the AR(p) model: 
 
O� = ��O�G� +⋯+ �XO�GX + Y�                                 (48) 
 
the process is integrated when 
 

�(1) = 1 − �� −⋯− �	X = 0 
 
We are interested in testing the hypotheses α� = 0. To test 
this null hypothesis against the alternative of stationarity 
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of the process, it is useful to reparameterize the model. 
Subtracting y�G� from both sides, we have: 
 
∆O� = ¬O�G� + ∑ �n∗∆O�Gn

XG�
n&� + Y�                             (49) 

where ¬ = −�(1)  and �n∗ = −]�ng� + ⋯ + �X`.	 In this 
model the test of the hypothesis is 
 
�{:	¬ = 0 versus ��:	¬ < 0. 
 
This test, called augmented Dickey – Fuller (ADF) test 
statistic is based on the t-statistic of the coefficients ¬ 
from an OLS (Ordinary Last Square) estimation  (Fuller 
W.A., 1976 and Dickey D.A. and Fuller W.A., 1979). 
Critical values have been obtained by simulation, and they 
are available in Fuller W.A. (1976) and, Davidson R. and 
MacKinnon J.G. (1993).  
If the order of integration of a time series and, hence, the 
number of unit roots in the AR operator, are not clear, we 
should calculate the first difference series so many times 
until the series becomes stationary. Then a unit root test is 
performed for the series. If the unit root is rejected, a unit 
root test is applied to the series, which is differenced one 
time less than in the previous test. If again a unit root is 
rejected, the procedure is repeated until a unit root cannot 
be rejected.  
 

2.7.3   KPSS test 
 
In this section we are going to investigate the integration 
proprieties of a series y� testing the null hypothesis that 
the process is stationary (�{:	O�~((0) ) against the 
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alternative that it is ((1) (��:	O�~((1). Kwiatkowski D., 
Phillips P.C.B., Schmidt P. and Shin Y. (1992) derived a 
test for this pair of hypothesis. Assuming that there isn’t a 
term representing the linear trend, the starting point is the 
following process: 

O� = R� + ¯� 
 
where R� is a random walk, 
 
R� = R�G� + |� , |�~		\(0, °��), 
 
and ̄ � is a stationary process. 
In this framework the test of the hypothesis is as follows: 
 

�{: °�� = 0 versus ��: °�� > 0. 
 

If H{  holds, y�  is composed of a constant and the 
stationary process z�:	 hence, y�  is also stationary. 
Kwiatkowski D. et al. (1992) have proposed the following 
test statistic:  

Z��� = 1
��³

���
°� �́

�

�&�
 

 
where �� = ∑ �µn�n&�  with �µ� = O� − O¶  and °� �́  an 
estimator of 
 

°� �́ = lim�→´ �G� j=o(³ ¯�
�

�&�
) 
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that is an estimator of the long – run variance of the 
process °� �́ . If O� is a stationary process, �� is ((0). If O� is 
((1), the numerator will grow without bounds and the 
statistic becomes large for large sample sizes.   
 

2.8   Specifying the cointegrating rank 
 
If some of the variables are ((1), a VECM is the suitable 
modeling and the cointegrating rank o has to be chosen in 
addition to the lag order. For this choice, we can use some 
procedures based on likelihood ratio test. The following 
sequence of hypothesis may be considered: 
 
H{(0): rk(Π) = 0           versus          H�(0): rk(Π) > 0 
H{(1): rk(Π) = 0           versus          H�(1): rk(Π) > 0 

… 
… 
… 

 
H{(K − 1): rk(Π) = K − 1   versus      H�(1k − 1): rk(Π) = K
               (50) 

 
The testing sequence terminates, and the corresponding 
cointegrating rank is selected when the null hypothesis 
cannot be rejected for the first time. If the first null 
hypothesis in this sequence, H{(0), cannot be rejected, a 
VAR process implemented considering the first 
differences is considered. At the other end, if all the null 
hypotheses can be rejected, including �{(Z − 1), a levels 
VAR process should be considered for the analysis. 
Under Gaussian assumptions, the likelihood ratio statistic 
under �{(o{)  is nonstandard. To present the tests, the 
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model (34) is a convenient point of departure. 
Specifically, we first consider the model: 
 
O� = #{ + #�' + R�                                                        (51) 

 
where  R�  is a VAR process. If #� = 0 , there is just a 
constant mean and no deterministic trend term. In that 
case, O� − #{ = R�, and thus dO� = dR�; from the VECM 
form of R�, the mean adjusted O� has the VECM form: 
 
dO� = e(O�G� − #{) + ∑ fn

XG�
n&� dO�Gn + Y�                  (52) 

 
or, if an intercept term is used, 
  

dO� = |{∗ + eO�G� + ³ fn

XG�

n&�
dO�Gn + Y� =	 

= e∗ ºO�G�1 » + ∑ fn
XG�
n&� dO�Gn + Y�                                (53) 

 
where 
 
e∗ = �e, |{∗� is ]Z	¼	(Z + 1)` with |{∗ = −e#{. 
 
Notice that, due to the absence of a deterministic trend 
term, the intercept can be absorbed into the cointegration 
relations: thus, Π∗ = αβ∗q  has rank r . Both VECM 
versions can be used for testing the cointegrating rank. 
Johansen S. (1995) considers the intercept version (53) 
and provides critical values for the likelihood ratio test, 
which is known as trace test.  
The test statistic has the following form: 
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}V(o{) = −� ∑ log	(1 − n̂)½n&�¾g�                                (54)   
 
where the ̂n ’s are the eigenvalues obtained by applying 
RR regression techniques to (53). 
 

2.9   Model Checking 
 
Many statistical tools exist for checking whether a given 
VAR model or VECM provides an adequate 
representation of the process underlying the time series of 
interest. As in the univariate case, many of them are based 
on the residuals of the final model. In what follows we 
show the Portmanteau test for investigate on the residuals 
autocorrelation and a test to check the residual’s 
normality.  
 

2.9.1   Portmanteau test for autocorrelation 
 

A formal test for residual autocorrelation may be based on 
the Portmanteau or adjusted Portmanteau statistic. The test 
checks the null hypothesis 
 

�{: k(Y�, Yq�G�) = 0,													 = 1,…	 , ℎ > W		 
 
against the alternative that at least one autocovariance 
and, hence, one autocorrelation is nonzero. The test 
statistic has the form: 
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ª� = � ³ 'o(l�nq
�

n&�
l�{G�l�nl�{G�) 

 
where 
l�n = �G� ∑ Y�Yq�G���&$g� . 
 
Suppose that Y�  are residuals from a stable jUV(W) 
process. Then, under the null hypothesis, ª�  has an 
approximate ¿�]Z�(ℎ − W)`  – distribution. Following 
Hamilton J. D. (1994), a modified statistic with potentially 
superior small sample properties is the adjusted 
Portemanteau statistic: 
 

ª�∗ = �� ³ 1
� − i

�

n&�
'o(l�nql�{G�l�nl�{G�) 

 
which is similar to the Ljung – Box statistic (Box G.E.P 
and Jenkins G., 1970) for univariate series. In practice, the 
choice of ℎ  may be critical for the test result. If ℎ  is 
chosen too small, the ¿� - approximation to the null 
distribution may be very poor, whereas a large ℎ  may 
result in a loss of power.  
 

2.9.2   Test for non normality  
 

Multivariate tests for non normality can be constructed by 
generalizing the Jarque – Bera tests. The idea is to 
transform the joint normal distribution in order to obtain 
independent components and then apply the tests for the 
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univariate series to the independent components. Given 
the residuals Y��(' = 1, … , �)  of an estimated VAR  
process or VECM, the residual covariance matrix is 
estimated as: 
 

³ =
�

�G� ³]Y�� − Y�¶`
�

�&�
(Y�� − Y�¶)′ 

 
The test on non normality can be based on the skewness 
and kurtosis of the standardized residuals Y��) =
(Y���) , … , Y�½�) ) 
The standardization of the residuals was proposed by 
Doornik J.A. and Hansen H. (1994). 
 

5� = (5��, … , 5�P)′                             
with                    
 

5�P = �G� ³(Y�½�) )t
�

�&�
 

 
and 
 

5� = (5��, … , 5�P)′                           
 

  with                      
 

  5�P = �G� ∑ (Y�½�) )À��&�  
 
Possible test statistics are: 
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t� = �5′�5�/6 
 
and if we define the (Z	¼	1) vector 3P = (3,… ,3)′ 
 


À� = �(5� − 3P)′(5� − 3P)/24 
 
Both statistics have asymptotic ¿�- distributions under the 
null hypothesis of normality. 
 

2.10   Forecasting VAR Processes and 
VECMs 
 

The forecast of the vector processes is completely 
analogous to the forecast of the univariate processes. The 
levels VAR form (31) is useful in forecasting the variable 
y� . At first we assume that the process parameters are 
known. Suppose that theu� ’s are generated by an 
independent white noise process. For example, following 
Hamilton J.D. (1994), at the origin � of the forecast, an ℎ 
- step ahead forecast is obtained as: 
 
O�g�|� = U�O�g�G�|� +⋯+ UXO�g�GX|�                    (55) 

 
where  
 
O�gn|� = O�gn for i ≤ 0. 
 
The corresponding forecast error is: 
 
 O�g� − O�g�|� = Y�g� + ¬�Y�g�G� +⋯+ 
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+	¬�G�Y�g�                                  (56) 

 
and, by successive substitutions, it can be shown that: 
 
¬) = ∑ ¬)Gn)n&� Un ,							
 = 1,2…,                                 (57) 
 
with ¬{ = (P and Un = 0 for i > W [Lutkepohl (1991, Sec. 
11.3)]. Y� is the 1 – step forecast error in period ' − 1, and 
the forecast are unbiased; that is, the forecast errors have 
expectation 0. The MSE matrix of an ℎ - step forecast is 
 

³(ℎ) = k1]O�g� − O�g�|�`]O�g� − O�g�|�`′4
Ã

= 

	= ∑ ¬n ∑ ¬′n��G�n&{                         (58)    
 

If Y� is an uncorrelated white noise and is not necessarily 
independent over time, the forecasts obtained via a 
recursion as in (55) are just the best linear forecasts. 
The forecast MSEs ∑ (ℎ)Ã  for a stationary process 
converge to the unconditional covariance matrix of O�.  
If the process O� is Gaussian, that is, Y�~		\	Ä(0, ∑ )� , the 
forecast errors are also multivariate normal. Using this 
result, the following forecast intervals can be established: 
 
�O�g�|� − H�GÅ

:
°P(ℎ), OP,�g�|� − H�GÅ

:
°P(ℎ)�               (59) 

 

Here H�GÅ
:

 is the Æ1 − Ç
�È 100  percentage point of the 

standard normal distribution, OP,�g�|�  denotes the ! −th 
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component of O�g�|�, and °P(ℎ) is the standard deviation 
of the h - step forecast error for the kth component of y�.  
If the process is moldable as a VECM, to the aim of 
forecasting it may be rewritten in VAR form. 
Alternatively, equivalent forecasting equations can be 
obtained directly from the VECM. 
If deterministic and/or exogenous variables are present, 
the formula must be extended. Because the future 
development of the deterministic variables is known, they 
are particularly easy to handle. They may simply be added 
to the stochastic part.  
We have worked under the assumption that the process is 
known, but this assumption is unrealistic in practice. 
Following Hamilton J.D. (1994), denoting the optimal ℎ - 
step forecast by O�g�|�  as in (55) and providing its 
counterpart based on estimated coefficients by a hat, we 
have: 
O��g�|� = U��O��g�G�|� + ⋯ + U�XO��g�GX|�                    (60) 

 
where 
 
O��gn|� = O�gn for i ≤ 0  
 
and the U�$ s (	 = 1, … , W)  are estimated parameters. The 
corresponding forecast error is: 
 
O�g� − O��g�|� = ÊO�g� − O�g�|�Ë + ÊO�g�|� − O��g�|�Ë = 
 
= ∑ ¬n�G�n&{ Y�g�Gn + ÊO�g�|� − O��g�|�Ë                       (61) 
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The first term on the right side of the equation (61) 
involves future residuals Y�  with ' > �  only, the second 
term is determined by present and past variables if only 
past variables have been used for the estimation. It follows 
that the two terms are independent if u� is an independent 
white noise. Moreover, under standard assumptions, the 
difference O�g�|� − O��g�|�  is small in probability as the 
sample size used for estimation gets large and the VAR 
coefficients are estimated more and more precisely. 
Hence, the forecast error covariance matrix is: 
 

³(ℎ) = k1]O�g� − O��g�|�`]O�g� − O��g�|�`′4
Ã�

= 

= ∑ (ℎ)Ã + �(1)                          
 

The quantity �(1)  denotes a term tending to zero with 
increasing sample size. Correction factors for forecast 
MSEs and forecast interval may become more 
complicated, depending on the terms to be included in 
addition to the VAR part. 
 

2.11   Empirical Application 
 
In this chapter we will discuss about the best way to 
forecast the cause – specific mortality rates.  
This work aim is to propose a method for mitigating the 
jumps caused by the reclassification ICD dropping the 
hypotheses of independence between all causes of death. 
By means of models and processes known in literature, we 
build some innovative steps to follow in order to 
overcome these two restrictive problems. In particular, the 
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study is based on an extension of the  standard Lee – 
Carter model for smoothing the mortality series 
(Haberman S. and Villegas A, 2014 – hereinafter 
mentioned as HV Model) and on the VECM (Vector Error 
Correction Model), analysed in order to project the long-
term stationary relation between the different causes of 
death. 
In our opinion the proposed method provides a better 
understanding of trends in aggregate mortality rates and 
implies improvements in the forecasting process, having 
considered the long-run relationships between causes 
based on historical data.  
Once the specific death rates are forecasted, we can 
compute the resulting forecasted mortality rates and 
compare them with the results of the Lee Carter Model, 
when they are forecasted with an ARIMA processes. We 
will show that the proposed method produces the 
preferable projections in order to calculate the total central 
death rates.  
To this aim we have to modeling the cause – specific 
mortality through four different steps, as follows: 
 

1) Smoothing on the mortality rates with an extension 
of the Lee – Carter Model 

2) Capturing the possible dependences among the 
cause – specific deaths with the VECM.  

3) Forecasting the mortality index with the ARIMA 
models and the VECM (only if there are several 
stationary cointegrating relations between them). 

4) Use the better prevision in order to calculate the 
future trend of mortality rates. 
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2.11.1  Data and purposes 
 
Data concerning mortality, disaggregated for causes of 
death, are available at the Mortality Database 
administered by the World Health Organization [2009] 
(WHO) while the aggregated data (all causes) can be got 
from the Human Mortality Database (HMD), containing 
several demographic information as the number of deaths 
for many countries over the last 50 years for five-year age 
groups. The aggregated death (and survival) probabilities 
have been got by means of a Poisson Log Bilinear 
regression (see Brouhns N. et al 2002) on the Lee Carter 
model (see Lee R.D. and Carter L. 1992).   
Causes of death are defined by the International 
Classification of Diseases (ICD), which ensures 
consistencies between countries. In this section, all causes 
of death are considered divided by macro classes. The 
ICD changed three times between 1950 and 2006, from 
ICD-7 to ICD-10, in order to take into account changes in 
science and technology and to refine the classification. As 
consequence the raw data are not directly comparable for 
different periods.  Using U.K. mortality data divided by 
cause – specific deaths, we show that our method exhibits 
the best results compared with the ordinary method for 
modeling  mortality model and the ARIMA in terms of 
goodness of fit and ex post forecasting performance 
considering the dependencies. Indeed, after the adjustment 
on the mortality index, we then use the VECM’s to derive 
projections of cause - specific mortality rates and life 
expectancies. In particular, using selection criteria, such as 
Akaike's Information Criteria (AIC), Hannan-Quinn 
Criterion (HQ), Schwarz Criterion (SC), Final Prediction 
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Error (FPE), we select the lag order of the VAR (Vector 
Autoregressive). Several unit root tests on the variables 
considered are discussed; in particular a process can be 
defined stationary if its VAR has all its roots outside the 
complex unit circle (Hamilton J.D.,1994 and Lütkepohl 
K., 2005). Therefore, if this polynomial has a root equal to 
unity, some or all the variables are integrated of order one 
and there might be cointegrated relations among them. 
Unit root tests, such as the Kwiatkowski-Phillips-
Schmidt-Shin test (KPSS), the Augmented Dickey-Fuller 
test (ADF) or the Phillips-Perron test (PP), are useful tools 
in order to check for the stationarity of the variables. 
KPSS tests the null hypothesis that the variable is level or 
trend stationary, while in the ADF and PP test the null 
hypothesis of a unit root, and thus, the null hypothesis of 
non-stationarity. If the variables are stationary, denoted 
I(0)  (integrated of zero order meaning that the 
autocovariance is decaying to 0 sufficiently quickly), a 
jUV(W)  is suitable. If the variables are ((0),  the 
Johansen's procedure is applied to find the number of 
cointegrated relations. Two test statistics are commonly 
used in order to find the number of cointegrated relations: 
the trace test and the maximum-eigenvalue test.  
The trace test compares the null hypothesis that there are r 
cointegrated relations against the alternative of n 
cointegrated relations, where n corresponds to the number 
of variables under observation and o < �.  
The maximum-eigenvalue statistic tests the null 
hypothesis of r cointegrated relations against the 
hypothesis of o + 1 cointegrated relations. If the variables 
are ((1) and if there is no cointegration, a jUV(W − 1) on 
the first difference is estimated. Otherwise, the 
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appropriate VECM should be found. For validating the 
model a test for residual autocorrelations and non-
normality is used. 
Once the specific death rates are forecasted, we can 
compute the resulting forecasted mortality rates and 
compare them with the results of the Poisson log – 
bilinear Lee Carter Model, when they are forecasted with 
an ARIMA process. We show that the VECM produces 
the best forecasts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter II – Solutions to theoretical problems  

in modeling mortality by cause of death  

-59- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.11.2   Cause–Specific Mortality smoothing 
 
In this section we estimate the parameters of the 
Haberman – Villegas Model applied to the cause – 
specific death; in particular we will adjust the !� series in 
order to prepare them for the cointegration analysis. As 
previously explained, the adjustment is due to the 
discontinuities in the data due to the reclassifications. 
They have took place in several Countries at different 
times, as reported in Table 1.  
 

Table 1. ICD Changes 

 

Country ICD change Year Country ICD change Year 

USA 

ICD7-8 1968 

Australia 

ICD7-8 1968 

ICD8-9 1979 ICD8-9 1979 

ICD9-10 1999 ICD9-10 1998 

Japan 

ICD7-8 1968 

Sweden 

ICD7-8 1969 

ICD8-9 1979 ICD8-9 1987 

ICD9-10 1995 ICD9-10 1997 

France 

ICD7-8 1968 
Switzerland 

ICD7-8 1969 

ICD8-9 1979 ICD8-10 1995 

ICD9-10 2000 
Singapore 

ICD7-8 1969 

Italy 
ICD7-8 1968 ICD8-9 1979 

ICD8-9 1979 

Norway 

ICD7-8 1969 

U.K. 

ICD7-8 1968 ICD8-9 1986 

ICD8-9 1979 ICD9-10 1996 

ICD9-10 2001 
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The following set of figures from 5 to 28 concerns the 

representation of the fitted parameters αJ, βJ, k� and δJ
(L). 

of the model in (21).  
Each group is referred to male and female U.K. 
population divided for different causes of death. In 
clockwise, the first subplot shows the trend of the sum of 

the two parameters ��  and #�
($) . Being ��  constant with 

respect to '	over the whole observed period, the four 

curves are referred to the 4 different values of #�($) got in 
the four intervals: 1950-1967, 1968-1978, 1979-2000, 
2001-2009.  
The second subplot shows the trend of the parameter  � as 
function of R and the third reports the adjusted !� trend as 
function of '.  
The three vertical red segments point out the 
reclassification time: as evident, no more jumps are 
present in the graph.  
The 4 subplots in the other figures (Adjusted !�  for 
different ages) highlight this trend and in particular show 
how the discontinuities have been mitigated. As an 
example they are referred to 4 different age intervals (40-
44, 50-54, 60-64, 70-74): the light dots are the adjusted 
values of !�, the big dots are the observed data and the 
continuous line represents the fitted data.  
We show the same quantities in the case of both sex. 
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Fig. 6 – I&P (U.K., Male population) - Adjusted MN for different ages 
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Fig. 7 - Cancer (U.K., Male population) - Fitting parameter 

 

Fig. 8 - Cancer (U.K., Male population) - Adjusted MN for different ages 
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Fig. 9 - Circulatory (U.K., Male population) - Fitting parameter 

 

Fig. 10 - Circulatory (U.K., Male population) - Adjusted MN for different ages 
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Fig. 11 - Respiratory (U.K., Male population) - Fitting parameter 

 

Fig. 12 - Respiratory (U.K., Male population) - Adjusted MN for different ages 
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Fig. 13 - External (U.K., Male population) - Fitting parameter 

 

Fig. 14 - External (U.K., Male population) -  Adjusted MN for different ages 
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Fig. 15 - Other (U.K., Male population) - Fitting parameter 

 

Fig. 16 - Other (U.K., Male population) - Adjusted ÌÍ for different ages 
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Fig. 16 – I&P (U.K., Female population) - Fitting parameter 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 – I&P (U.K., Female population) - Adjusted ÌÍ for different ages 
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Fig. 18 – Cancer (U.K., Female population) - Fitting parameter 

 

Fig. 19 – Cancer (U.K., Female population) Adjusted MN for different ages 
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Fig. 20 – Circulatory (U.K., Female populatio) - Fitting parameter 

 

Fig. 21 – Circulatory (U.K., Female populatio) - Adjusted MN for different ages 
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Fig. 22 – Respiratory (U.K., Female populatio) - Fitting parameter 

 

Fig. 23 – Respiratory (U.K., Female populatio) - Adjusted MN for different ages 
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Fig. 24 – External (U.K., Female populatio) - Fitting parameter 

 

Fig. 25 – External (U.K., Female populatio) - Adjusted MN for different ages 
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Fig. 27 – Other (U.K., Female populatio) -  Fitting parameter 

 

Fig. 28 – External (U.K., Female populatio) - Adjusted MN for different ages 
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These figures illustrate the outputs we got throughout the 
procedure using the Model of Haberman S.  and Villegas 
A.  applied to the cause – specific mortality.  
Data for U.K. are available from 1950 to 2009. In order to 
compute a back testing analysis on the k� trends we will 
restrict the sample. To this aim we consider a period 
1950-2001. After capturing the dependences among the 
causes of death using the procedure illustrated in section 
2, we will forecast the mortality rates and we will 
compare them with the real data and with their ARIMA’s 
forecast. In Table 2 we report the evaluation of k� after the 
adjustment for the six causes considered. Table 3 shows 
the same quantities in the female case. 
 

Table 2: Kt Adjusted (U.K. Male population, age 25-89) 

  I&P Cancer Circulatory Respiratory External Other 

1950 336.253.815 0.9851339 160.167.506 156.624.748 529.538.742 6.814.580.077 

1951 319.607.039 11.886.972 167.844.878 200.242.355 564.722.116 7.417.550.752 

1952 295.987.179 12.009.202 159.258.074 155.171.448 519.598.798 6.629.722.507 

1953 277.039.644 12.503.850 156.677.792 170.831.909 579.940.435 6.055.365.895 

1954 264.616.438 13.831.401 158.582.222 149.173.776 629.373.491 6.336.665.779 

1955 246.959.861 14.676.676 159.895.506 164.042.447 612.859.334 6.247.295.214 

1956 225.770.613 15.168.594 160.109.448 164.103.402 637.843.941 5.829.558.781 

1957 211.999.636 15.852.411 155.241.769 172.701.881 604.260.501 5.133.041.346 

1958 195.911.310 16.415.779 159.347.845 166.583.289 602.858.469 5.019.398.865 

1959 178.846.230 17.336.064 154.019.155 175.455.005 612.980.388 4.498.484.141 

1960 164.534.582 17.875.804 156.878.647 151.655.742 567.517.887 4.349.075.976 

1961 155.923.636 18.300.090 158.660.776 177.621.566 569.608.637 4.250.086.925 

1962 144.688.875 19.623.682 161.068.255 172.848.325 591.569.146 4.132.148.774 

1963 138.887.891 19.913.382 163.912.924 179.870.488 589.829.277 4.026.063.103 
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1964 117.639.974 20.370.748 154.900.467 155.963.241 546.704.463 3.015.523.527 

1965 101.748.295 20.912.087 158.213.876 157.512.335 524.091.479 3.200.141.195 

1966 103.499.355 22.286.016 158.675.597 168.200.306 510.860.433 3.157.579.360 

1967 83.229.495 22.999.440 153.897.168 148.111.969 463.526.662 2.304.724.719 

1968 79.326.914 23.200.692 155.899.862 151.856.457 465.905.344 2.586.610.558 

1969 67.402.089 23.746.205 155.100.042 164.302.531 443.883.938 2.426.052.089 

1970 47.445.450 23.940.912 152.865.006 154.351.352 430.518.552 1.672.628.048 

1971 37.169.659 22.699.527 150.864.550 127.652.391 387.142.983 1.366.624.832 

1972 37.908.487 23.743.947 154.068.429 141.566.197 356.420.958 1.913.494.989 

1973 29.853.101 23.485.242 151.190.330 133.180.461 347.083.700 1.756.532.793 

1974 22.414.986 23.925.178 150.077.413 123.821.906 350.716.366 1.997.951.769 

1975 19.505.913 23.381.816 148.511.066 122.527.245 305.320.513 1.378.695.600 

1976 0.3538315 24.376.293 146.864.855 131.794.233 310.877.080 1.488.252.305 

1977 -0.7676349 23.604.843 143.657.478 112.027.586 263.470.328 0.841809994 

1978 -16.487.370 23.941.452 145.077.615 112.933.324 308.530.505 0.514822336 

1979 -14.752.314 24.052.203 143.997.535 109.639.631 293.280.667 1.284.792.636 

1980 -18.464.469 23.681.645 139.231.561 99.870.847 272.173.519 0.716950875 

1981 -34.224.445 22.346.253 133.819.556 90.539.462 237.947.725 0.401237318 

1982 -37.705.497 22.390.622 132.093.332 95.455.457 224.473.822 0.477478870 

1983 -43.307.349 23.541.096 130.433.864 89.692.575 201.238.571 -0.061986894 

1984 -43.837.387 22.944.098 125.073.157 78.547.918 171.083.893 -0.580047782 

1985 -47.218.298 22.817.700 126.041.602 89.844.120 190.281.461 0.420154725 

1986 -40.939.658 21.922.177 121.728.971 82.576.634 182.385.071 0.397949040 

1987 -53.336.032 21.443.408 116.142.165 66.124.220 125.103.820 -0.342802254 

1988 -41.134.924 21.836.990 112.394.663 67.966.828 108.677.403 -0.154848099 

1989 -46.957.224 21.232.599 108.611.598 75.652.028 0.84606013 0.072914775 

1990 -42.294.582 20.823.205 105.070.873 59.985.791 0.76202128 -0.251098391 

1991 -45.138.240 20.424.744 104.423.083 56.736.768 0.26077836 -0.222865439 

1992 -24.856.106 20.214.911 99.582.112 48.892.550 0.23971824 -0.904111577 

1993 -41.110.405 19.192.273 96.306.432 52.867.836 0.22689215 -0.697991076 
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1994 -39.854.180 18.172.083 88.054.052 34.981.664 -0.10145364 -0.493852156 

1995 -16.119.934 17.317.349 86.526.780 47.536.296 -0.28953703 0.200859462 

1996 -23.511.528 15.360.762 81.902.868 38.704.168 -0.33444848 -0.001449109 

1997 -31.189.324 13.635.721 75.527.691 40.323.131 -0.21752818 0.148588441 

1998 -34.875.554 13.478.966 72.722.232 35.309.679 -0.42444081 0.412287940 

1999 -25.887.287 11.379.451 67.843.292 45.083.367 -0.25150724 0.868878441 

2000 -30.951.004 0.9871767 59.666.214 34.799.406 -0.24649344 0.329306432 

2001 -24.979.343 0.8013715 53.826.730 25.957.943 -0.20422115 0.510934433 

2002 -21.640.843 0.7602224 49.770.640 24.933.254 -0.59723875 0.720461155 

2003 -13.322.788 0.6270362 44.809.343 31.207.273 -0.19658056 0.941892092 

2004 -13.975.038 0.5037456 34.886.250 19.360.007 -0.01336516 0.446392686 

2005 0.7246603 0.3430953 27.521.294 19.917.497 0.07339119 0.481601064 

2006 36.230.204 0.2728323 18.924.895 10.225.490 -0.01105043 0.380932392 

2007 40.986.136 0.1817249 12.530.686 0.7497018 -0.08477443 0.417673975 

2008 20.472.631 0.1222587 0.7731234 0.8436780 -0.11146009 0.706985951 

2009 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.000000000 

 

Table 3: Kt Adjusted (U.K. female population, age 25-89) 

 

  I&P Cancer Circulatory Respiratory External Other 

1950 306.147.648 17.932.392 24.706.259 49.018.534 841.660.875 524.104.904 

1951 293.799.539 15.070.223 25.302.680 107.229.961 884.522.313 543.972.326 

1952 272.019.439 14.734.471 23.506.537 34.069.673 786.794.669 451.496.193 

1953 259.393.937 12.887.728 23.281.824 61.506.640 884.656.908 387.930.049 

1954 250.460.355 13.117.304 22.992.952 22.707.325 975.231.963 408.297.977 

1955 235.657.764 12.554.384 23.281.827 41.339.169 985.944.291 416.423.970 

1956 220.094.274 12.278.292 22.984.730 44.740.681 1.013.393.570 373.295.005 

1957 210.895.969 10.871.747 22.097.838 36.854.835 963.624.582 303.710.043 

1958 200.341.428 11.312.896 22.586.384 36.868.213 998.401.859 295.218.085 
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1959 181.702.856 10.664.002 21.970.470 54.551.035 1.000.622.468 247.920.637 

1960 174.108.838 10.808.073 21.955.834 20.757.310 987.270.553 232.295.010 

1961 172.787.595 10.841.846 22.264.875 57.449.798 971.190.568 226.711.868 

1962 163.717.934 10.753.935 22.081.898 55.331.465 997.071.564 211.385.977 

1963 156.814.503 10.162.353 22.213.792 66.546.255 1.021.538.352 227.097.294 

1964 140.083.714 11.467.673 20.573.763 31.773.612 962.540.788 0.83075461 

1965 142.032.082 10.887.962 20.772.278 32.377.586 935.133.265 0.97122888 

1966 145.757.406 11.866.392 20.678.304 54.660.141 938.135.325 0.84497512 

1967 133.123.141 12.232.267 19.809.896 29.964.607 891.307.438 0.11899745 

1968 134.500.441 12.294.129 19.694.556 44.382.735 871.677.399 0.11720160 

1969 129.161.793 13.302.927 19.335.567 38.816.411 877.841.000 0.12644362 

1970 112.758.577 13.048.331 18.922.793 42.520.894 847.161.333 -0.75188241 

1971 103.947.019 13.440.461 18.553.991 17.349.501 805.442.057 -0.65889027 

1972 106.840.182 13.906.567 18.957.028 34.298.754 756.272.097 -0.16417524 

1973 103.750.377 14.414.326 18.666.227 34.293.133 757.530.624 -0.63783931 

1974 113.037.303 15.624.188 18.351.445 29.537.650 736.575.125 -0.45187338 

1975 101.046.275 15.615.321 17.952.592 29.955.822 703.406.916 -0.80957752 

1976 97.967.144 18.112.201 17.855.210 54.462.294 672.813.629 -131.217.432 

1977 82.845.846 17.516.074 17.160.830 33.615.278 638.568.191 -183.241.378 

1978 87.726.344 17.711.840 17.079.046 36.089.055 640.768.684 -166.058.498 

1979 79.165.802 19.659.139 16.955.627 37.162.091 630.829.470 -0.88490175 

1980 75.196.938 19.711.399 16.233.430 31.964.088 564.773.961 -152.129.684 

1981 70.883.814 18.368.905 15.571.389 29.348.850 502.141.323 -199.017.632 

1982 72.993.434 20.634.926 15.237.102 35.123.079 468.885.883 -178.254.968 

1983 68.994.274 20.633.082 14.907.798 31.191.044 438.457.369 -200.644.489 

1984 59.249.765 20.886.860 14.011.563 19.831.543 371.854.033 -293.266.455 

1985 62.918.429 21.483.820 14.234.042 36.854.799 374.112.763 -175.112.520 

1986 45.012.858 20.246.527 13.541.267 32.730.370 331.027.301 -191.852.983 

1987 59.431.843 21.364.484 12.809.476 16.953.211 215.260.469 -238.619.539 

1988 53.955.141 21.907.949 12.561.164 24.058.510 200.616.132 -219.975.156 
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1989 56.566.522 22.774.483 12.215.144 37.253.961 143.505.489 -187.958.863 

1990 54.987.196 21.119.004 11.618.055 23.374.388 0.94781100 -238.161.948 

1991 57.012.623 20.291.865 11.469.177 28.075.193 0.92979269 -280.940.405 

1992 52.970.659 19.958.996 10.867.338 19.598.541 0.28617069 -331.079.635 

1993 56.198.115 19.366.372 10.630.648 24.100.420 0.27241019 -275.349.809 

1994 62.208.902 18.779.260 9.601.938 0.8200386 -0.19531348 -272.046.319 

1995 67.873.228 17.644.446 9.424.086 21.949.246 -0.09239692 -131.960.498 

1996 64.419.691 16.040.150 8.962.270 17.762.693 -0.34094589 -131.942.894 

1997 48.658.051 14.855.080 8.323.541 23.923.656 -0.09849879 -0.86194271 

1998 54.983.458 13.740.624 8.179.517 19.212.599 -0.25344129 -0.05639918 

1999 42.015.961 12.727.202 7.590.422 30.401.252 0.13279377 0.37809699 

2000 41.008.649 10.527.282 6.499.172 20.516.358 0.13829643 -0.14054475 

2001 29.450.035 0.9838004 5.919.445 13.567.136 0.14697337 0.53882197 

2002 20.584.806 0.8958127 5.665.381 19.353.333 -0.15433918 0.81561008 

2003 16.322.333 0.6999716 5.461.873 29.634.169 0.52448562 167.014.112 

2004 0.9256991 0.5116823 4.147.886 17.384.115 0.60046259 0.77920541 

2005 -15.892.269 0.4914102 3.296.559 21.924.071 0.53473820 0.67295938 

2006 -36.268.929 0.3611531 2.145.886 10.727.252 0.39894083 0.17880144 

2007 -42.289.621 0.3259963 1.509.788 0.9540164 0.19582415 0.49368661 

2008 -12.458.279 0.2564461 1.137.819 12.789.115 0.47322613 105.283.027 

2009 0.0000000 0.0000000 0.000000 0.0000000 0.00000000 0.00000000 

 
The next step will be the cointegration analysis. In 
particular if all the variables have unit roots and there is a 
stationary cointegrating relation between the !�, we will 
forecast each of them in the VECM form. After that we 
will compare the VECM forecast with the ARIMA 
forecast.  
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2.11.3  Dependence analysis. 
 
Going along the procedure presented in section (2.3) 
again, first of all we have to select the lag of the VAR 
through several criteria (AIC, Hannan-Quinn Criterion, 
Schwarz Criterion, Final Prediction Error).  
With some tests (KPSS, ADF, PP) it is possible to see if 
the characteristic polynomial has unit root. KPSS tests the 
null hypothesis that the variable is trend stationary, while 
ADF and PP test the null hypothesis of a unit root (the 
null hypothesis of non-stationary). If the VAR has unit 
roots and all the variables are integrated of the same order, 
the VECM could be used. The Johansen's procedure is 
applied to find the number of cointegrated relations. If 
there is not cointegration a jUV(W − 1)  on the first 
difference could be more appropriate. Finally, if all 
variables are I(0)  a VAR(p)  is suitable. In Table 4 we 
report the lag order of the Vector Autoregressive process 
obtained through the four criteria discussed is section 
2.7.1 
 

• Lag order of the VAR 

 
Table 4: ÎÏÐ(Ñ) 

U.K. Male Population                   U.K. Female Population 

 

 

AIC(n) HQ(n) SC(n) FPE(n) 

2 1 1 1 

AIC(n) HQ(n) SC(n) FPE(n) 

1 1 1 1 
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The eigenvalues are bigger than one in absolute value. 
This means that the VAR could explode because its 
characteristic polynomial has unit roots.     
 

• Unit roots tests 
 

Tables from 5 to 10 show that for both sex all the 
variables are not stationary but I(1)  except for the 
!�,ÒÓ)X$���Ô�Ã for female population. In order to make a 
good analysis we don’t have to consider it for the 
cointegration analysis.  
Figures 29 and 30 report the trend of !� on the first 
differences for both sex and for the six causes of death. 
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MALES 

Table 5: Augmented Dickey – Fuller test, U.K. Population 

 
CAUSES OF DEATH ADF LAG ORDER P - VALUE 

I&P -0.9381 3 0,9402 

Cancer -0.4784 3 0,9798 

Circulatory System 2.0119 3 0,99 

Respiratory System -2.33 3 0,4414 

External -1.2111 3 0,8936 

Other -1.0549 3 0,9219 

 
Table 6: Phillips - Perron, U.K. Population 

 
CAUSES OF DEATH PP LAG ORDER P - VALUE 

I&P -1.7203 3 0,9737 

Cancer -0.2694 3 0,99 

Circulatory System 1.2455 3 0,99 

Respiratory System -38.1031 3 0,01 

External -7.3597 3 0,6793 

Other -2.5195 3 0,9523 

 
Table 7: KPSS, U.K. Population 

 
CAUSES OF DEATH KPSS LAG ORDER P - VALUE 

I&P 2.3031 3 0,01 

Cancer 1.163 3 0,01 

Circulatory System 2.6937 3 0,01 

Respiratory System 3.0345 3 0,01 

External 3.0138 3 0,01 

Other 2.4834 3 0,01 

 

 

 



Chapter II – Solutions to theoretical problems  

in modeling mortality by cause of death  

-81- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FEMALES 

Table 8: Augmented Dickey – Fuller test, U.K. Population 

 
CAUSES OF DEATH ADF LAG ORDER P - VALUE 

I&P -2.8242 3 0,2416 

Cancer 0.1599 3 0,99 

Circulatory System 1.0873 3 0,99 

Respiratory System -4.6381 3 0,01 

External -2.1588 3 0,5106 

Other -1.0109 3 0,9288 

 
Table 9: Phillips - Perron, U.K. Population 

 
CAUSES OF DEATH PP LAG ORDER P - VALUE 

I&P -7.5514 3 0,6677 

Cancer 1.362 3 0,99 

Circulatory System 1.3336 3 0,99 

Respiratory System -74.9722 3 0,01 

External -5.8541 3 0,7705 

Other -2.6035 3 0,95 

 
Table 10: KPSS, U.K. Population 

 
CAUSES OF DEATH KPSS LAG ORDER P - VALUE 

I&P 2.7215 3 0,01 

Cancer 0.5891 3 0.02363 

Circulatory System 2.9883 3 0,01 

Respiratory System 2.1376 3 0,01 

External 2.9435 3 0,01 

Other 1.5903 3 0,01 
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Fig. 29 - ÕÍ First Difference, U.K., Male Population 

 

Fig. 30 -  ÖN First Difference, U.K., Female Population 
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• Cointegration Analysis 
 

The Johanson’s procedure shows a linear trend in the 
cointegration and in the variables. With trace test and 
maxmum eigenvalue test it is possible to know the 
number of cointegrating relationships.   
 
 

Table 11: Trace Test, U.K. Male Population 
 

h n-h stat 10% 5% 2.5% 1% 

4 1 0.05041928 2.70 3.84 5.25 6.98 

3 2 6,18016087 15.74 18.08 20.26 22.40 

2 3 24,83020039 31.67 34.27 36.98 40.10 

1 4 51,09236539 50.62 54.02 57.01 61.03 

0 5 96,15921357 73.73 77.61 81.29 85.56 

 
Table 12: Maximum – Eigenvalues Test, U.K. Male Population 

 

h n-h stat 10% 5% 2.5% 1% 

4 1 0.05041928 2.70 3.84 5.25 6.98 

3 2 6,12974159 14.64 16.69 18.84 20.88 

2 3 18,65003953 21.44 23.75 25.68 28.31 

1 4 26,26216499 27.39 29.93 32.22 35.57 

0 5 45,06684818 33.45 36.46 39.00 41.87 
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Table 13: Trace Test, U.K. Female Population 
 

 
 
 
 
 
 
 
 

 

Table 14: Maximum-Eigenvalues Test, U.K. Female Population 
 
 

 

 

 

 

 

Tables 11 and 12 show one cointegrating relations in the 
male case; tables 13 and 14 indicate two relations in the 
female population. In particular we can observe a 
quadratic trend in the variables and a linear trend in the 
cointegration for males and females (see Johansen’s 
procedure). Table 15 and 16 report the result of the tests 
on residuals discussed in section 2.9. 

h n-h stat 10% 5% 2.5% 1% 

4 1 0.2883353 2.70 3.84 5.25 6.98 

3 2 9,5286355 15.74 18.08 20.26 22.40 

2 3 39,2167916 31.67 34.27 36.98 40.10 

1 4 83,8383564 50.62 54.02 57.01 61.03 

0 5 155,0295236 73.73 77.61 81.29 85.56 

h n-h stat 10% 5% 2.5% 1% 

4 1 0.2883353 2.70 3.84 5.25 6.98 

3 2 9,2403001 14.64 16.69 18.84 20.88 

2 3 29,6881561 21.44 23.75 25.68 28.31 

1 4 44,6215648 27.39 29.93 32.22 35.57 

0 5 71,1911673 33.45 36.46 39.00 41.87 
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Table 15: Tests on Residuals of the Fitted VECM, 1950–2001, 
Males in U.K. 

 

 

Table 16: Tests on Residuals of the Fitted VECM, 1950–2001, 
Females in U.K. 

 

The null hypothesis of no autocorrelation among the 
residuals is tested through the Portmanteau statistic, with a 
lag of 15 and 25, whose results are in Table 15 and 16. 
The skewness statistic, the kurtosis statistic, and a 
combination of these are used to test the normality of the 

Type of test Name of Test Statistic 
Value P value 

Autocorrelation Portmanteau (15 lags) 383.38 0.02 

  Portmanteau (25 lags) 624.78 0.01 

        

Normality Skewness 2.10 0.70 

  Kurtosis 14.03 0.36 

  Both 16.14 0.58 

Type of test Name of Test Statistic 
Value P value 

Autocorrelation Portmanteau (15 lags) 369.35 0,04 

  Portmanteau (25 lags) 601.37 0,03 

        

Normality Skewness 1.98 0.88 

  Kurtosis 15.20 0.09 

  Both 17.19 0.34 
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residuals. As indicated , the normality of the residuals is 
accepted by the three tests. 
As indicated in Table 15 and 16, the normality of the 
residuals is accepted by the three tests.  

• Forecasting 

The fitted model is now used to forecast cause-specific 
mortality rates. Since data are available until 2009, the 
forecasts are compared to actual mortality, which gives us 
some indications on the model forecasting performance. 
Figures 32-34 shows the forecasted mortality rates from 
the fitted VECM compared with the actual data (blue 
lines). The curve represents the fitted model until 2001 
and the resulting forecasts from 2002 to 2009. The future 
trend is well captured by the model for the six causes. 
However, to better evaluate the model performance, it is 
necessary to compare the results with the outcomes of a 
more traditional approach, the AutoRegressive Integrated 
Moving Average (ARIMA) process. 
As for the VECM, ARIMA processes are fitted over the 
period 1950–2001 and used to forecast mortality until 
2009. Since the approach developed in Pandit S.M. and 
Wu S.M. (2001) is followed, the nonstationarity in the 
variables is first removed by differencing the variables. In 
our case to ensure stationarity we will operate on the first 
differences of each cause-specific death rate using the 
tests KPSS, ADF and PP. 
UV(mU(!, 1, Z − 1)  models are then successively fitted 
to each age-standardized cause-specific log-death rate, 
increasing !  by one. Pandit S.M. and Wu S.M. (2001) 
suggest the use of the F-criterion to decide which model is 
the most suitable between an UV(mU(!, 1, Z − 1) and an 
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UV(mU(! + 1,1, !), as this criterion tests the assumption 
that some of the coefficients in a model are restricted to 
zero.  
Finally, noncorrelation among the residuals of the fitted 
model is checked. The best fitting ARIMA models 
resulting from this procedure are used for forecasting 
cause – specific rates.  
The Portmanteau test indicates no significant residual 
autocorrelation with lags of 5, 10, 15, 20, and 25.  
The forecasting performance of the two models is further 
evaluated through the mean absolute percentage error 
statistic (MAPE), the average of the absolute percentage 
gap between the forecasted and observed death rates. The 
average is made for a specific year over the five causes. 
Table 17 compares the results for the VECM and ARIMA 
models. 
The forecasts of the VECM are much closer to the actual 
death rates than the forecasts of the ARIMA processes, in 
particular in the long - run. Indeed, the MAPE is smaller 
for the VECM (see Arnold S. and Sherris M. 2013, 2014). 
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Fig. 31 - Total death rates in log scale, U.K. Male 
 

 

 

 

Fig. 32 - Total death rates in log scale, U.K. Male, 70-74 
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Fig. 33 - Total death rates in log scale, U.K. Male, 65-69 

 

Fig. 34 - Total death rates in log scale, U.K. Male, 75-79 

 

Figures 31 to 34 show some examples of the total deaths 
rates in log scale in different case. In particular in the 
figures 31 and 33 we have fixed the years and we have 
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plotted the curve taking into account only the age 
population, while in the figures 32 and 34, for different 
groups age, we have fixed the forecasted years.  
 

Table 17: Mean Absolute Percentage Error 
 

                         Male                                           Female 
 

 

 

 

 

 

 

 

 

 

 

 

It shows that the forecast with the Vector error correction 
model is good, especially in the long run.  

 

 

 

  
VECM ARIMA 

2002 1,08% 0,76% 

2003 1,63% 1,31% 

2004 1,44% 1,47% 

2005 1,74% 1,83% 

2006 1,84% 2,04% 

2007 2,17% 2,31% 

2008 2,40% 2,42% 

2009 2,85% 2,93% 

 
VECM  ARIMA  

2002 1,32% 0,72% 

2003 1,40% 1,03% 

2004 1,55% 1,42% 

2005 1,78% 1,72% 

2006 2,43% 2,46% 

2007 2,53% 2,55% 

2008 3,17% 3,21% 

2009 3,30% 3,35% 
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 2.11.4  Conclusions 
 
In this chapter the new idea introduced by Arnold S. and 
Sherris M., in modeling cause - specific mortality is 
presented. It consists in a new application of VECM to 
cause-of-death mortality and introduces a new modeling 
approach for cause-specific mortality that takes into 
account dependencies between causes. To this aim, first 
we have mitigated the discontinuity points caused by the 
ICD reclassifications; after we have captured the 
dependences among all causes of death. This innovative 
procedure is able to capture long-run trends and the 
stationary relationships between the variables. A long-run 
equilibrium relationship is shown to exist between the six 
main causes of death for U.K. females and males, 
providing an approach to model the cause-of-death 
dependence. This work confirms then that cointegration 
analysis, after the adjustment on the mortality index, is 
worthwhile in understanding and improving cause-
specific mortality forecasts.  
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Chapter III 
 
DREAD DISEASES AND CAUSE – 
SPECIFIC MORTALITY: NEW FORM OF 
INSURED LOAN  

3.1   Introduction 
 
In many industrialized countries, the progressive 
population ageing process determines a significant 
incidence of the diseases, which strongly increases with 
age. Today’s individuals are expected to live longer than 
previous generations, but part of these extra years of life 
may not necessarily be healthy years. There are two 
outlooks of ageing and morbidity that contradict each 
other. The Morbidity Compression Hypothesis predicts 
that health problems will occur at higher ages, given a 
rectangularization of the health profiles (Schoder J. et al. 
2011). 
On the contrary, the Morbidity Expansion Hypothesis 
predicts the gradual medicalization of society  as the 
longevity improves (Gruenberg E.M., 1977, Olshanksy J. 
et al., 1991, Doblhammer G. et al., 2001).  Anyway the 
debate on the topic is ongoing.   
In any of the two cases the morbidity phenomenon, both 
in the increasing concentration at higher ages hypothesis 
and in the spread effect over wider age intervals one, calls 
for a deep consideration, particularly in the insurance 
perspective.  
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The financial impact of the diseases due to costs for 
healthcare, rehabilitations, temporary and permanent 
assistance led to a supplementary insurance for health, 
current health systems, pay-as-you-go. Various classes of 
products have been developed by the insurance industry to 
specifically fulfil the needs of an ageing population facing 
the health risks. In particular, insurance companies start to 
offer coverage on financial contracts, by evaluating the 
exposition to long-term biometric risks such as mortality 
and morbidity. For instance, products protecting lenders 
and borrowers in the event a borrower ever stopped 
making payments for serious diseases or for death, are 
going to have great diffusion. At present, it can be 
observed that private insurers show more sensibility than 
social insurance in considering the question of life 
insurance coverage in case of specific cause of death and 
in the need of weight and balance the emerging health 
risks principally related to the ageing. The insurance 
industry traditionally proposes protection plans designed 
to give comprehensive financial support to the death 
event. A relevant case of a financial contract strongly 
affected by this risk is the insured loan. The contract, in its 
standard form, concerns the guarantee of the repayment 
provided by an insurance company in case of the 
borrower’s death during the loan duration due to any 
cause. The insured loan is protected against default in the 
sense that if default occurs insurance company will pay 
the lender what is owed. In this chapter we are going to 
consider insured loans plans covering critical illnesses and 
cause specific death. The idea is to perform contractual 
schemes in which the actuarial side is tailored on the 
specific profile of the insured. The work focuses on the 
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insured loan product design when the borrower is a 
private person. In particular, the aim is to propose new 
contractual models in which the insured loan is covered in 
case of the borrower’s death due to a specific cause and/or 
critical illnesses. Aim of the work is pricing the proposed 
products for inserting the results in the complete insured 
loan amortization schedule. Nevertheless it is opportune to 
point out that these new products have to be carefully 
priced. The structural breaks in the cause specific 
mortality time series indicate the difficulty in predicting 
cause specific mortality rates. Also the causes of death are 
competing risks. To perform this phase the mortality rates 
have been adjusted and predicted in the chapter 2.  
The chapter is organised as follows. Section 3.2 is an 
outline of the main characteristics of the standard insured 
loan contract. Financial and actuarial details are analysed. 
Section 3.3 focuses on the new trend of designing 
contracts “specialised” according to specific death cause 
or specific illness. Within this section the new products 
are introduced and formally described. In section 3.4 the 
numerical application is illustrated and the new products 
are priced. The results are illustrated in several tables and 
commented in subsection 3.4.2. Section 3.5 is an outlook 
on some new perspective for going on in the development 
of the research in this subject.  
 

3.2   Standard Insured Loan Contract  
 

Typically in the standard amortization method the 
borrower refunds the lender paying instalments at periodic 
intervals. Usually the amortization goes on for a lot of 
years and this circumstance makes the operation affected 
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by the insolvency risk due to all the events related to the 
duration of the human life, whatever the age at issue of the 
borrower is.  For these reasons it is efficient to insert in 
the contract an insurance policy for covering the risk that 
the debtor dies before having completely extinguished the 
debt.  Broadly speaking, if the borrower dies before the 
contract expiry, the insurer pays to the lander the 
outstanding loan balance evaluated at that time. The loan 
becomes an insured loan and the insolvency risk due to 
the debtor’s eventual death is cut down. In Coppola M. et 
al. 2009 a wide financial analysis of the insured loan is 
developed: formulas for single and periodic premiums, 
benefits and reserves are provided within the cash flow 
analysis. In that paper the Authors deep the risk analysis 
aspects, stopping in particular over the Model Risk and 
the Mortality Risk, the first due to the randomness in the 
choice of the mortality rate set and the second due to the 
random deviations of deaths from the expected values, 
considering pooling technique rather unfeasible in the 
specific matter in hands. Following Coppola M. et al. 
2009, supposing the borrower/insured’s debt is one 
monetary unit, we can write: 
 
∑ �����:������|
 = 1
�
���            (62) 

being ���:������|
  the actuarial present value of a k-year pure 

endowment of 1 monetary unit paid in case of life by an 
insured aged �, given by the following expression: 

���:������|
 = �(0, �) �� �         (63) 
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with ���  the survival probability of an insured aged	� at 
inception to be alive at time � while �(�, �) is the value in 
t=0 of 1 at time k. The annual anticipated payments	�� 
include the principal repaid ��, the interest paid �� on the 
outstanding balance ���
 valued at time � − 1, the 
actuarial premium covering the outstanding loan balance 
at the beginning of each year, if the death occurs before 
the expiration date. 
In the following subsection we will concern with the 
financial structure of ��, just observing that the actuarial 
premium and the loan instalment can be paid together to 
one counterparty (i.e. a bank) or separately to the lender 
and to an Insurance Company. These two circumstances 
will not have any consequence on the financial cash flows 
we are going to describe. The financial description will be 
developed in a deterministic environment, even if the 
stochastic approach for depicting the evolution in time of 
the interest rate curve could be easily implemented within 
a numerical application.  
 

3.2.1   Insured loan: installment and 
actuarial premium analysis. 

 
Consider that the borrower (aged �) will repay 1 monetary 
unit to the lender in � years by means of � constant 
instalments paid at the end of each year, at a given fixed 
annual rate of interest   or a variable one  !. For sake of 
simplicity we will present the payments components in the 
fixed rate hypotheses. The constant annual payment 
amount "! = " and the outstanding loan balance �! 
valued at the end of year � are respectively: 
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"! = " = 

#�$|��� 																	�! =		 #�$%&|��������

#�$|��� 		       (64) 

 
having indicating with ' �
|���, as usually, the present value of 
a periodic (annual) constant unitary income at the end of 
each period and for n periods, at a fixed interest rate. By 
means of the insurance component, if the borrower dies 
during the contract duration, the insurer will repay to the 
lender the obligations still due by the borrower at that 
time. We will assume that this payment operation will be 
done at the end of the year in which the eventual death 
occurs. If the death event happens at time (, ℎ − 1 < ( ≤ℎ, 0 < ℎ ≤ �,	what is due to the lender consists in the 
outstanding balance at time ℎ − 1 plus the annual interest 
on this sum. The value ,! of the benefit payable at time	ℎ 
(ℎ = 1,2, … , �) if the insured-borrower aged x at issue 
dies during the h-th year and the probability of this event 
are respectively (Coppola M. et al., 2009): 
 

B0 = 

#�$|��� '1 �
�!2
|�����������																			 q40�
/
                    (65) 

 
where '1 �
�!2
|�����������	refers to the anticipated case. 
The constant actuarial premium the borrower/insured pays 
at the beginning of the first m years (0 < 6 ≤ �, 0 ≤ ℎ <6 − 1) if alive, is given by: 
 

P/8 4,0 = P/8 4 = 

#�$|��� π4/8                    (66) 

 
in which: 
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π4/8 = 

#1 �9,:|������� ∑ ';/ �
�<|�������=�
>�� q>/
 4          (67) 

 
If ��	is	the curtate future lifetime of the insured aged � at 
issue, in the case of anticipated constant annual payments, 
the flow A! at the beginning of year ℎ is given by the 
following scheme: 
 

A! =
BC
D − �/E �,! 	�� ≥ ℎ 0 ≤ ℎ ≤ 6 − 10 	�� ≥ ℎ ℎ ≥ 6


#�$|��� '1 �
�!2
|����������� ℎ − 1 ≤ �� < ℎ 1 ≤ ℎ ≤ �
�

     
    
with ℎ = 0, 1, … , �;	�
 = 0.        (68) 
 

3.3   Cause of death and diagnosis event: 
impact on loan repayment. 

 
The cost of funding health care for elderly is continuously 
growing due to the increasing life expectancy. The topic is 
pregnant in the insured loan financial management. If a 
critical illness is diagnosed, the affected individual could 
not be able to completely or partially perform the 
engagements in his working activity and, in the specific 
case of the onset during the loan duration, this could 
involve the inability to fulfil the obligation as expected. 
Moreover, remaining within the traditional insured loan 
contract, setting the coverage in case of the borrower’s 
death, it is interesting to study the case of a death specific 
cause. The result is a tailor-made contractual form 
providing lower costs for the insured and the insurer. Our 
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idea is to propose an insured loan form in which the 
insurance coverage involves critical illness diagnosis 
and/or death specific cause.  
In the basic n-year term insurance, usually included in the 
loan amortization process, the insurer pays the benefit if 
the insurer dies within the � (or ℎ ≤ �) years of the loan 
duration, without specification about the death cause. 
Nevertheless the n-year term insurance can be specified 
with regard to a specific death cause. As well in the basic 
critical illness insurance (Pitacco E. et al., 1998) the 
insurer pays a lump sum upon the occurrence or diagnosis 
of the pre-specified dread diseases. Typically, the 
contractual options within the critical illness general 
scheme are the Stand Alone and the Accelerated. The first 
covers the insured just in case of diagnosis of illnesses, 
while the second guarantees payments in case of illness 
and in case of death. 
The work focuses on insured loans in which such cause-
specific insurance products are included, in order to 
explore new scenarios tending to personalize the loan 
contractual forms.  
Aim of the analysis will be the pricing of the actuarial 
insurance coverage we propose and next the drawing up 
of the amortization schedule in which the annual 
instalment includes both the actuarial premium and the 
financial repaying process. 
 

3.3.1   New proposals for insured loans 
 

In what follows we pose the borrowed capital equal to 1 at 
time 0 while the amount the insurer will pay under the 
specified contractual conditions is the amount still owed, 
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that is the residual debt valued at the time of the benefit 
payment in case of the borrower’s death. It is opportune to 
note that all the contracts in the following are designed 
taking into account the main aim of the operation, that is 
the resolution of the debt in case if the borrower’s 
insolvency. This implies contracts built according to the 
amortization schedule and consequently the analysis needs 
a discrete approach. 
 
Death Specific Insured Loan – SpeIL. The idea is to 
design a product in which the loan is saved in case of the 
borrower’s death for a specific cause. The death cause is 
precisely defined in the contract, for instance ischemic 
heart disease, stroke, lower respiratory infections and 
chronic obstructive long disease. In our numerical 
application we consider the death for circulatory system 
problems. 
The value of the insurer’s obligations AJKLMN valued at 
time 0 is given by: 
 

�OPQRS = ∑ #1 �$%&|��������
#�$|��� �(0, ℎ + 1) U!/
 �(V)
�
!��       (69) 

 

where U!/
 �(V)is the probability that an insured aged x at 
issue dies between ages x+h and x+h+1 because of a 
specific cause and �(0, ℎ + 1) is the discount factor for 
valuing in t=0 one monetary unit in h+1. Knowing the 
value �OPQRS it is possible to set the equation involving the 
insured’s obligations: 
 �OPQRS = ∑ �!�(0, ℎ) ��!
�
!��         (70) 
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where ��!  is the probability that � is alive at age � + ℎ 
and �! is the premium the insured pays at the beginning of 
year ℎ. 
 
Standard Critical Illness Loan (Stand Alone) - SCILsa. 
Here the insurance protection inserted in the loan concerns 
the coverage of the risk to suffer a particular specified 
disease. 
The equation concerning the insurer obligations follows: 
 

�OVRSW# = ∑ #1 �$%&|��������
# �$|��� �(0, ℎ + 1) X!/
 �(Y)
�
!��       (71) 

 

in which X!/
 �(Y) is the probability that the insured aged x 
at issue checks a specified diagnosis Z during the year ℎ, ℎ + 1. 
The insured’s obligations are given by the equation: 
 

�OVRSW# = ∑ �!�(0, ℎ) ��!
�
!�� [1 − X!�
/
 �(Y)\          (72) 

 
in which: 
  

X!�
/
 �(Y) = 0																																	 ]	ℎ = 0      (73)
    
   
Standard Critical Illness Loan (Accelerated) – SCILa. In 
this case the insurer will pay the amount if the insured 
suffers a specified disease or dies for any cause of death. 
The premium flow provides an accelerated benefit which 
covers the policyholder, both in case of a specified critical 
illness and in case of death for any cause. 
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The following equations hold: 
 

�OVRS# = ∑ #1 �$%&|��������
#�$|��� �(0, ℎ + 1)^ U_�!/
 `
�
!��       (74) 

 
in which U_�!/
  is the probability of the sum of two 
compatible events, both referred to the ages � + ℎ, � +ℎ + 1, specifically to die for any cause of death and/or to 
suffer a specified illness. 
 
Concerning insured’s obligations we can write: 
 

�OVRS# = ∑ �!�(0, ℎ) ��!
�
!�� [1 − X!�
/
 �(Y)\     (75) 

 
with the position in (73). 
 

3.4   Numerical applications 
 
3.4.1   Data source  
 

The empirical analysis we are going to perform in this 
section aims to develop the amortization schedules for 
loans covered in case of death or/and critical illness of the 
borrower as clarified in subsection 3.3.1. We will 
determine the global instalment periodically due by the 
debtor-insured, inclusive of both the payment amount for 
repaying the loan and the actuarial premium for the 
insurance coverage. We will assume different loan 
durations (10-20 years) and that the debtor-insured is a 40 
and 60 years old person in 2014. The study will be done 
referring to diverse cohorts (males, females, smokers, 
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non-smokers) in order to point out how the different basic 
characteristics impact on the contract pricing. Due to the 
availability of the data, we will refer to the U.K. 
population and will consider the circulatory system 
according to the diagnosis rates. Again, data for U.K. is 
available from 1950 to 2009. The diagnosis rates for a 
Stand Alone cover and for a Full Accelerated cover can be 
downloaded from the Continuous Mortality Investigation 
Bureau (CMI) and concern in particular the Circulatory 
System diseases (Brett P. and Du Toit J., 2007). Data 
concerning mortality disaggregated for causes of death are 
available at the Mortality Database administered by the 
World Health Organization [2009] (WHO), the 
aggregated data (all causes) can be got from the Human 
Mortality Database (HMD), containing demographic 
information as the number of deaths for many countries 
over the last 50 years for five-year age groups; data 
concerning death for any cause and/or diagnosis 
(accelerated from) are available in the Working Paper 14. 
The aggregated death (and survival) probabilities have 
been got by means of a Poisson Log Bilinear regression 
(see Brouhns N. et al 2002) on the Lee Carter model (see 
Lee and Carter 1992). The cause – specific mortality rates, 
in our case the Circulatory system, have been got using 
the model of Haberman S, and Villegas A., IME 2013 (see 
2.11.2). Finally, we have forecasted the aggregated 
mortality with an ARIMA model and the mortality rate 
concerning to circulatory system with the VECM in order 
to capture the dependencies among all causes of death 
(see section 2.11.3).  
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3.4.2   Actuarial premiums 
 
In this practical application we will take into account the 
specific death cause and/or illness cause “circulatory 
system illness”, taken out from International 
Classification of Diseases (ICD). For developing the 
actuarial analysis, we have determined the adjusted 
mortality indexes (in chapter 2) for each cohort and the 
specified illness and project them along the loan duration. 
The procedure is quite complex and need some 
specifications. 
Once specified the cohort under consideration, the first 
step is the calculation of the annual mortality rates, 
attainable as the ratio between the number of deaths and 
the number of survivors at the beginning of the year.  
The diagnosis rates represent the principal end product of 
a program of work carried out by the CMI 2011 Critical 
Illness Committee to develop tables of critical illness 
diagnosis rates based on recent UK insured lives 
experience, together with sufficient supporting 
information to enable appropriate practical use by 
actuaries involved in this business.  The diagnosis rates, 
divided by age, sex, smokers and non-smokers for 
durations of 5 years, are at present available only for 
“cancer and circulatory system illness”. Coherently with 
this information, we consider the same specific death 
cause. It is crucial to observe that the ICD changed three 
times between 1950 and 2009, from ICD 7-8, ICD 8-9 and 
ICD 9-10; this happened for taking into account changes 
in science and technology and for refining the 
classification. So data are not directly comparable each 
other when referred to these different periods. As 
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Haberman et al. IME 2013 show, it is possible to smooth 
mortality rates across the various classifications (see 
chapter 2). 
 

3.4.3   Empirical evidences and illustrations 
 
The first step of our analysis is to evaluate α4, β4, kd	and δ4(f) (see Appendix A). Substituting these parameters in 
the characteristic equation of the model (14) it is easy to 
determinate and to forecast μ4d trough the VECM process 
in order to calculate the global instalment periodically due 
by the debtor-insured  in the 2014. 
The second step is to develop the amortization schedules 
for loans covered in case of death or/and critical illness of 
the borrower as clarified in subsection 3.3.1. 
The following groups in the next section of tables report 
the constant premiums payable in all the contractual forms 
considered in subsection 3.3.1, respectively in the case of 
UK Female and Male population. We fixed the loan 
annual interest rate  = 0.07 and the technical actuarial 
valuation rate i = 0.02. The contracts are issued in 2014. 
In particular in the table group 16, table 16.b refers to 
SpeIL and the premium is determined by formulas 69 and 
70. This case is compared with the standard form SIL 
(Standard Insured Loan), providing the coverage in case 
of death for any cause, whose premium values are in table 
16.a (see formula 66). As expected, premiums fell when 
only a specific cause of death is considered, even if 
“important” as the combination of cancer and circulatory 
system illness is.  
Tables 17.a and 17.b concern the forms indicated as 
SCILsa and SCILa for Female non-smokers, in 18.a and 
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18.b there are the same results in the Female smokers 
case. The premiums have been calculated by formulas 71 
to 75. It is self-evident how cheap the coverage is in the 
Specific Insured Loan case and how it increases if the 
population refers to smokers.  
We observe in which measure the highest premium is that 
one referred to SCILa the contract offering the widest 
coverage: in this case the insurer will pay what is owed 
from the amortization schedule in case of death (for any 
cause) and in case of the specific illness diagnosis. 
Moreover, the diagnosis rates for female non-smokers 
aged 40-70 are higher than the corresponding one for the 
female smokers. As consequence in the case of SCILsa 
female non-smokers will pay more than the female 
smokers. This evidence works only in the Stand Alone 
cases. In the Accelerated coverage this effect is 
compensated by the expected behavior of the death 
probabilities and is not visible. 
Tables numbered 19 – 20 – 21 contain the same values 
referred to the Male population. A comparison between 
the two groups points out the general lower premiums for 
the females. In spite of this, it is interesting to highlight 
that in the considered age interval the female non-smokers 
have diagnosis rates slightly higher than the male non-
smokers. This circumstance turns into higher premiums 
for serious illness coverage in the case of female non-
smokers.  
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3.4.4   Some final considerations 
 

In the SCILa contract the weight’s event can be estimated 
by quantifying the premiums payable in cases of 
incompatibility of events. In the below tables you can see 
that the premiums is affected by this hypothesis. 
Continuing to investigate this point, consider for example 
the case of a SpeCILa in cases of incompatibility between 
cause – specific death event and the illness events, it may 
be noted (see tables below) that the premium is even 
higher than the premium calculated for the Scila that 
covers a range of events much wider. 
 

Actuarial Periodic Premium –  

Female NS. Issue Time 2014, r = 2%, i = 7%, 

C = 200000 – Compatible events 

 
Specific Critical Illness Loan (Accelerated) - SpeCILa 

 

 

 

 

Standard Critical Illness Loan (Accelerated) - SCILa 

  

 

 

 

Age at entry/ 

 Duration 
40 60 

10 283.85 2095.32 

20 560.70 3513.64 

Age at entry/ 

 Duration 
40 60 

10 328.08 2606.21 

20 663.43 4189.65 
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Actuarial Periodic Premium –  

Female S. Issue Time 2014, r = 2%, i = 7%, 

C = 200000, Compatible events 

 
Specific Critical Illness Loan (Accelerated) - SpeCILa 

 

 

 

 

Standard Critical Illness Loan (Accelerated) - SCILa 

  

 

 

 

 

Actuarial Periodic Premium –  

Male NS. Issue Time 2014, r = 2%, i = 7%,  

C = 200000 – Compatible events 

        

Specific Critical Illness Loan (Accelerated) - SpeCILa 

 

 

 

 
 

 

 

 

Age at entry/ 

Duration 
40 60 

10 506.17 3140.46 

20 966.05 5072.00 

Age at entry/ 

 Duration 
40 60 

10 550.57 3656.02 

20 1069.6 5756.04 

Age at entry/ 

 Duration 
40 60 

10 325.18 1368.05 

20 543.45 2189.11 
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Standard Critical Illness Loan (Accelerated) - SCILa 

 

 

 

 

 

Actuarial Periodic Premium – 

Male S. Issue Time 2014, r = 2%, i = 7%, 

C = 200000, Compatible events 

  

Specific Critical Illness Loan (Accelerated) - SpeCILa 
 

 

 

 

 

Standard Critical Illness Loan (Accelerated) – SCILa 

 

 

 

 

 

  

 

Age at entry/ 

 Duration 
40 60 

10 352.79 1586.03 

20 598.90 2531.23 

Age at entry/ 

Duration 
40 60 

10 375.46 1694.00 

20 645.33 2672.06 

Age at entry/ 

 Duration 
40 60 

10 403.07 1912.60 

20 700.85 3015.47 
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Table 16. Actuarial Periodic Premium – 

Female. Issue Time 2014, r = 2%, i = 7%, C = 200000 

 
Table 16.a  Standard Insured Loan – SIL 

  

 

 

                                   

Table 16.b    Specific Insured Loan – SpeIL 

 

 

 

 

 

Table 17. Actuarial Periodic Premium –  

Female non smokers. Issue Time 2014, r = 2%, i = 7%, C = 200000 

 

Table 17.a  Standard Critical Illness Loan (Stand Alone) – SCILsa 

 
 

 

 

 

  

 

Age at entry/ 

 Duration 
40 60 

10 90.19 749.04 

20 175.95 1320.07 

Age at entry/ 

 Duration 
40 60 

10 62.65 532.64 

20 120.72 981.14 

Age at entry/ 

 Duration 
40 60 

10 262.38 831.53 

20 422.28 1198.74 
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Table 17.b  Standard Critical Illness Loan (Accelerated) - SCILa 

  

 

 

 

Table 18. Actuarial Periodic Premium – 

Female smokers. Issue Time 2014, r = 2%, i = 7%, C = 200000 

 
Table 18.a  Standard Critical Illness Loan (Stand Alone)- SCILsa 

  

 

 

 

Table 18.b  Standard Critical Illness Loan (Accelerated) - SCILa 

 

 

 

 

 

 

 

 

 

Age at entry/ 

 Duration 
40 60 

10 285.62 925.37 

20 456.98 1424.16 

Age at entry/ 

 Duration 
40 60 

10 213.79 805 

20 273.18 925.80 

Age at entry/ 

 Duration 
40 60 

10 352.21 1304.30 

20 580.70 2034.17 
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Table 19. Actuarial Periodic Premium – 

 Male. Issue Time 2014, r = 2%, i = 7%, C = 200000 

 
Table 4.a  Standard Insured Loan – SIL 

 

  

 

 

                                      Table 19.b    Specific Insured Loan – SpeIL 

 

 

 

 

Table 20. Actuarial Periodic Premium –  

Male non smokers. Issue Time 2014, r = 2%, i = 7%, C = 200000 

 

Table 20.a  Standard Critical Illness Loan (Stand Alone) – SCILsa 

 

 

 

 

 

 

  

Age at entry/ 

 Duration 
40 60 

10 108.23 1251.55 

20 231.06 2106.08 

Age at entry/ 

 Duration 
40 60 

10 64.87 746.67 

20 129.59 1440.78 

Age at entry/ 

 Duration 
40 60 

10 218.68 1339.71 

20 429.84 2049.66 
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Table 20.b  Standard Critical Illness Loan (Accelerated) – SCILa 

 

  

 

 

 

 

 

 

Table 21. Actuarial Periodic Premium –  

Male smokers. Issue Time 2014, r = 2%, i = 7%, C = 200000 

 
Table 21.a  Standard Critical Illness Loan (Stand Alone) - SCILsa 

 

 

 

 

Table 21.b  Standard Critical Illness Loan (Accelerated) - SCILa 

  

 

 

 
3.4.5   Amortization schedule 
 
The global obligations of the borrower/insured arise from 
the amortization schedule, for what concerns his financial 

Age at entry/ 

 Duration 
40 60 

10 260.27 1515.15 

20 498.18 2373.22 

Age at entry/ 

 Duration 
40 60 

10 440.72 2378 

20 834.17 3590.64 

Age at entry/ 

 Duration 
40 60 

10 547.70 2975 

20 1035.35 4686.70 
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obligations, and from the premiums calculated in Table 16 
- 21 of the preceding section, for what concerns the 
insurance coverage. He will pay the sum between the 
constant financial installment and the specific premium 
referred to the chosen insurance contract. As an example, 
in Table 7 we report the amortization schemes of a loan 
issued in 2014 at a fixed rate of 7% , initial debt of 
C=200000 and with duration 10 years (Table 7.a) and 20 
years (Table 7.b). 
 

Table 22.a. Amortization Schedule. Issue Time 2014, r = 7%, C = 200000, n = 10 

 

 

 

 

 

Maturity Financial Instalment Payment due in case of insolvency 

1 28475.50 214000.00 

2 28475.50 198511.21 

3 28475.50 181938.21 

4 28475.50 164205.10 

5 28475.50 145230.66 

6 28475.50 124928.02 

7 28475.50 103204.22 

8 28475.50 79959.72 

9 28475.50 55088.10 

10 28475.50 28475.50 
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Table 22.b. Periodic Amortization Schedule. 

Issue Time 2014, r = 7%, C = 200000, n = 20 

 

 

 

In these Tables we report in particular the constant 
installment due by the borrower in case of insolvency 
throughout the loan duration (II column) and the payment 
due by the insurer in case of the borrower’s insolvency, if 
this event happens during the year preceding the date of 
valuation (III column). 
As an example, in the case of SCILsa, Female non-
smokers, the global annual obligation is showed in Table 
23.a. It is possible to appreciate the contribution of the 

Maturity 
Financial 

Instalment 

Payment due 

in 

case of 

insolvency 

Maturity 

Financial 

Instalmen

t 

Payment due 

in 

case of 

insolvency 

1 18878.59 214000.00 11 18878.59 141876.95 

2 18878.59 208779.91 12 18878.59 131608.26 

3 18878.59 203194.41 13 18878.59 120620.75 

4 18878.59 197217.95 14 18878.59 108864.10 

5 18878.59 190823.10 15 18878.59 96284.51 

6 18878.59 183980.65 16 18878.59 82824.33 

7 18878.59 176659.19 17 18878.59 68421.95 

8 18878.59 168825.25 18 18878.59 53011.41 

9 18878.59 160442.95 19 18878.59 36961.41 

10 18878.59 151473.85 20 18878.59 18878.59 



Chapter III – Dread Diseases and cause – specific mortality: new form 

of insured loan 

-117- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

illness diagnosis coverage inclusion in the global amount 
to pay if compared with results in Table 23.b, referred to 
the traditional SIL contractual form. 
 

Table 23.a.  Global annual obligation, Insured Loan and Stand Alone – SCILsa  
Female non smokers, C=200000, i=7%, r=2% 

 
 

 
 
 
 
 

Table 23.b. Global annual obligation. Standard Insured Loan – SIL 
Female non smokers, C=200000, i=7%, r=2% 

 
  

 

 

 

Table 23.c.  Global annual obligation. Specific Insured Loan  - SpeIL 

Female non smokers, C=200000, i=7%, r=2% 
 

 

 

 

 

 

Age at entry/ 

 Duration 
40 60 

10 28738.88 29307.03 

20 19300.87 20077.33 

Age at entry/ 

 Duration 
40 60 

10 28565.69 29224.54 

20 19054.54 20198.66 

Age at entry/ 

Duration 
40 60 

10 28538.15 29008.14 

20 18999.31 19859.73 



Chapter III – Dread Diseases and cause – specific mortality: new form 

of insured loan 

 

 

-118- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 23.d.  Global annual obligation. Insured Loan and Accelerated  - SCILa 

Female non smokers, C=200000, i=7%, r=2% 
 

 

 

 

 

 
 
Concluding, Table 23.c and 23.d show the global 
obligations in the same general conditions and in the 
SpeIL and SCILa cases, for which a cause - specific death 
and a dread disease  are considered.  
 
3.4.6   Future developments 
 
The present chapter focused on the conjoint consideration 
of the financial product loan to private persons and the 
insurance coverage in case of specific causes (of death 
and illness). 
On the hand the loan is very much diffused and is quite 
often affected by very long duration; this circumstance 
involves a strong insolvency risk due to critical illnesses 
or death of the borrower. On the other hand, we can 
observe the general tendency in specializing insurance 
contracts particularly in the more advanced Countries; this 
happens in order to offer products more efficient and 
cheaper from both the counterparty’s points of view. 
Moreover we can add that this kind of contracts are more 
and more computable in light of the increasing extent of 
specific data. So the idea was to propose such new 
insurance coverage within the standard financial loan. 

Age at entry/ 

 Duration 
40 60 

10 28761.12 29400.87 

20 19335.57 20302.75 
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This aim has been followed projecting the cause specific 
mortality rates and the specific illness diagnosis rates. In 
this procedure the relevant question of the discontinuities 
in the mortality rates due to the reclassification of the data 
(ICD) has been fronted using a recent model able to 
mitigate the jumps in the data themselves (see the trend of �j in chapter 2). Also, the problem of the dependencies 
among all causes of death has been solved using the 
Vector Error Correction Model. It has been possible to 
infer the projected data, to price the proposed contractual 
forms and to build the final borrower/insured payment 
scheme.  
Our method was found to be important and innovative in 
order to treat the cause-specific mortality. 
Future research in this topic is connected with the 
increasing interest in the specialization of the insurance 
contracts. We will propose new forms covering 
insolvency not due to death or illness but to other relevant 
circumstances as the layoff of the borrower.  
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Appendix A 
 

kl Adjusted, U.K. Male 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

  

1950 12.1977876 1971 12.4145334 1992 8.2976822 

1951 12.8102253 1972 12.6904397 1993 8.1065012 

1952 12.2684860 1973 12.4656538 1994 7.3969949 

1953 12.1184357 1974 12.4076806 1995 7.1976506 

1954 12.3434419 1975 12.2165739 1996 6.7186600 

1955 12.4498179 1976 12.1661159 1997 6.0844991 

1956 12.5201623 1977 11.8762173 1998 5.8743422 

1957 12.2954990 1978 12.0086165 1999 5.3293180 

1958 12.5672436 1979 11.9541044 2000 4.6259069 

1959 12.2978883 1980 11.5486727 2001 4.2128824 

1960 12.5374733 1981 11.0304712 2002 3.8810680 

1961 12.6532095 1982 10.8691593 2003 3.4273460 

1962 12.8941351 1983 10.8104845 2004 2.6481309 

1963 13.1062926 1984 10.6015930 2005 2.0328041 

1964 12.5960099 1985 10.6031243 2006 1.4724464 

1965 12.8437346 1986 10.2144737 2007 0.9690608 

1966 12.9091201 1987 9.7744505 2008 0.5843431 

1967 12.6318339 1988 9.4982290 2009 0.0000000 

1968 12.7746919 1989 9.1183347 

  1969 12.7620518 1990 8.8219476 

  1970 12.6047098 1991 8.6959803 
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mn, U.K. male    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25-29 0.05294683 

30-34 0.07070276 

35-39 0.07944927 

40-44 0.08837821 

45-49 0.10160989 

50-54 0.10283334 

55-59 0.09876937 

60-64 0.09162840 

65-69 0.07704875 

70-74 0.06950730 

75-79 0.06339855 

80-84 0.05181474 

85-89 0.05191260 
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on + pn�q), , , , U.K. maleU.K. maleU.K. maleU.K. male    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

1950-1967 1968-1978 1979-2000 2001-2009 

25-29 0.11303276 0.040601754 -0.145563019 0 

30-34 -0.12293424 -0.147652071 -0.295445332 0 

35-39 -0.09762152 -0.080292606 -0.215212331 0 

40-44 -0.18371761 -0.035992759 -0.184990402 0 

45-49 -0.32627183 -0.131575616 -0.227023633 0 

50-54 -0.30869869 -0.139023822 -0.171763923 0 

55-59 -0.26081963 -0.127540138 -0.103104130 0 

60-64 -0.25229734 -0.094350307 -0.057377670 0 

65-69 -0.17141002 0.033268294 0.037702526 0 

70-74 -0.17884584 0.049276301 0.057494502 0 

75-79 -0.20438922 -0.003802946 0.010218412 0 

80-84 -0.13314614 0.021280044 0.004776052 0 

85-89 -0.25499646 -0.075789166 -0.143625854 0 
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kl Adjusted, U.K. Female 

1950 13.3375463 1971 9.5876877 1992 5.5109556 

1951 13.6595987 1972 9.8415085 1993 5.3757906 

1952 12.5803721 1973 9.6958699 1994 4.8537976 

1953 12.4041885 1974 9.5207536 1995 4.7408648 

1954 12.2233294 1975 9.3121571 1996 4.4761107 

1955 12.4088270 1976 9.3113648 1997 4.1249926 

1956 12.2216342 1977 8.8669877 1998 4.0494654 

1957 11.6256691 1978 8.8257368 1999 3.7391840 

1958 11.9706934 1979 8.8060686 2000 3.1560290 

1959 11.5937203 1980 8.3950143 2001 2.8715188 

1960 11.5645851 1981 7.9950923 2002 2.7722109 

1961 11.7220943 1982 7.8211612 2003 2.6513063 

1962 11.5965470 1983 7.6370548 2004 1.9576415 

1963 11.6902031 1984 7.1412711 2005 1.5706113 

1964 10.7610055 1985 7.3073607 2006 1.0105467 

1965 10.8393640 1986 6.8944353 2007 0.7594275 

1966 10.8161283 1987 6.5094327 2008 0.5973817 

1967 10.3378527 1988 6.4194935 2009 0.0000000 

1968 10.2691241 1989 6.2874514 

  1969 10.0553331 1990 5.9050147 

  1970 9.8260319 1991 5.8218406 

   

 

 

 

 



Chapter III – Dread Diseases and cause – specific mortality: new form 

of insured loan 

 

 

-124- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        mn, U.K. Female                           

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25-29 0.11100454 

30-34 0.09460693 

35-39 0.07674190 

40-44 0.06682523 

45-49 0.07020482 

50-54 0.05079537 

55-59 0.04244109 

60-64 0.05290371 

65-69 0.06202858 

70-74 0.08302418 

75-79 0.09841643 

80-84 0.09784256 

85-89 0.09316467 
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on + pn
�q�

, , , , U.K. U.K. U.K. U.K. FeFeFeFemalemalemalemale 

    

  

 

 

1950-1967 1968-1983 1984-1992 1993-2000 2001-2009 

25-29 -0.359994 -0.298346 -0.26892 -0.13299 0 

30-34 -0.261023 -0.193566 -0.09773 -0.09332 0 

35-39 -0.081888 0.010041 0.02371 -0.01741 0 

40-44 0.002921 0.144483 0.04638 0.04523 0 

45-49 -0.101574 0.148102 0.05075 0.01383 0 

50-54 0.005708 0.268018 0.15539 0.06797 0 

55-59 0.047817 0.309479 0.26768 0.11469 0 

60-64 -0.057976 0.214545 0.26904 0.11936 0 

65-69 -0.133052 0.144693 0.20730 0.13577 0 

70-74 -0.331728 -0.009771 0.06786 0.08491 0 

75-79 -0.491019 -0.141285 -0.06813 -0.02285 0 

80-84 -0.483591 -0.140406 -0.09906 -0.05599 0 

85-89 -0.587518 -0.210611 -0.19493 -0.20397 0 
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