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Abstract Oncogenic activation of tyrosine kinases is a common feature in 

cancer, and its regulation represents an excellent antitumoral target. Tyrosine 

phosphorylation is also controlled by protein-tyrosine phosphatases (PTPs). 

Recent evidence has shown that PTPs can function as tumour suppressors. An 

improved understanding of how these enzymes function and how they are 

regulated might aid the development of new anticancer agents. 

It has been shown that cross-regulation of kinases/phosphatases and 

caspases allows for fine-tuning of the apoptotic threshold, as well as the 

opportunity to amplify apoptotic signals. The signaling pathways involved in 

the control of cell proliferation, adhesion and migration are governed by the 

balanced action of protein tyrosine kinases (PTKs) and protein-tyrosine 

phosphatases (PTPs). 

 

Keywords caspases, pathway, kinases, phosphatases. 

 

Abbreviations IAPs, Inhibitor of Apoptosis Proteins; TRADD, TNF 

receptor-associated death domain; FADD, Fas-associated death domain; 

DISC, death-inducing signaling complex; AIF, apoptosis inducing factor; 

Smac, second mitochondria-derived activator of caspase; TRAF2, TNF 

receptor associated factor 2; Erk, extracellular signal-regulated kinase; Cdk1, 

cyclin-dependent kinase; PTKs, protein tyrosine kinases; PTPs, protein-

tyrosine phosphatases; PTPRJ, Protein Tyrosine Phosphatase receptor like-j; 

CaMKII,                                          Ca
2+

/Calmodulin-dependent protein kinase II; GRK2, 

G-protein-coupled receptor kinase 2; FasL, Fas ligand; LOH, loss of 

heterozygosity; S2ED, heparin sulfate proteoglycan Syndecan-2; TSP1, 

Thrombospondin- 1; GPCRs, G protein coupled receptors; 2AR,2-

adrenergic receptor.  

 

1. Introduction 

 

Cancer can be viewed as the result of a succession of genetic changes 

during which a normal cell is transformed into a malignant one while evasion 

of cell death is one of the essential changes in a cell that cause this malignant 

transformation.
1,2

 As early as the 1970’s, Kerr et al. had linked apoptosis to the 

elimination of potentially malignant cells, hyperplasia and tumour 
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progression.
3
 Hence, reduced apoptosis or its resistance plays a vital role in 

carcinogenesis.  

Apoptosis is a form of programmed cell death that eliminates individual 

cells within an organism while preserving the overall structure of surrounding 

tissue.
4
  

However, it was not until the mid-1990s that apoptosis was linked to the 

activation of the cysteine-dependent aspartate driven proteases (caspases),
5,6

 

which cleave key intracellular substrates to promote cell death. Given the 

critical role that caspases play in dismantling the cell during apoptosis, their 

activation and subsequent activity are highly regulated. Failure of a cell to 

properly modulate caspase activity can cause aberrant or untimely apoptotic 

cell death, potentially leading to carcinogenesis, autoimmunity, 

neurodegeneration, and immunodeficiency.
7,8

 

There are many ways through which a malignant cell can acquire reduction 

in apoptosis or apoptosis resistance. Generally, the mechanisms of the evasion 

of apoptosis can be broadly dividend into: 1) disrupted balance of pro-

apoptotic and anti-apoptotic proteins (like Bcl-2 family, p53 and Inhibitor of 

Apoptosis Proteins (IAPs); 2) reduced caspase function and 3) impaired death 

receptor signaling.  

 

1.1 Caspases, a family of cysteine proteases 

 

The caspases are a family of cysteine proteases that are constitutively 

present in most mammalian cells, and they reside in the cytosol as single chain 

proenzymes.  

The primary structure of a caspase is an amino-terminal prodomain and a 

carboxy-terminal protease domain, which contains the key catalytic cysteine 

residue. Caspases are categorized as initiator or effector caspases, based on 

their position in apoptotic signaling cascades. The initiator caspases (caspase-

2, -8, -9, and -10) act apically in cell death pathways and all share long, 

structurally similar prodomains.
9,10

 This group of enzymes is activated through 

“induced proximity” when adaptor proteins interact with the prodomains and 

promote caspase dimerization.
11 , 12

In contrast, the effector caspases 



Chapter 1       Programmed cell death pathways in cancer governed by the 

balanced action of PTKs and PTPs 

 

- 3 - 

 

(caspase-3, -6, and -7) have shorter prodomains and exist in the cell as 

preformed, but inactive, homodimers. Following cleavage mediated by an 

initiator caspase, effector caspases act directly on specific cellular substrates to 

dismantle the cell. Although many individual caspase substrates have been 

implicated in specific aspects of cellular destruction (e.g., lamin cleavage is 

required for the efficient packaging of nuclei into small membrane-bound 

vesicles), recent proteomic approaches have greatly expanded the known 

repertoire of proteolytic products generated during apoptosis.
13

 Further work 

will be needed to confirm these findings and to determine how (or if) all of 

these substrates participate in the apoptotic process,
14

 especially as new details 

emerge on the relationship between posttranslational modifications, like 

phosphorylation, and caspase cleavage.
15

 

 

1.2 Apoptotic pathways  

 

There are three pathways by which caspases can be activated. The two 

commonly described initiation pathways are the intrinsic (or mitochondrial) 

and extrinsic (or death receptor) pathways of apoptosis (Figure 1). Both 

pathways eventually lead to a common pathway or the execution phase of 

apoptosis. A third less well-known initiation pathway is the intrinsic 

endoplasmic reticulum pathway.
16

 

 

1.2.1 The extrinsic death receptor pathway  

 

The extrinsic death receptor pathway, as its name implies, begins when 

death ligands bind to a death receptor. Although several death receptors have 

been described, the best known death receptors is the type 1 TNF receptor 

(TNFR1) and a related protein called Fas (CD95) and their ligands are called 

TNF and Fas ligand (FasL) respectively.
17

 These death receptors have an 

intracellular death domain that recruits adapter proteins such as TNF receptor-

associated death domain (TRADD) and Fas-associated death domain (FADD), 

as well as cysteine proteases like caspase 8.
18

 Binding of the death ligand to 

the death receptor results in the formation of a binding site for an adaptor 

protein and the whole ligand-receptor-adaptor protein complex is known as the 

death-inducing signaling complex (DISC). DISC then initiates the assembly 

and activation of pro-caspase 8. The activated form of the enzyme, caspase 8 
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is an initiator caspase, which initiates apoptosis by cleaving other downstream 

or executioner caspases. 

 

1.2.2 The intrinsic mitochondrial pathway 

 

As its name implies, the intrinsic pathway is initiated within the cell. 

Internal stimuli such as irreparable genetic damage, hypoxia, extremely high 

concentrations of cytosolic Ca
2+

 and severe oxidative stress are some triggers 

of the initiation of the intrinsic mitochondrial pathway. Regardless of the 

stimuli, this pathway is the result of increased mitochondrial permeability and 

the release of pro-apoptotic molecules such as cytochrome-c into the 

cytoplasm.
19

 The intrinsic pathway is closely regulated by a group of proteins 

belonging to the Bcl-2 family, named after the BCL2 gene originally observed 

at the chromosomal breakpoint of the translocation of chromosome 18 to 14 in 

follicular non-Hodgkin lymphoma. There are two main groups of the Bcl-2 

proteins, namely the pro-apoptotic proteins (e.g. Bax, Bak, Bad, Bcl-Xs, Bid, 

Bik, Bim and Hrk) and the anti-apoptotic proteins (e.g. Bcl-2, Bcl-XL, Bcl-W, 

Bfl-1 and Mcl-1).
20

 While the anti-apoptotic proteins regulate apoptosis by 

blocking the mitochondrial release of cytochrome-c, the pro-apoptotic proteins 

act by promoting such release. It is not the absolute quantity but rather the 

balance between the pro- and anti-apoptotic proteins that determines whether 

apoptosis would be initiated. Other apoptotic factors that are released from the 

mitochondrial intermembrane space into the cytoplasm include apoptosis 

inducing factor (AIF), second mitochondria-derived activator of caspase 

(Smac), direct IAP Binding protein with low pI (DIABLO) and Omi/high 

temperature requirement protein A (HtrA2). Cytoplasmic release of 

cytochrome c activates caspase 3 via the formation of a complex known as 

apoptosome which is made up of cytochrome c, Apaf-1 and caspase 9.
21

 On 

the other hand, Smac/DIABLO or Omi/HtrA2 promotes caspase activation by 

binding to inhibitor of apoptosis proteins (IAPs) which subsequently leads to 

disruption in the interaction of IAPs with caspase-3 or -9.
22
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1.2.3 The common pathway 

 

The execution phase of apoptosis involves the activation of a series of 

caspases. The upstream caspase for the intrinsic pathway is caspase 9 while 

that of the extrinsic pathway is caspase 8. The intrinsic and extrinsic pathways 

converge to caspase 3. Caspase 3 then cleaves the inhibitor of the caspase-

activated deoxyribonuclease, which is responsible for nuclear apoptosis. In 

addition, downstream caspases induce cleavage of protein kinases, 

cytoskeletal proteins, DNA repair proteins and inhibitory subunits of 

endonucleases family. They also have an effect on the cytoskeleton, cell cycle 

and signaling pathways, which together contribute to the typical 

morphological changes in apoptosis.
23

 

 

 
 

Figure 1. The intrinsic and extrinsic pathways of apoptosis. 
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1.2.4 The intrinsic endoplasmic reticulum pathway 

 

This intrinsic endoplasmic reticulum (ER) pathway is a third pathway and 

is less well known. It is believed to be caspase 12-dependent and 

mitochondria-independent.
24

 When the ER is injured by cellular stresses like 

hypoxia, free radicals or glucose starvation, there is unfolding of proteins and 

reduced protein synthesis in the cell, and an adaptor protein known as TNF 

receptor associated factor 2 (TRAF2) dissociates from procaspase-12, 

resulting in the activation of the latter. 

 

1.3 The bidirectional communication between caspases and 

kinases/phosphatases  

 

Although the cleavage of many caspase substrates is required for the 

structural packaging of cellular contents during apoptosis, a subset of caspase 

substrates are signaling molecules whose cleavage alters their signaling 

properties to affect the internal environment of the dying cell. In turn, 

signaling molecules can modulate caspase function to positively or negatively 

alter the trajectory of the cell death program. Given the millions of reversible 

phosphorylation events necessary to maintain cellular homeostasis and to 

allow cells to adapt nimbly to changing internal and external environments, 

the bidirectional communication between caspases and the 

kinases/phosphatases that control the cellular phosphoproteome is of particular 

interest.
25

 

With respect to phosphorylation, both the caspase activation process and 

intrinsic enzymatic activity are under the control of modifying kinases and 

phosphatases. This permits cellular flexibility in setting a threshold for the 

induction of apoptosis in response to alterations in the cellular environment 

(for example, after growth factor stimulation or changes in cellular 

metabolism) through changes in the activity of pro- or antiapoptotic kinases 

and phosphatases. Phosphorylation may also control caspase activity indirectly 

by controlling other apoptotic modulators (including caspase binding 

partners). If we consider that the control of caspases can be exerted via their 

direct phosphorylation, focused on caspase 9 we find that of caspase 9 may 

result in the failure of apoptotic induction. In particular the phosphorylation of 

caspase 9 by both Erk (extracellular signal-regulated kinase) and Cdk1 
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(cyclin-dependent kinase 1) suppresses caspase 9 activation.
26

 Given that the 

Erk pathway is upregulated in a variety of cancers, this inhibitory 

phosphorylation of caspase 9 may contribute to apoptotic (and therefore 

chemotherapeutic) resistance. It’s note that phosphorylation and inhibition of 

caspase 9 by ERK promotes cell survival during development and tissue 

homeostasis suggesting that phosphorylation of Thr 125 on caspase 9 may be 

an important mechanism through which growth factor and survival signals that 

activate the ERK-MAPK pathway can inhibit apoptosis. 

Therefore the apoptosis pathway could be regulated by a phosphorylation 

and a dephosphorylation event of apoptotic effectors.  

Cross-regulation of kinases/phosphatases and caspases allows for fine 

tuning of the apoptotic threshold, as well as the opportunity to amplify 

apoptotic signals. 

In the apoptotic process, the regulatory role of protein kinases is clearly 

established instead of the regulatory role of protein phosphatases is not clear. 

For this reason we are interested in the regulation of signaling responses of 

phosphatases. 

However, it has recently become apparent that protein phosphatases can no 

longer be viewed as passive housekeeping enzymes, but they partner with 

kinases in the regulation of signaling responses. The distinct but 

complementary function of these enzymes is emphasized by recent studies, in 

which kinases have been implicated in controlling the amplitude of signaling 

responses, whereas phosphatases are thought to have an important role in 

controlling the rate and duration of the response.
27,28   

 

In base to these considerations, my doctoral thesis aimed to identify 

chemical entities able to regulate the apoptotic process through the modulation 

of phosphatase and kinase activities. Therefore, I studied 1) PTPRJ, a protein 

tyrosine phosphatase receptor like j; 2) GRK2, G protein-coupled receptor 

kinase 2; and 3) CaMKII, Ca
2+

/Calmodulin-dependent protein kinase II. 

 

1.4 Protein Phosphatases 

 

The first PTP was purified in 1988, approximately 10 years after the 

discovery of tyrosine kinases. It is now known that PTPs constitute a large, 

structurally diverse family of tightly regulated, highly specific enzymes with 

important regulatory roles.
29,30
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It is also clear that PTPs have both inhibitory and stimulatory effects on 

cancer associated signaling processes, and that deregulation of PTP function is 

associated with tumorigenesis in different types of human cancer. 

Among all protein tyrosine phosphatases, PTPRJ is of particular interest for 

its role in human and experimental tumorigenesis.
31

 In fact, after its 

discovery,
32

a consistent body of literature supports its tumor suppressor 

activity in several models. PTPRJ (also named DEP-1, HPTPη, or CD148) is 

down-regulated in mammary cancer cells, and its restoration blocks their 

proliferation; a similar behavior was described in both human and 

experimental models of thyroid tumorigenesis, where PTPRJ overexpression 

was able to interfere with cancer cells malignant phenotype both in vitro and 

in vivo.
33

 Moreover, down-regulation of PTPRJ expression operated by miR-

328 increases cell proliferation in HeLa and SKBr3 cell lines.
34

 

PTPRJ has been successfully used as a therapeutic gene in cancer gene 

therapy preclinical models of thyroid and pancreatic cancer.
35

 The role of 

PTPRJ in human tumorigenesis was also highlighted by Ruivenkamp et al.,
 36

 

who demonstrated that PTPRJ was affected by loss of heterozygosity (LOH) 

in colon, lung, and mammary tumors; a significant percentage of LOH was 

also described in human thyroid tumors.
37

 Moreover, a polymorphism in the 

mouse Ptprj locus (Scc1) is associated with colon cancer development, 

although Ptprj genetic ablation did not induce spontaneous tumors in mice.
38,39

 

The biochemical pathways negatively regulated by PTPRJ have been partly 

elucidated. Various reports indicate an inhibitory effect of PTPRJ on several 

players of the mitogenic signals in both normal and cancer cells. In fact, 

CD148 interacts with and dephosphorylates numerous receptor tyrosine 

kinases (RTKs) including PDGFR, HGFR,
 40,41

 RET, and EGFR
42,43

 whose 

aberration in cancer cells is responsible for self sufficiency cell growth.
44

 

PTPRJ is also a negative modulator of the signaling mediated by cytosolic 

transducers, including phospholipase Cγ1 (PLCγ1), LAT, PKB/Akt,
45

and 

PI3K.
46,47

 Noteworthy, the role of PTPRJ on the inhibition of RTKs was also 

extended to VEGFR-2,
48,49

 whose activity is required for the formation of new 

vessels in tumor progression. Lately, PTPRJ ligands have been discovered, 

they include the heparin sulfate proteoglycan Syndecan-2 (S2ED)
50

 and 

Thrombospondin-1 (TSP1).
51

 CD148 acts as key intermediary in S2ED 

mediated cell adhesion, by modulating downstream β1 integrin mediated 

adhesion and cytoskeletal organization, whereas TSP1, a glycoprotein that 
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mediates cell-cell and cell-matrix interactions, increases PTPRJ activity, 

influencing the dephosphorylation of its substrates. These findings make 

PTPRJ an interesting candidate for the generation of novel therapeutic 

strategies.  

 

1.4.1 PTPRJ regulates cell growth and cell cycle 

 

The tumor-suppressive role of PTPRJ was clearly displayed in experiments 

where highly malignant thyroid cells, after transduction by a retrovirus 

carrying CD148, appeared to acquire a normal phenotype and showed 

increased adhesion, restoration of differentiation, reduced proliferation and 

decreased tumorigenicity. The same report established that PTPRJ induced a 

G1 growth arrest by suppressing the degradation of the cyclin-dependent 

kinase inhibitor p27kip1 protein. 

Therefore, synthetizing PTPRJ agonists could be one of a possible approach 

in cancer therapy. 

The receptor-like PTP phosphatase DEP-1 opposes various oncogenic 

receptor tyrosine kinases. Recently, DEP-1 agonists were isolated from a 

random peptide phage-display library.
52

  

Intriguingly, these agonists circularize in vitro via an intramolecular 

disulfide bridge and form stable dimers that induce the dimerization-mediated 

activation of DEP-1 (Figure 2). Consistent with the activation of DEP-1 as a 

tumor suppressor, these peptides reduced proliferation and triggered apoptosis 

of cancer cells.  

 
 

Figure 2. Small-molecule activators of protein phosphatases. 

 

Starting from these observations during my PhD I focused the attention on 

two peptides, recently identified by means of a phage display library, able to 

bind and activate PTPRJ ([Cys-His-His-Asn-Leu-Thr-His-Ala-Cys]-OH and 

[Cys-Leu-His-His-Tyr-His-Gly-Ser-Cys]-OH) designing and synthetizing new 

PTPRJ agonists with the aim to identify a more stable and active peptide 
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sequence.
53

 These informations could help the design of peptidomimetics with 

PTPRJ agonistic properties.  

 

1.5 Protein kinases as drug targets 

 

Nearly every cellular process is controlled by phosphorylation of key 

regulatory proteins on specific serine (Ser), threonine  (Thr), or tyrosine (Tyr) 

residues. The covalent attachment of a bulky and negatively charged 

phosphate group by a kinase usually induces a conformational change that 

affects protein function. Mammalian genomes harbor more than 500 genes that 

encode protein kinases. Almost all of these belong to the same protein kinase 

superfamily and have a highly similar catalytic core and mechanism, implying 

that they originate from a common ancestor. In recent years protein kinases 

have become one of the most popular drug targets.
54

 

There are more than 518 human protein kinases recognized through their 

conserved sequence motifs. These constitute the third most populous protein 

family and represent 1.7% of the human genome. Of the total, 478 protein 

kinases are typical kinases, and 40 are atypical. The typical kinases are divided 

into those that phosphorylate serine or threonine residues (388 kinases) and 

those that phosphorylate tyrosine residues (90 kinases). These proteins have 

biochemical kinase activity but lack sequence similarity to the conventional 

eukaryotic kinases. 

A distinguishing feature of the protein kinase family is the different 

structures that they adopt between the active and inactive states. This family 

characteristic was first appreciated following the determination of the first 

protein kinase structures of protein kinase A (PKA) [Protein Data Bank (PDB) 

code 1ATP] in the active conformation and cyclin-dependent protein kinase 2 

(Cdk2) (PDB code 1HCK) in an inactive conformation. 

Deregulation of protein kinase activity through mutation to constitutively 

active forms, loss of negative regulators, and chromosomal rearrangements 

that lead to the formation of active fusion proteins are associated with a 

number of disorders. Protein kinases have become major targets for therapy, 

and protein kinase structures have had a significant impact on the development 

of selective and specific targeted therapy. Phosphorylation of protein 

substrates can have profound effects. Phosphorylation can result in enzyme 

activation, enzyme inhibition, the creation of recognition sites for recruitment 
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of other proteins, and transitions in protein state from order to disorder or 

disorder to order.  

 

1.5.1 Protein kinases in cancer 

 

During my PhD I studied two different protein kinases: Ca
2+

/Calmodulin-

dependent protein kinase II and GRK2, G-protein coupled receptor kinase 2.  

Aberrant protein kinase activity is linked to a range of diseases, most 

notably cancer.
55

 Recent large scale sequencing projects revealed that kinases 

are indeed the most frequently mutated proteins in tumors.
56,57

 

Why is that? Cancer is the malignant growth of cells and tissues, a 

development that requires independence from organism control in a spectrum 

of processes; as for example the proliferation, survival and migration of cells. 

All these functions are orchestrated by protein kinase signaling networks, 

making kinases a likely starting point for dysregulation. This can be achieved 

by alteration of expression levels, but also by introducing activity modulating 

mutations in the kinase domain. Hence it appears logical to fight cancer with 

kinase activity modulating drugs. 

 

The general structure of CaMKs includes an N-terminal kinase domain, an 

autoregulatory domain, an overlapping CaM-binding domain and, in 

phosphorylase kinase and CaMKII, a C-terminal association domain that is 

essential for multimerization and targeting.
58

 The best characterized CaM 

Kinase is CaMKII. 

 

1.5.1.1 CaMKII, Ca 
2+

/Calmodulin-dependent protein kinase II 

 

CaMKII is a serine/threonine protein kinase which plays an essential role in 

central nervous system function.
59 , 60

There are many types of CaMKII 

molecules and each tissue expresses at least one type of CaMKII.
61 ,

 
62

 

Therefore, CaMKII plays a variety of functions in different cell types.
63

 

One of the functions CaMKII plays is the control of apoptosis.
64,65

 

However, the mechanism by which CaMKII controls apoptosis remains to 

be determined. p27 was first identified as a cell cycle inhibitor and it was later 

revealed that p27 also functions as a positive cell cycle controller. 

Phosphorylation of serine 10 of p27 induces the translocation of p27 from 
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nucleus to cytoplasm.
66 , 67

 Cytoplasmic p27 may control apoptosis.
68

 In 

particular CaMKII can directly bind to MEK1, activate the kinase activity of 

MEK/ERK, and enhance the phosphorylation of p27 protein, therefore 

promoting the S-G2/M transition of the cell cycle progression and then the 

tumor cell growth (Figure 3). 

 

 

 
 

Figure 3. Models depicting the roles of MEK/ERK signaling in CaMKII induced 

promotion of cell cycle progression. 

 

CaMKII also regulates apoptosis by inactivating Bad. One phosphorylation 

site on Bad, Ser170, is a potential CaMKII target, raising the possibility that 

CaMKII phosphorylates Bad directly.  

The mechanism by which CaMKII inactivates Bad involves multiple 

signaling pathways, and differs among cell types. CaMKII also suppresses 

nuclear translocation of histone deacetylase, thereby promoting neuronal 

survival.
69

 Indeed, CaMKII has been shown to activate the pro-survival 

transcriptional regulator NF-κB in T lymphocytes and in neurons.
70

 Because 

dominant-negative CREB constructs do not reduce the pro-survival effect of 

CaMKII, it is unlikely that CREB is the nuclear target of CaMKII. 

Starting from these observations synthetizing CaMKII antagonists could be 

one of a possible approach in cancer therapy.
71
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1.5.1.2 GRK2, G-protein coupled receptor kinase 2 

 

Different functions of G-protein coupled receptor kinase 2. Cellular 

proliferation is regulated by specific membrane receptors, including receptor-

tyrosine kinases and G protein coupled receptors (GPCRs), among others. 

GPCRs initiate a variety of intracellular signaling cascades that can modulate 

cell division involving both G protein-dependent and independent 

mechanisms.
72

 Regarding the latter, G protein-coupled receptor kinases 

(GRKs) and β-arrestins, first identified as key molecules involved in the 

agonist-induced desensitization of multiple GPCRs, are emerging as 

alternative signal transducers with a direct or potential impact on cell growth 

and proliferation. 

Whereas β-arrestins can bring different signaling molecules into the 

receptor complex,
73

 a growing number of non-GPCR substrates and 

interacting proteins are being identified for GRKs, particularly for the 

ubiquitous GRK2 isoform. 

These include PDGF and EGF receptors, and a variety of proteins involved 

in pathways controlling cell migration and proliferation, such as p110-PI3K, 

p38Mapk, GIT, MEK, or AKT.
74

 

Consistently, GRK2 expression has been reported to have distinct impacts 

on cell proliferation, depending on both the cell type and the mitogenic stimuli 

analyzed.  

Such canonical role of GRK2 are to inhibit TGF mediated cell growth 

arrest and apoptosis in human hepatocarcinoma cells; to attenuate thyroid 

stimulating hormone- and PDGF-dependent proliferation of thyroid cancer cell 

lines and smooth muscle cells, respectively, whereas it increases mitogenic 

signaling pathways in response to EGF in osteoblasts or upon activation of the 

Smoothened receptor in fibroblasts. Increased GRK2 levels also potentiate 

migration of epithelial cells toward fibronectin and sphingosine-1-phosphate.
75

 

Besides these canonical role, GRK2 can also initiate alternative signaling 

pathways and participate in cellular processes related to cell cycle progression, 

survival, or cell migration by phosphorylating and interacting with non-GPCR 

partners.
76 , 77

 Interestingly, the GRK2 “interactome” in different cell types 

includes several actors in vascular homeostasis and remodeling.
78,79

 

Besides regulating chemokine GPCRs, GRK2 phosphorylates PDGF 

receptors
80

 and also modulates TGF-β signaling in epithelial cells
81

 or cardiac 
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fibroblasts.
82

 GRK2 inhibits PDGF-dependent chemotactic signaling in 

VSMCs
83

 and modulates both vasoconstrictory and vasodilatory responses of 

VSMCs,
84

 whereas increased GRK2 attenuates NO production by sinusoidal 

ECs in the context of liver injury.
85

 However, the role of GRK2 in vessel 

formation and stability in other pathophysiological settings has not been 

addressed. Its dosage is important in determining how ECs (Endothelial Cells) 

integrate different relevant physiological stimuli and to balance TGF-β 

signaling to downstream pathways. Furthermore, ablation of GRK2 

compromises postnatal angiogenesis and vascular remodeling in the retina and 

vasculogenesis during embryonic development as a result of defective vessel 

maturation, whereas GRK2 down regulation in ECs reduces pericyte coverage 

of tumoral vessels and potentiates tumor progression. 

 Rivas et al.,
78 

identified that GRK2 is involved in counterbalancing the 

action of different angiogenic growth factors responsible for the activation of 

ECs (Endothelial cells). 

GRK2 down regulation in ECs alters the endothelial barrier function and 

causes defective tube formation on Matrigel, a process that depends on profuse 

cellular polarization and morphogenetic rearrangements. Therefore, 

manipulation of tumor-associated angiogenesis represents a promising strategy 

to limit cancer progression and GRK2 down modulation could represent a 

novel marker for pathological vasculature. In particular GRK2 down 

regulation would be a relevant event in the angiogenic switch triggered by 

tumor cells by favoring a permissive microenvironment for tumor progression. 

Notably, GRK2 levels are also altered in different malignant mammary cell 

lines
86

 and enhanced GRK2 levels increase epithelial cell motility,
87 , 88

 

stressing that cell type–specific modulation of this kinase may participate in 

cancer development. As tumor progression is the result of the interplay 

between malignant cells themselves and their surrounding microenvironment, 

recent results suggest that opposite changes in GRK2 expression may occur in 

transformed epithelial cells and in the tumor endothelium to synergistically 

promote tumor cell invasiveness and intravasation. 

Degradation of G-protein-coupled receptor kinase 2. Such functional 

complexity predicts that alterations in GRK2 levels and/or activity may have 

important effects on cell signaling. Interestingly, several pathological 

conditions such as congestive heart failure, hypertension
89

 and rheumatoid 

arthritis (RA), among others, display altered GRK2 expression and   
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function.
90 ,91

 Salcedo et al.,
 86 

described that GRK2 is rapidly degraded by the 

proteasome pathway, and that 2-adrenergic receptor (2AR) activation 

enhances GRK2 ubiquitination and turnover. It has been shown that agonist-

dependent binding of -arrestin to GPCRs supports GRK2 degradation by 

allowing the recruitment of c-Src and the phosphorylation of GRK2 on critical 

tyrosine residues.
92

 MAPK-mediated GRK2 phosphorylation also triggers 

GRK2 degradation in a process that is again dependent on-arrestin 

function.
93

 

Proteasome degradation requires the orchestrated activities of the ubiquitin-

activating enzyme (E1), ubiquitin conjugating enzymes (E2) and ubiquitin 

ligases (E3).
94

 The specificity of target protein selection is determined by 

ubiquitin ligases, which interact with their substrates either directly or by 

means of adaptor molecules. Interestingly, -arrestins are able to interact with 

Mdm2, a RING domain-containing E3-ubiquitin ligase involved in the control 

of tumor suppressor p53 activity.
95

 -Arrestin-mediated recruitment of Mdm2 

to several GPCR complexes leads to different -arrestin ubiquitination 

patterns,
 96

 which controls the characteristics of MAPK activation and receptor 

internalization.
97,98 

In this report, Alicia Salcedo et al.,
86

 identify Mdm2 as an 

E3-ubiquitin ligase for GRK2 that is critically involved in kinase 

ubiquitination and degradation. Moreover, they put forward a new Mdm2- 

mediated pathway for the modulation of GRK2 cellular levels by IGF-1. The 

Mdm2 oncoprotein is an E3-ubiquitin ligase best known by its role in 

controlling p53 degradation and transcriptional activity.
99,100

Growing evidence 

indicates that other proteins interact with Mdm2
101,

 
102

  and can be regulated 

by this ligase.
103,104 

It has been identified GRK2 as a new Mdm2 target. 

Several lines of evidence support the notion that Mdm2 serves as an E3 

ligase for GRK2 ubiquitination and is critical for modulating its degradation 

and cellular levels. 

Modulation of Mdm2 by the PI3K/Akt pathway upon IGF1-R stimulation 

alters GRK2 degradation and augments kinase cellular levels, putting forward 

a new mechanism for controlling GRK2 expression. Mdm2 has been shown to 

control ubiquitination and stability of different molecules in response to 

membrane receptor occupancy.
 105, 106

 

2AR stimulation leads to the recruitment of Mdm2 to the receptor 

complex in a -arrestin-dependent manner. Both -arrestin1 and -arrestin2 

are able to interact with Mdm2 and therefore to bring this ligase to the vicinity 
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of activated receptors. It has been reported that -arrestin1 also plays a role in 

GRK2 degradation by facilitating the -agonist-triggered GRK2/Mdm2 

association. -arrestin might deliver Mdm2 to the receptor complex in an 

active form that is suitable to interact with and promote GRK2 ubiquitination, 

as has been reported for other targets. Mdm2 shuttles back and forth between 

the nucleus and the cytoplasm as a result of its interaction with different 

proteins. In this regard, it has been reported that -arrestin2 promotes Mdm2 

cytoplasmic relocation, whereas -arrestin1 might cooperate with -arrestin2 

in the maintenance of an accessible cytosolic pool of Mdm2 for degradation of 

targets such as GRK2 in response to specific stimuli. 

GRK2 and cancer. Interestingly, in addition to its reported alteration in 

cardiovascular and inflammatory pathologies emerging data indicate changes 

in GRK2 expression in certain tumors.
107

 The fact that general but not cardiac-

specific GRK2 knockout mice are embryonic lethal
108

 further supports the 

notion that this protein could play a central, general role in key cellular 

processes as proliferation or migration. However, the potential involvement of 

this kinase in the cell cycle has not been addressed. Given that the control of 

the turnover of key kinases throughout the cell cycle represents a major 

regulatory mechanism in cell proliferation,
109

 recently Penela et al. reported 

that phosphorylation of GRK2 by cyclin-dependent kinase 2 (CDK2) and 

subsequent interaction with the Pin1 prolyl-isomerase promotes its transient 

down-regulation in the G2 phase, and that this event is critical for adequate 

cell cycle progression and control.
92

 

In particular GRK2 protein levels progressively decay during G2 as a result 

of a degradation process triggered by the CDK2-dependent phosphorylation of 

GRK2 at residue S670. Inhibition of endogenous GRK2 phosphorylation by 

CDK2 or expression of a mutant unable to be phosphorylated at this residue 

(GRK2-S670A) completely prevents GRK2 down-regulation and delays cell 

cycle progression. Importantly, such “default” down-regulation is blocked 

upon activation of the G2 checkpoint, and the resultant accumulation of GRK2 

protein levels inversely correlates with the extent of activation of the p53-

dependent apoptotic responses. 

 

In the last year, identification of GRK2 modulators/inhibitors is a very 

active fields of research.
110,111
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Different small molecules inhibitors of GRK2 activity are currently 

available,
112 , 113

 even if they are characterized by low sensitivity and 

specificity.
114,115

 Strategies to selectively inhibit the GRK2 activity have been 

attempted
116

 using shorter peptides
117,118

 or RNA aptamers.
119

 In particular, 

Anis et al. demonstrated that myristyl or lauryl glycine derivatives of short 

peptides derived from HJ loop of GRK2 are potent inhibitor of the kinase and 

possess hypoglycemic effect in animal models of Type 2 diabetes. 

Starting from these peptides during my PhD I focused the attention on 

synthesis of new compounds with the aim to identify more potent and 

selective GRK2 antagonists. 
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Abstract PTPRJ is a receptor protein tyrosine phosphatase involved in both 

physiological and oncogenic pathways. Our work group previously reported 

that its expression is strongly reduced in the majority of explored cancer cell 

lines and tumor samples; moreover, its restoration blocks in vitro cancer cell 

proliferation and in vivo tumor formation. By means of a phage display library 

screening, we recently identified two peptides able to bind and activate 

PTPRJ, resulting in cell growth inhibition and apoptosis of both cancer and 

endothelial cells. Here, on a previously discovered PTPRJ agonist peptide, 

[CHHNLTHAC], we synthetized and assayed a panel of nonapeptide 

analogues with the aim to identify specific amino acid residues responsible for 

peptide activity. These second-generation nonapeptides were tested on both 

cancer and primary endothelial cells (HeLa and HUVEC, respectively). 

Interestingly, one of them ([CHHALTHAC]) was able to both dramatically 

reduce cell proliferation and effectively trigger apoptosis of both HeLa and 

HUVECs compared to its first-generation counterpart. Moreover this peptide 

significantly inhibited in vitro tube formation on Matrigel. Our compound 

inhibited ERK1/2 phosphorylation and cell proliferation in breast cancer cells 

(MCF-7 and SKBr3), while no effects were observed on primary normal 

human mammary endothelial cells (HMEC). Molecular modeling and NMR 

studies on these peptides reporting the possibility of self-aggregation states 

and highlighting new hints of structure-activity relationship. Thus, our results 

indicate that this nonapeptide might represent a great potential lead for the 

development of novel targeted anticancer drugs. 

Furthermore and in order to enhance the potency of this peptide, we performed 

different modification on this hit, including changes to disulfide bridge with 

lactam bridge, changes in specific position and changes to Cysteine with its 

analog (Penicillamine). 

 

Keywords PTPRJ, Ala scan peptide, disulfide bridge, lactam bridge, 

microwave, HeLa cells, HUVEC cells, Molecular Modeling. 

 

Abbreviations Abbreviations used for amino acids and designation of 

peptides follow the rules of the IUPACIUB Commission of Biochemical 

Nomenclature in J Biol Chem 1972, 247, 977-983. Amino acid symbols 

denote L-configuration unless indicated otherwise. 
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The following additional abbreviations are used: 

DCM, dichloromethane; DIPEA, N,N-diisopropylethyl-amine; DMF, N,N-

dimethylformamide; iPr3SiH, or TIS triisopropylsilane; TFA, trifluoroacetic 

acid; Fmoc, 9-fluorenyl-methoxycarbonyl; HOBt, Nhydroxy- benzotriazole; 

HBTU, 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluoro -

phosphate; Trt, trityl; Pbf, 2,2,4,6,7–pentamethyldihydro benzofuran-5-

sulfonyl; RP HPLC, reversed-phase high performance liquid chromatography; 

ESI, electrospray ionization; LCQ, liquid chromatography quadrupole mass 

spectrometry; HUVEC,  Human umbilical vein endothelial cells.  

  

1. Introduction 

 

Reversible tyrosine phosphorylation, which is governed by the balanced 

action of protein tyrosine kinases (PTKs) and protein-tyrosine phosphatases 

(PTPs), regulates important signaling pathways that are involved in the control 

of cell proliferation, adhesion and migration. 

The distinct but complementary function of these enzymes is emphasized 

by recent studies, in which kinases have been implicated in controlling the 

amplitude of signaling responses, whereas phosphatases are thought to have an 

important role in controlling the rate and duration of the response.
1,2

 

The first PTP was purified in 1988, approximately 10 years after the 

discovery of tyrosine kinases.
3
 It is now known that PTPs constitute a large, 

structurally diverse family of tightly regulated,
 4

 highly specific enzymes with 

important regulatory roles.
5,6

 

It is also clear that PTPs have both inhibitory and stimulatory effects on 

cancer associated signaling processes, and that deregulation of PTP function is 

associated with tumorigenesis in different types of human cancer. 

The PTP-superfamily includes 109 genes, compared to 90 human PTK 

genes, suggesting similar levels of complexity between the two families. 
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1.1 Protein Tyrosine Phosphatases 

 

PTPs are broadly divided into receptor-like forms and non-receptor forms.
7
  

The receptor-like PTPs have a single transmembrane domain and variable 

extracellular domains.  

The intracellular parts of most of the receptor-like PTPs contain two 

tandem PTP domains (D1 and D2) with most, if not all, of the catalytic 

activity residing in D1. In many cases, the extracellular domains include 

immunoglobulin like domains and fibronectin type III domains, similar to the 

extracellular domains of cellular adhesion molecules. Non-receptor PTPs have 

striking structural diversity and often contain sequences that target them to 

specific subcellular locations or enable their binding to specific proteins 

(Figure 1). The catalytic PTP domain spans approximately 280 amino acids 

and contains a highly conserved active site with a Cysteine residue that is 

required for catalytic activity. Dephosphorylation of substrates occurs through 

a two-step mechanism consisting of the formation of a covalent PTP-

phosphate intermediate that is subsequently hydrolysed. 
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Figure 1. Schematic view of the domain composition of all RPTP family 

members. The intracellular part consists of one catalytically active PTP domain (blue) 

and, in some subfamilies, a PTP domain with little or no catalytic activity (red), 

which is likely to have a regulatory function. 
 

CD148 or PTPRJ is a type-III RPTP with a broad pattern of tissue 

expression. It is expressed on fibroblasts and endothelium, as well as epithelial 

and hematopoietic cells.
8,9

 The CD148 gene, also known as Ptprj, is located on 

chromosome 11p11.12 in humans, and consists of 25 exons distributed over 

150 Kb of genomic DNA. The protein contains a bulky extracellular domain 

of 970 amino acids organized in eight fibronectin type III repeats, a 25-amino 

acid long transmembrane domain and a 342 amino acid cytoplasmic portion 

with a single catalytic domain. Its mass varies from 200 to 250 KDa 

depending on different N- or O-glycosylations in the extracellular domain. 
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Figure 2. Schematic view of the CD148 molecule. 

 

1.2 Biochemical Activity of CD148 

 

As mentioned above, the activity of many PTPs may be regulated by 

phosphorylation, and this seems to occur in the case of CD148. Jallal et al.
10

 

reported that CD148 is tyrosine-phosphorylated after stimulation with 

epithelial growth factor (EGF), although no change in phosphatase activity 

was documented. Even if it does not affect CD148 phosphatase activity, this 

phosphorylation event might have an important role in promoting interactions 

with SH2-containing proteins involved in the metabolic networks in which 

CD148 signal transduction pathways participate. Although protein 

dimerization is a key mechanism that simulates PTK activity, PTPs are 

generally not regulated in this way. Some lines of evidence, however, suggest 

that CD148 could indeed dimerize. In fact, the transmembrane domain 

contains the same dimerization consensus sequence
11

 found in RPTP, whose 

dimerization inhibits its phosphatase activity.
12

 It is not clear if dimerization 

inhibits or induces CD148 phosphatase activity, since experimental data lead 

to conflicting results. For example, in lymphocytes CD148 dimerization 

(induced by cross-linking) was shown to induce proliferation; on the contrary, 

in endothelial cells dimerization induced by a bivalent antibody seems to act in 

an opposite way, promoting CD148 activation.
13
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1.3 CD148 acts as a Tumor Suppressor 

 

Like many phosphatases, PTPRJ plays a role in cancer, its down-regulation 

being documented in different kinds of tumors. Additionally, in cultured breast 

cancer cells CD148 re-expression led to a five- to ten-fold reduction in cell 

growth.
14

 Similar findings were later reported in pancreatic, thyroid,
15

 and 

colon cancer cells.
16,17

 

CD148 re-expression was also described to induce differentiation in breast 

and thyroid undifferentiated tumor cells.
18

 To understand the role of CD148 in 

cancer, many studies were carried out to analyze Ptprj gene status in human 

tumors. The most thorough analysis identified Ptprj as the functional gene at 

the mouse colon-cancer susceptibility locus, Scc1.
16

 This locus was originally 

defined based on its segregation with colon cancer susceptibility after crossing 

cancer-resistant and cancer-susceptible mouse strains. Sequence differences in 

Ptrpj between the cancer-susceptible and cancer-resistant strains were also 

identified, supporting the theory that tumor susceptibility is conferred by 

certain Ptprj variants. 

PTPRJ status has also been analyzed in human tumors.
19

Loss of 

heterozygosity, occurring in the absence of acquired mutation in the remaining 

allele, has been found in breast, colon, lung and thyroid cancers, implicating 

Ptprj haploid insufficiency as a transforming mechanism in humans. 

In association with these studies, different allelic variants of human Ptprj 

were identified; these variations result in CD148 proteins that have differences 

in their extracellular-domain residues.
20

 

 

1.3.1 CD148 Regulates Cell Growth and Cell Cycle 

 

The tumor-suppressive role of CD148 was clearly displayed in experiments 

where highly malignant thyroid cells, after transduction by a retrovirus 

carrying CD148, appeared to acquire a normal phenotype and showed 

increased adhesion, restoration of differentiation, reduced proliferation and 

decreased tumorigenicity.
15

 The same report established that CD148 induced a 
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G1 growth arrest by suppressing the degradation of the cyclin-dependent 

kinase inhibitor p27kip1 protein. 

Therefore, it could be assumed that CD148 is a cell regulator that maintains 

cells in a controlled proliferation state. When CD148 is overexpressed, cells 

show a reduction in cell proliferation,
21

 while when there is a deficiency in 

CD148 cells proliferate uncontrollably. 

For this reason we designed and synthetized a library of peptides agonist of 

this phosphatase in order to stimulate PTPRJ overexpression. 

 

2. Aim of work 

 

Trapasso et al.
 22

 identified PTPRJ-binding peptides from a combinatorial 

phage display library in a cell free assay. Two peptide, whose specificity were 

tested in vitro, were also responsible of both biochemical and biological 

PTPRJ mediated effects, as we observed both dephosphorylation of PTPRJ 

targets and cell growth inhibition of HeLa and HUVEC cells. In particular, it 

has been described the isolation and characterization of synthetic peptides that 

interact with PTPRJ ectodomain and are able to trigger its signaling. 

In this context and as part of a wide research program aimed to the 

identification of new PTPRJ-targeted anticancer agents, I focused the attention 

on PTPRJ 19 (named peptide 1 in the Table 1) and PTPRJ 24 that in vitro, 

were shown to be responsible for both biochemical and biological PTPRJ-

mediated effects. In fact, the administration of both PTPRJ 19 ([Cys-His-His-

Asn-Leu-Thr-His-Ala-Cys]-OH) and PTPRJ 24 ([Cys-Leu-His-His-Tyr-His-

Gly-Ser-Cys]-OH) peptides to human cervical HeLa cancer cell line and 

human umbilical vein endothelial cells (HUVECs) dramatically reduced the 

extent of both MAPK phosphorylation, a critical mediator of mitogenic 

signals, and total phospho-tyrosine levels and, conversely, induced a 

significant increase of the cell cycle inhibitor p27Kip1. Moreover, these 

PTPRJ agonist peptides both reduce proliferation and trigger apoptosis of 

treated cells.
23
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Therefore, during my PhD, I considered PTPRJ 19 (peptide 1) as a valuable 

starting point for the development of a novel class of potential 

chemotherapeutic agents. 

Several general approaches to development different libraries of peptides 

have been used: (a) L- Ala scanning analysis to check the contribution of the 

various amino acid residues to the agonist activity of peptide 1; (b) 

implementation of various global and local conformational constraints via 

peptide cyclizations and employment of constrained amino acids; and (c) 

manipulation of steric factors that influence protein-ligand interactions.  

 

2.1 Alanine scanning approach (peptides 1-10) 

 

In a first classical approach, a series of L-Ala substituted analogues of 

peptide 1 were synthetized in order to evaluate the amino acid side chains 

involved in the interaction with the target molecule (peptides 1-10, Table 1). 

 

Table 1. Structure, inhibition activities, and analytical data of peptides 1-10. 

PTPRJ 

peptides 

Sequence HPLC ESI MS % of cell growth inhibitionb 

k’a Found Calc. 24h 48h 72h 

1 [CHHNLTHAC] 3.34 1931.2 1033.5 - 4.5±.1.4 19±2.82 

2 CHHNLTHAC 3.28 1035.1 1035.7 - - 4±1.4 

3 AHHNLTHAC  3.22 1003.1 1003.7 -             - - 

4 [CAHNLTHAC] 3.56 967.1 967.6 16.5±2.12 30±2.82 32.0±4.2 

5 [CHANLTHAC] 3.56 967.1 967.4 28±5.5 46±4.2 51±1.4 

6 [CHHALTHAC] 3.44 990.1 990.4 48.0±2.82 62.5±4.9 66.5±2.12 

7 [CHHNATHAC] 3.26 991.0 991.4 - 2±1.5 19±4.2 

8 [CHHNLAHAC] 3.45 1003.1 1003.2 - - 19±4.2 

9 [CHHNLTAAC] 3.56 967.1 967.6 - 4.5±2.13 20±1.4 

10 CHHNLTHAA 3.22 1003.1 1003.5 - - - 

a
k’=[(peptide retention time-solvent retention time)/solvent retention time].

b
The 

relative cell growth was expressed as a percentage of the growth observed in 

untreated cells at 24, 48, and 72h. 
b
The results are presented as mean values ± SD of 

at least three independent experiments. 

Here, it has been demonstrated that peptide 6, a derivative of peptide 1, 

generated through an Ala Scan analysis, was able to (a) reduce the 



Chapter 2       Synthesis, characterization and biological evaluation of PTPRJ 

(protein tyrosine phosphatase receptor like-j) agonists 

 

- 36 - 

 

phosphorylation of ERK1/2; (b) inhibit HeLa cancer cell proliferation, and (c) 

trigger apoptosis in a much more efficient way than its lead compound.
23 

 

HUVEC cell proliferation was also inhibited by peptide 6, although to a 

lower extent compared to HeLa cells. Moreover, it effectively blocked in vitro 

HUVEC tube formation (see Results and Discussion session). These results 

strongly encourage the pursuit of this path for the development of a novel class 

of targeted anticancer drugs. 

At the same time, we decided to consider peptide 1 a valuable starting point 

for the development of a novel class of potential chemotherapeutic agents 

replacing disulfide 
1
Cys-

9
Cys ring with lactam bridges to provide varying size 

of the ring by substituting with different bridging residues. 

 

2.2 Lactam cyclic peptides (peptides 11-17) 

 

Taking in mind that any attempt to design a peptide for therapeutic use 

would then be aided by a clear understanding of the structural elements that 

are responsible for its interaction with biological target, we have begun a study 

to address the roles of the disulfide bridge in the activity of peptide lead, 

compound 1.  

Herein, we present the synthesis and the biological activities of new 

analogues containing a more stable lactam bridge with the aim to implement 

the global conformational constraint and the ring size. These strategies, 

previously reported in several biologically relevant peptides such as 

urotensine,
24

 interleukin-8,
25

 somatostatin,
26 

HIV gp41 antigenic loop,
27

 will 

allow to evaluate the structural importance of both ring size and bridge 

chemical nature on the biological activity for the new analogues.  

In particular, the Cysteines at positions 1 and 9 were replaced by amino 

acids bearing an amino ((2,3)-diaminopropionic acid (Dap), ornithine (Orn) or 

lysine (Lys)) and carboxylic (Asp or Glu) functions on the side chain, 

respectively; these two side chains were subsequently linked to form the 

lactam bridge (peptides 11-17, Table 2). 
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Table 2.  Structure, inhibition activities, and analytical data of peptides 11-17. 

PTPRJ 

peptides 

Sequence HPLC ESI MS % of cell growth inhibitionb 

k’a Found Calc. 24h 48h 72h 

11 [KHHNLTHAD] 3.26 1054.7 1054.1 5±4.3 10±4.3 10±5.5 

12 [OrnHHNLTHAD] 3.19 1041.7 1041.2 1.18±5.5 1.88±2.2 13±3.2 

13 [KHHNLTHAE] 3.25 1068.6 1068.1 - 2±3.30 4.0±3.3 

14 [OrnHHNLTHAE] 3.29 1054.6 1054.2 - 10±1.10 10±1.3 

15 [DapHHNLTHAE] 3.31 1026.7 1026.6 - 9 9 

16 [DHHNLTHAK] 3.23 1054.4 1054.2 1±4.5 2±4.5 3±1.1 

17 [EHHNLTHAK] 3.26 1068.5 1068.3 4.3±6.6 20±5.6 19.7±3.4 

a
k’=[(peptide retention time-solvent retention time)/solvent retention time].

b
The 

relative cell growth was expressed as a percentage of the growth observed in 

untreated cells at 24, 48, and 72h. 
b
The results are presented as mean values ± SD of 

at least three independent experiments. 

 

2.3 Alanine scanning approach (peptides 18-24) 

 

Once that the biological investigations of the first series of compounds were 

completed (paragrafe 2.1), we realized that it was necessary to evaluate if 

there are other amino acid side chains involved in the interaction with the 

target molecule. Therefore, being interested in the development of analogues 

with higher inhibitory potency, we decided to apply for the second time an 

Alanine scanning approach to the most active peptide, peptide 6 

([CHHALTHAC]) (peptides 18-24, Table 3). 

 

Table 3.  Structure, inhibition activities, and analytical data of peptides 18-24. 

PTPRJ 

peptides 

Sequence HPLC ESI MS % of cell growth inhibitionb 

k’a Found Calc. 24h 48h 72h 

18 AHHALTHAC 3.54 960.4 958.1 3.7±2.2 10.0±.3.2 10.0±4.4 

19 [CAHALTHAC] 3.33 922.2 921.1 - 10.0±3.4 9.5±3.2 

20 [CHAALTHAC  3.75 922.4 921.1 - 25.0±3.5 25.0±2.2 

21 [CHHAATHAC] 3.25 945.4 945.1 2.7±2.6 18.5±2.3 19.0±1.1 

22 [CHHALAHAC] 3.76 958.1 957.1 9.76±3.5 7.9±2.4 28.0±3.2 

23 [CHHALTAAC] 3.56 922.2 921.1 9.76±2.5 20.1±2.2 42.1±2.9 

24 CHHALTHAA 3.26 960.1 958.1 4.3±2.1 20.0±2.3 19.7±3.7 

a
k’=[(peptide retention time-solvent retention time)/solvent retention time].

b
The 

relative cell growth was expressed as a percentage of the growth observed in 

untreated cells at 24, 48, and 72h. 
b
The results are presented as mean values ± SD of 

at least three independent experiments. 
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Here, it has been demonstrated that no one compound generated through 

the second Ala scan analysis, was able to inhibit HeLa cancer cell proliferation 

in a greater extent of peptide 6. 

 

2.4 Changes to disulfide bridge (peptides 25-29) 

 

Interestingly, peptide 6 was responsible for a 66.5% reduction of cell 

proliferation versus 20% of the lead peptide, compound 1. Therefore, it was 

considered as a valuable starting point to design new analogues containing 

both a modified disulfide bridge (series 1, Table 4) and changes in position 

four, from Alanine to the most simple and no chiral amino acid (Glycine) and 

a restricted amino acid (Proline) to assest if it is important both the chirality 

and steric size (series 2, Table 4). 

 

Table 4.  Structure, inhibition activities, and analytical data of peptides 25-29.  

PTPRJ 

peptides 

Sequence HPLC ESI MS % of cell growth inhibitionb 

k’a Found Calc. 24h 48h 72h 

25 [PenHHALTHAPen] 3.24 1043.3 1043.2 5.0±2.1 20.0±.5.4 30.0±3.8 

26 [PenHHALTHACys] 3.55 1016.3 1015.2 5.0±3.4 10.0±4.6 30.0±1.4 

27 [CysHHALTHAPen] 3.75 1016.6 1015.2 - 4.4±6.2 30.0±5.2 

28 [CHHGLTHAC] 3.21 976.5 975.1 50.3±5.6 72.3±.1.4 75.1±2.82 

29 [CHHPLTHAC] 3.36 1016.3 1016.1 38.5±2.12 40.2±2.82 70.0±3.2 

a
k’=[(peptide retention time-solvent retention time)/solvent retention time].

b
The 

relative cell growth was expressed as a percentage of the growth observed in 

untreated cells at 24, 48, and 72h. 
b
The results are presented as mean values ± SD of 

at least three independent experiments. 

Although peptide cyclization generally induces structural constraints, the 

size of cyclization can affect the binding affinity of cyclic peptides. In this 

case, the substitution of Cysteine with Penicillamine (a superior analogue) 

bring a loss of activity compared with peptide 6. 

Interestingly, we found a peptide with a significant increase in inhibitory 

activity. Peptide 28 was responsible for a 75.1% reduction of cell proliferation 

versus 66.5% of peptide 6. Instead peptide 29 had an inhibitory activity similar 

to peptide 6. The substitution of Alanine with Glycine leads to the loss of 
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chirality in side chain. It suggests it is not necessary the chirality in four 

residue. 

The cyclic structure of Proline forces the ϕ angle to -65°+/-15°, thus 

preventing the formation of a α-helix, and promoting the formation of a β-turn. 

Besides, while the barrier to secondary amide cis/trans isomerization is about 

10 kcal/mol, the presence of Proline reduces the barrier to just 2 kcal/mol, 

hence influencing the biological behaviour of peptides.
28

 

In this case, the substitution of Alanine with Proline does not lead an 

increase in the inhibitory activity, moreover it is maintained. 

 

2.5 Changes to increase stability of peptides (peptides 30-33) 

 

The introduction of D-amino acids
29

 in a sequence can give the peptide an 

increased stability, since only a few enzymes that effectively hydrolyse 

peptide bonds involving D-amino acids have been discovered and 

characterized in multicellular organisms.  

Moreover, D-residues often enforce a different conformation of the 

peptide,
30

 and strongly influence receptor affinity and selectivity. 

Focused on peptide 6 we decided to change L-Alanine in four with its D-

analogue and with D-Proline, to assess the importance of conformation and 

chirality (peptides 31-32, Table 5). 

Moreover, the most promising peptide, compound 6, was also investigated 

by solution NMR in water solution. NMR parameters of the peptide indicated 

high conformation flexibility illustrated, for example, by the absence of 

medium range diagnostic NOEs apart from a weak signal between Hβs of 
4
Ala 

and HN of 
6
Thr. This signal indicates that a β-turn structure centered on 

residues 
4
Ala

5
Leu is present in a population of conformers. Upfield shift of 

HN signals of residues 
5
Leu and 

6
Thr, confirms this hypothesis being 

indicative of the presence of H-bonds involving these amide protons. For this 

reason we decided to synthetize peptide 33 with 
5
Gly instead 

5
Leu to test the 

importance of H-bonds. 

The reduction of the cycle often increases the stability of peptides, which 

can prolong their biological activity. For this reason we wanted to check if the 
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reduction of ring size could improve the inhibitory activity of peptide. 

Therefore, we decided to eliminate 
8
Ala to reduce the ring size and also to 

check if it is an essential residue (peptide 30). 

 

Table 5.  Structure, inhibition activities, and analytical data of peptides 28-31. 

PTPRJ 

Peptides 

Sequence HPLC ESI MS 

k’
a
 Found Calc. 

30 [CHHGLTHC] 3.33 905.2 905.0 

31 [CHHaLTHAC] 3.24 990.3 990.1 

32 [CHHpLTHAC] 3.28 1016.3 1016.2 

33 [CHHNGTHAC] 3.26 977.3 977.1 

a
k’=[(peptide retention time-solvent retention time)/solvent retention time]. 

At the same time, we decided to design a new library of peptides, starting 

from biological results mentioned above with the aim to increase the affinity 

and stability of peptide, manipulating steric factors that influence protein-

ligand interactions. 

 

2.6 Changes in specific position (peptides 34-42) 

 

To extend structure-activity relationships for these series of inhibitors, 

analyzing the inhibitory activity of peptides 1-10 (Table 1), we decided to 

bring forward two different approaches: a) changes 
4
Ala with aliphatic, 

positive and negative charged and aromatic amino acid; b) changes 
3
His with 

aliphatic, positive and negative charged and aromatic amino acid. 

In particular, we focused on peptides 5 and 6 that showed an inhibitory 

activity higher than 50%.  
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Table 6.  Structure, inhibition activities, and analytical data of peptides 34-42. 

PTPRJ 

Pepides 

Sequence HPLC ESI MS 

k’
a
 Found Calc. 

34 [CHHLLTHAC] 3.44 1033.1 1032.7 

35 [CHHVLTHAC] 3.42 1019.1 1018.2 

36 [CHHDLTHAC] 3.41 1034.4 1034.2 

37 [CHHFLTHAC] 3.46 1067.4 1066.3 

38 [CHLALTHAC] 3.32 967.3 966.2 

39 [CHVALTHAC] 3.33 953.4 952.1 

40 [CHDALTHAC] 3.37 969.5 968.3 

41 [CHFALTHAC] 3.39 1001.6 1000.3 

42 [CHOrnALTHAC] 3.26 968.1 967.5 

a
k’=[(peptide retention time-solvent retention time)/solvent retention time]. 

PTPRJ peptides 34-37 represent an alteration of peptide 6, with the 

replacement of 
4
Ala with 

4
Leu, 

4
Val, 

4
Asp and 

4
Phe. The same approach was 

applied in residue 3, added the same amino acids and then 
3
Orn instead 

3
His 

(peptide 42).  The biological activity assays are in progress. 

 

2.7 Changes in lactam bridge (peptides 43-45) 

 

Valuating the biological results obtained with peptides 11-17, the only one 

that seems to have an inhibitory activity similar than peptide lead, compound 

1, is the peptide 17 (19.7% versus 19%) containing a lactam bridge between 

Glutamic acid and Lysine. Considering the importance of amino acid in four 

position we wanted to check if the activity of this compound increased with 

the substitution of 
4
Asn with 

4
Ala, 

4
Gly or 

4
Pro (peptides 43-45, Table 7). 
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Table 7.  Structure and analytical data of peptides 43-45. 

PTPRJ 

peptides 

Sequence HPLC ESI MS 

k’
a
 Found Calc. 

43 [EHHALTHAK] 3.25 1026.1 1025.4 

44 [EHHGLTHAK] 3.20 1012.3 1011.4 

45 [EHHPLTHAK] 3.34 1070.3 1069.4 

a
k’=[(peptide retention time-solvent retention time)/solvent retention time]. 

The biological activity assays are in progress. 

 

2.8 An improvement in the synthesis of PTPRJ analogue, peptide 6  

 

A first attempt to prepare peptide 6 by a standard Fmoc procedure using 

Wang resin as starting material clearly showed that optimization would be 

required. For this reason we prepared this compound on acid-labile 2Cl-Trt 

resin by solid-phase synthesis of linear peptide sequences. 

We obtained significant difference in PTPRJ analogue synthesis (see 

Chemistry section, paragraph 3.4 and Appendix B). 

In view of this, common problems during peptide synthesis, purification, 

and handling can be minimized. Several tips should be taken into 

consideration whenever possible in the design of a peptide. Chemically 

synthetized peptides carry free amino and carboxy termini, being electrically 

charged in general. In order to remove this electric charge, peptide ends are 

often modified by N-terminal acetylation and/or C-terminal amidation.  

 

Table 8.  Structure and analytical data of peptides 46. 

PTPRJ 

Pepides 

Sequence HPLC ESI MS 

k’
a
 Found Calc. 

46 Ac[CHHALTHAC]NH2 3.35 1031.4 1031.2 

a
k’=[(peptide retention time-solvent retention time)/solvent retention time]. 

For internal sequences derived from native proteins, it may be necessary to 

cap either or both the N- and C-termini to avoid introducing a charge where 
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there is none in the native sequence. The C-terminus and N-terminus can be 

capped as an amide (peptide amide-CONH2 instead of peptide acid-COOH) 

and acetyl group respectively. Sometimes synthetizing a peptide modified by 

N-terminal  acetylation and/or C-terminal amidation increases its stability and 

quality. 

In fact there are some advantages: 

- peptide ends are uncharged, compared to standard synthetic peptides, so 

modified peptide more closely mimic the native protein. This increases their 

ability to permeate cells. Therefore, these modifications are required for 

intracellular, in-vivo assays and in-vitro functional studies; 

- stability toward digestions by aminopeptidases is enhanced therefore these 

peptides can be used as substrate in enzyme assays; 

- peptide ends are blocked against synthetase activities; 

- acetylated peptides serve as optimized enzyme substrates amidation of 

peptides enhances activity of peptide hormones and it also prolongs their shelf 

life. 

Having some problems about synthesis and purification of disulfide 

peptides: the overall quality of the material was rather low due to a sticky 

peptide therefore a difficult characterization with the first oxidative method 

(see paragraph 3.2.1), we check if N-terminal acetylation and/or C-terminal 

amidation lead to an improvement in the yield (Table 8). 

These improvements can be combined to produce a linear precursor clean 

enough to be oxidized as a crude product, thus increasing the efficiency of the 

synthetic approach. 

In conclusion, these changes resulted in a product with and HPLC profile 

significantly cleaner than earlier attempt (see Chemistry section). 

 

3. Chemistry 

 

3.1 General procedure for synthesis 

 

The synthesis of peptides (1-46) was performed according to the solid 

phase approach using standard Fmoc methodology in a manual reaction 
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vessel.
31

 The first amino acid, N𝛼Fmoc-Xaa-OH, was linked onto the Wang 

resin and was attached to the resin using HOBt/HBTU as an activating agent 

and a catalytic amount of DMAP. 

Fmoc-Cys(Trt)-Wang resin was used to avoid the use of DMAP and 

collateral reactions due to its. 

The following protected amino acids were then added stepwise. Each 

coupling reaction was accomplished using a HBTU and HOBt as coupling 

reagents in the presence of DIEA. The N𝛼-Fmoc protecting groups were 

removed by treating the protected peptide resin with a 25% solution of 

piperidine in DMF (1 × 5min and 1 × 25min).  

For peptide 46, the last N
α
-Fmoc was removed and the amino group was 

acetylated with acetic anhydride and DIPEA in DCM/DMF for 1h and 30 min. 

In addition, after each step of deprotection and after each coupling step, 

Kaiser test was performed to confirm the complete removal of the Fmoc 

protecting group, respectively, and to verify that complete coupling has 

occurred on all the free amines on the resin. Then Kaiser test was performed to 

confirm the acetylation reaction. 

The N-terminal Fmoc group was removed as described above, and the 

peptide was released from the resin with TFA/iPr3SiH/H2O (90:5:5) for 3 h. 

The resin was removed by filtration, and the crude peptide was recovered by 

precipitation with cold anhydrous ethyl ether to give a white powder and then 

lyophilized. 

 

3.2 General method of disulfide bridge formation 

 

3.2.1 Oxidative method with Potassium Ferrocyanide 

 

Oxidation of cysteinyl peptides to form cyclic disulfide-bonded peptides is 

generally carried out using dilute solutions of peptide in aqueous or 

aqueous/organic media at weakly basic pH. The classical oxidizing agent 

K3Fe(CN)6 was used in our procedure with the principle that a low 

concentration of the linear (reduced) peptide is necessary for oxidation.
32

 

Thus, oxidation was performed by slow dropping of a solution of the peptide 
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into a reaction vessel containing an excess (1.2 eq.) of the oxidizing agent in 

aqueous solution. The concentration of the reduced peptide was regulated by 

controlling the speed of addition of the peptide with the help of an automated 

syringe pump (Scheme 1). 
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Scheme 1. Synthesis and oxidative folding of peptide 6 (1). 
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Progress of the folding reaction was monitored by analytical HPLC and, 

once completed, the target products were purified to homogeneity by 

preparative RP-HPLC, and subsequently lyophilized. Analytical purity and 

molecular weight were determined by analytical RP-HPLC and ESI mass 

spectrometry. 

This first attempt to prepare peptide 6 clearly showed that optimization 

would be required. The overall quality of the material was rather low due to a 

sticky peptide therefore a difficult characterization. A different oxidative 

approach was used with the aim to improve the overall quality. 

 

3.2.2 Oxidative method with NH4HCO3 / isopropyl alcohol 

 

Air oxidation was carried out by dissolving the lyophilized crude peptide in 

NH4HCO3/isopropyl alcohol (pH 8.25) with vigorous stirring at RT for 1 h. 

Prior to purification, the solution was acidified to pH 3 with TFA and analyzed 

by analytical HPLC. The solution was concentrated and then lyophilized 

(Scheme 2).
 33

 

 



Chapter 2       Synthesis, characterization and biological evaluation of PTPRJ 

(protein tyrosine phosphatase receptor like-j) agonists 

 

- 48 - 

 

 
Scheme 2. Synthesis and oxidative folding of peptide 6 (2). 
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In contrast, replacement of the first oxidative method with this one resulted 

in a product with and HPLC profile significantly cleaner than the previous 

attempt and with better resolution (Figure 3). 

 

  
Figure 3. HPLC preparative crude profile of peptide 6 with different oxidative 

methods. 

 

3.3 Synthesis of lactam analogues (peptides 11-17, 43-45) 

 

The preparation of cyclic peptides, 11-17 and 43-45 through a side-chain-

to-side-chain cyclization, was carried out after removal of the Allyl/Alloc 

protection according to strategy reported by Grieco et al.
34

 Peptide analytical 

data are reported in Table 2 and 7. 

 

3.4 Synthesis of disulfide cyclic peptides with 2Cl-Trt resin (peptides 6, 

28-29) 

 

A first approach to prepare PTPRJ analogues by a standard Fmoc procedure 

using Wang resin or Fmoc-Cys(Trt)-Wang resin, as starting material clearly 

showed that optimization would be required. Accordingly, while LC-MS 

analysis of the crude product showed the expected peptide without Alanine-

Cysteine in C-terminal (m/z 818) as the main peak (Figure 4), the overall 

quality of the material was rather low.  
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Figure 4. HPLC crude profile of peptide 6 and ESI-MS spectrum of peptide 6: 

[M+2H]
2+

 (m/z 496), and ESI-MS spectrum of peptide 6 without 
8
Ala

9
Cys  (m/z 818). 

 

The synthesis of compounds 6, 28 and 29 were prepared on acid-labile  

2Cl-Trt resin by solid-phase synthesis of linear peptide sequences, using the 

Fmoc protection strategy, followed by cyclization with NH4HCO3/isopropyl 

alcohol as previously described. 

At this point it was clear that the replacement of Wang resin with 2Cl-Trt 

resin had meant a significant difference in PTPRJ analogue synthesis.  

2-Chlorotrityl chloride resin is an acid labile resin for peptide 

synthesis using Fmoc-amino acids. The steric bulk and mild acid conditions 

for cleavage make 2-chlorotrityl resins useful in many applications. 

Additionally, Fmoc-amino acids can be attached to 2-chlorotrityl chloride 

resin with essentially no racemization. Amino acid 2-chlorotrityl resins can be 

alternatives to Fmoc-amino acid Wang resins where racemization of the first 

Fmoc-amino acid is common as with Cys and His. The steric size of 2Cl-Trt 

group not allow the formation of diketopiperazine. Therefore, the formation of 

diketopiperazine for intramolecular bond of ammine group of the second 

amino acid to the ester bond is not favorite. 

  

The first N

-Fmoc amino acid and DIPEA were dissolved in dry 

dichloromethane (DCM) containing, if necessary, a small amount of dry DMF 

(enough to facilitate dissolution of the acid). This was added to the resin and 

http://www.aapptec.com/-c-0.html?keywords=RTZ001&x=23&y=14&max=25
http://www.aapptec.com/resins-i-139.html
http://www.aapptec.com/resins-i-139.html
http://www.aapptec.com/fmocamino-acids-i-120.html
http://www.aapptec.com/fmocamino-acids-i-120.html
http://www.aapptec.com/2chlorotrityl-chloride-resin-p-4840.html
http://www.aapptec.com/2chlorotrityl-chloride-resin-p-4840.html
http://www.aapptec.com/amino-acid-2cltrt-resins-i-171.html
http://www.aapptec.com/fmocamino-acid-wang-resins-i-173.html
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stirred for 30-120 min. Other N

-Fmoc amino acids were sequentially coupled 

as previously described.
35

 

General procedure for cyclization: A solution of the linear protected 

peptide was added at room temperature to a reaction flask containing a 

solution of HOBt, HBTU  and DIPEA in DMF. The mixture was stirred for 24 

h at room temperature and monitored by TLC.  

 

3.5 Purification and characterization 

 

All crude peptides were purified by RP-HPLC on a preparative C18-bonded 

silica column using a Shimadzu SPD 10A UV/VIS detector, with detection at 

215 and 254 nm. 

All peptides were characterized with analytical RP-HPLC and peptides 

molecular weights were determined by ESI mass spectrometry and  LC-MS in 

a LC-MS 2010 instrument fitted with a C18 column. All analogues showed 

>97% purity when monitored at 215 nm. Homogeneous fractions, as 

established using analytical HPLC, were pooled and lyophilized. 

 

3.5.1 Chromatographic optimization 

 

During my PhD, an improvement for purification and characterization of 

peptides were done. 

The choice of the chromatographic column is a crucial step for an efficient 

chromatographic separations with better resolution, higher sensitivity and 

improved peak capacities. 

For this reason, we used the core shell technology to increase resolution, 

reducing time processing. 

Core-shell particle technology provides striking increases in peak capacity 

and resolution at lower backpressure, giving chromatographers the ability to 

achieve ultra-high performance on any system, HPLC or UHPLC. 

A uniform porous silica layer is grown around a solid, spherical silica core, 

providing effective retention and selectivity with improved resolution, speed, 

and recovery. Next, optimizing the pore size and shell thickness for intact 
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proteins or smaller peptide fragments provides well-defined depth penetration 

of biomolecules leading to maximum separation power. 

Concerning chromatographic columns for preparative HPLC, the Jupiter 

HPLC column portfolio, including Jupiter 300 and Jupiter Proteo, offers 

optimized reversed phase solutions for protein characterization and 

purification. With these columns, one can identify, purify, and analyze almost 

any protein. In particular, 300 Å column designed for intact protein 

purification and analysis allowed a separation of proteins ≥ 10,000 MW 

producing excellent peak shape and resolution of protein samples. Instead 90 

Å column engineered for peptide mapping and  peptide separations allowed a 

separation of proteins and peptides ≤ 10,000 MW, increasing peak capacity 

and resolution. Specifically, we used a preparative Jupiter Proteo column for 

all PTPRJ analogues and GRK2 inhibitors instead Jupiter 300 column for 

other compounds we will see in the third chapter. 

 For all these reasons, an alternative oxidative method together with an 

improvement in HPLC purification and characterization allowed us to achieve 

the amount of solid pure product ca. 5 times higher than with the standard 

procedure. 

 

4. Results and discussion 

4.1 PTPRJ Ala scan peptide derivatives inhibit HeLa cancer cell 

proliferation 

Through a phage display library screening, Trapasso et al., recently 

identified two nonapeptides (named PTPRJ 19 and 24, peptide 1 and 2) with 

the ability to bind and trigger PTPRJ activity; these peptides could induce 

MAPK dephosphorylation and inhibit cell growth of HeLa and HUVEC cells, 

although to a low extent.
23

 Here, in order to generate PTPRJ peptide agonists 

with improved biological activity, we (a) investigated the role of the peptide 

circularization, synthesizing a peptide 1 derivative deprived of the disulfide 

bridge between the first and the last Cysteine residues, and then (b) pursued an 

Ala scan procedure consisting in the systematic substitution of each peptide 1 

residue with a L-Alanine (Table 1). 
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This latter approach resulted in the generation of a panel of nine peptides, 

named peptide 1 to 10. All new derivatives were tested in HeLa cancer cells 

for the assessment of their ability to inhibit cell proliferation; cells were 

treated with 160 μM concentration of each compound, and cell count was 

performed 24, 48, and 72 h after treatment. Interestingly, peptide 6 was 

responsible for a reduction of cell proliferation up to 66.5% versus 20% of 

peptide lead (Figure 5). Values of cell growth inhibition for all tested peptides 

in this experiment are reported in Table 1. 

 

 
 

Figure 5. Cell growth inhibition induced by PTPRJ peptides in HeLa cells. 

Relative cell growth (as a percentage of the growth observed in untreated cells) at 

different intervals of treatments (from 24 to 72 h) is reported. HeLa cells were treated 

once with PTPRJ peptides for 24 h (white columns) or treated every 24 h for 48 h 

(gray columns) and for 72 h (black columns). Results represent the mean ± SD of 

three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 compared to 

untreated cells by unpaired two-tailed Student’s t test. 
 

The above-reported data suggested important structure-activity 

relationships for this small library of derivatives. First, the disulfide bridge 

appears to have effect upon cell growth inhibition as demonstrated by our 

previous work.
23

 In fact, all three linear compounds used, namely, peptide 2 

(that only differs from PTPRJ 19 for the absence of the disulfide bridge) and 

peptide 3 and peptide 10 (which incorporate an Ala residue at position 1 and 9, 

respectively), lost their ability to activate PTPRJ (Table 1). 

Second, the most interesting result was obtained with peptides modified at 

the peptide 1 N-terminus. In fact, the substitution of 
3
His or 

4
Asn into the 

cyclic peptide 1 by Ala produced a dramatic increase in the biological activity 

of the corresponding analogues (peptide 5 or peptide 6), resulting in a cell 
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growth inhibition ranging from two to three times higher compared to their 

lead compound. In particular, the observed effect was time dependent, 

generating a 48%, 62.5%, and 66.5% reduction of HeLa cell number at 24, 48, 

and 72 h, respectively for peptide 6. These data suggest that either a lack of 

polar side chains in these positions or the introduction of low hindrance, 

lipophilic features is well accepted. 

Finally, the substitution of 
5
Leu or 

6
Thr or 

7
His residues by Ala (peptide 7, 

8 and 9) did not modify the weak cell growth inhibition levels exhibited by 

peptide lead. 

 

4.1.1 Ala scan PTPRJ 19 (peptide 1) derivatives negatively modulate 

ERK1/2 phosphorylation and induce apoptosis of HeLa cancer cells 

 

According to recent published results,
23

 treatment of HeLa cells with 160 

μM peptide 1 resulted in a dramatic reduction of the ERK1/2 phosphorylation; 

the dephosphorylation effect reported in previous investigation was rapid and 

transient and reached its peak within 15 min after treatment. In order to test the 

effects of the newly Ala scan generated derivatives on ERK1/2 

phosphorylation, we used the same approach as previously reported.
23

 HeLa 

cells were treated with 160 μM concentration of the most potent 

antiproliferative compounds described in the previous section (peptides 4-6). 

As shown in Figure 6A, peptides 4 and 5 reduced the ERK1/2 phosphorylation 

extent in a short term; these results are comparable to those observed with 

their precursor. Interestingly, the treatment with peptide 6 induced a time-

dependent reduction of ERK1/2 phosphorylation that reached its maximum at 

60 min. ERK1/2 phosphorylation was also assessed 12, 24, and 48 h after 

peptide 6 treatment of HeLa cells; as shown in Figure 6B, we observed a slight 

reduction of ERK1/2 phosphorylation extent in all cases. To further expand 

the concept of functional specificity of the peptide 6/PTPRJ interaction, we 

knocked-down endogenous PTPRJ protein with specific siRNAs in HeLa 

cells. Forty-eight hours after transfection, cells were treated with either peptide 

6 and scramble peptide (tipically used as a negative controls to show that a 

specific sequence is critical to the protein function or activity), and 1 h later 
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we evaluated the ERK1/2 phosphorylation extent. Interestingly, ERK1/2 

phosphorylation of PTPRJ knocked-down cells treated with peptide 6 was 

higher compared to control treated with peptide 6 alone, suggesting that 

ERK1/2 dephosphorylation is mediated by the PTPRJ protein levels (Figure 

6C). 

 

 

Figure 6. Peptides 4-6 synthetic peptides suppress phosphorylation of ERK1/2 

and induce cell death of HeLa cancer cells. (A) HeLa cells were seeded in 6-well 

plates and, 24 h later, treated with 160 μM peptides 4-6, lead compound, or scrambled 

peptide at 0, 15, 30, and 60 min. Cell lysates were subjected to immunoblotting using 

a phospho-specific ERK1/2 (p-ERK) antibody. Blots were stripped and reprobed for 

total ERK1/2 as a loading control. (B) HeLa cells were treated either with 160 μM 

peptide 6 or scrambled peptide, and cells were collected at the indicated intervals (12, 

24, and 48 h). Cell lysates were subjected to immunoblots using phospho-specific 

ERK1/2 (p-ERK). Blots were stripped and reprobed for total ERK1/2 antibody as a 

loading control. (C) HeLa cells were transfected with either 100 nM PTPRJ or 

scrambled siRNAs and 48 h later were treated with either 160 μM peptide 6 or 

scrambled peptide for 1 h. Cell lysates were subjected to immunoblotting using an 

anti-PTPRJ antibody and a phospho-specific ERK1/2 (p-ERK) antibody. Blots were 

stripped and reprobed for total ERK1/2 as a loading control.( D) Representative 

experiment of cell cycle analysis of HeLa cells treated with 4-6 synthetic peptides. 

The percentage of sub-G1 population is reported on the top of each histogram. Data 

analysis was performed with ModFit LTTM cell cycle analysis software. 



Chapter 2       Synthesis, characterization and biological evaluation of PTPRJ 

(protein tyrosine phosphatase receptor like-j) agonists 

 

- 56 - 

 

We also evaluated cell cycle perturbations induced by peptides 4-6 on HeLa 

cells. Twenty four hours after treatment, cells were collected and investigated 

by flow cytometric analysis; in Figure 6D is indicated the percentage of a sub-

G1 population, suggestive of apoptotic cell death. 

Interestingly, while the administration of peptide 4 was able to trigger cell 

death only in 6.1% of cell population, HeLa cells treated with peptide 5 and 6 

showed a 17.5% and 27.3% of dead cells, respectively.  

 

4.1.2 Peptide 6 partly inhibits cell proliferation of HUVECs and blocks in 

vitro tube formation 

 

In order to investigate the biological effects of peptide 6 on normal 

endothelial cells, HUVECs were treated with 160 μM peptide. Similarly to 

what observed with HeLa cells, peptide 6 significantly reduced the ERK1/2 

phosphorylation extent in HUVEC cells in a time-dependent manner (Figure 

7A). No differences in ERK1/2 phosphorylation were observed in HUVEC 

cells after a scramble peptide administration (data not shown). Instead, cell 

growth assessment performed 24, 48, and 72 h after treatment showed a 

different behavior in HUVEC compared to HeLa cells. In fact, no significant 

differences were noticed 24 h after treatment compared to the control, while a 

48% inhibition was reported with HeLa cells. Moreover, we only observed a 

28% and 32% of cell growth inhibition 48 and 72 h after treatment, 

respectively (Figure 7B) versus 62.5% and 66.5% described 48 and 72 h after 

treatment of HeLa cells, respectively (see Table 1). To investigate the role of 

VEGFR2 on peptide 6-mediated ERK1/2 dephosphorylation and cell growth 

inhibition on HUVECs, we assayed the phosphorylation state of VEGFR2 in 

VEGF stimulated HUVECs treated with or without peptide 6. As reported in 

Figure 7C, we observed a significant reduction of phospho-VEGFR2, thus 

suggesting an impaired signaling by this receptor in cells treated with peptides 

6. The production of tubular structures is an important step in angiogenesis; 

therefore, as PTPRJ activity antagonizes VEGFR2 function,
36

 we investigated 

the role of peptide 6 on HUVEC tube formation. As shown in Figure 7D, 

control HUVEC cells, plated on Matrigel and incubated either with control 
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medium or a scramble peptide, formed lumen-like structures, while HUVEC 

cells treated with peptide 6 formed fewer tubes as well as fewer and weaker 

anastomoses. 

 

 

 

Figure 7. Peptide 6 negatively modulates ERK1/2 phosphorylation and inhibits 

both cell proliferation and tube formation of HUVEC endothelial cells. (A) Peptide 6 

suppresses phosphorylation of ERK1/2 in HUVECs; cells were treated with 160 μM 

peptide 6 and collected at the indicated intervals (15−60 min). Cell lysates were 

subjected to immunoblots using phospho-specific ERK1/2 (p-ERK). Blots were 

stripped and reprobed for total ERK1/2 antibody as a loading control. (B) Cell growth 

inhibition induced by peptide 6 in HUVECs at 24 h (white columns), treated every 24 

h for 48 h (gray columns) and every 24 h for 72 h (black column). Results represent 

the mean ± SD of three independent experiments. *P < 0.05, **P < 0.01 compared to 

scrambled peptide by unpaired two-tailed Student’s t test. (C) HUVECs were serum 

starved, stimulated with 20 ng/mL of VEGF, treated 15 min with or without peptide 

6, and then lysed. VEGFR2 phosphorylation levels were detected by immunoblotting 

with a phospho-specific VEGFR2 (Y1054/1059) antibody. Membranes were stripped 

and immunoblotted with a VEGFR2 antibody. (D) Peptide 6 inhibits tube formation 

of primary endothelial cells on Matrigel. Representative photograph of antitube 

formation activity of peptide 6. HUVECs (2.5 × 104/well) were untreated or 

preincubated either with peptide 6 or scrambled peptide (100 μM) for 30 min before 

being seeded onto the solidified Matrigel for 18 h. (scale bar: 200 μM). 
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4.1.3 Peptide 6 negatively modulates ERK1/2 phosphorylation and 

reduces cell proliferation of mammary 

 

Cancer Cells. To evaluate if the effects of peptide 6 on HeLa cells could be 

considered a general event in cancer cells, we also included in our 

investigation two mammary cancer cell lines, MCF-7 and SKBr3, which both 

express endogenous PTPRJ (data not shown). Both cell lines were treated with 

160 μM peptide 6, as previously described, and both ERK1/2 phosphorylation 

and growth rate were assessed. This compound negatively modulated ERK1/2 

phosphorylation extent in the short term (Figure 8A); moreover, we observed a 

significant cell growth inhibition resulting in a reduction of about 40% 

compared to controls in both cell lines (Figure 8C) at 72 h. 

To check if peptide 6 administration was toxic to normal cells, the above-

described experiments were also carried out on primary human mammary 

epithelial cells (HMECs). Intriguingly, no effects on both ERK1/2 

phosphorylation and proliferation were observed in normal cells (Figure 8B, 

C). 
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Figure 8. Peptide 6 negatively modulates ERK1/2 phosphorylation and reduces 

cell proliferation of human mammary cancer cells. (A) MCF-7 and SKBr3 cells were 

seeded in 6-well plates and, 24 h later, treated with either 160 μM peptide 6 or 

scrambled peptide, and lysed at 0, 15, 30, 60 min. Cell lysates were subjected to 

immunoblotting using a phospho-specific ERK1/2 (p-ERK) antibody. Blots were 

stripped and reprobed for total ERK1/2 as a loading control. B) HMECs were treated 

with 160 μM peptide 6 or scrambled peptide, and cells were collected at the indicated 

intervals. Cell lysates were subjected to immunoblots using phospho-specific ERK1/2 

(p-ERK). Blots were stripped and reprobed for total ERK1/2 antibody as a loading 

control. (C) Cell growth rate of MCF7, SKBr3, and HMECs by peptide 6 peptide. 

Relative cell growth (as a percentage of the growth observed in cells treated with 

scrambled peptide) at different intervals of treatments (from 24 to 72 h) is reported. 

Cells were treated once with peptide 6 and scrambled peptides for 24 h (white 

columns) or treated every 24 h for 48 h (gray columns) and for 72 h (black columns). 

Results represent the mean ± SD of three independent experiments. *P < 0.05, **P 

< 0.01 compared to scrambled peptide by unpaired two-tailed Student’s t test. 
 

4.1.4 Molecular Modeling of Ala scan PTPRJ-binding derivatives 

suggests supramolecular aggregation states 

 

Monte Carlo (MC) conformational search, docking experiments, 

thermodynamics, and statistical analyses were performed with the aim to 

rationalize at molecular level the biological properties of our PTPRJ agonist 

peptides comparing their structural features to those of the lead compound, 

peptide 1 (see Experimental section for further details). 
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As in the case of other PTPRJ peptide binders, the MC search of peptide 1 

to -10 revealed a large number of local minimum energy conformers (data not 

shown). Following the same computational approach reported in recent 

communication,
23

 the self-aggregation trend of the new peptides was 

investigated by means of docking simulation coupled to thermodynamics and 

statistical analyses (see Experimental section). Results clearly indicate that all 

peptides formed multiple conformation self aggregates with 1:1 stoichiometry 

(data not shown). 

Peptides 3-5 and 7-10 reported an overall complexes stabilization (ΔG) 

notably weaker than that of peptide 1. Only peptide 6 maintained a 

thermodynamic profile comparable to the lead compound. Statistic data, 

obtained by coupling Boltzmann population and clustering analyses, revealed 

for all new derivatives, excluding peptide 5, a number of possible geometry 

clusters larger than peptide lead and, with the exception of derivative 3, 

increased population of the global minimum energy structures. 

Graphic inspection of the most stable complexes and their α carbons 

alignment onto peptide lead strongly indicated that only the derivative 6 could 

be related to the lead compound (Figure 9), while all other derivatives were 

different in terms of both shape and chemical features exposition. 

 

 
 

Figure 9. Graphic comparison of peptide lead (on the left) and peptide 6 (on the 

right) most stable self-aggregates. Peptides are depicted in polytube, and complex 

subunits are colored in CPK and green carbons, respectively. 
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4.1.5 NMR analysis indicates that peptide 6 folds as a β-Turn and shows 

propensity to dimerization 

 

The most promising peptide, derivative 6, was also investigated by solution 

NMR in water solution. Similarly to its precursor, peptide lead, the spectra 

showed splitting of the signals. Complete 
1
H NMR chemical shift assignments 

were achieved for the most intense signal pattern according to the W thrich 

procedure
37

(data not shown). NMR parameters of the peptide indicated high 

conformation flexibility illustrated, for example, by the absence of medium 

range diagnostic NOEs apart from a weak signal between Hβs of 
4
Ala and HN 

of 
6
Thr. This signal indicates that a β-turn structure centered on residues 

4
Ala

5
Leu is present in a population of conformers. Upfield shift of HN signals 

of residues 
5
Leu and 

6
Thr, compared to the corresponding in peptide 1 and 

relatively low temperature coefficient of HN-6 (-Δδ/ΔT = 4.3 ppb/K), 

confirms this hypothesis being indicative of the presence of H-bonds involving 

these amide protons. Unfortunately, diagnostic Hα-HN i,i+2 NOE signal 

between residues 4 and 6 could not be observed due to overlapping. This turn 

structure is in accordance with the molecular modeling results (Figure 9). 

Furthermore, to check the aggregation state of peptide 6 under the NMR 

conditions, STD-NMR experimentswere recorded (data not shown).
 38

  As for 

peptide lead, on-resonance irradiation induces detectable STD signals with 

relative STD effect of about 1% (0.7% was found for peptide 1), suggesting 

that aggregation properties of the two peptides are similar with high propensity 

to dimerization. 

 

4.2 Lactam cyclic peptide derivatives action on HeLa cancer cell 

proliferation (peptides 11-17) 

 

Peptide cyclization is a well established approach to improve peptide 

biological activity
39

 which stems from reduced conformational freedom of the 

parent peptide and thus a better defined secondary structure required for 

efficient receptor-ligand interaction, i.e., “bioactive conformation”.
40

 It has 

been previously noted that the success of a peptide cyclization depends 
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strongly on the probability of juxtaposition of the reactive groups of the linear 

peptide precursor, and is usually encumbered by side reactions, most notably, 

oligomerizations and cyclo oligomerizations. 

Depending on its functional groups, a peptide can be cyclized in four 

different ways: head-to-tail (C-terminus to N-terminus), head-to-side chain, 

side chain-to-tail or side-chain-to-side-chain. Of the various methods of 

synthesizing cyclic peptides, most often the final ring-closing reaction is a 

lactamization, a lactonization or the formation of a disulfide bridge. For 

example, an effective side-chain-to-side-chain macrocyclization involves a 

condensation reaction between side chains of aspartic or glutamic acid and 

lysine residues.
41

 Therefore, the replacement of the disulfide bridge by a 

chemically more stable moiety appeared as an attractive alternative. 

In this case, in order to generate PTPRJ peptide agonists with improved 

biological activity, we investigated the role of the peptide circularization, 

synthesizing a peptide 1 derivatives. These compounds derived of the lactam 

bridge with the aim to implement the global conformational constraint and the 

ring size (Table 2). 

This latter approach resulted in the generation of a panel of seven peptides, 

named peptide 11 to 17. All new derivatives were tested in HeLa cancer cells 

for the assessment of their ability to inhibit cell proliferation; cells were 

treated with 160 μM concentration of each compound, and cell count was 

performed 24, 48, and 72 h after treatment. Interestingly, no one peptides were 

responsible for a reduction of cell proliferation greater of peptide 6 (Figure 

10). Values of cell growth inhibition for all tested peptides in this experiment 

are reported in Table 2. 
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Figure 10. Cell growth inhibition induced by PTPRJ peptides in HeLa cells. 

Relative cell growth (as a percentage of the growth observed in untreated cells) at 

different intervals of treatments (from 24 to 72 h) is reported. HeLa cells were treated 

once with PTPRJ peptides for 24 h (white columns) or treated every 24 h for 48 h 

(gray columns) and for 72 h (black columns). Results represent the mean ± SD of 

three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 compared to 

untreated cells by unpaired two-tailed Student’s t test. 
 

The above-reported data suggested important structure-activity 

relationships for this small library of derivatives. First, disulfide bridge 

appears to have more effect upon cell growth inhibition respect to lactam 

bridge. In fact, six compounds lost their ability to activate PTPRJ except 

peptide 17. This compound presents a lactam bridge with a negative charged 

in side chain in N-terminal residue and a positive charged in side chain in C- 

terminal residue. These substitutions produce an increase in the biological 

activity of the corresponding analogues (peptides 11-16), resulting in a cell 

growth inhibition ranging from one to two times higher compared to other 

lactam cyclic peptides. In particular, the observed effect was time dependent, 

generating a reduction of HeLa cell number only at 48 and 72 h (20 and 19.7 

% respectively) resulting in an improvement at 48h in term of reduction of 

HeLa cell number. Instead at 72h the activity we get more or less similar with 

respect to the peptide lead, peptide 1. This data suggest that either an acid side 

chain in N-terminal residue and a basic side chain in C-terminal residue is well 

accepted. 
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4.3 PTPRJ Ala scan peptide 6 derivatives action on HeLa cancer cell 

proliferation 

 

Through Alanine scanning procedure, we wanted to evaluate if there are 

amino acid side chains involved in the interaction with the target molecule. 

Therefore, being interested in the development of analogues with higher 

inhibitory potency, we decided to apply for the second time an Alanine 

scanning approach to the most active peptide, compound 6. 

This latter approach resulted in the generation of a panel of seven peptides, 

named 18-24. All new derivatives were tested in HeLa cancer cells for the 

assessment of their ability to inhibit cell proliferation; cells were treated with 

160 μM concentration of each compound, and cell count was performed 24, 

48, and 72 h after treatment (Figure 11). 

 
Figure 11. Cell growth inhibition induced by PTPRJ peptides in HeLa cells. 

Relative cell growth (as a percentage of the growth observed in untreated cells) at 

different intervals of treatments (from 24 to 72 h) is reported. HeLa cells were treated 

once with PTPRJ peptides for 24 h (white columns) or treated every 24 h for 48 h 

(gray columns) and for 72 h (black columns). Results represent the mean ± SD of 

three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 compared to 

untreated cells by unpaired two-tailed Student’s t test. 

Interestingly, compound 23 was responsible for a reduction of cell 

proliferation up to 40% versus 20% of peptide 1. 

In particular, the observed effect was time dependent, generating a 20.1% 

and 42.1% reduction of HeLa cell number at 48 h and 72 h respectively. These 

data suggest that either a lack of polar and positive charged in side chains 
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(
7
His) in this position or the introduction of low hindrance, lipophilic features 

is well accepted. 

 

4.4 Peptides 25-29 action on HeLa cancer cell proliferation 

 

Although peptide cyclization generally induces structural constraints, the 

size of cyclization within the sequence can affect the binding affinity of cyclic 

peptides. In this case, the substitution of Cysteine with Penicillamine (a 

superior analogue) brings a loss of activity compared to peptide 6 (30.0% 

versus 66.5%). 

Interestingly, we find a peptide with a significant increase in inhibitory 

activity. Peptide 28 was responsible for a 75.1% reduction of cell proliferation 

versus 66.5% of the peptide 6. Instead compound 29 has an inhibitory activity 

similar to peptide 6 (70.0% versus 66.5%) (Figure 12). 

 

 

Figure 12. Cell growth inhibition induced by PTPRJ peptides in HeLa cells. 

Relative cell growth (as a percentage of the growth observed in untreated cells) at 

different intervals of treatments (from 24 to 72 h) is reported. HeLa cells were treated 

once with PTPRJ peptides for 24 h (white columns) or treated every 24 h for 48 h 

(gray columns) and for 72 h (black columns). Results represent the mean ± SD of 

three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 compared to 

untreated cells by unpaired two-tailed Student’s t test. 

All new derivatives were tested in HeLa cancer cells for the assessment of 

their ability to inhibit cell proliferation; cells were treated with 160 μM 

concentration of each compound, and cell count was performed 24, 48, and   

72 h after treatment. 



Chapter 2       Synthesis, characterization and biological evaluation of PTPRJ 

(protein tyrosine phosphatase receptor like-j) agonists 

 

- 66 - 

 

In particular, the observed effect was time dependent, like previous results, 

like generating a 75.1% and 70.0% reduction of HeLa cell number only at 72 

h, for peptide 28 and 29 respectively. These data suggest that either a lack of 

chirality in side chain (
4
Gly) or the introduction of steric hindrance increase 

the activation of the target. 

For peptides 30-46 the biological assays are in progress. 

 

5. Conclusion 

 

As recently reviewed,
42

 protein phosphatases represent a very interesting 

target for the development of novel therapeutics. The ability of PTPRJ to 

counteract the signaling from several protein kinases either transmembrane or 

soluble involved in the aberrant mitogenic signals
43 , 44

makes this protein 

tyrosine phosphatase receptor a particularly intriguing target for the generation 

of a novel class of protein kinase inhibitors as anticancer drugs
45,46

 in addition 

to monoclonal antibodies and small molecules already available for current 

cancer therapies.
 47,48

 

Being interested in the development of small-molecule agonists of PTPRJ, 

we focused our attention on PTPRJ 19 (peptide 1) that in vitro, was shown to 

be responsible for both biochemical and biological PTPRJ-mediated effects. 

Several general approaches to development different libraries of peptides have 

been used and in particular from L-Ala scanning analysis it was identified 

peptide 6 as a potent agonist of PTPRJ. It showed ability in blocking the 

organization of HUVECs into tubular structures in Matrigel; this finding 

further supports the idea that peptide 6 could be a useful tool in the design and 

discovery of additional agents that can inhibit pathologic neovascularization. 

We were interested to modify the structure of the most active peptide with the 

aim to generate peptidomimetics to be used in cancer treatment. Therefore, 

recent results on analogues of peptide 6 demonstrate that compound 28 

inhibits cell proliferation of 75.1% instead 66.5% of peptide lead. In 

conclusion, our study represents a significant advancement in the structure-

activity relationship knowledge related to the presented class of PTPRJ agonist 

peptides; moreover, our findings strongly encourage the applications of further 
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chemical modifications to PTPRJ peptides with the aim to create a novel class 

of small molecules with improved biological activity with the final goal to 

translate them into clinical practice. 

 

6. Experimental section  

 

6.1 Synthesis of Ala scan PTPRJ derivatives 

 

The synthesis of PTPRJ analogues was performed according to the solid 

phase approach using standard Fmoc methodology in a manual reaction 

vessel.
31

 N
α
-Fmoc-protected amino acids, Wang-resin, Fmoc-Cys(Trt)-Wang 

resin, 2Cl-Trt resin, HOBt, HBTU, DIEA, DMAP, Piperidine, and 

trifluoroacetic acid were purchased from Iris Biotech (Germany). Peptide 

synthesis solvents, reagents, and CH3CN for HPLC were reagent grade and 

were acquired from commercial sources and used without further purification 

unless otherwise noted. The first amino acid (for disulfide bridge peptides) N
α
-

Fmoc-Cys(Trt)-OH or N
α
-Fmoc-Pen(Trt)-OH was coupled to Wang resin (0.2 

g, 0.7 mmol of NH2/g). The following protected amino acids were then added 

stepwise: N
α
-Fmoc-Ala-OH, N

α
-Fmoc-Gly-OH, N

α
-Fmoc-Pro-OH, N

α
-Fmoc-

Val-OH, N
α
-Fmoc-Asp(tBu)-OH, N

α
-Fmoc-Phe-OH, N

α
-Fmoc-Orn(Boc)-OH, 

N

-Fmoc-DAla-OH, N


-Fmoc-DPro-OH, N

α
-Fmoc-His(N(im)-trityl (trt))- OH, 

N
α
-Fmoc-Thr(O-tert-butyl (tBu))-OH, N

α
-Fmoc-Leu-OH, N

α
- Fmoc-Asn (Nγ-

trityl, trt)-OH, N
α
-Fmoc-Cys(trt)-OH. 

Each coupling reaction was accomplished using a 3-fold excess of amino 

acid with HBTU and HOBt in the presence of DIEA (6 equiv). The N
α
-Fmoc 

protecting groups was removed by treating the protected peptide resin with a 

25% solution of Piperidine in DMF (1 × 5 min and 1 × 25 min). 

The peptide resin was washed three times with DMF, and the next coupling 

step was initiated in a stepwise manner. The peptide resin was washed with 

DCM (3×), DMF (3×), and DCM (3×), and the deprotection protocol was 

repeated after each coupling step. 

The N-terminal Fmoc group was removed as described above, and the 

peptide was released from the resin with TFA/iPr3SiH/H2O (90:5:5) for 3 h. 
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The resin was removed by filtration, and the crude peptide was recovered by 

precipitation with cold anhydrous ethyl ether to give a white powder and then 

lyophilized. 

 

6.2 General method of disulfide bridge formation 

 

6.2.1 Method of disulfide bridge formation with Potassium Ferrocyanide  

 

A solution of K3Fe(CN)6 was prepared as follows: 1 mmol (330 mg) of 

K3Fe(CN)6 was dissolved in a mixture of water (100 mL) and CH3CN (20 

mL), a saturated solution of ammonium acetate (20 mL) was added to it and 

the pH was adjusted to 8.5 with concentrated ammonium hydroxide.
14

 

A solution of the linear peptide (0.25 mmol) in 20% aqueous CH3CN was 

added to the above solution dropwise overnight with the help of a push±pull 

syringe. After the overnight reaction, glacial acetic acid was added to the 

reaction mixture to obtain pH 4.0, followed by 20 mL of Amberlite IRA-68 

anion-exchange resin (pre-equilibrated with 2.0 m HCl) and the suspension 

was stirred for 30 min until the solution turned colorless and the resin turned 

yellow. The resin was suction-filtered and the filtrate rotoevaporated using 1-

butanol to form a water/1-butanol azeotrope. The residual oil was lyophilized 

overnight to yield a pale yellow solid. 

 

6.2.2 Method of disulfide bridge formation with NH4HCO3/isopropyl 

alcohol 

 

Air oxidation was carried out by dissolving 50 mg of the lyophilized crude 

peptide in 90 mL of 1:1 0.1 M NH4HCO3/isopropyl alcohol (pH 8.25) with 

vigorous stirring at RT for 1 h. Prior to purification, the solution was acidified 

to pH 3 with TFA and analyzed by analytical HPLC. The solution was 

concentrated using a rotary evaporator at 30°C and then lyophilized.
33
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6.3 Synthesis of lactam analogues (peptides 11-17, 43-45) 

 

 The corresponding linear peptides were synthetized as described above and 

the amino acids N

-Fmoc-Asp(Allyl)-OH, N


-Fmoc-Glu(Allyl)-OH and N


-

Fmoc- Lys(Alloc)-OH, N

-Fmoc- Orn(Alloc)-OH and N


-Fmoc- Dap(Alloc)-

OH were used as lactam precursors. After linear assembly, the N-Alloc and 

the Allyl groups were removed according to the following procedure: 200 mg 

of peptide resin was washed with dichloromethane (DCM) under Ar and a 

solution of PhSiH3 (24 equiv) in 2 mL of DCM was added. Subsequently a 

solution of Pd(PPh3)4 (0.25 equiv) in 6 mL of DCM was added and the 

reaction was allowed to proceed under Ar for 30min. The peptide resin was 

washed with DCM (3x), DMF (3x) and DCM (4x), and the deprotection 

protocol was repeated (3x). The macrocyclic lactam ring formation was 

mediated by addition of HBTU (6 equiv), HOBt (6 equiv) and DIPEA (12 

equiv) for 2 h.
24

 The process was repeated if necessary (Kaiser test used to 

monitor completion). The N-terminal Fmoc group was removed and the 

peptide was released from the resin as described above. 

 

6.4 Synthesis of disulfide cyclic peptides with 2-Cl Trt resin (peptides 6, 

28-29) 

 

 The title peptides were synthetized using a 2-chlorotrityl chloride resin. 

The first N

-Fmoc amino acid (0.6–1.2 equiv relative to the resin for 2-

chlorotrityl resin) and DIPEA (4 equiv relative to amino acid) were dissolved 

in dry dichloromethane (DCM) (approx. 10 mL per gram of resin) containing, 

if necessary, a small amount of dry DMF (enough to facilitate dissolution of 

the acid). This was added to the resin and stirred for 30-120 min. After 

stirring, the resin was washed with 3×DCM/MeOH/DIPEA (17:2:1), 3×DCM, 

2×DMF and 2×DCM. Other N

-Fmoc amino acids (4 equiv.) were 

sequentially coupled as previously described. The final cleavage with 

AcOH/MeOH/DCM (1:1:8) resulted in protected peptides.
35
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6.5 Purification and characterization of PTPRJ derivatives 

 

All crude cyclic peptides were purified by RP-HPLC on a preparative C18-

bonded silica column (Phenomenex, Jupiter Proteo 90Å, 100 mm × 21.2 mm, 

10m) using a Shimadzu SPD 10A UV−Vis detector, with detection at 210 

nm and 254 nm. The column was perfused at a flow rate of 15 mL/min with 

solvent A (10%, v/v, water in 0.1% aqueous TFA), and a linear gradient from 

10% to 90% of solvent B (80%, v/v, acetonitrile in 0.1% aqueous TFA) over 

15 min was adopted for peptide elution. Analytical purity and retention time 

(tR) of each peptide were determined using HPLC conditions in the above 

solvent system (solvents A and B) programmed at a flow rate of 1 mL/min 

using a linear gradient from 10% to 90% B over 15 min, fitted with 

Phenomenex, Aeris XB-C18 column (150 mm × 4.60 mm, 3.6 μm). All 

analogues showed >97% purity when monitored at 215 nm. Homogeneous 

fractions, as established using analytical HPLC, were pooled and lyophilized. 

At the same time, LC-MS was performed in a LC-MS 2010 instrument 

(Shimadzu) fitted with a C-18 column (Phenomenex, Aeris XB-C18 column 

(150 mm × 4.60 mm, 3.6 μm) eluted with a 10-90% linear gradient of B into A 

for all compounds. 

To check and to have a confirmation of peptides molecular weights were 

used ESI mass spectrometry. ESI-MS analysis in positive ion mode, were 

made using a Finnigan LCQ Deca ion trap instrument, manufactured by 

Thermo Finnigan (San Jose, CA, USA), equipped with the Excalibur software 

for processing the data acquired. The sample was dissolved in a mixture of 

water and methanol (50/50) and injected directly into the electrospray source, 

using a syringe pump, which maintains constant flow at 5 μL/ min. The 

temperature of the capillary was set at 220°C. 
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6.6 Biological section  

 

6.6.1 Cell lines and transfections 

 

HeLa cervical cancer cells and MCF-7 and SKBr3 mammary cancer cells 

were purchased from the American Type Culture Collection (ATCC). Cells 

were cultured in RPMI medium 1640 supplemented with 10% heat-inactivated 

FBS (Invitrogen). 

Human umbilical vein endothelial cells (HUVEC) (Clonetics) were 

cultured in M199 medium (Sigma-Aldrich) supplemented with 10% FBS, 

heparin (100 μg/mL; Sigma-Aldrich), and 10 ng/mL endothelial cell growth 

factor. Human mammary epithelial cells (HMECs) were purchased from 

Invitrogen and cultured as recommended by the manufacturer. Transfections 

were made with Lipofectamine 2000 (Invitrogen) by following the 

manufacturer’s instructions; 4 × 105 cells were seeded in 6-well plates and 

transfected with 100 nM of either PTPRJ-specific and scrambled siRNAs, as 

previously described.
49

 

Human recombinant VEGF165 was purchased from ORF Genetics. 

 

6.6.2 Cell survival assay 

 

To assess peptides-mediated inhibition of cell proliferation, HeLa and 

HUVECs were treated once with peptides for 24 h or treated every 24 h for 48 

h and every 24 h for 72 h at the concentration of 160 μM. At the end of 

treatments, cells were trypsinized and counted, and cell viability was 

determined by the trypan blue dye exclusion test. The results were expressed 

as percent variation in the number of viable cells treated with PTPRJ-peptides 

compared with control peptide treated cells. 

 

6.6.3 Antibodies and Western Blot analysis 

 

 ERK1/2, VEGFR2, and phospho-ERK1/2 antibodies were purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA). Phospho-VEGFR2 Y1054/59 
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was purchased by Invitrogen. Horseradish peroxidase (HRP)-conjugated anti-

goat and anti-rabbit immunoglobulins were also from Santa Cruz 

Biotechnology. Cells were scraped in ice-cold phosphatase-buffered saline 

(PBS) and lysed in NP-40 lysis buffer containing 50 mM Tris- HCl, pH 7.5, 

150 mM NaCl, 1% NP-40, one protease inhibitor mixture tablet per 10 mL of 

buffer (Completet, Roche Diagnostics), 1 mM Na3VO4, and 50 mM NaF. 

Lysates were passed several times through a 21-gauge needle and incubated 

for 30 min on ice. Cellular debris was pelleted by centrifugation at 10,000g for 

15 min at 4°C. Protein concentrations were determined using the Bradford 

protein assay dye (Bio-Rad Laboratories, Hercules, CA). Total cell lysates 

were separated by SDS−PAGE and transferred to PVDF membranes. 

Membranes were blocked in 5% nonfat dry milk (Bio-Rad) and then probed 

for about 2 h with primary antibodies. After incubation with specific (HRP)- 

conjugated secondary antibodies, protein bands were revealed by the ECL 

detection system (Santa Cruz Biotechnology).  

 

6.6.4 Cell cycle distribution analysis 

 

 The cells were plated at 0.5 × 106 cells/60 mmdish and sequential treated 

every 24 h for 72 h with 160 μM peptides (Invitrogen, Carlsbad, CA). Cells 

were harvested and fixed with cold 70% ethanol. Before analysis, cells were 

washed with PBS and stained with a solution containing 50 μg/mL propidium 

iodide, 250 μg/mL RNAase, and 0.04% Nonidet P40 (NP40) for 30 min at RT 

in the dark. 

The fluorescence of stained cells was analyzed by flow cytometry using a 

FACSCanto (Becton Dickinson). A flow cytometric sub-G1 peak was detected 

on DNA plots using ModFit LT cell cycle analysis software (Verity software 

House). 

 

6.6.5 Endothelial cell tube formation assay 

 

 Unpolymerized Matrigel (Becton Dickinson, Mountain View, CA) was 

placed (50 μL per well) in a 96-well microtiter plate (0.32 cm
2
 per well) and 

polymerized for 1 h at 37°C. HUVECs (2.5 × 104 well) were preincubated 
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with peptide 6 or scrambled peptide (100 μM) for 30 min before being seeded 

onto the solidified Matrigel. After incubating in media for 18 h, cells were 

fixed, and tube formation was analyzed by light microscopy (Leica, Germany). 

Two random fields were chosen in each well. 

 

6.7 NMR spectroscopy 

 

 Samples for NMR spectroscopy were prepared by dissolving the 

appropriate amount of peptide in 0.55 mL of 
1
H2O and 0.05 mL of 

2
H2O or 

0.60 mL of 
2
H2O containing phosphate-buffered saline (50 mM) at pH 4.0 and 

5°C. NMR spectra were recorded on a Varian INOVA 700 MHz spectrometer 

equipped with a z-gradient 5 mm triple-resonance probe head. Spectra were 

calibrated relative to TSP (0.00 ppm) as internal standard. One-dimensional 

(1D) NMR spectra were recorded in the Fourier mode with quadrature 

detection. 

Water suppression was achieved by using the double-pulsed field gradient 

spin-echo (DPFGSE) scheme.
50

 2D TOCSY
51

 and NOESY
52

 spectra were 

recorded in the phase-sensitive mode using the method from States et al.
53

 

Data block sizes were 2048 addresses in t2 and 512 equidistant t1 values. 

Before Fourier transformation, the time domain data matrices were multiplied 

by shifted sin2 functions in both dimensions. A mixing time of 70 ms was 

used for the TOCSY experiments. NOESY experiments were run with mixing 

time of 200-600 ms. The quantitative analysis of NOESY spectra was obtained 

using the interactive program package XEASY.
54

 The temperature coefficients 

of the amide proton chemical shifts were calculated from TOCSY experiments 

performed at different temperatures in the range 5-15°C by means of linear 

regression. STD-NMR (25) experiments were performed in 2H2O solution 

with on-resonance and off-resonance saturation at δ = −2 and −16 ppm, 

respectively. Typically, 512 scans were recorded for each STD spectrum 

(saturation time = 2 s). The relative STD effect (STD%) was calculated as the 

ratio between the intensity (expressed as S/N ratio) of the signals in the STD 

spectrum and that of the signals in the 
1
H NMR spectrum. 

6.7.1 Molecular Modeling 
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3D theoretical models of all peptides were built by means of L series 

residues using ver. 9.1 of the Maestro GUI.
55

 

Using the Monte Carlo (MC) search, implemented in MacroModel ver. 

9.843,
56

 for each compound, by randomly rotate all possible dihedral angles, 

one million of conformations were generated. EachMC structure was 

optimized using 10000 steps of the Polak Ribiere Conjugate Gradient 

algorithm and energy evaluated with the all atoms notation of AMBER* force 

field.
57

 Water solvent effects were mimicked according to the GB/SA implicit 

model.
58

 Conformers with similar internal energies, within 4.184 kJ/mol, were 

geometrically compared one each other by computing the root-mean-square 

deviation (RMSd) onto their not hydrogen atoms and were considered 

duplicate if the RMSd value was lower than 0.05 Å. Boltzman population 

analysis was performed, at 300° K, onto all MC sampled structures reporting 

internal energy within 50 kJ/mol from the global minimum. MC ensembles 

were submitted to cluster analysis using an RMSd cutoff distance equal to 0.5 

Å, computed onto the non-hydrogen atoms.
59

 Boltzman population data were 

considered for weighting the cluster analysis results. Aggregation processes 

were investigated using our in house docking software MolInE
60 , 61

 that 

automatically generated bimolecular complexes. Each MC conformer with a 

Boltzman population larger than 0.1% was considered as both host and guest. 

According to MolInE methodology, the autorecognition of our peptides was 

systematically explored by rigid body roto-translation of the guest, with 

respect to the host. Docking configurations were energy evaluated using the all 

atoms notation of the AMBER* force field. Water environment was mimicked 

by defining the dielectric constant equal to 80. TheMolInE grid resolution 

(GR) and van der Waals compression factor (x) were fixed to 6 and 0.6, 

respectively. The same force field, environment, and deduplication criterion, 

previously described for the MC search, were adopted for taking into account 

induced fit phenomena and to discard equivalent structures. The 

thermodynamics module of MolInE was used to evaluate the stability of the 

complexes calculating the corresponding binding energies. 

6.7.2 Statistical methods and data analysis 
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All experiments were performed in triplicate from at least three 

independent experiments, and data shown are the means ± standard deviation 

(SD). When only two groups were compared, statistical differences were 

assessed with unpaired two-tailed Student’s t test. Statistical analyses were 

performed using GraphPad Prism 5 software. For all analyses, differences 

were considered significant if P < 0.05. 
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Abstract G protein-coupled receptor kinase 2 (GRK2) is a relevant 

signaling node of the cellular transduction network, playing major roles in the 

physiology of various organs/tissues including the heart and blood vessels. 

Emerging evidence suggests that GRK2 is up regulated in pathological 

situations such as heart failure, hypertrophy, hypertension and is involved in 

the progression of cellular cycle. Therefore its inhibition offers a potential 

therapeutic solution to these diseases like hypertension, heart failure and 

cancer. We performed a SAR study and a NMR conformational analysis of 

peptides derived from HJ loop of GRK2 and able to selectively inhibit GRK2. 

Moreover, we explored the GRK2 inhibitory activity of a library of cyclic 

peptides derived from the HJ loop of G protein-coupled receptor kinases 2 

(GRK2). The design of these cyclic compounds was based on the 

conformation of the HJ loop within the X-ray structure of GRK2. One of these 

compounds, potently and selectively inhibited the GRK2 activity, being more 

active than its linear precursor. 

In a cellular system, this peptide confirms the beneficial signaling properties 

of a potent GRK2 inhibitor. Preferred conformations of the most potent 

analogue were investigated by NMR spectroscopy. 

 

Keywords GRK2 inhibitors, cardiovascular system, peptide Ala scan, 

cyclic peptides, peptidomimetics, NMR conformational analysis. 

 

Abbreviations Abbreviations used for amino acids and designation of 

peptides follow the rules of the IUPACIUB Commission of Biochemical 

Nomenclature in J Biol Chem 1972, 247, 977-983. Amino acid symbols 

denote L-configuration unless indicated otherwise.  

The following additional abbreviations are used: 

DPC, dodecylphosphocholine; SAR, structure-activity relationship; DCM, 

dichloromethane; DIPEA, N,N-diisopropylethyl-amine; DMF,                       

N,N-dimethylformamide; iPr3SiH, or TIS triisopropylsilane; TFA, 

trifluoroacetic acid; Fmoc, 9-fluorenyl-methoxycarbonyl; HOBt, Nhydroxy- 

benzotriazole; HBTU, 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluoro -phosphate; Trt, trityl; Pbf, 2,2,4,6,7–pentamethyldihydro 

benzofuran-5-sulfonyl; RP HPLC, reversed-phase high performance liquid 

chromatography; ESI, electrospray ionization; LCQ, liquid chromatography 
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quadrupole mass spectrometry; ATP, adenosine triphosphate; EDTA, 

Ethylenediaminetetraacetic acid; EGTA, ethylene glycol tetraacetic acid; 

cAMP cyclic adenosine monophosphate. 

 

1. Introduction 

 

The G protein-coupled receptor kinase family (GRKs) constitutes a group 

of seven protein kinases that specifically recognize and phosphorylate agonist-

activated G protein-coupled receptors (GPCRs).
1
 GRKs-mediated receptor 

phosphorylation triggers the binding of arrestin proteins
2
 that uncouple 

receptors from G proteins leading to rapid desensitization.
3,4

 As a result of β-

arrestin binding, phosphorylated receptors are also targeted for clathrin-

mediated endocytosis, a process that classically serves to re-sensitize and 

recycle receptors back to the plasma membrane.
5
 

In addition, both arrestins and GRKs participate in signal propagation, 

cooperating in the assembly of macromolecular complexes in the receptor 

environment and interacting with different components of signal transduction. 

The seven mammalian GRKs family can be divided into three subfamilies 

based on sequence and functional similarity: visual GRK subfamily (GRK1 

and GRK7), the -adrenergic receptor kinase (GRK2/GRK3), and the GRK4 

subfamily (GRK4, GRK5 and GRK6).
6
 All GRKs share a common structural 

architecture that includes a N-terminal regulator of G protein signaling 

homology domain (RH), a central kinase catalytic domain, and a C-terminal 

region containing a pleckstrin homology domain (PH).
7
 The best-characterized 

member of this family is the ubiquitously expressed GRK2, also known as -

adrenergic receptor kinase 1 (-ARK1).
8
 

In the past 20 years, GRK2 emerges as a key node in signal transduction 

pathway playing a major role in the agonist-specific desensitization of several 

metabolism-related GPCRs, including the β-adrenergic, melanocortin, 

endothelin, and glucose-dependent insulinotropic polypeptide receptors.
9,10

 

GRK2 can also phosphorylate other membrane receptors,
11

 as well as non-

receptor substrates, acting as effector in the regulation of diverse cellular 

phenomena from cardiovascular and immune cell functionality
12

 to migration 
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and cell cycle progression.
13,14

 Furthermore, GRK2 may also contribute to 

modulate cellular responses in a phosphorylation-independent manner thank to 

its ability to interact with a plethora of proteins involved in signaling and 

trafficking.
15

 All these functional interactions predict that alterations in GRK2 

levels and/or activity may have important effects in human diseases,
16

 as  

those  reported  in  several relevant cardiovascular,
17

 inflammatory,
18

 or cancer 

pathologies.
19,20

 

In this regard, many attentions are focused on the role for GRK2 as both an 

extrinsic and intrinsic cell-cycle regulator (Figure 1). GRK2 expression has 

been reported to have distinct impacts on cell proliferation and mitogenic 

signaling depending on both the cell type and the mitogenic stimuli analysed. 

GRK2 inhibits TGF-mediated cell growth arrest and apoptosis in human 

hepatocarcinoma cells.
21

 On the other hand, GRK2 attenuates serum- or 

PDGF-induced proliferation of thyroid cancer cell lines
22

 and smooth muscle 

cells,
23

 respectively, whereas its expression increases MAPK signaling in 

response to EGF in HEK-293 cells
24

 and GRK2 kinase activity is required for 

IGF-1-triggered proliferation and mitogenic signaling in osteoblasts.
25
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Figure 1. GRK2 interactome involved in the modulation of cell cycle progression. 

GRK2 is linked to diverse regulatory networks acting at specific stages of the cell 

cycle. In response to both extrinsic and intrinsic cues, GRK2 protein plays a critical 

role in driving cell progression through G1/S and G2/M transitions in a kinase-

dependent and independent manner. GRK2 is part of an intrinsic pathway that ensures 

timely progression of cell cycle at G2/M by means of its functional interaction with 

CDK2/cyclinA and Pin1.
13

 Such pathway is disrupted upon DNA damage, when 

GRK2 appears to turn into a pro-arresting factor that promotes increased cell survival 

and to dampen p53-dependent responses by mechanisms that remain to be established 

(dotted lines/question mark). On the other hand, GRK2 contributes to the 

Hedgehog/Smoothened-triggered control of cell proliferation by promoting Smo 

activity and relieving the Patched-dependent inhibition of cyclin B. CDK, cyclin-

dependent kinase; GRK, G protein-coupled receptor kinase. 

 

In addition, GRK2 has been recently shown to establish a complex network 

of novel functional interactions during cell cycle progression that are critical 

for timely G2/M transition. It has found that GRK2 levels are controlled 

intrinsically by the cell-cycle machinery under normal conditions and in 

response to DNA damage, and differentially contribute either to cell cycle 

progression or cell arrest in a receptor-independent manner. GRK2 protein 

levels are transiently down-regulated during the G2/M transition by a 

mechanism involving CDK2-mediated phosphorylation of GRK2 at S670, 

what drives binding to the prolyl-isomerase Pin1 and subsequent degradation. 

Preventing GRK2 phosphorylation at this residue impedes normal GRK2 

down regulation and markedly delays cell cycle progression.
13

 Interestingly, 

the ‘default’ GRK2 protein decay in G2 is prevented in the presence of DNA 

damaging agents that trigger cell cycle arrest such as doxorubicin. Moreover, 
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in cells with higher steady-state levels of the kinase, increased stabilized 

GRK2 levels in such conditions inversely correlate with the p53 response and 

the induction of apoptosis, strongly suggesting that GRK2 contributes to 

orchestrate G2/M checkpoint mechanisms, helping to restrict the apoptotic fate 

of arrested cells. As it has been reported that GRK2 is up-regulated in the 

context of oncogenic signaling,
26,27

 it is tempting to suggest that inhibition of 

GRK2 expression might sensitize cells to drug-induced DNA damage. 

The increasingly complex GRK2 ‘interactome’ puts forward this kinase is a 

relevant signaling node of the cellular transduction network. The intricacy of 

this network of functional interactions and the participation of this protein in 

basic cellular processes as migration and cell cycle progression or 

cardiovascular cell functionality predicts that alterations in GRK2 levels 

and/or activity, as those reported in several relevant cardiovascular, 

inflammatory or cancer pathologies, may have important effects in human 

disease. This makes of this kinase a potentially interesting diagnostic marker 

and therapeutic target. 

In the last year, identification of GRK2 modulators/inhibitors is a very 

active fields of research. 

Different small molecules inhibitors of GRK2 activity are currently 

available, even if they are characterized by low sensitivity and specificity.
28,29

 

Strategies to selectively inhibit the GRK2 activity have been attempted using 

shorter peptides
30,31

 or RNA aptamers.
32,33

 In particular, Anis et al.
31 

demonstrated that myristyl or lauryl glycine derivatives of short peptides 

derived from HJ loop of GRK2, such as KRX-683107 and KRX-683124 (Table 

1), are potent inhibitor of the kinase and possess hypoglycemic effect in 

animal models of Type 2 diabetes. The peptide fragments of these compounds 

closely resemble the catalytic fragment 383-390 KLLRGHSP of GRK2. This 

fragment is composed by the last part of the α-helix F (residues 383-386) and 

the first part of a strand (residues 387-390) within the HJ loop. Several 

crystallographic and mutational studies, have pointed to HJ-αG residues as 

being involved in substrate binding and in binding to upstream activators. 

Based on these findings, this fragment and, more concretely, compounds 1 and 
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2 appeared to be valuable starting points for the development of novel specific 

and more potent GRK2 inhibitors. 

 

Table 1. Different peptide fragments considered in this study. 

Peptide Sequence 

383-390HJ loop GRK2 K L L R G H S P 

KRX-683107 Myristyl G L L R r H S 

KRX-683124 Lauryl    G L L R r H S I 

1                G L L R r H S 

2                G L L R r H S I 

 

2. Aim of work 

 

Previous results obtained by Anis et al.,
31

 point to the selected peptides, 1 

and 2, as interesting lead compounds for the development of a novel class of 

effective chemotherapeutic agents. 

 

2.1 Alanine scanning approach and changes in 
5
D-Arg (peptides 3-18) 

 

First of all, we decided to apply to peptide leads L-Alanine scanning 

approach, a classical chemical approach to check the relevance of each residue 

for the biological activity of the peptide (peptides 3-15, Table 2). To verify the 

effect of chirality, the D-Arg at position 5 was also replaced by D-Ala 

(peptides 16 and 17). 
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Table 2. Structure and inhibition activities of linear peptides 1-18. 

Peptide Sequence 
HPLC

d
 

k’ 

 

ESI-MS (M+H) GRK2 Inhib. 

(%±SD)
a 

(%±SD)
a
 

 

Calcd Found ROS
b
 MBP

c
 

1 GLLRrHS 1.70 836.97 837.66 47.6±5.5 54.2±6.1 

3  GALRrHS 1.68 793.89 795.52 <5 <5 

4  GLARrHS 1.68 793.89 795.52 <5 <5 

5  GLLArHS 1.74 751.86 752.61 42.2±9.7 38.2±4.5 

6  GLLRAHS 1.74 751.86 752.52 <5 <5 

7  GLLRrAS 1.76 770.91 771.60 13.5±6.4 25.6±5.7 

8  GLLRrHA 1.68 821.91 821.60 22.3±5.4 28.8±9.2 

2 GLLRrHSI 1.72 950.13 950.70 49.6±6.3 60.2±5.0 

9  GALRrHSI 1.72 908.05 908.55 45.7±12.3 54.5±9.1 

10  GLARrHSI 1.72 908.05 908.68 46.6±12.3 47.7±7.2 

11  GLLArHSI 1.78 865.02 865.50 45.7±6.2 42.1±7.8 

12  GLLRAHSI 1.78 865.62 865.53 <5 <5 

13  GLLRrASI 1.80 884.07 884.65 <5 <5 

14  GLLRrHAI 1.78 934.13 934.82 <5 <5 

15  GLLRrHSA 1.72 908.05 908.48 <5 <5 

16  GLLRaHS 1.74 751.86 752.48 55.5±4.7 54.2±3.2 

17  GLLRaHSI 1.78 865.62 865.50 63.2±9.7 55.5±6.0 

18 GLLRRHS 1.74 836.86 837.79 20.5±5.7 28.4±3.5 

 

a
Data represent mean values (±SD) of three independent determinations. 

b
GRK2 

purified protein activity (50 ng) was tested on rod outer segments (ROS) in presence 

or absence of 1M inhibitors.  
c
GRK2 purified protein activity (50 ng) was tested on 

Myelin Basic Protein (MBP) in presence or absence of  inhibitors. 
d
k’=[(peptide 

retention time-solvent retention time)/ solvent retention time]. 

 

The effectiveness of these peptides to inhibit GRK2 kinase activity was 

assessed by in vitro assay using GRK2 purified protein and the G protein-

coupled receptor rod outer segments (ROS) as a substrate (Table 2) in 

presence of [γ-
32

P]- adenosine triphosphate (ATP). 
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With a quick scan we found that peptide 1 causes a 47.6±5.5% inhibition of 

GRK2 activity on ROS. We found that indeed, substitution with a neutral D-

amino acid such as Alanine maintained the inhibitory properties of the 

resulting peptide 16 (55.5±4.7%). 

A similar approach was assessed for peptide 2. First of all, 2 causes a 

49.6±6.3% decrease in GRK2 activity. Similarly to peptide 1, the reinstallation 

of D-chirality in residue 5 restores the inhibitory properties of resulting 

peptide 17 on GRK2 (63.2±9.7%) which showed the highest GRK2 inhibition 

potency of the series.
34

 

To test the specificity of the peptides for GRK2 rather than for the 

substrate, we also repeated the same experiment using as substrate Myelin 

Basic Protein (MBP). MBP is an ideal model substrate, since this basic protein 

can be phosphorylated at multiple sites (Ser-11, Ser-55, Ser-8, Ser-132, Ser- 

55, Ser-161, and Ser-46) from several kinase types.
35

 Therefore, in this study 

we have used the myelin basic protein as conventional substrate for in vitro 

kinase assay. With this substrate, we observed a similar inhibition pattern as 

for ROS (Table 2). 

Furthermore, to better understand the importance of chirality in residue 5 

we synthetized an analogue of peptide 1 with 
5
L-Arg (peptide 18). This 

compound causes a 20.5±5.7% inhibition of GRK2 activity instead of 

47.6±5.5% for peptide lead suggested an important role of chirality. 

Furthermore, conformational analysis of these peptides clearly indicated that 

their structures are very similar to the X-ray structure of the fragment 

encompassing the HJ loop of the GRK2, indicating that the isolated peptide 

could keep the 3D structure of the protein segment. Based on these results, we 

designed, synthetized, and evaluated the GRK2 inhibitor activities of a small 

libraries of cyclic peptides. 

 

2.2 Design of cyclic peptides (peptides 19-24) 

 

The attention was focused on peptides lead, 1 and 2, that selectively inhibit 

GRK2 in vitro. Their NMR solution conformations are very similar to the 

crystal structure of the fragment encompassing the HJ loop of the GRK2 (pdb 
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entry 3CIK, Figure 2). Hence, it can be hypothesized that the active 

conformation of the peptides resemble the HJ loop crystal structure. 

Accordingly, the stabilization of the peptide 3D structure by, for example, 

the cyclization of these linear compounds can be considered as a valid 

approach to the identification of more potent, (stable and selective) 

compounds. As evident from Figure 2, N- and C-terminal sides of the loop 

fragment are relatively close (~5 Å), hence we first carried out a head-to-tail 

cyclization of peptides 1 and 2 leading to peptides 19 and 20, respectively 

(Table 3). 

The design of a second group of cyclic peptides is based on the 

consideration that, in the GRK2 crystal structure, the amino group of Lys383 

side chain points towards the Ser389 side chain (Figure 2). 

 

 
Figure 2. Stereoview of the crystal structure of the fragment 383-390 of GRK2 (1, 

pdb entry 3CIK). Heavy atoms are shown with different colours (carbon, green; 

nitrogen, blue; oxygen, red). Hydrogen atoms are not shown for clarity. Cyclization 

strategies are shown as dotted lines. 

 

Hence, the stabilization of the peptide structure was also sought through a 

side chain-to-side chain cyclization approach. The cyclic peptides 21 and 22 

(Table 3) were synthetized from linear peptides which contain the original 

residue Lys383 of GRK2 instead of 
1
Gly and an Asp residue in place of 

7
Ser 

residue. These two residues are linked by a side chain amide bond. For 

comparative purpose the analogues 23 and 24, containing the original Gly387 

residue at the position 5, were also synthetized and tested for their activity to 

inhibit GRK2.
36 
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The effectiveness of these peptides to inhibit GRK2 kinase activity was 

assessed by in vitro assay using GRK2 (GRK5) purified protein and the G 

protein–coupled receptor rod outer segments (ROS) as a substrate (Table 3) in 

presence of [γ-
32

P]- adenosine triphosphate (ATP). 

 

Table 3. Structure, inhibition activities, and analytical data of peptides 19-24. 

Peptide Sequence 
HPLC

c
 

k’ 

 

ESI-MS (M+H)  Inhib 

(%±SD)
a 

(%±SD)
a
 

 

Calcd Found GRK2
b
 GRK5

b
 

 1
d
 GLLRrHS 1.70 836.97 837.66 47.6±5.5 <5 

  2
 d

 GLLRrHSI 1.72 950.13 950.70 49.6±6.3 <5 

19 [GLLRrHS] 1.70 819.96 820.53 47.8±6.0 <5 

20 [GLLRrHSI] 1.85 933.12 933.80 37.2±10.7 <5 

21 [KLLRrHD] 1.72 919.09 920.13 36.3±4.4 <5 

22 [KLLRrHD]I 1.75 1032.25 1033.11 55.3±4.6 <5 

23 [KLLRGHD] 1.76 819.47 820.51 47.2±4.5 <5 

24 [KLLRGHD]I 1.78 933.12 933.68 33.7±7.8 <5 

a
Data represent mean values (±SD) of three independent determinations. 

b
GRK2 and 

GRK5 purified proteins activity (50 ng) were tested on rod outer segments (ROS) in 

presence or absence of 1 mM inhibitors. 
c
k’=[(peptide retention time-solvent retention 

time)/ solvent retention time]. 
d
Already reported in reference 11. 

 

2.2.1 NMR Analysis of cyclic peptide 22 

 

NMR analysis of peptide 22 was performed in water and DPC micelle 

solutions. No standard -helix or -sheet structure from HαCSI (chemical 

shift index) values,
37

 and no unambiguous medium- or long-range backbone 

NOE connectivities were found in the NOESY spectrum of the peptides. In 

contrast, several NMR parameters indicate that peptides are better structured 

in DPC solution and that they share very similar conformations. 

Superposition of the 10 lowest energy conformers of 22 is shown in Figure 

3. 
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Figure 3. Stereoview of the 10 lowest energy conformers of 22. Structures were 

superimposed using the backbone heavy atoms. Heavy atoms are shown with 

different colors (carbon, green; nitrogen, blue; oxygen, red). Hydrogen atoms are not 

shown for clarity.  

 

The first -turn structure is stabilized by a hydrogen bond between the 

carbonyl oxygen of 
1
Lys and the amide hydrogen of 

4
Arg. Residues 6 and 7 

are in extended conformations, residue 8 is more flexible. The side chain are 

also well defined, the RMSD for all heavy atoms is 0.74 Å. The side chains of 
4
Arg and 

6
His are close and form a positively charged hydrophilic surface 

while 
2
Leu and 

3
Leu side chains establish a hydrophobic surface pointing in 

the opposite direction. 

At the same time, we decided to consider peptide 1 and 2 as a valuable 

starting point for the development of a novel class of potential 

chemotherapeutic agents carrying out N- and C- terminal deletions with the 

aim to identify more potent and selective peptide derivatives. 

 

2.3 Design of a small truncation library and di-Ala approach (peptides 

25-30) 

 

Truncation library can be used to identify the shortest amino acid sequence 

needed for the peptide activity. The truncation process is carried out via a 

systemic reduction of residues from each flank of the original peptide. With 

the knowledge of the positions of key residues elucidated through Alanine 

Scanning library, the construction of the truncation library could also be 

centered around these key amino acid residues. 
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Ala scan results (Table 2) indicated that, while C-terminal residues are 

important for the activity of both peptides, N-terminal residues 
2
Leu and 

3
Leu

 

are important only for the shorter peptide 1. 
4
Arg side chain is of little 

importance for the activity of both the peptides, in contrast the substitution 

with a neutral D-amino acid such as Alanine does not change the inhibitory 

properties of peptides 1 and 2, thus suggesting an important role for the 

chirality of amino acid 5 rather than for the side chain. 

For this reason, we synthetized peptides 25-26 obtained from N- and C- 

terminal deletions of peptide 1. Considering that only C-terminal residues are 

important for the activity of peptides 2 we synthetized compound 28 

containing only C-terminal residues. 

To investigate the importance of C-terminal residues, in term of charges 

and steric hindrance, we used a di-Alanine scanning approach (peptides 29-

30). It is an important tool for peptide sequence optimization. It identifies 

amino acids of interest at a given position and substitutes the amino acid(s) 

near this position with the smallest chiral amino acid, Alanine, to explore side-

chain contributions of near amino acid to the interaction.  

 

Table 4. Structure, inhibition activities, and analytical data of peptides 25-30. 

Peptide Sequence 
HPLC

c
 

k’ 

 

ESI-MS (M+H)  Inhib (%±SD)
a 

(%±SD)
a
 

 

Calcd Found GRK2
b
 GRK5

b
 

 1
d
 GLLRrHS 1.70 836.97 837.66 47.6±5.5 <5 

  2
 d

 GLLRrHSI 1.72 950.13 950.70 49.6±6.3 <5 

25 LRrH 1.54 579.69 580.12 38.2±6.0 <5 

26 LLRr 1.65 555.71 556.23 50.5±9.7 <5 

27 rHS 1.43 397.42 398.41 10.3±4.4 <5 

28 rHSI 1.67 510.58 511.41 35.4±4.6 <5 

29 GLLArAS 1.74 685.21 686.13 35.7±6.4 <5 

30 GLLRrAA 1.76 754.92 755.35 22.6±4.7 <5 

a
Data represent mean values (±SD) of three independent determinations. 

b
GRK2 and 

GRK5 purified proteins activity (50 ng) were tested on rod outer segments (ROS) in 

presence or absence of 1 mM inhibitors. 
c
k’=[(peptide retention time-solvent retention 

time)/ solvent retention time]. 
d
Already reported in reference 11. 
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The effectiveness of these peptides to inhibit GRK2 kinase activity was 

assessed by in vitro assay using GRK2 (GRK5) purified protein and the G 

protein-coupled receptor rod outer segments (ROS) as a substrate (Table 4) in 

presence of [γ-
32

P]- adenosine triphosphate (ATP). 

From previous preliminary results we observed an improvement on 

inhibitory activity of tetrapeptide, compound 26 than peptide lead, 1. 

 

2.4 Design of cyclic peptides starting from tetrapeptide (peptides 26-40) 

 

Compound 22, a lactam cyclic peptide, remains the most active peptide and 

above it leads to an increase in 2AR density, in HEK-293 cells, consistent 

with an effective inhibition of GRK2. 

Being interested to identify the most active and at the same time the most 

stable peptide, we decided to apply two different approaches: 

i) Stabilization of tetrapeptide, compound 26, through a head-to tail 

cyclization approach; 

ii) Enhancement of ring size synthetizing lactam bridge analogues, 

starting from peptide 26. 

Head-to-tail cyclic peptides, important targets in peptide synthesis over 

decades, have attracted considerable interest in recent years. The reason for 

this interest stems from the observation that constraining of the highly flexible 

linear peptides by cyclization induces or stabilizes the bioactive conformation 

of peptides. Furthermore, cyclic peptides are more resistant to proteolysis than 

their linear counterparts due to the lack of exopeptidase cleavage sites.
38

  

i) The synthesis of peptide 31 allows us to have a more rigid structure of 

side chain-to-side chain cyclization. Furthermore, head-to tail cyclization 

allows us to have a peptide with minor possible conformers. 

ii) We decided to stabilize the peptide with the introduction of lactam 

bridge. Therefore, we designed a library of lactam cyclic derivatives from 

tetrapeptide, peptide 26. 

In particular, in N-terminal and C-terminal domain at positions 1 and 6 

amino acids bearing an amino ((2,3)-diaminopropionic acid (Dap), ornithine 

(Orn) or lysine (Lys)) and carboxylic (Asp or Glu) functions on the side chain, 
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respectively, were added; these two side chains were subsequently linked to 

form the lactam bridge (peptides 32, 34-40 Table 5). 

 

Focused on inhibitory activity of compound 21 and 22 we found that 

peptide 22, containing a 
8
Ile inhibits GRK2 activity of 55.3% instead of 36.3% 

for peptide 21. It suggests an important role of 
8
Ile. For this reason we decided 

to synthetize peptide 33, [KLLRrD]I. 

 

Table 5. Structure and analytical data of peptides 31-40. 

Peptide Sequence 
HPLC

a
 

k’ 

 

ESI-MS (M+H) 

Calcd Found 

 1
b
 GLLRrHS 1.70 836.97 837.66 

2
b 

 GLLRrHSI 

GLLRrHS 

1.72 950.13 950.70 

22 [KLLRrHD]I 1.75 1032.25 1033.11 

26 LLRr 1.65 555.71 556.23 

31 [LLRr] 1.71 538.75 539.60 

32 [KLLRrD] 1.77 780.91 781.64 

33 [KLLRrD]I 1.86 894.13 894.72 

34 [KLLRrE] 1.75 794.98 795.23 

35 [OrnLLRrD] 1.79 767.02 768.13 

36 [DabLLRrD] 1.84 752.76

 753.

25 

753.25 

37 [DapLLRrD] 1.81 738.54 739.86 

38 [OrnLLRrE] 1.78 780.93 781.25 

39 [DabLLRrE] 1.72 766.76 767.23 

40 [DapLLRrE] 1.74 752.43 753.79 

a
k’=[(peptide retention time solvent retention time)/ solvent retention time]. 

b
Already reported in reference 32. 

 

Recently,  peptides 31-33 were tested to verify if they inhibit GRK2 kinase 

activity. Peptide 31 and 33 appear to inhibit GRK2 activity in a similar manner 

to peptide 2. Peptide 32 causes a 25.3±1.2% inhibition of GRK2 activity 
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instead of 49.6±6.3% for peptide 2 suggested an important role of 
8
Ile (data 

not shown). 

  

2.5 Design of peptidomimetic 

 

Use of peptidomimetics is one of the most recent methods of drug design 

and development in medicinal chemistry. Peptidomimetics typically are small 

protein-like molecules designed to mimic natural peptides or proteins.
39

 

They typically arise either from modification of an existing peptide, or by 

designing similar systems that mimic peptides, such as peptoids and β-

peptides. These mimetics, whose structures were mainly derived from natural 

peptides, should have the ability to bind to their natural targets in the same 

way of the natural sequences and hence should produce the same biological 

effects. 

It is possible to design these molecules in such a way that they show the 

same biological effects as their peptide role models, but with enhanced 

properties like a higher proteolytic stability, higher bioavailability and also 

often with improve selectivity or potency.
40

 

Moreover it is known that the isosteric replacement of a peptide bond 

represents an important and general tool in design of peptidomimetics together 

with the incorporation of conformationally restricted units, such as rings, into 

a peptide sequence to force it to adopt a known, biologically active 

conformation.
41

 

In peptidomimetics, alterations to the side chain groups or the peptide 

backbone are used to improve the peptide’s stability and/or biological activity. 

Since most linear peptides can easily be degraded by enzymatic proteolysis, 

altering the peptide backbone can help reduce their rate of degradation. The 

highly charged side chain groups on peptidomimetics provide greater binding 

affinity and selectivity of the receptors towards these peptidomimetics which 

will reduce unwanted side effects and improve the therapeutic effects. As a 

result of their properties, peptidomimetics are of high interest as bioactive 

agents and as drugs having pharmacological activities. 
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 N-Substituted glycine oligomers (NSG), otherwise referred to as α-

peptoids, belonged to peptidomimetics class and are a readily accessible class 

of synthetic, non-natural peptide mimic of modular design into which a 

plethora of structural elements can be readily incorporated.
42

 The first NSG 

reports came from Zuckermann et al. in 1992.
43

 They are mimics of -

peptides in which the side chains are attached to the backbone N

-amide 

nitrogen instead of C

-atom. The schematic comparison of peptides and 

peptoids, provided in Figure 4, shows the similarities in the spacing of the side 

chains and the carbonyl groups, and the differences in the chirality of the two 

monomers. 

 
Figure 4.  Schematic comparison between peptides and peptoids showing the 

similarity of spacing of the side chains, and the lack of stereochemistry of the peptoid 

monomers. 

 

NSG’s were originally anticipated as a source of lead structure 

development in the pharmaceutical industry through the preparation of 

combinatorial libraries of short oligomers.
44

 

Hence, focused on tetrapeptide peptide 26 we decided to synthetize the 

peptoid analogue (compound 41, Figure 5).  

Recently, the peptoid was tested to verify if it inhibits GRK2 kinase 

activity. It appears not inhibit notably GRK2 activity compared to peptide 2. 

Specifically, peptoid 41 causes a 20.5±3.2% inhibition of GRK2 activity 

instead of 49.6±6.3 for peptide 2 (data not shown). 
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Figure 5. Structure of compound 41. 

 

3. Chemistry 

 

3.1 General procedure for synthesis 

 

The synthesis of peptides (1-18, 25-30) was performed according to the 

solid phase approach using standard Fmoc methodology in a manual reaction 

vessel.
45

 The first amino acid, was linked onto the Rink resin (100–200 mesh, 

1% DVB, 0.75 mmol/g) previously deprotected by a 25% piperidine solution 

in N,N-dimethylformamide (DMF) for 30 min. 

The following protected amino acids were then added stepwise.  Each 

coupling reaction was accomplished using a 3-fold excess of amino acid with 

HBTU and HOBt in the presence of DIPEA. The N
α
-Fmoc protecting groups 

was removed by treating the protected peptide resin with a 25% solution of 

piperidine in DMF. 

In addition, after each step of deprotection and after each coupling step, 

Kaiser test was performed to confirm the complete removal of the Fmoc 

protecting group, respectively, and to verify that complete coupling has 

occurred on all the free amines on the resin. 

The N-terminal Fmoc group was removed as described above, and the 

peptide was released from the resin with trifluoroacetic acid (TFA)/ 

triisopropylsilane(iPr3SiH)/H2O (90:5:5) for 3 h. The resin was removed by 

filtration, and the crude peptide was recovered by precipitation with cold 

anhydrous ethyl ether to give a white powder and then lyophilized. 
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3.2 Synthesis of lactam analogues (peptides 21-24, 32-40) 

 

The corresponding linear peptides were synthetized as described above. 

The preparation of cyclic peptides, 21-24, 32-40 through a side-chain-to-side-

chain cyclization, was carried out after removal of the Allyl/Alloc protection 

according to strategy reported by Grieco et al. (Scheme 1).
46

 

Structure, inhibition activities, and analytical data of peptides are in Table 3 

and Table 5. 
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Scheme 1. Synthesis and folding of peptide 21. 
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3.3 Synthesis of head-to-tail cyclic peptides (peptides 19-20, 31)  

 

The title peptides were synthetized using a 2-chlorotrityl chloride resin. The 

first N

-Fmoc amino acid and DIPEA were dissolved in dry dichloromethane 

containing, if necessary, a small amount of dry DMF. This was added to the 

resin and stirred for 30-120 min. Other N

-Fmoc amino acids were 

sequentially coupled as previously described. The final cleavage with 

AcOH/MeOH/DCM (1:1:8) resulted in protected peptides.
47

 

General procedure for cyclization: A solution of the linear protected 

peptide was added at room temperature to a reaction flask containing a 

solution of HOBt, HBTU and DIPEA in DMF. The mixture was stirred for 24 

h at room temperature and monitored by TLC.  

 

3.4 Synthesis of peptoid (compound 41) 

 

In the solid-phase synthesis of peptoid-peptide hybrids, two different 

approaches can be used to introduce an N-alkylglycine (peptoid residue) on 

the growing peptide chain: (i) the N-substituted glycine derivative, suitably 

protected at the tertiary nitrogen atom, can be separately prepared and directly 

utilized as building block in the solid phase procedure (monomer method),
48,49

 

or (ii) the peptoid residue is built during the peptide chain elongation by a 

combination of two submonomers, an R-haloacetic acid and a primary amine 

(submonomer method).
43

 In both cases to achieve a N-Arg peptoid residue, a 

suitable NG-protected-3-guanidinopropanamine has to be synthetized in 

advance.
50

 To speed up the synthesis of N-Arg containing peptoid-peptide 

hybrids, we optimized a procedure based on the submonomer method, which 

makes possible a direct assembling of the functionalized peptoid residue 

starting from commercially available reagents. 

For the synthesis of compound 41, the peptoid residue is built during the 

peptide chain elongation by a combination of two submonomers, an R-

haloacetic acid and a primary amine (submonomer method). 

Bromoacetic acid was coupled to the NH2-peptide resin in the presence of 

N,N’-diisopropylcarbodiimide (DIC).  
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Initially the Rink resin was deprotected by a 25% piperidine solution in 

N,N-dimethylformamide (DMF) for 30 min. 

Bromoacetic acid was then coupled to the NH2-peptide resin in the presence 

of N,N’-diisopropylcarbodiimide (DIC), and the halogen was displaced with a 

large excess of 1,3-diaminopropane. The resulting N-(3-aminopropyl)glycine 

(a precursor of NArg) was then selectively protected at the side chain amino 

function by reaction with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (Dde-

OH).
51

 

Further elongation of the peptide chain was carried out according to the 

standard protocol,
52

 with the addition of Bromo acetic acid and the appropriate 

amine. The last N-alkylglycine residue was Boc protected with Boc anhydride 

which is orthogonal to the Dde group. This one was removed from the peptoid 

side chain by treatment with 2% hydrazine in DMF, and the resulting δ-amino 

function was on-resin guanidinylated with N,N’-di-Boc-1H-pyrazole-1-

carboxamidine. Simultaneous deprotection and cleavage of peptides from the 

resin gave the peptoid-peptide hybrids in high yield (70-80%). 

The synthesis is illustrated in Scheme 2: 
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Scheme 2. Synthesis of compound 41. 

 

3.5 Synthesis of labeled peptides (Fl-2, Fl-22) 

 

The starting peptides 2 and 22 were synthetized as described above. Then 

Fmoc-deprotected, resin-bound peptides, were reacted with 5(6)-

carboxyfluorescein, N,N’-diisopropyl carbodiimide and 1-
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hydroxybenzotriazol at RT. Completeness of N-terminal acylation was 

confirmed using the Kaiser test. 

 

3.6  Purification and Characterization 

 

All crude peptides were purified by RP-HPLC on a preparative C18-bonded 

silica column using a Shimadzu SPD 10A UV/VIS detector, with detection at 

215 and 254 nm. 

All peptides were characterized with analytical RP-HPLC and peptides 

molecular weights were determined by ESI mass spectrometry and  LC-MS in 

a LC-MS 2010 instrument (Shimadzu) fitted with a C-18 column. All 

analogues showed >97% purity when monitored at 215 nm. Homogeneous 

fractions, as established using analytical HPLC, were pooled and lyophilized. 

 

4. Results and discussion  

 

4.1 Inhibitory activity of peptides 3-18 

 

The first part of the work focused on a SAR study and a NMR 

conformational analysis of peptides 1 and 2 which are able to selectively 

inhibit GRK2.
32, 34

 Ala scan results (Table 2) indicated that, while C-terminal 

residues are important for the activity of both peptides, N-terminal residues 
2
Leu and 

3
Leu are important only for the shorter peptide 1. Since the 

conformational preferences in solution of the two peptides are very similar, a 

possible explanation of the different SAR observed is that hydrophobic 

interaction of residues 
2
Leu and 

3
Leu with the target are borrowed by 

8
Ile in 

peptide 2 (
8
Ile is lacking in peptide 1). 

4
Arg side chain is of little importance 

for the activity of both the peptides, in contrast, replacement of 
5
Arg with Ala 

completely abolishes the inhibitory activity. 

Since in the original sequence, the amino acid in position 5 is a D-

enantiomer, 
5
D-Arg was substituted by D-Ala, in order to discern the real role 

of molecular orientation from the effects of the amino acid side chain on the 

inhibitory activity. We found that substitution with a neutral D-amino acid 
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such as Alanine does not change the inhibitory properties of peptides 1 and 2, 

thus suggesting an important role for the chirality of amino acid 5 rather than 

for the side chain. 

Interestingly, both side chains of 
4
Arg and 

5
D-Arg

 
can be replaced by a 

neutral amino acid when the chirality is retained. Indeed, peptide 17 (D-Ala 

derivative of peptide 2) showed the highest GRK2 inhibition potency of the 

series. These peptides retain specificity for the GRK2 since they were equally 

effective on GRK2 using two different substrates. Also, they keep selectivity 

since they are ineffective in inhibition GRK5 activity on the same substrates. 

Peptide 1, 2, 17 ability to increment basal and βAR stimulated cAMP 

production in HEK-293 cells is consistent with their effective inhibition of 

GRK2 (Figure 6). However, the low entity of those increments is likely due to 

the difficulty of the peptides to cross the cell membrane. The slight higher 

activity of peptide 2 compared to 1 roughly parallels its higher GRK2 

inhibition potency. 

 

 
Figure 6. cAMP production in HEK-293 cells treated with 1, 2 and 17 as 

determines by enzyme immunoassay. ISO: Isoproterenol. Each data point represents 

the mean±SEM of 3 independent experiments; * = p<0.0001 vs Ctr; # = p<0.01 vs 

Iso. 89x57mm (600 x 600 DPI). 
 

Differently, slight higher activity of peptide 2 compared to 17 would 

indicate that, even if 
5
D-Arg

 
is dispensable for GRK2 interaction (Table 2), it 

can improve the permeating properties of the peptide. 

NMR analysis of peptides 1, 2, 16, and 17 was performed in water and 

DPC micelle solutions. The last is a membrane mimetic medium and was 
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chosen since GRK2 phosphorylation of GPCRs occurs close to the plasma 

membrane. Peptides conformational preferences are similar since they have 

similar diagnostic NMR parameters. Peptides structures in DPC micelles are 

characterized by two β-turns that involve 
1
Gly to 

4
Arg and 

2
Leu to 

5
D-Ala (or 

5
D-Arg), followed by a short extended region encompassing residues 6 and 7 

(Figure 7). The NMR structures of the peptides in DPC are very similar to the 

X-ray structure of the fragment encompassing the HJ loop of the GRK2 (pdb 

entry 3CIK)
53

 which, indeed, was the starting point for the design of the 

peptides 1 and 2. Figure 7 shows the superposition of the NMR structure of 17 

with that of the fragment 383-390 of the GRK2. Equivalent backbone atoms of 

17 and GRK2 superimpose to an RMSD of 0.17 Å. It can be also observed the 

good overlapping of the unchanged side chains which occupies similar space 

regions. Therefore, the isolated peptide keeps the 3D structure of the protein 

segment and likely competes with the activation functions of this loop.
30, 31

  

 
Figure 7. Stereoview of the 10 lowest energy conformers of 17. Structures were 

superimposed using the backbone heavy atoms. Heavy atoms are shown with 

different colours (carbon, green; nitrogen, blue; oxygen, red). Hydrogen atoms are not 

shown for clarity. 150x91mm (300 x 300 DPI). 
 

This result could explain the selectivity observed for these peptides  

towards GRK2 compared  to GRK5.  In  fact, GRK5  HJ  loop corresponding 

sequence  is  MIEGQS  (CLUSTAL Omega alignment; 

www.ebi.ac.uk/Tools/msa/clustalo) which  compared  to  the GRK2  sequence 

LLRGHS has,  inter alia, a very different charge content (-1 vs +1/+2). 
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4.2 Inhibitory activity of cyclic peptides (peptides 19-24) 

 

Once we demonstrated that peptides 1 and 2, selectively inhibit GRK2 in 

vitro we decided to focused on these compounds to identify more potent and 

selective inhibitors of GRK2.
34

 

Peptides 1 and 2 are the not acylated derivatives of compounds KRX-683107 

and KRX-683124, respectively (Table 1), in turn derived from the fragment 

383-390 of the HJ loop of GRK2
 
(Table 1).

 32
 

Conformational similarity of these peptides to the protein fragment within 

the crystal structure of GRK2,
53

 prompted us to design novel analogues of 

peptides 1 and 2 based on head-to-tail and side chain-to-side chain cyclization, 

according to the HJ loop structure (Figure 2). Hence, the lactam were 

introduced as a conformational constraint to stabilize the putative 3D active 

conformation. The utility of backbone or side chain cyclization has been well 

established in peptides, and it has been demonstrated to increase biological 

activity and selectivity since they are usually more stable in metabolism than 

the parent linear molecules.
54

 In this context, lactam bridges are preferable 

over disulfide ones due to their chemical stability.
55

 

All cyclic peptides retain the ability to inhibit GRK2 (Table 3) 

demonstrating the validity of the design strategy. Potency fluctuations were 

observed upon the insertion of 
8
Ile in cyclic analogues. 

Probably, conformational restraints imposed by the cyclization also affect 

exocyclic Ile residue spatial orientation which, in turn, influences the 

inhibitory activity. Cyclic peptide 22 is the most active in the GRK2 inhibition 

overcoming of about 10% its precursor (peptide 2). Interestingly, peptides also 

retain selectivity towards GRK2 since they don’t affect GRK5 kinase activity 

on rhodopsin levels. To bring our observation to a biological setup, we tested 

the effects of GRK2 inhibitors in cells on the beta adrenergic receptors 

density. Indeed, it is known that GRK2 inhibition can change the affinity state 

of the beta adrenergic receptor by preventing desensitization,
56

 furthermore 

recent evidences suggest that also the total number of adrenergic receptors is 

under the control of GRK2 activity,
57

 thus indicating that the kinase also 
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control down regulation, the major and most effective mechanism of 

regulation of AR signaling. 

Interestingly, peptide 22 results to be more effective than the lead 

compound 2 to increase 2AR density (Figure 8A). Similar results are 

obtained in cAMP production studies. In fact, 22 increases both basal and 

2AR stimulated cAMP production in cells (Figure 8B). 

 

 

Figure 8. (A) 2-adrenergic receptors density in HEK-293 cells treated with 

peptides 2 and 22 (1 mM for 1 h). Each data point represents the mean " SEM of 3 

independent experiments; * p-value % 0.05. (B) cAMP production in HEK-293 cells 

treated with 2 and 22 as determined by cAMP immunoassay. ISO: Isoproterenol, 0.1 

mM. Each data point represents the mean " SEM of 3 independent experiments; **p < 

0.0001 vs Ctr; #p < 0.01 vs ISO. 

 

These results are particularly important since they indicated these peptides 

are able to penetrate the cell membrane by itself without the need of acylation 

(as for KRX-683124), conjugation with cell penetrating peptides, etc. To 

confirm this important suggestion, we measured the internalization of both 

fluorescently labeled peptides (Fl-2 and Fl-22, respectively). 

As observed in Figure 9A and B, both peptides are able to cross cell 

membrane with the linear compound Fl-2 incorporated to cells more 

effectively than compound Fl-22. 
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Figure 9. (A) Incorporation of fluorescently labeled peptides into 2HEK-293 

cells. The cells were incubated with 1 mM Fl-2 (upper panel) and Fl-22 (lower panel) 

for 1 h. Images were obtained by confocal microscopy. (B) Quantification of 3 

experiments measuring fluorescence incorporation of the cells incubated with either 

Fl-2 or Fl-22, at either 10 mM or 1 Mm p < 0.01 vs Control (Ctr). 

 

Probably, peptide 22 highest potency in the inhibition of GRK2 kinase 

activity is the predominant factor determining the observed significant 

increase of 2 adrenergic receptor density and cAMP production. 

Promising compound 22 was also investigated for its conformational 

preferences. NMR analysis of peptide 22 was performed in water and DPC 

micelle solutions. It is well-known that water is the best medium to be used for 

the structural study of peptides. Unfortunately it favors the prevailing of 

disordered and flexible conformations so that the building of a 3D model is 

often precluded. 
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Mixtures made up of water and organic solvents are the most used media to 

produce environmental constraints. In particular, alcohols and fluoro alcohols 

are known to stabilize peptide secondary structures.
58

 Micelle solutions are 

membrane mimetic environments and are largely used for conformational 

studies of peptide hormones and antimicrobial peptides.
59

 In this case, a 

micellar solution of DPC was chosen since GRK2 phosphorylation of GPCRs 

occurs close to the plasma membrane. Peptide 22 structure in DPC micelles is 

characterized by two -turns that involve 
1
Gly to 

4
Arg and 

2
Leu

 
to 

5
D-Arg, 

followed by a short extended region encompassing residues 6 and 7 (Figure 

10). Compared to the linear parent peptides, compound 22 shows a lower 

conformational flexibility (in fact, the backbone heavy atoms RMSD 

decreases from 0.31 to 0.20 Å, compared to the linear analogue).
34

 

More interestingly, the NMR structures of peptide 22 are very similar to the 

crystal structure of the fragment encompassing the HJ loop of the GRK2 (pdb 

entry 3CIK).
53

 Figure 9 shows the superposition of the NMR structure of 22 

with that of the fragment 383-390 of the GRK2. Equivalent backbone atoms of 

22 and GRK2 superimpose to an RMSD of 0.17 Å. It can be also observed the 

good overlapping of the unchanged side chains which occupies similar space 

regions. Also, 
8
Ile side chain is well overlapped with that of Pro390, 

supporting the positive contribution of this residue on peptide activity. 

Therefore, the isolated peptide keeps the 3D structure of the protein segment 

and likely competes with the activation functions of this loop.
31

 

 

 
Figure 10. Stereoview of 22 lowest energy conformer (green) and fragment 383-

390 of GRK2 (1, yellow, pdb entry 3CIK). The structures are superimposed using the 

backbone heavy atoms.  
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4.3 Inhibitory activity of peptides 25-28 

 

The effectiveness of these peptides to inhibit GRK2 kinase activity was 

assessed by in vitro assay using GRK2 purified protein and the G protein–

coupled receptor rod outer segments (ROS) as a substrate (Figure 10) in 

presence of [γ-
32

P]- adenosine triphosphate (ATP). 

Peptide 26 was compared with peptide lead 1, with the same peptide 

synthetized with CPP (Cell Penetrating Peptide), two lactam cyclic peptides 

(21 and 23), another tetrapeptide (compound 25) and a tripeptide 27. 

It showed that peptide 26, 
1
Leu

2
Leu

3
Arg

4
DArg, inhibits GRK2 activity 

more than lead compound 1 (50.5% versus 47.6%) (Figure 11). 

Next, to verify whether these peptides selectively inhibit GRK2, we 

repeated the activity assay substituting GRK5 to GRK2 purified protein. 

GRK2 selective inhibition is suggested by the evidence that all peptides don’t 

affect GRK5 kinase activity on rhodopsin phosphorylation levels. 

Starting from these interesting data, we designed a peptidomimetic derived 

from tetrapeptide 26 with the aim to synthetize small molecules in the future. 

 

 

 

Figure 11.  Inhibitory GRK2 kinase activity for peptides 21, 23, 25, 26 and 27 in 

vitro assay using GRK2 purified protein and the G protein–coupled receptor rod outer 

segments (ROS) as a substrate in presence of [γ-
32

P]- adenosine triphosphate (ATP). 
 

Focused on peptide 2, we compared the lead compound, two lactam cyclic 

peptides (22 and 24), the head-to tail peptide (peptide 20) with tetrapeptide 28, 
1
DArg

2
His

3
Ser

4
Ile, obtained from N- and C-terminal deletions of peptide 2. 

This compound inhibits GRK2 of 35.4% instead of 47.6% for peptide lead 

(Figure 12). 
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In conclusion, starting from peptides lead, 1 and 2, to design more stable 

and active peptides some improvement are required. Both deletions and/or 

cyclization lead to a more active peptides than peptide lead. 

The advantage in case of deletion is in a fast and economic synthesis and 

then we have the possibility to design peptidomimetics and small molecules 

starting from three-four amino acids. 

 

 

Figure 12. Inhibitory GRK2 kinase activity for peptides 20, 22, 24 and 28 in vitro 

assay using GRK2 purified protein and the G protein–coupled receptor rod outer 

segments (ROS) as a substrate in presence of [γ-
32

P]- adenosine triphosphate (ATP). 

 

4.4 Effects of  GRK2 inhibition on AR density: a comparison between 

peptides 22 and 26 

 

To confirm the effectiveness of GRK2 inhibition in a cellular setup, we 

tested the effects of GRK2 inhibitors in cells on beta adrenergic receptors 

density in HEK-293 cells stably overexpressing the 2 adrenergic receptor 

(2AR).
11

 In HEK-293 cells, incubation with compound 2, the cyclic peptide 

22 (1 mM) and the tetrapeptide 26 results in the increase in 2AR density, 

consistent with an effective inhibition of GRK2 (Figure 13). Interestingly, 

peptide 22 results to be more effective than the others. Peptide 26 and 2 

increase the 2AR density in the same manner.
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Figure 13. (A) 2-adrenergic receptors density in HEK-293 cells treated with 

peptides 2, 22, 26 (1 mM for 1 h). Each data point represents the mean " SEM of 3 

independent experiments; * p-value %0.05. 

 

For all the other compounds (34-41) inhibitory activity assays are in 

progress. 

 

5. Conclusion 

 

GRK2 is involved in the regulation of many pivotal cell functions, and is 

therefore a key player in human health and disease, such as in several relevant 

cardiovascular, inflammatory or cancer pathologies. Hence, modulation of its 

activity could be exploited with therapeutic purposes.  

The present study describes the design, synthesis, and biological evaluation 

of a series of linear and cyclic peptides which are able to selectively inhibit 

GRK2. 

Starting from peptides 1 and 2, this study: i) found the (in)dispensable 

residues which can be replaced in an attempt to improve peptide properties 

(GRK2 interaction, membrane permeation); ii) determined their 

conformational preferences which can help the design of novel peptides and 

peptidomimetics with enhanced conformational stability; iii) found that a 

restricted conformation increases inhibitory activity and lead to a more stable 

compound.  
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In particular, cyclic peptide 22 demonstrated to increase the inhibitory 

potency of the linear parent 2. Our results showed that 22 also increased, more 

effectively than 2, the density of  adrenergic receptors and the AR 

stimulated cAMP production in cardiac cells, further confirming the GRK2 

control on regulation of AR signaling. These findings confirm that 

conformational-based chemical modification of the linear fragment 

encompassing the HJ loop of the GRK2 is an effective approach to identify 

structures able to modulate GRK2 activity through inhibition.  

 

6. Experimental section 

 

6.1 Synthesis of linear derivatives (peptides 1-18, 25-30) 

 

The synthesis of GRK2 analogues was performed according to the solid 

phase approach using standard Fmoc methodology in a manual reaction 

vessel.
43 

N
α
-Fmoc-protected amino acids, Rink amide-resin, N-hydroxy-

benzotriazole (HOBt), 2-(1H-benzotriazole-1-yl)-1,1,3,3- tetramethyluronium 

hexafluoro-phosphate (HBTU), N,N-diisopropylethyl-amine (DIPEA), 

Piperidine and Trifluoroacetic acid were purchased from Iris Biotech 

(Germany). Peptide synthesis solvents, reagents, as well as CH3CN for high 

performance liquid chromatography (HPLC) were reagent grade and were 

acquired from commercial sources and used without further purification unless 

otherwise noted. The first amino acid, N
α
Fmoc-Xaa-OH (Xaa = Ile, Ser(tBu), 

Ala, DArg(Pbf), His(Trt)) was linked on to the Rink resin (100–200 mesh, 1% 

DVB, 0.75 mmol/g) previously deprotected by a 25% piperidine solution in 

N,N-dimethylformamide (DMF) for 30 min. 

The following protected amino acids were then added stepwise: N
α
-Fmoc-

Ala-OH, N
α
-Fmoc-His(N(im)trityl(Trt))-OH, N

α
-Fmoc-DArg(2,2,4,6,7–

pentamethyldihydro benzofuran-5-sulfonyl (Pbf))-OH (or N
α
-Fmoc-DAla-

OH), N
α
-Fmoc-Arg(Pbf)-OH, N

α
-Fmoc-Leu-OH, N

α
-Fmoc-Gly-OH, N

α
-

Fmoc-Ser(tBu)-OH. Each coupling reaction was accomplished using a 3-fold 

excess of amino acid with HBTU and HOBt in the presence of DIPEA (6 eq.). 
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The N
α
-Fmoc protecting groups was removed by treating the protected peptide 

resin with a 25% solution of piperidine in DMF (1x 5 min and 1x 25 min). 

The peptide resin was washed three times with DMF, and the next coupling 

step was initiated in a stepwise manner. The peptide resin was washed with 

dichloromethane (DCM) (3×), DMF (3×), and DCM (3×), and the 

deprotection protocol was repeated after each coupling step. 

In addition, after each step of deprotection and after each coupling step, 

Kaiser test was performed to confirm the complete removal of the Fmoc 

protecting group, respectively, and to verify that complete coupling has 

occurred on all the free amines on the resin. 

The N-terminal Fmoc group was removed as described above, and the 

peptide was released from the resin with trifluoroacetic acid (TFA)/ 

triisopropylsilane (iPr3SiH)/H2O (90:5:5) for 3 h. The resin was removed by 

filtration, and the crude peptide was recovered by precipitation with cold 

anhydrous ethyl ether to give a white powder and then lyophilized.  

 

6.2 Synthesis of head-to-tail cyclic peptides (peptides 19-20, 31) 

 

The title peptides were synthetized using a 2-chlorotrityl chloride resin. The 

first N
α
Fmoc-Xaa-OH (Xaa = Ile, Ser(tBu), DArg(Pbf), (0.6-1.2 equiv relative 

to the resin for 2-chlorotrityl resin) and DIPEA (4 equiv relative to amino 

acid) were dissolved in dry dichloromethane (DCM) (approx. 10 mL per gram 

of resin) containing, if necessary, a small amount of dry DMF (enough to 

facilitate dissolution of the acid). This was added to the resin and stirred for 

30-120 min. After stirring, the resin was washed with 3×DCM/MeOH/DIPEA 

(17:2:1), 3×DCM, 2×DMF and 2×DCM. Other N

-Fmoc amino acids (4 

equiv) were sequentially coupled as previously described. The final cleavage 

with AcOH/ MeOH/DCM (1:1:8) resulted in protected peptides.
36,47

 

 

6.2.1 General procedure for cyclization 

 

A solution of the linear protected peptide (0.03 mmol) in DMF (6.5 mL) 

was added at room temperature to a reaction flask containing a solution of N-
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hydroxybenzotriazole (HOBt) (3 equiv, 12 mg, 0.09 mmol), HBTU (3 equiv, 

34 mg, 0.09 mmol) and DIPEA (5 equiv, 0.26 mL, 1.5 mmol) in DMF (1 mL). 

The mixture was stirred for 24 h at room temperature and monitored by TLC. 

The mixture was concentrated under reduced pressure, and the residue was 

dissolved in ethyl acetate (AcOEt). The organic phase was washed twice with 

5% aqueous sodium bicarbonate (NaHCO3), dried over sodium sulfate 

(Na2SO4), and filtered. The solvent was removed by reduced pressure to give 

the final crude protected peptide. 

 

6.3 Synthesis of lactam analogues (peptides 21-24, 32-40) 

 

The corresponding linear peptides were synthetized as described above and 

the amino acids N

-Fmoc-Asp(Allyl)-OH, N


-Fmoc-Glu(Allyl)-OH and N


-

Fmoc-Lys(Alloc)-OH, N

-Fmoc-Orn(Alloc)-OH, N


-Fmoc-Dap(Alloc)-OH 

and N

-Fmoc-Dab(Alloc)-OH were used as lactam precursors. After linear 

assembly, the N-Alloc and the Allyl groups were removed according to the 

following procedure: 200 mg of peptide resin was washed with 

dichloromethane (DCM) under Ar and a solution of PhSiH3 (24 equiv) in 2 

mL of DCM was added. Subsequently a solution of Pd(PPh3)4 (0.25 equiv) in 

6 mL of DCM was added and the reaction was allowed to proceed under Ar 

for 30 min. The peptide resin was washed with DCM (3x), DMF (3x) and 

DCM (4x), and the deprotection protocol was repeated (3x). The macrocyclic 

lactam ring formation was mediated by addition of HBTU (6 equiv), HOBt (6 

equiv) and DIPEA (12 equiv) for 2 h.
36,46

 The process was repeated if 

necessary (Kaiser test used to monitor completion). The N-terminal Fmoc 

group was removed and the peptide was released from the resin as described 

above. 

 

6.3.1 Side-chain deprotection  

 

The protected cyclopeptide (0.02 mmol) was treated with 10 mL of a 

solution of TFA/triisopropylsilane (TIS)/H2O 95: 2.5: 2.5 at room temperature. 

After 24 h, the reaction mixture was evaporated in vacuo, and the residue was 
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washed with diethyl ether (Et2O) and concentrated in vacuo, yielding the side 

chain-deprotected cyclopeptide as a trifluoroacetate salt (quant.). 

 

6.4 Synthesis of peptoid 41 

 

For on-resin assembling of N
κ
-protected N-aminoalkylglycine residue, a 1 

M solution of bromoacetic acid in DMF (10 equiv) and DIC (10 equiv) was 

added to the N

-deprotected peptide resin. After the mixture was stirred for 45 

min, the resin was washed with DMF (6 times) and a solution of the selected 

diamine (1,3-diaminopropane and butyl-amine, 30 eq)  in DMF was added. 

After 2 h of reaction, the resin was collected by filtration and washed with 

DMF. The primary amino group on the resulting peptoid residue was protected 

by reaction with a 0.5 M solution of Dde-OH (10 equiv, 90 min) in DMF, and 

the assembling of the peptide chain was resumed. The last N-alkylglycine 

residue was Boc protected with Boc anhydride. Different from the Fmoc 

group, the Boc is stable to the basic conditions required to remove the Dde 

group. 

For on-resin guanidinylation of peptoid-peptide hybrids, the peptoid-

peptide hybrid, still attached to the solid support, was repetitively treated with 

2% hydrazine in DMF (3 times for 3 min) to remove the Dde group from the 

peptoid side chain. 

After the usual washing cycles, the resulting N-aminoalkylglycine residue 

was guanidinylated by reaction with 2 equiv of N,N’-bis-Boc-1-

guanylpyrazole (0.03 M in DMF); the reaction was performed at 35 °C and 

was complete in less than 2 h.
48

 

Cleavage of peptides from the resin and removal of the acid labile 

protecting groups were simultaneously achieved by treatment of the final 

peptide-peptoid hybrid resin with a TFA-H2O-triisopropylsilane (TIS) mixture 

(95:2.5:2.5 by volume) for 90-120 min at room temperature. Peptides were 

precipitated by addition of cold diethyl ether and dried overnight under 

vacuum. Crude peptides were obtained in 70-80% yield. 
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6.5 Synthesis of labeled peptides (Fl-2, Fl-22) 

 

The starting peptides 2 and 22 were synthetized as described above. Then 

Fmoc-deprotected, resin-bound peptides, were reacted with 3 equiv of        

5(6)-carboxyfluorescein, N,N’-diisopropyl carbodiimide, and 1-

hydroxybenzotriazol, each in DMF for 16 h in 10-mL syringes on a shaker at 

RT. Reactions were stopped by washing the resins three times each with DMF, 

methanol, dichloromethane, and diethyl ether. Completeness of N-terminal 

acylation was confirmed using the Kaiser test. 

 

6.6 Purification and characterization 

 

All crude peptides were purified by RP-HPLC on a preparative C18-bonded 

silica column (Phenomenex, Jupiter Proteo 90Å, 100 mm × 21.2 mm, 10m) 

using a Shimadzu SPD 10A UV/VIS detector, with detection at 210 and 254 

nm. The column was perfused at a flow rate of 15 mL/min with solvent A 

(10%, v/v, water in 0.1% aqueous TFA), and a linear gradient from 10 to 90% 

of solvent B (80%, v/v, acetonitrile in 0.1% aqueous TFA) over 15 min was 

adopted for peptide elution. Analytical purity and retention time (tR, Tables 2-

5) of each peptide were determined using HPLC conditions in the above 

solvent system (solvents A and B) programmed at a flow rate of 1 mL/min 

using a linear gradient from 10 to 90% B over 15 min, fitted with 

Phenomenex, Aeris XB-C18 column (150 mm × 4.60 mm, 3.6 μm).  

All analogues showed >97% purity when monitored at 215 nm. 

Homogeneous fractions, as established using analytical HPLC, were pooled 

and lyophilized. 

At the same time, LC-MS was performed in a LC-MS 2010 instrument 

(Shimadzu) fitted with a C-18 column (Phenomenex, Aeris XB-C18 column 

(150 mm × 4.60 mm, 3.6 μm) eluted with a 10-90% linear gradient of B into A 

for all compounds. 

To check and to have a confirmation of peptides molecular were used ESI 

mass spectrometry. ESI-MS analysis in positive ion mode, were made using a 

Finnigan LCQ ion trap instrument, manufactured by Thermo Finnigan (San 
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Jose, CA, USA), equipped with the Excalibur software for processing the data 

acquired. The sample was dissolved in a mixture of water and methanol 

(50/50) and injected directly into the electrospray source, using a syringe 

pump, which maintains constant flow at 5 mL/min. The temperature of the 

capillary was set at 220 °C. 

 

6.7 NMR Spectroscopy  

 

The samples for NMR spectroscopy were prepared by dissolving the 

appropriate amount of peptide to obtain a concentration 1-2 mM in 0.55 mL of 
1
H2O (pH 5.5), 0.05 ml of 

2
H2O for water samples, 200 mM DPC-d38 for 

micelle samples.
34

 NMR spectra were recorded on a Varian INOVA 700 MHz 

spectrometer equipped with a z-gradient 5 mm triple-resonance probe head. 

All the spectra were recorded at a temperature of 25°C. The spectra were 

calibrated relative to 3 (trimethylsilanyl)propionic acid (TSP, 0.00 ppm) as 

internal standard. One-dimensional (1D) NMR spectra were recorded in the 

Fourier mode with quadrature detection. Water suppression was achieved by 

using the double-pulsed field gradient spin-echo (DPFGSE) scheme.
60

 2D 

double quantum filtered correlated spectroscopy (DQF-COSY),
61

 TOCSY,
62

 

and NOESY
63

 spectra were recorded in the phase-sensitive mode using the 

method of States.
64

 Data block sizes were 2048 addresses in t2 and 512 

equidistant t1 values. Before Fourier transformation, the time domain data 

matrices were multiplied by shifted sin
2
 functions in both dimensions. A 

mixing time of 70 ms was used for the TOCSY experiments. NOESY 

experiments were run with mixing times in the range of 100-200 ms. The 

qualitative and quantitative analyses of DQF-COSY, TOCSY, and NOESY 

spectra, were obtained using the interactive program package XEASY.
65

 
3
JHN-

Hα coupling constants were obtained from 1D 
1
H NMR and 2D DQF-COSY 

spectra. Many 
3
JHN-Hα coupling constants were difficult to measure in DPC 

solution probably because of a combination of small coupling constants and 

broad lines. The temperature coefficients of the amide proton chemical shifts 

were calculated from 1D 
1
H NMR and 2D TOCSY experiments performed at 

different temperatures by means of linear regression. 
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6.7.1 Structural Determinations 

 

The NOE-based distance restraints were obtained from NOESY spectra 

collected with a mixing time of 200 ms. The NOE cross peaks were integrated 

with the XEASY program and were converted into upper distance bounds 

using the CALIBA program incorporated into the program package 

VDYANA. Cross peaks which overlapped more than 50% were treated as 

weak restraints in the DYANA calculation. For each examined peptide, an 

ensemble of 100 structures was generated with the simulated annealing of the 

program DYANA. An error-tolerant target function (tf-type=3) was used to 

account for the peptide intrinsic flexibility of the peptide. The annealing 

procedure produced 100 conformations from which 20 structures were chosen, 

whose interprotonic distances best fitted NOE derived distances, and then 

refined through successive steps of restrained and unrestrained EM 

calculations using the Discover algorithm (Accelrys, San Diego, CA) and the 

consistent valence force field (CVFF)
66

 as previously described. Graphical 

representation were carried out with the the UCSF Chimera package.
67

 RMS 

deviation analysis between energy minimized structures were carried out with 

the program MOLMOL.
68

 

 

6.8 In Vitro Methods 

 

6.8.1 GRK Activity in Rhodopsin Phosphorylation Assays 

 

To evaluate the effect of all synthetized peptides on GRK2 activity we 

assessed GRK2 or GRK5 purified proteins by light-dependent phosphorylation 

of rhodopsin-enriched rod outer segment membranes (ROS) using [γ-
32

P]-ATP 

as previously described.
17,69

 Briefly, 50 ng of active GRK2 or GRK5 were 

incubated with ROS membranes in presence or absence of inhibitor peptides in 

reaction buffer (25 mL) containing 10 Mm MgCl2, 20 mM Tris-Cl, 2 mM 

ethylenediaminetetraacetic acid (EDTA), 5 mM ethylene glycol tetraacetic 

acid (EGTA), and 0.1 mM ATP and 10 Ci of [γ-
32

P]-ATP. After incubation 

with white light for 15 minutes at room temperature, the reaction was 
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quenched with ice-cold lysis buffer and centrifuged for 15 minutes at 13000g. 

The pelleted material was resuspended in 35 μL protein gel loading dye, 

electrophorosed and resolved on SDSPAGE 4‐12% gradient (Invitrogen), 

stained with Coomassie blue, destained, vacuum dried, and exposed for 

autoradiography. Phosphorylated rhodopsin was visualized by 

autoradiography of dried gels and quantified using a PhosphorImager 

(Molecular Dynamics). Alternatively, the pellet was resuspended in 100 μL of 

ice-cold lysis buffer and the level of [γ-
32

P]-ATP incorporation into ROS was 

determined by liquid scintillation counter. 

 

6.8.2 MBP Kinase assay  

 

50 ng of active GRK2 or GRK5 were assayed on 100 ng of purified MBP 

in presence or absence of peptides 1-30. Phosphorylation reactions were 

initiated by adding 20 mM ATP, 1 mM CaCl2, 20 mM MgCl2, 4 mM Tris, pH 

7.5, and 10 Ci of [γ-
32

P]-ATP (specific activity 3000 Ci/mmol) and prolonged 

for 30 min at 37°C. Laemmli buffer was added to stop the reaction. 

Sample were processed as above described.
11

 

 

6.8.3 cAMP synthesis 

 

 HEK 293 overexpressing β2AR were plated in 96-well plates (10,000 

cells/well) and serum starved overnight. Cells were incubated in a fresh 

medium in the presence 2 and 22 peptides 1 μM for one hour and then 

stimulated with non selective β adrenergic receptor agonist Isoproterenol 10 

μM for 15 min. The cAMP quantification was evaluated by enzyme 

immunoassay, using an EIA commercial kit (RPN 2255 GE Healthcare Bio-

Sciences AB, Uppsala, Sweden). The cAMP content present in HEK- 293 cell 

was expressed in fmoles per well. All values are presented as mean ±SEM of 

three independent experiments. One-way ANOVA was performed to compare 

the different groups. A significance level of P<0.05 was assumed for all 

statistical evaluations. 
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Statistics were computed with GraphPad Prism Software (GraphPad 

Software Inc., version 4, San Diego, CA, USA). 

 

6.9 -Adrenoreceptor radioligand binding  

 

Cultured Hembriogenic Kidney cells overexpressing 2 adrenergic receptor 

(2HEK-293) were treated with peptides 2 and 22 1 mM for one hour. 

Membrane fraction was prepared by homogenization of whole cell in ice-cold 

buffer (25 mM Tris-HCl (pH 7.5), 5 mM EDTA, 5 mM EGTA, 1 mM 

phenylmethylsulfonyl fluoride, 2 mg/mL each leupeptin and aprotinin) as 

previously described.
11

 

Total AR density was determined by incubating 60 mg of sarcolemmal 

membranes with a saturating concentration of [
125

I]cyanopindolol and 20 

mmol/L alprenolol to define nonspecific binding. 

Assays were conducted at 37 °C for 60 min and then filtered over GF/C 

glass fiber filters (Whatman) that were washed and counted in a gamma 

counter.
56

 All values are presented as mean ± SEM of three independent 

experiments. One-way ANOVA was performed to compare the different 

groups. A significance level of P <0.05 was assumed for all statistical 

evaluations. Statistics were computed with GraphPad Prism Software 

(GraphPad Software Inc., version 4, San Diego, CA, USA). 

 

6.10 Internalization studies 

 

2HEK-293 overexpressing human 2AR cells were plated in 4-well ibidi 

plate (10,000 cells/well) and serum starved overnight. 

The cells were then incubated with fluorescently labeled peptides (Fl-2 and 

Fl-22) 1 mM for 60 min at 37°C. After washing twice with PBS cell images 

were taken by using an Eclipse E1000 Fluorescence Microscope (Nikon) and 

acquired by using Sigma Scan Pro software (Jandel). Images were optimized 

for contrast in Adobe Photoshop, but no further manipulations were made. 

Alternatively HEK-293 cells were plated in 24-well plates (20,000 

cells/well) and serum starved overnight The cells were then incubated with 
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fluorescently labeled peptides (Fl-2 and Fl-22) at the concentration of 10 and 1 

mM for 60 min at 37°C. The fluorescence incorporation was quantified on a 

Tecan Genios plate reader with a 485 nm excitation filter and a 510 nm 

emission filter using a gain setting of 1.0. The background signal from cells 

untracted was subtracted. All values are presented as mean ± SEM of three 

independent experiments. One-way ANOVA was performed to compare the 

different groups. A significance level of P <0.05 was assumed for all statistical 

evaluations. Statistics were computed with GraphPad Prism Software 

(GraphPad Software Inc., version 4, San Diego, CA, USA). 
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Abstract Analogues of potent CaMKinase II inhibitor, CaM-KNtide, were 

prepared to explore new structural requirements for the inhibitory activity. The 

full potency of CaMKII inhibition by CaM-KIIN is contained within a 

minimal region of 17 amino acids (peptide 5, KRPPKLGQIGRAKRVVI). 

Fusion with the tat sequence generated the cell-penetrating inhibitor version 

tat-5. This tat-5 fusion peptide maintained selectivity for CaMKII over CaMKI 

and CaMKIV, and appeared to slightly further enhance potency (IC50 ~30 

nM). Within a breast cancer cell line and in primary human fibroblasts, tat-5 

inhibited the Erk signaling pathway and proliferation without any measurable 

cytotoxicity. 

 

Keywords Protein kinase Ca
2+

/calmodulin-dependent protein kinase, 

CaMKinase II inhibitor, CaM-KNtide analogues, cell growth inhibition. 

 

Abbreviations CaMK, Ca
2+

/calmodulin-dependent protein kinase; CaM-

KNtide, CaMKinase II inhibitor; CaM, calmodulin; ATP, adenosine 

triphosphate; PKA, phosphokinase A; PKC, phosphokinase C; RP-HPLC, 

reversed-phase high performance liquid chromatography; Ant, 16-amino-acid 

sequence from the Drosophila Antennapedia; Tat, 35-amino-acid sequence 

from the HIV Tat protein; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide; DAPI, 4,6-diamidino-2- phenylindole; CD, 

circular dichroism; HFA, hydrofluoroalkane; RMSD, root-meansquare 

deviation; Fmoc, 9-fluorenyl-methoxycarbonyl; DCM, dichloromethane; 

DIEA, N,N-diisopropylethylamine; DMF, N,N-dimethylformamide; TIS, 

triisopropylsilane; CH3CN, acetonitrile; HOBt, N-hydroxy-benzotriazole; 

HBTU, 2-(1H-benzotriazole- 1-yl)-1,1,3,3-tetramethyluronium hexafluoro 

phosphate; ESI-MS, electrospray ionization mass spectrometry; DMEM, 

Dulbecco’s modified eagle medium; EDTA, ethylenediaminetetraacetic acid; 

EGTA, ethylene glycol tetraacetic acid; SDS, sodium dodecyl sulfate; CaCl2, 

calcium chloride; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid; BSA, bovine serum albumin; NaOH, sodium hydroxide; PBS, phosphate 

buffered saline. * Abbreviations used for amino acids follow the rules of the 

IUPAC-IUB Commission of Biochemical Nomenclature in J Biol Chem 1972, 

247, 977-983. Amino acid symbols denote L-configuration. 
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1. Introduction 

Calmodulin (CaM) kinases are a large family of Ser/Thr protein kinases 

that include kinases with broad substrate spectrum and with high substrate 

selectivity.
1
 As the name implies, CaM kinases (CamKs) are generally 

activated by binding of Ca
2+

/CaM to their regulatory region. Among CaMKs, 

CaMKII transduces elevated Ca
2+

 signals in cells to a number of target 

proteins ranging from ion channels to transcriptional activators.
2
 

 

1.1 Ca
2+

/Calmodulin-dependent protein kinase II (CaMKII)  

 

Ca
2+

/Calmodulin-dependent protein kinase II (CaMKII) constitutes a family 

of closely related multifunctional serine/threonine kinases that transduces 

elevated Ca
2+

 signals in cells to a number of target proteins ranging from ion 

channels to transcriptional activators.
1,2

 The enzyme consists of 8-12 subunits 

in a combination of various isoforms  and ). The  and  isoforms are 

predominantly expressed in the nervous system, whereas the  and  isoforms 

are ubiquitous.
3
 Local changes in Ca

2+
 concentration induce activation of 

CaMKII by binding to calmodulin (CaM).
4
 Binding of the Ca

2+
/CaM complex 

to an autoregulatory region of the enzyme disrupts auto-inhibitory interactions, 

allowing substrates and ATP to gain access to the catalytic domain.  

Simultaneous Ca
2+

/CaM binding to adjacent subunits within the same 

holoenzyme, stimulates autophosphorylation at Thr286. This CaMKII 

autophosphorylation markedly enhances the avidity of CaMKII for Ca
2+

/CaM 

(from nanomolar to picomolar affinity), but confers significant “autonomous” 

CaMKII activity even in the event of Ca
2+

/CaM dissociation (Ca
2+

-

independent activity). In the absence of Ca
2+

/CaM, CaMKII undergoes 

autophosphorylation at Thr305/306 and Ser314, which blocks Ca
2+

/CaM 

binding, thereby inactivating the enzyme.
5
 Likewise other signaling enzymes, 

CaMKII has important regulatory consequences in many physiological 

processes. Among processes regulated by CaMKII are neuronal growth and 

functions related to brain development,
6
 synaptic plasticity

7
 as well as the 

formation and maintenance of memory,
8
 cell proliferation

9
 and apoptosis,

10
 

proper function of the immune system,
11

 and the central control of energy 



Chapter 4        Characterization of a selective CaMKII peptide inhibitor 

 

- 130 - 

 

balance.
12

 CaMKII also regulates diverse cellular functions that are important 

for myocardial adaptation to stress, including Ca
2+

 homeostasis,
13

 membrane 

excitability,
14

 cell survival,
15

 and gene transcription.
16

 On the other hand, 

different studies demonstrated that the misregulation or dysfunction of this 

enzyme is involved in certain pathological conditions, such as Alzheimer,
17

 

Parkinson,
18

 cerebral ischemia,
19

 cancer
20,21,22

 and cardiovascular diseases 

including hypertrophy and other types of ischemia/reperfusion injury
23,24

 

obesity and diabetes.
25

 Current knowledge about CaMKII control on 

physiological or pathological functions is largely based on experiments with 

pharmacological inhibitors.
26,27

 This prompted an intensive research in this 

area. Over the past two decades, a number of relatively potent and selective 

CaMKII inhibitors have been reported. 

 

2. Aim of work 

 

CaMKII inhibitors such as KN62,
28

 KN93,
29

 and peptides derived from the 

auto inhibitory region of CaMKII, such as AIP
30

 or AC3-I,
31

 are useful tools 

for examining the functional significance of Ca
2+

/CaMKII in the periphery and 

in the CNS system. Nevertheless, these compounds showed low potency and 

absence of highly specific inhibition. Thus, auto inhibitory region-derived 

peptides also inhibit other CaM-kinases and PKC,
32

 while KN62/KN93 cannot 

discriminate between CaMKII and CaMKIV and also inhibit voltage-gated K
+
 

and Ca
2+

 channels.
33,34

 A natural inhibitor of CaMKII, protein CaM-KIIN, 

provides a promising alternative in the research of selective inhibition.
35

 Two 

different isoforms of CaM-KIIN, named CaM-KIIN and CaMKIIN, are 

found in the brain. These proteins show 80% similarity with 70% identity into 

their amino acid sequences and are 95% identical in their inhibitory domain, 

differing by only one residue (S12 in CaM-KIINversus A12 in CaM-

KIIN).
35

 The inhibitory protein CaM-KIIN is highly selective for inhibition 

of CaMKII with little effect on CaMKI, CaMKIV, CaMKK, PKA, or PKC. A 

27-residue peptide derived from it, (CaM-KNtide 

KRPPKLGQIGRSKRVVIEDDRIDDVLK), retains the same selectivity and 

has a similar IC50 of 50 nM for both the total and the Ca
2+

-independent 
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activities of CaMKII. Recently, Vest et al. has identified a new peptide with an 

active sequence of 21 residues named CN21 

(KRPPKLGQIGRSKRVVIEDDR).
33

 Recently, Coultrap and Bayer reported 

that the compound named CN19 (KRPPKLGQIGRSKRVVIED) represents 

the minimal region of CaMKIIN that retains full potency and specificity for 

CaMKII inhibition.
36,37

 As part of our current interest in the study of CaMKII-

dependent cell signaling,
38

 we directed our efforts toward the identification of 

novel CaMKII peptide inhibitors.
39

 

 

2.1 Selective CaMKII peptide inhibitors 

 

Focused on the inhibitory region of CaM-KIINwe designed different 

CaM-KNtide analogues and evaluated the inhibitory activity and specificity. 

The starting
40

 69 fragment of CaM-KIIN (CaMKNtide) and CaM-KNtide 

differs by only one amino acid (A12 to S12). This modification could prevent 

the S12 phosphorylation of substrate reducing interferences with CaMKII 

inhibition, analogously to what happens with the natural peptides and in 

agreement with Coultrap and Bayer hypothesis. 

Moreover, we describe the selectivity data for the more potent derivative 

characterized (peptide 17), as well as the structural results obtained using CD 

and NMR techniques. Finally, the biological effects of this fragment, 

conveniently conjugated to cell-permeating peptide tat, on the tumor cells 

growth inhibition, cytotoxic data and the activation of cell proliferation 

signaling pathway were also discussed. 

 

2.2 The first series of inhibitors (peptides scramble and 1-7) 

 

As first series, we synthetized a scramble analogue of the CaM-KNtide 

sequence and seven peptides that cover the entire CaM-KNtide sequence. 

Each short peptide had the sequence shifted of five residues, both from N- and 

C-terminal side (compounds 1-7, Table 1). 
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Table 1. Structure and inhibitory activity of compounds CaM-KNtide, and 

peptides 1-7. 
 

Frag. 

 

Peptide 

 

Sequence 

Inhib. HPLC ESI MS 

(%±SD) k’ Found Calculated 

1-27 
CaM-

KNtide 

KRPPKLGQIGRAKRVVIEDDRIDDVLK 94.8± 5.0 3.27 3115.30 3115.70 

 Scramble IDGVIAQGDLPVDKEPKRLRKDIRKRV 13.3±6.2 3.27 3115.82 3115.70 

6-27 1 LGQIGRAKRVVIEDDRIDDVLK < 5 2.69 2509.22 2508.90 

11-27 2 RSKRVVIEDDRIDDVLK < 5 2.49 2057.23 2056.30 

17-27 3 VIEDDRIDDVLK 13.0±9.1 2.52 1429.70 1429.50 

1-22 4 KRPPKLGQIGRAKRVVIEDDRI 56.0±14.0 2.78 2544.62 2544.04 

1-17 5 KRPPKLGQIGRAKRVVI 76.0±4.1 3.12 1916.64 1915.40 

1-12 6 KRPPKLGQIGRA < 5 2.75 1321.04 1320.60 

1-7 7 KRPPKLG < 5 2.08 796.21 795.01 

 k’=[(peptide retention time-solvent retention time)/solvent retention time]. 

Peptide concentrantion 5 M.  

 

The shortest peptide that retained good inhibition of CaMKII (>75%) was 

the fragment containing amino acids 1-17 (peptide 5, named now CN17). All 

further truncations at the C-terminus by 4 amino acids or more (peptides 6 and 

7) and any truncation at the N-terminus by 5 amino acids or more (peptides 1-

3) showed minimal or no inhibition. 

CN17 seems to be slightly more potent than the corresponding analogue 

S12 (KRPPKLGQIGRSKRVVI, termed CN17), described by Vest et al., 

which inhibit <70% CaMKII activity at 5 M. These results confirmed that 

CaM-KNtide sequence containing an Ala residue at position 12 was an 

effective starting point to develop novel agents with CaMKII inhibitor activity. 

 

2.3 A truncation study at both the N- and C-terminals of the fragment 

1-17 (peptides 8-16) 

 

Subsequently, a truncation study at both the N- and C-terminals of the 

fragment 1-17 was performed in order to obtain additional information on the 
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minimum active sequence. Also, CN19 was synthetized and tested for 

comparative purpose.
36

 In our experimental conditions, CN19 lost about 40% 

of the CaM-KNtide activity (Tables 1 and 2) while Coultrap and Bayer found 

that it retained full potency and specificity for CaMKII inhibition.
36,37

 The 

discrepancy between our results and those obtained by Coultrap and Bayer on 

CN19 inhibition potency could be explained considering that the experimental 

conditions used in CaMKII activity assays are not exactly matching. 

 

Table 2. Structure and inhibitory activity of compounds CaM-KNtide, and 

peptides 8-16. 

 

Frag. 

 

Peptide 

 

Sequence 

Inhib. HPLC ESI MS 

(%±SD) k’ Found Calculated 

1-19 CN19  KRPPKLGQIGRSKRVVIED 54.0±1.0 3.17 2176.23 2175.28 

1-17 5  KRPPKLGQIGRAKRVVI 76.0±4.1 3.12 1916.64 1915.40 

2-17 8    RPPKLGQIGRAKRVVI < 5 3.01 1788.40 1788.23 

3-17 9       PPKLGQIGRAKRVVI < 5 3.08 1632.72 1632.04 

4-17 10         PKLGQIGRAKRVVI < 5 2.57 1535.03 1534.93 

5-17 11           KLGQIGRAKRVVI < 5 2.54 1437.98 1437.81 

6-17 12               LGQIGRAKRVVI < 5 2.58 1309.72 1309.60 

1-16 13 KRPPKLGQIGRAKRVV 10.2±2.0 2.61 1803.77 1803.25 

1-15 14 KRPPKLGQIGRAKRV 18.0±9.0 2.60 1704.30 1704.13 

1-14 15 KRPPKLGQIGRAKR < 5 2.09 1605.11 1604.98 

1-13 16 KRPPKLGQIGRAK < 5 2.34 1449.99 1448.79 

k’=[(peptide retention time-solvent retention time)/solvent retention time]. Peptide 

concentrantion 5 M.  

 

 

2.4 Alanine scanning approach of fragment 1-17 (peptides 17-32) 

 

Further truncation of compound CN17 significantly reduced CaMKII 

inhibition (compounds 8-16, Table 2), suggesting a bioactive role for both the 
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N- and C-terminal sequences. These results demonstrate that a satisfactory 

inhibitory activity is contained in 1-17 fragment of the CaM-KNtide.  

For this reason, we decided to check the contribution of the various amino 

acid residues to the inhibitory activity of CN17 through an L-Ala scanning 

analysis (peptides 17-32, Table 3). 

 

Table 3. Structure and inhibitory activity of compounds CaM-KNtide, and 

peptides 17-32. 

k’=[(peptide retention time-solvent retention time)/solvent retention time]. Peptide 

concentrantion 5 M.  

 

Data indicate a different sensitivity of our CN17 to Ala substitutions, 

compared to results obtained by Coultrap and Bayer with the same mutation in 

the peptide CN19.
36,37

 Only one mutant enhanced the potency of CN17 

versus the three mutants 19, 28, and 29, which increased significantly the 

 Inhib. HPLC ESI MS 

Pep. Sequence (%±SD)    k’ Found Calculated 

5     KRPPKLGQIGRAKRVVI 76.0±4 4 3.15 1916.64   1915.40 

17 AARPPKLGQIGRAKRVVI 13.5±2  3.20 1859.32 1858.30 

18 KKAPPKLGQIGRAKRVVI < 5 3.17 1832.72 1830.29 

19 KKRAPKLGQIGRAKRVVI 78.4±4 3.13 1890.09 1889.36 

20 KKRPAKLGQIGRAKRVVI 13.2±2 3.13 1890.75 1889.36 

21 KKRPPALGQIGRAKRVVI 7.0±2 4.71 1859.96 1858.30 

22 KKRPPKAGQIGRAKRVVI < 5 3.35 1876.40 1874.33 

23 KKRPPKLAQIGRAKRVVI 26.1±4 3.18 1931.16 1929.43 

24 KKRPPKLGAIGRAKRVVI 34.4±3 3.16 1860.22 1858.35 

25 KKRPPKLGQAGRAKRVVI < 5 3.15 1874.58 1873.32 

26 KKRPPKLGQIARAKRVVI 21.6±2 3.15 1931.22 1929.43 

27 KKRPPKLGQIGAAKRVVI 13.0±2 3.19 1831.12 1830.29 

28 KKRPPKLGQIGRAARVVI 33.7±1 3.17 1860.14 1859.31 

29 KKRPPKLGQIGRAKAVVI 69.0±2 3.16 1830.95 1831.30 

30 KKRPPKLGQIGRAKRAVI 24.2±2 3.16 1889.21 1888.35 

31 KKRPPKLGQIGRAKRVAI 74.2±1 3.14 1888.16 1888.30 

32 KKRPPKLGQIGRAKRVVA 48.7±3 4.71 1875.52 1874.32 
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potency of CN19.
36

 In our case, compound 19 increased slightly the inhibitor 

activity of CN17 while peptide 28 reduced its potency of more than 2.5 fold, 

indicating an important role for residue 
13

Lys in the CN17- CaMKII binding. 

Finally, mutant R14 maintained the inhibitor efficacy. 

 

2.5 Cell penetrating peptide (ant-CN17, tat-CN17) 

 

With the aim to improve the ability to penetrate cell, CN17was fused with 

two well known penetrating peptides (Ant: RQIKIWFQNRRMKWKKGGC 

and Tat: RKKRRQRRRPPQC) leading to peptides ant-CN17 and tat-CN17, 

respectively (Table 4). 

 

Table 4. Structure compounds CaM-KNtide and peptides tat-CN17 and ant-

CN17. 

Peptide Sequence 

HPLC
a
  

k’ 

 

ESI-MS (M+H) 

Calcd Found 

 CN17 KRPPKLGQIGRAKRVVI 3.12 1916.64 1915.40 

ant-CN17 ant- KRPPKLGQIGRAKRVVI 3.72 4362.35 4363.56 

tat-CN17 tat- KRPPKLGQIGRAKRVVI 3.75 3663.48 3664.23 

k’=[(peptide retention time-solvent retention time)/solvent retention time]. 

 

To test whether these fusion peptides were able to inhibit CaMKII activity, 

we performed an in vitro kinase assay.  

 

3. Chemistry 

 

3.1 General procedure for synthesis 

 

Peptides were synthetized according to the solid-phase approach using 

standard Fmoc methodology in a manual reaction vessel.
41

 The first amino 

acid, N𝛼Fmoc-Xaa-OH, was linked onto the Wang resin (100–200 mesh, 1% 

DVB, 1.1 mmol/g) and was attached to Wang resin using HOBt/HBTU as an 

activating agent (3eq.) and a catalytic amount of DMAP. The following 
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protected amino acids were then added stepwise. The N𝛼-Fmoc protecting 

groups were removed by treating the protected peptide resin with a 25% 

solution of piperidine in DMF (1 × 5min and 1 × 25min) and the deprotection 

protocol was repeated after each coupling step. 

In addition, after each step of deprotection and after each coupling step, 

Kaiser test was performed to confirm the complete removal of the Fmoc 

protecting group, respectively, and to verify that complete coupling has 

occurred on all the free amines on the resin. Then Kaiser test was performed to 

confirm the acetylation reaction. 

The N-terminal Fmoc group was removed as described above, and the 

peptide was released from the resin with TFA/iPr3SiH/H2O (90 : 5 : 5) for 3 h.  

The resin was removed by filtration, and the crude peptide was recovered 

by precipitation with cold anhydrous ethyl ether to give a white powder and 

then lyophilized. 

 

3.2 Purification and Characterization 

 

All crude peptides were purified by RP-HPLC on a preparative C18-bonded 

silica column using a Shimadzu SPD 10A UV/VIS detector, with detection at 

215 and 254 nm. All peptides were characterized with analytical RP-HPLC 

and peptides molecular weights were determined by ESI mass spectrometry 

and LC-MS in a LC-MS 2010 instrument (Shimadzu) fitted with a C-18 

column. All analogues showed >97% purity when monitored at 215 nm. 

Homogeneous fractions, as established using analytical HPLC, were pooled 

and lyophilized. 

 

4. Results and Discussion 

 

The first part of the work focused on a SAR study of entire CaM-KNtide 

sequence designed a scramble analogue of the CaM-KNtide sequence and 

seven peptides that cover the entire sequence.  Each short peptide had the 

sequence shifted of five residues, both from N- and C-terminal side 

(compounds 1-7, Table 1). 
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The shortest peptide that retained good inhibition of CaMKII (>75%) was 

the fragment containing amino acids 1-17 (peptide 5, named now CN17). 

Starting from these data, CN17 was considered the peptide lead. 

Two different approaches were used to identify more potent and selective 

compounds: i) a truncation study at both N- and C-terminals of the fragment 1-

17; ii) Alanine scanning approach. 

Interestingly, further truncation of compound CN17 significantly reduced 

CaMKII inhibition (compounds 8-16, Table 2), suggesting a bioactive role for 

both the N- and C-terminal sequences. In particular all peptides showed an 

inhibitory activity < 5% except compounds 13 and 14 that showed 10.2% and 

18.0% of inhibitory activity respectively. 

These results suggested that a satisfactory inhibitory activity is contained in 

1-17 fragment of the CaM-KNtide. For this reason we decided to apply the 

Alanine scanning approach to peptide lead. 

The involvement of the N-terminal, internal or C-terminal amino acids in 

the CN17 activity can be summarized as follows: (a) in the N-terminal 

fragment (KRPPK) 
2
Arg is critical for inhibitory activity; 

1
Lys, 

4
Pro and 

5
Lys 

are important and significantly contribute to the potency of CN17, while the 

substitution of 
3
Pro by Ala leads to the analogue 19 with a slightly increase 

potency; (b) the internal hexapeptide Leu-Gly-Glu-Ile-Gly-Arg sequence is 

important for activity. The residues 
6
Leu and 

9
Ile result to be critical for the 

inhibitory activity of CN17while the contribution of 
8
Glu is lower; (c) in the 

C-terminal fragment (KRVVI), 
13

Lys and 
15

Val are important for biological 

activity while 
14

Arg and 
16

Val
 
contribute to a lesser extent to the activity. 

 

4.1  Biological effects of cell permeating tat-CN17 

 

With the aim to improve the ability to penetrate cell, CN17 was fused with 

two well known penetrating peptides (Ant: RQIKIWFQNRRMKWKKGGC 

and Tat: RKKRRQRRRPPQC) leading to peptides ant-CN17 and tat-CN17, 

respectively. To test whether these fusion peptides were able to inhibit 

CaMKII activity, we performed an in vitro kinase assay. 
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The results of the concentration response curve for tat-CN17, ant-CN17, 

and the CaM-KNtide are shown in Figure 1. 

 

 
 

Figure 1. Dose-response curves for CaM-KNtide and peptides tat-CN17 and ant-

CN17. Data are indicated as percent of inhibition over untreated; error bars represent 

±standard deviation (SD).  

 

CaM-KNtideexhibited an apparent IC50 of 50 nM toward CaMKII, while 

tat-CN17 and ant-CN17 showed approximately IC50 of 30 and 40 nM, 

respectively. Indeed, for CaM-KNtide and tat-CN17 the inhibitory effect 

was maximal at 1 M (~95% inhibition) and didn’t change even at the highest 

concentration of 5 M. At this last concentration, ant-CN17 exhibited a 

minor percentage of inhibition (76.2%). Similarly to the results described by 

Vest et al.,
33a

 the fusion of CN17with tat led to an increment of both potency 

and selectivity of the resulting peptide, while after the fusion with ant, the 

peptide retained the inhibitory activity and selectivity (Figure 2). 
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Figure 2. Inhibitory activity and selectivity of peptides ant-CN17, tat-CN17, 

and CN17 at 5 M. Data are indicated as fold decrease; error bars represent 

±standard deviation (SD); **p-value < 0.01. 
 

In fact, as shown, neither peptide ant-CN17 nor tat-CN17 inhibit CaMKI 

(6.1% or -) or CaMKIV (-). The antennapedia cell-penetrant motif used in this 

study has been previously shown to bind calmodulin and affect CaMKII 

activity indirectly.
33a

 Anyway, since the selective inhibitory activity for 

CaMKII was observed for both the conjugate peptides ant-CN17 and tat-

CN17, with the best results obtained with tat-CN17, this indicates that the 

CN17 sequence is responsible for the activity. 

 

4.1.1 Proliferation 

 

As described above, CaMKII plays a pivotal role in the cell pathways 

regulating proliferation, and its inhibition can reduce cardiovascular 

hyperplasia
42

 and tumor cell growth.
43

 We investigated the possibility that cell 

permeating compound tat-CN17 inhibited the proliferation of both tumor and 

vascular cell lines. We determined the effect of our compound on a breast 

cancer MCF7 and a colon cancer HT29 cell lines, on primary rat vascular 

smooth muscle VSMC cells, and on primary human fibroblasts. 

DNA duplication was assessed by the uptake of tritiated thymidine (3HT).
44

 

In this assay we used also the selective CaMKII inhibitor ant-CaNtide (ant-

fused CaM-KNtide) as reference peptide. 

As observed in Figure 3A, both ant-CaNtide and tat-CN17 reduced 3HT 

uptake, but the percent of inhibition depends upon the cell line used. Tat-
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CN17 was more effective than ant-CaNtide. Antiproliferative effect is clearly 

correlated to the proliferation rate of the cell line, indeed immortalized tumor 

lines MCF7 and HT29 are more affected than primary normal cells. We also 

investigated whether the inhibition of cell proliferation was correlated to a 

cytotoxic effect of tat-CN17 in our cell models.
45

 Cell viability was measured 

using PrestoBlue
TM 

Cell Viability Reagent (Invitrogen Inc, San Diego, CA). 

As shown in Figure 3B, at the same concentration, none of the peptides in the 

study modified the cell viability in any of cell lines we tested. These seems 

results suggest that the mechanism underlying the inhibitory activity of our 

peptides involves the proliferation signaling without promoting cellular death 

process in the time assay. 

 

 
Figure 3. A) Antiproliferative and (B) cytotoxic activities of ant-CaNtide and tat-

CN17 at 5 M. Results are presented as total incorporated counts per minute (cpm). 

Average ± SD values from n = 4 experiments are shown. *p-value ≤ 0.05. **pvalue ≤ 

0.01. 
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4.1.2 Signal transduction 

 

CaMKII is involved in the activation of the most important signaling 

pathway regulating cell proliferation: the Ras/Raf/MEK/ERK signaling 

pathway. Illario et al. demonstrated the existence of a cross-talk between 

Ca
2+

/CaM/CaMKII and Ras/Raf/MEK/ERK pathways.
46

 Accordingly, ant-

CaNtide is able to significantly affect CaMKII-mediated cell proliferation, by 

down regulating ERK activation. As tat-CN17 affected cell proliferation, we 

investigated whether it is also able to interfere with ERK activation. With this 

aim, we evaluated the expression of Erk, phospho(p)Erk, CaMKII, and 

phospho(p)CaMKII in cardiomyoblast (H9C2) and colon cancer (HT-29) cell 

lines by western blot (Figure 4A and B). Cells were serum starved over night 

in 0.5% DMEM/BSA and treated for 30 min with 10% of FBS, with or 

without CaMKII inhibitor tat-CN17. As shown in Figure 4A and B, serum 

stimulation induced both CaMKII and ERK activation, which was altered by 

treatment with different concentrations of tat-CN17. Densitometry 

measurements of immunoblots analyzing the levels of depicting pCaMKII and 

pERK in H9C2 and HT29 cells were performed using Image J software (NIH) 

(Figure 4C, D). In H9C2 cells (Figure 4A, C), ERK phosphorylation was 

down-regulated in a dose-dependent manner, whereas in HT-29 cells tat-

CN17 at 100 nM induced the maximal down-regulation of ERK 

phosphorylation (Figure 4B, D). These results suggest that the peptide 

interferes with cell proliferation by regulating, at least, the Ras/Raf/MEK/ERK 

signaling pathway. 
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Figure 4. Immunoblots for Erk, phospho(p)Erk, CaMKII, and phospho(p)CaMKII 

in (A) H9C2 and (B) HT-29 cells stimulated with serum and treated with 0.1, 1, and 5 

M tat-CN17 for 30 min. The respective densitometry analysis (C) and (D) are 

shown. Signal densities of bands represent individual and average values ± SD from 3 

experiments. 

 

4.2 CaMKII activity in cells 

 

The ability of peptides ant-CN17 and tat-CN17 to permeate the 

membranes allowed us to measure CaMKII activity in cells. To this purpose, 

the cardiomyoblast-like, H9C2, cells were starved for 12 h, and then 

stimulated for 30 min with 10% FBS in absence or presence of 5 M of 

indicated peptides. Endogenous CaMKII was immunoprecipitated, and its 

activity was measured by kinase assay using AC2. The ant-CaNtide was also 

tested as reference peptide. 

As shown in Figure 5 all tested peptides significantly inhibited activation of 

endogenous CaMKII. Tat-CN17 and ant-CN17 inhibited the CaMKII 

activity of 58 and 52%, respectively, and they seem to be moderately more 

potent than ant-CaNtide, which inhibits 39% of the CaMKII activity. 

According to these results, and analogously to that described by Vest et al. 

about tat-CN21,
33a

 the shorter derivative tat-CN17 becomes a powerful, 

readily accessible, and easy to-use tool for studying cellular CaMKII 

functions. 
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Figure 5. Inhibition of endogenous CaMKII activation by ant-CaNtide, ant-

CN17, tat- CN17 peptides as determined by kinase assay. Results are presented as 

total incorporated counts per minute (cpm). Average ± SD values from n= 4 

experiments are shown. *p-value ≤0.05. 

 

4.3 Conformational studies 

 

To drive the next design steps, we also carried out a study on the 

conformational preferences of the CN17. A preliminary screening of the 

conformational preferences of CN17 as a function of the solvent system was 

performed by means of CD spectroscopy (data not shown). CD spectra were 

recorded in water solution and in a water/HFA mixture (50:50, v/v) as 

structuring medium.
47,48

 

Quantitative analysis of CD curves was carried out using both SELCON3 

and ContinLL algorithm on DICHROWEB
49

 website.  

The most common conformation of CN17 in water is random coil (≈80% 

of the total conformer population). In water/HFA (50:50, v/v) mixture, turn 

helical structures (≈65%) and minor amounts of -strand and unordered 

conformations (respectively ≈15% and 20% of the total conformer population) 

are observable. 

NMR spectra were acquired in water/HFA (50:50, v/v) the same solvents 

used for the CD measurement. Chemical shift assignments of the proton 

spectra of CN17 in water/HFA mixture were achieved via the standard 

systematic application of DQF-COSY,
50

 TOCSY
51

 and NOESY 

experiments,
52

 using the SPARKY software package
53

 according to the 
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procedure of Wüthrich.
54

 Analysis of sequential and medium range NOE 

connectivities reveals the presence of regular secondary structures. In 

particular NH-NH (i,i + 1), -N(i,i + 3) and -(i,i + 3) NOEs involve 
5
Lys-

11
Arg residues, whereas strong sequential -N(i,i + 1) connectivities are 

observable along the 
11

Arg
16

Val fragment. 

The structural calculations of CN17 in water/HFA solution (50:50 v/v) 

based on sequential and medium range NOE data were performed using 

DYANA and Amber 5.0 softwares.
55,56

 Figure 6 shows the superposition of 

the best 20 NMR structures of CN17 overlapped at level of 
5
Lys-

10
Gly 

backbone atoms.  

 

 

Figure 6. NMR structure bundle (20 low energy conformers) of CN17 

overlapped at level of 
5
Lys

10
Gly backbone atoms (RMSD ≤0.54). NMR structures 

were calculated using DYANA software on the basis of NOESY spectra recorded at 

600 MHz (T = 300 K) in water/HFA solution (50:50 v/v). 

 

The bundle reveals a high structural similarity (backbone RMSD ≤ 0.54 Å) 

in the overlapped region, suggesting that NMR structures are defined with 

high precision in this region. Analysis of CN17 NMR structures using 

PDBSUM on-line server
57

 leads to identify the prevalence of regular -helices 

in the 
6
Leu

11
Arg segment and -turn conformations in the 

3
Pro

5
Leu segment. 

The crystal structure of the 21-residue segment of CaM-KNtide, the parent 

peptide of compound 5, is characterized by -helical conformation in the 



Chapter 4        Characterization of a selective CaMKII peptide inhibitor 

 

- 145 - 

 

6
Leu

11
Arg segment.

40
 The remaining residues assume extended conformation 

to interact with a large surface of CaMKII structure. According to previous 

crystallographic studies, CAMKII structure exhibits three docking sites-

docking site A, B and C e to interact with R1 portion of the regulatory 

segment.
40

 Analogously to R1, these docking sites are contacted by 

CaMKNtide residues: in particular the basic residues 
2
Arg and 

5
Lys occupy 

docking sites C and B, hydrophobic 
6
Leu and 

9
Ile occupy docking site B and 

11
Arg and 

15
Val occupy docking site A. The comparison of our best NMR 

structure of CN17with the crystal structure of CaM-KNtide bound to the 

kinase domain of CaMKII (Figure 7), indicates that the two structures have 

similar -helical arrangement in the 

Lys

11
Arg segment. 

5
Lys, 

6
Leu and 

9
Ile 

residues, belonging to the-helix and involved in interaction with CAMKII, 

share a common orientation of the side chains. Other indispensable residues 

for CaMKII inhibitory activity (
1
Lys, 

2
Arg, and 

15
Val; Ala scan, see above) do 

not overlap well by comparing the two structures. Anyway, they belong to the 

terminal regions of the peptide which are highly flexible in water/HFA 

solution. It is likely that the peptide initially binds CaMKII through the core 

residues 
5
Lys, 

6
Leu and 

9
Ile and then 

1
Lys, 

2
Arg, and 

15
Val assume the 

appropriate binding conformation by induced fitting. The design of novel 

CaM-KNtide based inhibitors should point to restrict the conformational space 

of the indispensable but flexible residues to fit the active conformation of the 

peptide in the complex. 
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Figure 7. Structural comparison of the NMR-derived lowest energy conformation 

of CN17 (dark blue) in water/HFA solution (50:50 v/v) and 21-residue segment of 

CaMKNtide (CN21) crystal structure (red) complexed to CaMKII enzyme (pdb code 

3KL8). The structures are superimposed at level of backbone heavy atoms of 
6
Leu

11
Arg residues. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

5. Conclusion 

 

CaMKII is involved in the regulation of many pivotal cell functions, such 

as proliferation, and is therefore a key player in pathological processes, like 

oncogenesis. Hence, modulation of its activity could be exploited with 

therapeutic purposes. The present study describes the finding of a small 

CN17, the 1-17 fragment of CaM-KNtide, that selectively inhibits CaMKII. 

The fusion of CN17 with penetrations led to the conjugate peptides, ant-

CN17 and tat-CN17, which maintained usable inhibitory potency and 

selectivity of action compared to the parent peptide. 

Tat-CN17demonstrated to retain inhibitory potency, and to be more 

active than full length ant-CaNtide, to inhibit the proliferation of different cell 

lines, in particular of a breast cancer cell line and of primary human fibroblasts 

even if its sequence was 16 residues shorter. Our results indicated that tat-
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CN17inhibits cell growth and interferes with the Ras/Raf/MEK/ERK 

signaling pathway, through the inhibition of endogenous CaMKII. 

Finally, conformational analysis of parent CN17 gave important 

information on the design of novel analogues. Our data outline a promising 

perspective: the availability of a small peptide as a tool to modulate complex 

signal transduction pathways, and interfere with their homeostasis in disease, 

as well as the generation of specific, more stable and cell targeted peptides. 

 

6. Experimental section 

 

6.1 Peptide synthesis 

 

The synthesis of CaM-KNtide analogues was performed according to the 

solid phase approach using standard Fmoc methodology in a manual reaction 

vessel.
41

 N

-Fmoc-protected amino acids, Wang resin, HOBt, HBTU, DIEA, 

DMAP, piperidine and trifluoroacetic acid were purchased from Iris Biotech 

(Germany). Peptide synthesis solvents, reagents, as well as CH3CN for HPLC 

were reagent grade and were acquired from commercial sources and used 

without further purification unless otherwise noted. The corresponding first 

amino acid, N
α
-Fmoc-Lys(Boc)-OH, N

α
-Fmoc-Val-OH, N

α
-Fmoc-Ile-OH, N

α
-

Fmoc-Ala-OH, N
α
-Fmoc-Gly-OH, N

α
-Fmoc-Asp(tBu)-OH, N

α
-Fmoc-

Arg(Pbf)-OH) was linked on to the resin previously deprotected by a 25% 

piperidine solution in DMF for 30 min. The following protected amino acids 

were then added stepwise: N
α
-Fmoc-Leu-OH, N

α
-Fmoc-Val-OH, N

α
-Fmoc-

Asp(tBu)-OH, N
α
-Fmoc-Glu(OtBu)-OH, N

α
-Fmoc-Arg(Pbf)-OH, N

α
-Fmoc-

Ile-OH, N
α
-Fmoc-Ala-OH, N

α
-Fmoc-Gly-OH, N

α
-Fmoc-Gln(trt)-OH, N

α
-

Fmoc-Pro-OH, N
α
-Fmoc-Trp(Boc)-OH, N

α
-Fmoc-Phe-OH, N

α
-Fmoc-Met-

OH, N
α
-Fmoc-Cys(trt)-OH. 

Each coupling reaction was accomplished using a 3-fold excess of amino 

acid with HBTU and HOBt in the presence of DIEA (6 eq.). The N

-Fmoc 

protecting groups were removed by treating the protected peptide resin with a 

25% solution of piperidine in DMF (1 × 5 min and 1 × 25 min). The peptide 
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resin was washed three times with DMF, and the next coupling step was 

initiated in a stepwise manner. 

The peptide resin was washed with DCM (3 × 25), DMF (3×), and DCM 

(3×), and the deprotection protocol was repeated after each coupling step. 

The N-terminal Fmoc group was removed as described above, and the 

peptide was released from the resin with TFA/TIS/H2O (90:5:5) for 3 h. The 

resin was removed by filtration, and the crude peptide was recovered by 

precipitation with cold anhydrous ethyl ether to give a white powder and then 

lyophilized. 

 

6.2 Purification and characterization of CaMKII inhibitors 

 

All crude peptides were purified by RP-HPLC on a preparative C18-bonded 

silica column (Phenomenex, Jupiter 300Å, 100 mm × 21.2 mm, 10m,) using 

a Shimadzu SPD 10A UV−Vis detector, with detection at 210 nm and 254 nm. 

The column was perfused at a flow rate of 15 mL/min with solvent A (10%, 

v/v, water in 0.1% aqueous TFA), and a linear gradient from 10% to 90% of 

solvent B (80%, v/v, acetonitrile in 0.1% aqueous TFA) over 15 min was 

adopted for peptide elution. Analytical purity and retention time (tR) of each 

peptide were determined using HPLC conditions in the above solvent system 

(solvents A and B) programmed at a flow rate of 1 mL/min using a linear 

gradient from 10% to 90% B over 15 min, fitted with C-18 column 

Phenomenex, Aeris XB-C18 column (150 mm × 4.60 mm, 3.6 μm). All 

analogues showed >97% purity when monitored at 215 nm. Homogeneous 

fractions, as established using analytical HPLC, were pooled and lyophilized. 

At the same time, analytical reversed-phase HPLC was performed on C-18 

Phenomenex column Aeris XB-C18 column (150 mm × 4.60 mm, 3.6 μm) in a 

model LC-2010 system (Shimadzu, Kyoto, Japan). 

Elution was done with linear 10−90% gradients of solvent B into A 

(Solvent A was 0.1% TFA in water; solvent B was 0.1% TFA in CH3CN) over 

15 min at 1 mL/min flow rate, with UV detection at 220 nm for all peptides.  

To check and to have a confirmation of peptides molecular weights were 

used ESI mass spectrometry. ESI-MS analysis in positive ion mode, were 
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made using a Finnigan LCQ ion trap instrument, manufactured by Thermo 

Finnigan (San Jose, CA, USA), equipped with the Excalibur software for 

processing the data acquired. The sample was dissolved in a mixture of water 

and methanol (50/50) and injected directly into the electrospray source, using 

a syringe pump, which maintains constant flow at 5 μL/min. The temperature 

of the capillary was set at 220 °C. 

 

6.3 Cell culture 

 

Cardiomyoblasts H9C2, human breast cancer MCF-7, human colon 

adenocarcinoma grade II HT29, primary cultures of VSMCs obtained from 

thoracic aortas of WKY rats, primary cultures of fibroblasts obtained from 

human gum were maintained in DMEM with 10% fetal bovine serum. All 

media were supplemented with 100 units/mL penicillin and 100 g/mL 

streptomycin. 

 

6.4 CaMKII activity assay 

 

In all CaMKII assays, purified or endogenous CaMKII was incubated with 

Ca
2+

/CaM; EGTA was used as a negative control. 

Active recombinant full-length alpha CaMKII (Signal Chem, La Jolla) was 

incubated for 30 min at 30 °C with 1 mmol/L CaCl2 and 1 mol/L CaM in 10 

l of a reaction mixture (50 mmol/L HEPES pH 7.5, 10 mmol/L MgCl2, 0.5 

mmol/L dithiothreitol (DTT), 100 nmol/L microcystin, 0.1 mmol/L non-

radiolabeled ATP).
58

 In a second reaction step, an aliquot from the first 

reaction was incubated with 200 M of Autocamtide-2 as a substrate for 

CaMKII and the different peptides at concentration of 5 M, in presence of 0.2 

Ci/mL of Easy Tides Adenosine 50-triphosphate [
32

P]-ATP (Perkin Elmer) 

for 30 min at 30 °C; EGTA was added to quantify CaMKII autonomous 

activity. 
32

P-incorporation was determined by spotting 20 l of the reaction to 

Whatman P-81 phosphocellulose paper, and subsequently washing in 75 mM 

phosphoric acid. 

Dried filters were counted on a Beckman LS 6000 scintillation counter. 
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6.5 CaMKI and CaMKIV activity assay 

 

CaMKI and CaMKIV phosphorylation assays were performed at 30 °C in a 

standard solution consisting of 50 mM Hepes (pH 7.5), 10 mM MgCl2, 1 mM 

CaCl2, 1 mM dithiothreitol, 0.1% Tween 80, 0.5 mg/mL bovine serum 

albumin, and 25 M of CaM, 50 ng of CaMKK2, ATP (~50 cpm/pmol), and 

activated CaMKI (ENZO life sciences) or CaMKIV (ENZO life sciences) in a 

final volume of 50 l.
59

 The reactions were initiated by the addition of enzyme 

to a final concentration of 1 nM and terminated after 5 or 10 min. In a second 

reaction step, an aliquot from the first reaction was incubated with 200 M of 

ADR1G as a substrate for CaMKI or 200 M of -peptide as a substrate for 

CaMKIV and 5 mM of peptides ant-CN17, tat-CN17 and CN17 in 

presence of 0.2 Ci/l of Easy Tides Adenosine 50-triphosphate [
32

P]-ATP 

(Perkin Elmer) for 30 min at 30 °C. Reactions were terminated by spotting 20 

l on Whatman P-81 phosphocellulose filters followed by extensive washing 

in 75 mM phosphoric acid. The dried filters were counted on a Beckman LS 

6000 scintillation counter. 

 

6.6 [
3
H]Thymidine incorporation 

 

To determine DNA synthesis, cells (MCF-7, HT29, VSMC, primary 

fibroblasts) were placed in a 24-well plate and serum-starved for 12 h in 

DMEM, 0.5% BSA. To test the effects of CaMKII’s inhibitors on cell 

proliferation 5 M of ant-CaNtide and tat-CN17 were added to wells. A total 

of 0.5 Ci [

H]thymidine was then added to the plates. After 24 h, the plates 

were gently washed with PBS and then with 10% trichloroacetic acid (TCA), 

and incubated 10 min with 20% TCA at 4 °C. The plates were washed with 

5% TCA, and cells were lysed with 0.2% SDS, 0.5 N NaOH for 15 min at 4 

°C. The lysates were then resuspended in 5 mL scintillation fluid and counted 

in a -counter (Becton Dickinson, Franklin Lakes, NJ, USA). 

 

 



Chapter 4        Characterization of a selective CaMKII peptide inhibitor 

 

- 151 - 

 

6.7 Cell viability assay 

 

This assay was performed using PrestoBlue
TM 

Cell Viability Reagent 

(Invitrogen Inc, San Diego, CA). PrestoBlue
TM

 reagent is a resazurin-based 

solution that functions as a cell viability indicator by using the reducing power 

of living cells to quantitatively measure the proliferation of cells. The 

PrestoBlue
TM

 reagent contains a cell-permeant compound that is blue in color 

and virtually not fluorescent. When added to cells, the PrestoBlue
TM

 reagent is 

modified by the reducing environment of the viable cell, turns red in color and 

becomes highly fluorescent. This change in fluorescence is detected as 

measurement of absorbance, referred to the two controls (medium alone, and 

untreated cells). This reagent was used to evaluate cell viability in presence or 

absence of CaMKII inhibitors. Briefly, MCF7, HT29, VSMC, primary 

fibroblasts cells were plated into 96 multi-well at a density of 2000 cells/well 

in quadruplicate. CaMKII inhibitor, ant-CaNtide and tat-CN17, were added 

to each well at a concentration of 5 M for 24 h. Then 10 l of reagent were 

added to each well, and the plates were returned to cell culture incubator for 2 

h at dark. The absorbance in each well was measured at 570 nm in a 

microplate plate reader, and was referred to the absorbance of the two 

controls, that were used to calibrate the plate reader. 

 

6.8 Western blot analysis 

 

H9C2 and HT-29 were serum starved over night with DMEM/0.5% BSA. 

Cells were stimulated with 10% of FBS for 30 min and treated with different 

concentration of tat-CN17 for 30 min. At the end of the stimulation, cells 

were lysed in ice-cold RIPA/SDS buffer [50 mmol/L TriseHCl (pH 7.5), 150 

mmol/L NaCl, 0.01 g/L NP-40, 0.0025 g/L deoxycholate, 2 mmol/L Na3VO4, 

0.2 g/L sodium dodecylsulfate]. 

Protein concentration was determined using BCA assay kit (Pierce). Equal 

amounts of total cellular extracts or immunocomplexes were electrophoresed 

on 4-12% SDS-PAGE gel (NOVEX) and transferred to a nitrocellulose filter 

(Immobilon P; Millipore Corporation, Bedford, MA). The membranes were 
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blocked in Tris buffered saline containing 0.002 g/L Tween 20 (TBST) and 

0.05 g/L nonfat dry milk. After blocking, the membranes were washed three 

times in TBST and then incubated overnight at 4° C in TBST containing 5% 

BSA with primary specific antibody: total CaMKII and ERK 1/2 (1:1000, 

Santa Cruz, CA), phospho-tyrosine p44/p42 ERK (1:1000 Santa Cruz, CA) 

and phospho-CaMKII antibody (pT286) (Invitrogen). The blots were washed 

three times in TBST incubated in appropriate HRP-conjugated secondary 

antibodies (1:2000, Santa Cruz, CA) diluted in TBST containing 5% nonfat 

dry milk and incubated for 1 h at room temperature. After 3 additional washes 

with TBST, immunoreactive bands were visualized by enhanced 

chemiluminescence using the ECL-plus detection kit (Amersham Biosciences) 

and quantified by using ImageQuant software (Amersham Biosciences). 

 

6.9 Sample preparation for CD and NMR analysis 

 

To record CD and NMR experiments in water/HFA solution (50:50 v/v) 

CN17was added to an aqueous solution (pH 5.4, phosphate buffer 25 mM). 

This yielded final concentrations of 0.15 mM for CD experiments. For NMR 

samples, a H2O/D2O (90:10 v/v) mixture was used. To exclude potential 

aggregation, we recorded the 1D proton spectra of CN17 at a concentration 

range spanning 1.0-0.1 mM. At a peptide concentration of 1.0 mM there were 

not any noticeable effects of aggregation. Therefore, our NMR analyses were 

carried at sample concentrations of 1 mM. 

 

6.10 CD analysis 

 

All CD spectra were recorded using a JASCO J810 spectropolarimeter at 

room temperature and with a cell path length of 1 mm. CD spectra were 

performed at 25 °C using a measurement range from 260 to 190 nm, 1-nm 

bandwidth, 4 accumulations and a 10 nm/min scanning speed. Spectra were 

corrected for solvent contribution. For an estimation of secondary structure 

content, CD spectra were analyzed using both the ContinLL and SELCON3 

algorithms from the DICHROWEB website.
49
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6.11 NMR analysis 

 

NMR spectra were collected using a Bruker DRX-600 spectrometer at 300 

K. 1D NMR spectra were recorded in the Fourier mode with quadrature 

detection. The water signal was suppressed by low-power selective irradiation 

in the homo-gated mode. DQFCOSY, TOCSY, and NOESY
45,47

 experiments 

were run in the phase-sensitive mode using quadrature detection in 1 via 

time-proportional phase increases of the initial pulse. Data block sizes were 

2048 addresses in t2 and 512 equidistant t1 values. Prior to Fourier 

transformation, the time domain data matrices were multiplied by shifted sin 2 

functions in both dimensions. A mixing time of 70 ms was used for the 

TOCSY experiments. NOESY experiments were run with mixing times in the 

range of 100-300 ms. Qualitative and quantitative analyses of DQF-COSY, 

TOCSY, and NOESY spectra were achieved using SPARKY software.
53

 

 

6.12 NMR structure calculations 

 

Peak volumes were translated into upper distance bounds with the CALIBA 

routine from the DYANA software package.
55

 The requisite pseudoatom 

corrections were applied for non-stereospecifically assigned protons at 

prochiral centers and for the methyl group. After discarding redundant and 

duplicated constraints, the final list of experimental constraints was used to 

generate an ensemble of 100 structures by the standard DYANA protocol of 

simulated annealing in torsion angle space implemented (using 6000 steps). 

No dihedral angle or hydrogen bond restraints were applied. The best 20 

structures that had low target function values (0.83-1.19) and small residual 

violations (maximum violation = 0.38 Å) were refined by in vacuo 

minimization in the AMBER 1991 force field using the SANDER program of 

the AMBER 5.0 suite.
56

 To mimic the effect of solvent screening, all net 

charges were reduced to 20% of their real values. Moreover, a distance-

dependent dielectric constant (ε = r) was used. The cut-off for non-bonded 

interactions was 12 Å. NMR-derived upper bounds were imposed as semi-

parabolic penalty functions, with force constants of 16 kcal/mol Å
2
. The 
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function was shifted to be linear when the violation exceeded 0.5 Å. The best 

10 structures after minimization had AMBER energies ranging from -441.4 to 

-391.1 kcal/mol. 
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Appendix A- Automated peptide synthesizers 

 

Solid-phase peptide synthesis (SPPS) is still often faced with challenges in 

the assembly of long and ‘difficult’ sequences, e.g. due to aggregation and 

steric hindrance giving rise to incomplete reactions. 

These problems have only partly been solved by new coupling reagents and 

solid supports. Precise microwave heating has emerged as one new parameter 

for SPPS, in addition to coupling reagents, resins, solvents etc.
1
 

Fast and precise heating by microwave irradiation during solid-phase 

peptide synthesis (SPPS) can reduce reaction times as well as provide better 

purities and greater yields for the synthesis of difficult peptides. 

Microwave- assisted SPPS has proven to be a useful and reliable tool for 

the synthesis of peptides as well as small proteins. It is particularly well suited 

for sequences with a high propensity to form -sheet-type structures and for 

sterically difficult coupling. 

Several chemical methods to suppress intramolecular aggregation have 

been described and include pseudo-prolines,
2
 solvent composition,

3
 and 

chaotropic salts.
4
 

Heating is likely to reduce both the inter- and intramolecular-derived self-

assemblies and thereby decrease the reaction time and improve the coupling 

efficiency of bulky and -branched amino acids. 

Microwave irradiation is a promising tool in peptide chemistry because of 

the rapid and precise elevation of the temperature and the efficient temperature 

control during the synthesis.  

 

A.1 Automated Peptide Synthesizers 

 

Following Merrifield’s pioneering invention of solid-phase peptide 

synthesis, his group also developed the concept of automated solid-phase 

peptide synthesis
5,6

 and constructed the first synthesizers in the mid-1960s.
7,8

 

Using one of the first synthesizers, Gutte and Merrifield synthesized 

Ribonuclease A, a 124 amino acid protein, using an astonishing 369 chemical 

reactions and 11,391 steps on the automated peptide synthesizer, relying on 

the synthetic chemistry and analytical methods available at that time.
9,10

 Later 

other laboratories and companies developed a diverse range of laboratory 
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synthesizers.
11,12

 The introduction of Fmoc based SPPS
13

 and more 

sophisticated hardware as well as software allowed for simpler designs of 

automated peptide synthesizers. The simplified synthesizers have over the 

years led to comparably robust and reliable synthesizers, which have resulted 

in high-quality peptides and good reproducibility.  

 

A.2 Applications 

 

In the last year of my PhD, my research group started to approach to 

automated synthesizer, in particular to SyroWave
TM

 (Biotage) (Figure 1) 

which has shown to be a very flexible instrument for SPPS due to its ability to 

perform either single microwave reactions or conventional parallel synthesis at 

RT.  

 
Figure 1. The Biotage Syro Wave

TM
. 

 

This instrument is built around a valve-free robot originally developed for 

parallel peptide synthesis, where the robotic arm trasports reagents instead of 

pumping via valves. Additionally, the reaction vessel is vortexed in the 

microwave cavity.  

This is the first example of an “X-Y” robotic microwave-assisted 

synthesizer developed for the assembly of long peptides. Several group have 

shown that mixing is extremely important during microwave-assisted 

SPPS.
14,15

 Overall the use of microwave heating during SPPS will often aid the 

synthesis of difficult peptides and small proteins, provided that commonly 

occurring side reactions can be avoided. 

For the synthesis of difficult sequence the introduction of state of-the-art 

resins and coupling reagents has solved previous problems associated with its 

synthesis. 

Microwave irradiation in combination with the optimal coupling reagent 

showed to solve most of challenges with the assembly of peptide. 
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A.2.1 Optimization of automated peptide synthesizers  

 

The possibility of a so-called microwave effect
16

 has been discussed but 

studies have indicated that the observed enhancement was purely of a thermal 

nature, as similar results were obtained with conventional heating.
17

 

Another significant question is how to prevent the occurrence of 

epimerization. Studies on the risk of epimerization in peptides containing Cys 

and His residues during microwave-assisted SPPS indicated that His and Cys 

should be coupled at 50°C or maybe even at room temperature. 

The aim of this study was to develop a general protocol for microwave 

accelerated solid-phase synthesis of carboxyl sequence.  

Microwave irradiation in combination with the optimal coupling reagent 

showed to solve most of challenges with the assembly of peptide. 

The synthesis of PTPRJ agonist, peptide 6 [CHHALTHAC] (see Chapter 2) 

was used to investigate optimal coupling conditions, especially temperature, 

time, solid supports and coupling reagents on the automated microwave-

assisted peptide synthesizer SyroWave
TM

.
18

 

A first attempt to prepare peptide 6 by a standard Fmoc procedure using 

Wang resin not functionalized and the same protocol used for manual 

synthesis (HBTU/HOBt as coupling reagents and DMF as solvent of choice) 

showed a yield rather low (Figure 2). 

LC-MS analysis of the crude product showed the expected peptide without 

Alanine-Cysteine in C-terminal (m/z 818) as the main peak but the overall 

quality of the material was rather low (Figure 2). 

Different synthesis were planned using i) Fmoc-Cys(trt)-Wang resin 

avoiding the use of a catalytic amount of DMAP; ii) 2-Cl trityl resin; iii) 

Fmoc-Cys-(trt)-Wang resin and HOAt instead HOBt like coupling reagent. 

i)The use of functionalized Wang resin allowed us to reduce the side reactions 

at least in part, but the yield was still low. It was necessary to optimize the 

synthesis protocol changing resin and/or coupling reagents. 

ii)We investigated the impact of heating on 2-Cl trityl resin during the 

synthesis of C-terminal carboxylic acid peptides. The first N

-Fmoc amino 

acid were dissolved in dry dichloromethane (DCM) and with this solvent it is 

not possible to use MW irradiation leading to a long reaction time. 

We understand also that the use of microwave during couplings lead to a 

premature cleavage resulting in a HPLC profile with several peaks and low 

yield.
19
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iii)The purity was further optimized by substituting HBTU with other coupling 

reagents. Interestingly, for this particular peptide, the results for HOAt gave a 

superior outcome compared to other coupling reagents. 

 
Figure 2. HPLC crude profile of peptide 6 and ESI-MS spectrum of peptide 6: 

[M+2H]
2+

 (m/z 496), and ESI-MS spectrum of peptide 6 without 
8
Ala

9
Cys: [M+2H]

2+
   

(m/z 410). 

 

 

Summarizing, two possible synthetic approaches could be used to obtain 

satisfactory results: 1) manual synthesis with 2-Cl trytil resin. The steric size 

of 2Cl-Trt group not allow the formation of diketopiperazide (see Chapter 2); 

2) automated microwave synthesis with Fmoc-Cys(trt)-Wang resin which 

allowed to use high temperature reducing time of synthesis and side reactions. 

The protocol was optimize using HOAt as coupling reagent instead HOBt 

that leads to several side reactions. Moreover the preferred solvent with 

microwave is NMP, N-methyl pyrrolidone instead DMF, Dimethylformamide. 

To ensure the completed coupling or deprotection we used all double 

coupling and/or double deprotection protocol which allow to repeat the 

reaction in the same condition twice (Table 1). 

The optimal coupling condition for Histidine and Cysteine couplings 

(residues 1-3, 7) was 2×45 min at RT to avoid the epimerization. 
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Table 1. Coupling conditions for the synthesis of peptide 6, residue 
7
His

8
Ala. 

N
o
 

Residues 

Coupling  

reagent 

Eq. Method 

 Coupling Deprot. 

Pip.40%in 

DMF 
8
ALA HOAt/NMP-

HBTU/DMF 

4 10min,75° C 

× 2 

2min, RT 

15min, RT 

 × 2 
7
HIS HOAt/NMP-

HBTU/DMF 

4 45min, RT  

× 2 

2min, RT 

15min, RT 

 × 2 

All the couplings reactions were performed using DIEA as base.  
1
Cys

 
was added with the same protocol used for 

7
His.

 

 

 

 

 

 

 

 

                                                           
1
 Brandt, M.; Gammeltoft, S.; Jensen, KJ. Microwave Heating for Solid-Phase 

Peptide Synthesis: general evaluation and application to 15-mer 

phosphopeptides. Int J Pept Res Therap 2006, 12, 349-357. 
2
 Wohr, T.; Wahl, F.; Nefzi, A.; Rohwedder, B.; Sato, T.; Sun, X.; Mutter, M. 

Pseudo-prilnes as a solubilizing, structure-disrupting protection technique in 

peptide synthesis. J Am Chem Soc 1996, 118, 9218-9227. 
3
 Yamashiro, D.; Blake, J.; Hao Li, C. The use of trifluoroethanol for 

improved coupling in solid-phase peptide synthesis. Tetrahedron Lett 1976, 

17, 1469-1472. 
4
 Thaler, A.; Seebach, D.; Cardinaux, F. Lithium-salt effects in peptide 

synthesis. Part II. Improvement of degree of resin swelling and of efficiency of 

coupling in solid-phase synthesis. Helv Chim Acta 1991, 74, 628-643. 
5
 Merrifield, RB. Automated synthesis of peptides. Science 1985, 150, 178-

185. 
6
 Merrifield, RB.; Stewart, JM. Automated peptide synthesis. Nature 1965, 

207, 522-523. 
7
 Merrifield, RB.; Stewart, JM.; Jernberg, N. Instrument for automated 

synthesis of peptides. Anal Chem 1966, 38, 1905-1914. 



Appendix A                                                                  Automated peptide synthesizers                                                                                                             

 

- 166 - 

 

                                                                                                                                                        
8
 Brunfeldt, K.; Halstrqm, J.; Roepstorff, P. A punched tape controlled peptide 

synthesizer. Acta Chem Scand 1969, 23, 2830-2838. 
9
 Gutte, B.; Merrifield, RB. The synthesis of ribonuclease A. J Biol Chem 

1971, 246,1922-1941. 
10

 Cameron, LR.; Holder, JL.; Meldal, M.; Sheppard, RC. Peptide synthesis. 

Part 13. Feedback control in solid phase synthesis. Use of 

fluorenylmethoxycarbonyl amino acid 3,4-dihydro-4-oxo-1,2,3-benzotrianzin-

3-yl esters in a fully automated system. J Chem Soc Perkin Transe 1988, 1, 

2895-2901. 
11

 Schnorrenberg, G.; Gerhardt, H. Fully automatic simultaneous multiple 

peptide synthesis in micromolar scale-rapid synthesis of series of peptides for 

screening in biological assays. Tetrahedron 1989, 45, 7759-7764. 
12

 Gausepohl, H.; Boulin, C.; Kraft, M.; Frank RW. Automated multiple 

peptide-synthesis. Pept Res 1992, 5, 315-320. 
13

 Carpino, LA.; Han, GY. 9-Fluorenylmethoxycarbonyl function, a new base-

sensitive amino-protecting group. J Am Chem Soc 1970, 92, 5748-5749. 
14

 Pedersen, SL.; Sorensen, KK.; Jensen, KJ. Semi-automated microwave-

assisted SPPS:optimization of protocols and synthesis of difficult sequences. 

Biopolymers 2010, 94, 206-212. 
15

 Coantic, S.; Subra, G.; Martinez, J. Microwave-assisted solid phase peptide 

synthesis on high loaded resins. Int J Pep Res Ther 2008, 14, 143-147. 
16

 Palasek, S.; Cox, Z.; Collins, J. Limiting racemization and aspartimide 

formation in microwave-enhanced Fmoc solid-phase peptide synthesis. J Pept 

Sci 2007, 13, 143-148. 
17

 Bacsa, B.; Horvàti, K.; Bosze, S.; Andreae, F.; Kappe, CO. Solid-phase 

synthesis of difficult critical comparison of microwave and conventional 

heating technologies. J Org Chem 2008, 73, 7532-7542. 
18

 Malik. L.; Tofteng, AP.; Pedersen, SL.; Sorensen, KK.; Jensen, KJ. 

Automated “X-Y” robot for peptide synthesis with microwave heating: 

application to difficult peptide sequences and protein domains. J Pept Sci 

2010, 16, 506-512. 
19

 Echalier, C.; Al-Halifa, S.; Kreiter, A.; Enjalbal, C.; Sanchez, P.; Ronga, L.; 

Puget, K.; Verdié P.; Amblard, M.; Martinez, J.; Subra G. Heating and 

microwave assisted SPPS of C-terminal acid peptides on trityl resin: the truth 

behind the yield. Amino Acids 2013, 45, 1395–1403. 



Appendix B                              An Optimized Fmoc Synthesis of Human Defensin 5 

 

- 167 - 

 

 

Appendix B- An Optimized Fmoc Synthesis of  

Human Defensin 5 

 

Current methods for solid-phase peptide synthesis (SPPS) can reliably 

generate a very wide range of peptides. However, peptide synthesis can be a 

rather time-consuming process and accelerating reactions using elevated 

temperatures to enhance coupling rates has been explored.
1
 Furthermore, 

despite the many advances in the chemistry of peptide synthesis, assembly of 

“difficult sequences” often remains a problem, due to aggregation and steric 

hindrance giving rise to incomplete reactions.  

These problems have only partly been solved by new coupling reagents and 

solid supports. 

To understand how different resins and different protocols influence the 

efficiency of the synthesis, I focused the attention on a difficult synthesis, 

Human -defensin 5 (DEF5). In particular I performed a research project in 

Barcelona, to Pompeu Fabra University, with the scientific support of Prof. 

David Andreu and Dr. Beatriz G. de la Torre.
2
 

I used different protocols to optimize solid-phase synthesis of DEF5 using 

the Fmoc strategy. 

 

B.1 Human defensin 5 (DEF5) 

 

Human defensin 5 (DEF5) is a 32-residue cysteine-rich host-defense 

peptide that exhibits three disulfide bonds in the oxidized form (DEF5ox) 

(Figure 1). 

DEF5 belongs to Defensins, antimicrobial peptides (AMPs)
 3,4

 that play an 

important role in host defense as components of the innate immune system.
5,6
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Figure 1. a) Three-dimensional structure of DEF5 showing the triple-strand -

sheet and the disulfide bridges;
12

 (b) Amino acid sequence and disulfide connectivity 

of DEF5. Residues in red refer to points at which peptide-resin samples were taken 

and a mini-cleavage (arrow) performed; see text for more details. 

 

It is stored in Paneth cell secretory vesicles as a 75-amino acid propeptide 

which, in response to microbial invasion, is converted into a 43-aa propeptide 

by the metalloproteinase matrilysin,
7
 then by trypsin proteolysis into the 32-

residue mature form that is released into the intestinal lumen.
8
 DEF5 has been 

reported to play an important role in Crohn’s disease, where loss of 

endogenous DEF5 is observed in the small intestinal while other Paneth cell 

products remain unchanged;
9
 also, a single R13H point mutation in DEF5 has 

been observed in patients with inflammatory bowel disease.
10

 

A growing interest on defensin structural and functional studies has placed 

increasing pressure on the sources of these peptides. Most studies to date have 

used defensins directly purified from cell extracts and tissues, but low yield 

makes studies costly and highly time-consuming. The alternative of 

overexpressing DEF5-coding genes was for long complicated by the toxicity 

of the peptide toward host cells, its susceptibility to proteolytic degradation 

and its small size; only recently have these difficulties been partly avoided and 

expression of mature DEF5 achieved in moderate efficiencies in P. pastoris
11

 

or E. coli expression systems.
12,13

 Even so, a peptide of DEF5’s size and 

complexity would ideally appear to be well within the scope of chemical 

synthesis methods, with their inherent expediency and flexibility. Surprisingly, 

however, while various synthetic accounts of “defensin like” peptides -i.e., 
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around 30-residue long and with three disulfide bridges– came up in a 

thorough revision of the literature, only one synthesis of DEF5
14

 has been 

hitherto reported, and that by a synthetic (Boc-based) methodology that is 

unfeasible at many labs due to hazard restrictions to the use of anhydrous HF. 

It seemed worthwhile, therefore, to explore whether DEF5 could be efficiently 

made by the more convenient Fmoc methodology that we have successfully 

applied to other peptides of similar size and complexity.
15,16

 Indeed, the goal 

proved considerably more challenging than originally expected: a trial DEF5 

synthesis run using standard Fmoc methods turned up a very unpromising 

product in very low yields. What follows is an account of the various synthetic 

improvements that have finally enabled a reasonably efficient Fmoc synthesis 

of DEF5. This has involved identifying problematic stretches during the 

sequence assembly process and introducing corrective modifications, 

particularly regarding the solid support and the use of Pro dipeptide units at 

identified trouble spots. These improvements can be combined to produce an 

hexathiol DEF5 precursor clean enough to be oxidized as a crude product, 

with no need of purifying the intermediate, thus increasing the efficiency of 

the synthetic approach. 

 

B.2 Results and discussion  

 

The goal of this research was to find a strategy for producing DEF5, and 

eventually analogues thereof, by an efficient solid phase synthesis method 

using Fmoc chemistry. The only reports of DEF5 and DEF5 analogue 

synthesis published so far
14,17

 rely on Boc chemistry for chain assembly and 

anhydrous HF for final cleavage and deprotection, the last step being 

impractical for many laboratories given the safety hazards and consequent 

restrictions on HF use. In the search for a robust Fmoc-based synthetic route to 

DEF5 we have encountered a variety of hurdles that have been overcome, with 

reasonable success, as summarized in the workflow diagram shown in Figure 

2.  
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Figure 2. Workflow in the optimization of DEF5 synthesis. Asterisks in runs #2 to 

#6 refer to DEF5
a
 instead of DEF5 being used as synthetic target, for expediency 

reasons.   

 

A first attempt to prepare DEF5 by a standard Fmoc procedure using Fmoc-

L-Arg(Pbf)-Wang resin as starting material clearly showed that optimization 

would be required. UV monitoring of the sequence assembly process indicated 

several non-quantitative couplings and, accordingly, while LC-MS analysis of 

the crude product showed the expected hexathiol (MW 3588) as the main peak 

(Figure 3a), the overall quality of the material was rather low. In view of this, 

in a second trial ChemMatrix
®
 resin, a PEG-based support known to minimize 

the aggregation phenomena
18

 suspected largely responsible for the poor results 

of the first synthesis, was used instead of polystyrene-based Wang resin. 

Assuming also that the synthetic problems were unrelated to the (carboxyl or 

amide) nature of the C-terminus, a Rink amide-functionalized ChemMatrix
®
 

resin, eventually furnishing DEF5 amide (DEF5
a
), was chosen in order to 
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simplify the C-terminal attachment step. In addition, the chain elongation 

process was monitored by mini-cleavage of peptide resin aliquots (N-

deprotected beforehand) and LC-MS analysis of the product at three pre-

selected positions: (1) 
27

Tyr, early in the synthetic process, to ensure that chain 

assembly was proceeding adequately or, if not, try to solve the problem by 

decreasing resin loading; (2) 
22

Ile and (3) 
14

Glu, two positions preceded each 

by a Ser residue, hence amenable to pseudoproline (Pro) dipeptide 

replacement, a tactic to deliberately disrupt -sheet structures causing 

interchain aggregation and sluggish chain growth.
19,20

 MS confirmed that 

synthesis was proceeding smoothly at steps (1) and (2); in both cases, the 

mini-cleavage afforded a highly homogeneous product with the mass expected 

at that stage. Mini-cleavage at (3), however, showed the (14-32) sequence to 

be present only in minor amounts and accompanied by various deletion 

peptides indicating low coupling efficiencies in the 14-23 (ESLSGVCEIS) 

stretch. Elongation up to the N-terminus, deprotection and cleavage gave a 

crude (Figure 3b) of very similar complexity to that of the mini-cleavage, only 

marginally cleaner than the first synthesis (Figure 3a). In view of this, two new 

syntheses of DEF5 amide were planned, again on ChemMatrix
®
 resin, and 

with Pro replacements at the above-mentioned positions. The synthesis 

with the Ile-Ser(
Me,Me

pro)-OH dipeptide replacement at positions 22-23 

brought no improvement over previous runs; indeed, the main peak of the 

extremely poor crude (Figure 3c) could not be matched by LC-MS to the 

target 3587 Da mass. In contrast, replacement at positions 14-15 with 

Glu(OtBu)-Ser(
Me,Me

pro)-OH dipeptide resulted in a product with and HPLC 

profile (Figure 3d) significantly cleaner than any of the earlier attempts, and 

with the expected mass of 3587 Da for the main peak. Purification of this 

crude product by preparative HPLC, however, afforded a disappointingly low 

recovery of DEF5
a
 hexathiol precursor. Suspecting that the standard workup of 

the TFA cleavage solution, i.e., adding cold diethyl ether and centrifuging, 

was in this case inefficient, hence the peptide remained stuck to the resin, we 

resorted to a more thorough peptide isolation procedure, namely filtering-off 

the resin first (see Experimental section) and then treating the filtrate with 

chilled ether to induce peptide precipitation in the absence of resin. After 

centrifugation and drying, the amount of solid crude product was ca. 5 times 

higher than with the standard procedure. This improved isolation protocol was 

applied systematically henceforth (Figure 2). At this point it was clear that 
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Pro replacement of the 
14

Glu
15

Ser dipeptide combined with ChemMatrix
®
 

resin usage had meant a significant difference in DEF5
a
 synthesis. To 

elucidate the specific contribution of the resin to the improved result, another 

DEF5
a
 synthetic run was done, this time using Rink-amide-MBHA resin, the 

Glu(OtBu)-Ser(
Me,Me

pro)-OH dipeptide at positions 14-15, and the optimized 

peptide isolation protocol described above. The crude product (Figure 3e) was 

slightly cleaner than in the first -also polystyrene-based- synthesis (Figure 3a), 

hence confirming the favorable effect of the Pro replacement, but 

nonetheless of poorer quality than when Pro and ChemMatrix
®
 resin were 

simultaneously used, proving that only by combined usage of both 

modifications a substantial improvement was achieved. These advantages 

were again verified in the synthesis of the carboxyl (natural) sequence of 

DEF5, for which an aminomethyl ChemMatrix
®
 resin was functionalized with 

the HMPP linker, loaded in manual mode with Fmoc-Arg(Pbf)-OH, then 

elongated as above in the synthesizer. The resulting crude (Figure 3f) was of 

comparable quality to the previous DEF5
a
 material.   
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Figure 3. Optimization of DEF 5 synthesis; see workflow chart in Figure 2 for 

details. HPLC profiles of crude products (a) and (f) correspond to DEF5 syntheses; 

(b) to (e) to DEF5
a
 syntheses. In all instances, the asterisk-marked peak eluting at ca. 

5.3 min corresponds to the hexathiol precursor of DEF5 or DEF5
a
. Elution was with a 

linear 20 to 50% gradient of B into A over 15 min, at 1 mL/min flow rate; solvents A 

and B as described in the experimental.  

 

For the final, oxidative folding step of DEF5 synthesis, an HPLC-purified 

hexathiol precursor was initially used. Disulfide formation in 0.1 M NH4OAc 

buffer containing both reduced (GSH) and oxidized (GSSG) glutathione under 

N2 atmosphere was complete after overnight reaction and led to a single folded 

product with the expected 3582 Da mass. Also, taking cue from the good 

results obtained by Wu et al. (2004) in the oxidation of the hexathiol precursor 

in unpurified form, we proceeded accordingly and confirmed that unpurified 

crude (Figure 4a) could be similarly converted to the oxidized/folded form 

using the above anaerobic conditions (Figure 4b). In this way, a typical 

synthesis run (0.1 mmol) required only a single HPLC purification step and 

led to highly homogeneous (>95%) folded product in amounts of ca. 15 mg. 

The correct folding (
1
Cys

6
Cys, 

2
Cys

4
Cys, 

3
Cys

5
Cys) of our synthetic material 

was verified by comparison with an authentic (commercial) DEF5 sample by 

analytical HPLC, with both peptides found to coelute (Figure 4c). 



Appendix B                              An Optimized Fmoc Synthesis of Human Defensin 5 

 

- 174 - 

 

 

 
 

Figure 4. (a) Hexathiol precursor (run #7, Figure 2) is efficiently converted to 

native-folded DEF5 (b); for conditions see text. (c) HPLC-purified DEF5 (full line) 

coelutes with an authentic sample (broken line); inset: ESI-MS spectrum of DEF5: 

[M+6H]
6+

 (m/z 598.05), [M+5H]
5+

 (m/z 717.60) and [M+4H]
4+

 (m/z 896.70) peaks 

are shown. In all cases, HPLC elution was with a linear 5 to 40% gradient of B into A 

over 15 min, at 1 mL/min flow rate; solvents A and B as described in the 

experimental. 

B.2.1 Proteolytic Stability of both DEF5ox and DEF5red. Trypsin is a 

serine protease that preferentially cuts after cationic residues including Arg 

and Lys, and it is the processing enzyme for the DEF5 propeptide.
21
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It is accepted that the defensin disulfide array confers protease resistance, 

and DEF5ox (defensin 5 oxidated) is a very poor substrate for trypsin.
22

 

In contrast, treatment of DEF5red (defensin 5 reduced) with proteases such 

as trypsin results in rapid proteolytic cleavage.
23

 

Anyway to check this, the time course of trypsin digests of reduced and 

oxidized peptide was monitored by LC-MS. As expected, the DEF5red was 

totally degraded after 5 min digestion (data not shown). Instead, longer 

incubation times are required for complete proteolytic breakdown of the DEF 

5ox. In fact as expected the DEF5ox is quite impervious to proteolysis, with an 

appreciable decay only after six hours of incubation (80% degraded) and a 

totally digestion only after 18 hours . 

In conclusion, the presence of three disulfide bonds decreases the 

accessibility of trypsin cleavage sites.  Therefore, the complete disulfide array 

of native DEF5ox is essential for protease resistance. 

 

 
Figure 5. Stability of DEF5ox. The amount of peptide remaining after incubation 

for the indicated time was determined by LC-MS. 

 

C.1 Conclusion 

 

Results presented in this study illustrate how concomitant use of 

ChemMatrix
®
 resin and Pro dipeptide replacement at the strategic 

14
Glu

15
Ser position transform the initially impractical production of DEF5 into 

a satisfactory stepwise Fmoc synthesis method. The two critical improvements 

in the sequence assembly process, complemented by optimized work-up after 

cleavage, enabled oxidative folding directly on the synthetic crude, avoiding 
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one intermediate purification step and thus making the global process quite 

efficient. This optimized synthesis paves the way to obtaining DEF5 and its 

analogues in sufficient quantities for structural and biological studies. 

 

D.1 Experimental section 

 

Chemicals 

 

Fmoc-protected amino acids, HBTU and Fmoc-L-Arg(Pbf)-Wang resin 

were from Iris Biotech (Marktredwitz, Germany). Fmoc-Rink-amide 

ChemMatrix resin was from PCAS BioMatrix, Inc. (Saint-Jean-sur-Richelieu, 

Quebec, Canada). Fmoc-Rink-amide (MBHA) resin, Fmoc-Glu(OtBu)-

Ser(
Me,Me

pro)-OH and Fmoc-Ile-Ser(
Me,Me

pro)-OH were from 

Novabiochem (Laüfelfingen, Switzerland). An authentic sample of DEF5 was 

purchased from Innovagen (Sweden). HPLC-grade CH3CN and peptide 

synthesis-grade DMF, CH2Cl2, DIEA and TFA were from Carlo Erba-SdS 

(Sabadell, Spain). All other reagents were of the highest quality commercially 

available from Sigma-Aldrich (Madrid, Spain).  

 

General peptide synthesis procedures 

 

Peptides were assembled in an ABI433 peptide synthesizer (Applied 

Biosystems, Foster City, CA) running Fmoc (FastMoc) SPPS protocols at 0.1-

mmol scale on either Fmoc-L-Arg(Pbf)-Wang resin, Fmoc-Rink-amide 

ChemMatrix resin, Fmoc-Rink-amide (MBHA) resin or aminomethyl 

ChemMatrix resin. Side chain functionalities were protected with tert-butyl 

(Glu, Ser, Thr, Tyr), N
G
-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl 

(Arg), trityl (Cys) groups. Eight-fold excess of Fmoc-L-amino acids and 

HBTU, in the presence of a double molar amount of DIEA, were used for the 

coupling steps, with DMF as solvent. After chain assembly, full deprotection 

and cleavage were carried out with TFA/H2O/EDT/TIS (94:2.5:2.5:1 v/v, 90 

min, rt). Peptide isolation was initially done by the standard procedure in 

Fmoc chemistry, namely precipitation with cold diethyl ether and 

centrifugation. However, as this practice was shown to be inadequate for 

DEF5 (see Results and Discussion), the cleavage suspension was passed 

through a syringe fitted with a polyethylene porous disk to filter off the resin, 
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which was rinsed with an additional 1 mL of TFA; the filtrate was then poured 

onto cold diethyl ether to give a white precipitate that was collected by 

centrifugation, redissolved in 0.1M acetic acid and lyophilized. 

 

Analysis and purification  

 

Analytical reversed-phase HPLC was performed on C18 columns (4.6 × 50 

mm, 3 μm, Phenomenex, Torrance, CA) in a model LC-2010A system 

(Shimadzu, Kyoto, Japan). Solvent A was 0.1% TFA in water; solvent B was 

0.1% TFA in CH3CN. Elution was done with linear 20−50% gradients of 

solvent B into A over 15 min at 1 mL/min flow rate, with UV detection at 220 

nm for the linear peptide and with  5-40% linear gradient of B into A for 

oxidized peptide. LC-MS was performed in a LC-MS 2010EV instrument 

(Shimadzu) fitted with an XBridge column (4.6 × 150 mm, 3.5 μ ,  aters, 

Cerdan ola del  all s,  pain  eluted with a 20-50% linear gradient of B into 

A for the unfolded (reduced) peptide and with a 5-40% linear gradient of B 

into A for the oxidized peptide (A = 0.1% formic acid in water; B = 0.08% 

formic acid in acetonitrile) over 15 min at a flow rate of 1 mL/min, with UV 

detection at 220 nm. Preparative HPLC runs were performed on a Luna C18 

column (21.2 mm  250   , 10 μ ; Pheno enex , using linear gradients of 

solvent B (0.1% in ACN) into A (0.1% TFA in water), as required, with a flow 

rate of 25 mL/min. Fractions of high (>95%) HPLC homogeneity and with the 

expected mass were combined, lyophilized, and used in subsequent 

experiments. 

 

Oxidative Folding 

 

The reduced (hexathiol) forms of DEF5 or DEF5
a
 were oxidized at 5 M 

concentration in 0.1 M NH4OAc, pH 7.8, 25 °C.
15

 The peptide, with or without 

previous HPLC purification (see Results and Discussion), was dissolved at the 

specified concentration in the above buffer containing both reduced (GSH) 

and oxidized (GSSG) glutathione to give a 1:100:10 peptide:GSH:GSSG ratio. 

The solution was then placed under inert (N2) atmosphere and stirred 

overnight at 25°C. Progress of the folding reaction was monitored by 

analytical HPLC and, once completed, the target products were purified to 

homogeneity by preparative RP-HPLC and subsequently lyophilized. The 
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synthetic DEF5 thus folded and purified coeluted in analytical HPLC with an 

authentic DEF5 sample.  

 

Proteolytic stability of DEF5 

 

For proteolytic stability determination, peptides (1 mg/mL in 50 mM 

NH4HCO3) were incubated with trypsin (Promega) at 37°C in a 1:100 enzyme-

peptide ratio. Incubation was terminated by acetic acid addition. The 

remaining amount of original peptide was determined by HPLC peak 

integration (elution conditions as above). 
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