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Abstract

The problem of data compression having specific security properties in order to guar-
antee user’s privacy is a living matter. On the other hand, high-throughput systems in ge-
nomics (e.g. the so-called Next Generation Sequencers) generate massive amounts of
genetic data at affordable costs.

As a consequence, huge DBMSs integrating many types of genomic information,
clinical data and other (personal, environmental, historical, etc.) information types are on the
way. This will allow for an unprecedented capability of doing large-scale, comprehensive and
in-depth analysis of human beings and diseases; however, it will also constitute a formidable
threat to user’s privacy.

Whilst the confidential storage of clinical data can be done with well-known methods
in the field of relational databases, it is not the same for genomic data; so the main goal of my
research work was the design of new compressed indexing schemas for the management
of genomic data with confidentiality protection.

For the effective processing of a huge amount of such data, a key point will be the
possibility of doing high speed search operations in secondary storage, directly operating
on the data in compressed and encrypted form; therefore, | spent a big effort to obtain
algorithms and data structures enabling pattern search operations on compressed and en-
crypted data in secondary storage, so that there is no need to preload data in main memory
before starting that operations.



Riassunto

La progettazione di metodi integrati di compressione e cifratura che garantiscano la
riservatezza dei dati riducendone al contempo la dimensione € un argomento di ricerca
molto attuale in Informatica.

D’altro canto, I'avvento delle nuove piattaforme di sequenziamento NGS e, piu in gen-
erale, delle tecnologie cosiddette high-throughput ha consentito negli ultimi anni di ottenere
velocemente, e a costi molto ridotti rispetto al passato, notevoli quantita di dati genomici.

Di conseguenza & sempre piu sentita I'esigenza di costruire grandi database che
integrino le informazioni genomiche con dati personali e clinici: database di questo genere
permetterebbero, infatti, di ottenere risultati migliori nella cura di malattie multifattoriali e una
comprensione piu approfondita dei fenomeni biologici che avvengono nel nostro organismo;
essi potrebbero costituire, tuttavia, un notevole problema per la privacy dei pazienti.

Mentre la confidenzialita dei dati clinici pud essere ottenuta con tecniche di cifratura
standard, comunemente applicate nel campo dei database relazionali, lo stesso non pud
dirsi per i dati genomici; il principale obiettivo del mio lavoro di ricerca & stato, quindi, la
progettazione di nuovi schemi integrati di compressione e cifratura che consentissero di
gestire dati genomici preservandone la riservatezza.

Affinché tali sistemi fossero sfruttabili in applicazioni reali, ho profuso grande im-
pegno nella progettazione di algoritmi e strutture-dati che consentissero di effettuare ricerche
efficienti direttamente sui dati in forma compressa e cifrata, caricando di volta in volta in
memoria RAM solo il minimo set di informazioni necessario ad eseguire ogni specifica op-
erazione di ricerca.



Introduction

NGS technologies and Genomic sequences

DNA double helix structure was discovered by Watson and Crick in 1953: DNA is
an organic polymer structured as a extremely long chain of monomers called nucleotides
(deoxyribonucleotides). For example, human DNA contains approximately three billions
nucleotides.

Each nucleotide contains a nitrogenous base that represents its information content
and can be one of the following: adenine (A), cytosine (C), guanine (G) and thymine (T).

DNA sequencing methods allows to determine the exact sequence of an individual
genome nucleotides.

The first sequence of 24bp was published in 1973, but only in 1977 the English
biochemist Frederick Sanger developed and published the revolutionary Sanger method:
thanks to his work and its enhancements, it was possibile in 2000 to complete the sequenc-
ing of the whole human genome.

Sanger’s was the most used sequencing method for more than 25 years, but it suf-
fered some problems: for example, it was very difficult to automate the samples preparation
process and to handle in parallel a big number of samples.

In order to address these problems and to have faster and cheaper sequencing plat-
forms, in 2005 first Next generation sequencing platforms, Roche 454 and Solexa lllumina,
appeared on the market.

Their massive parallel sequencing methods allow now to get genomic data at much
higher speed and lower cost than in the past, enabling large scale genome sequencing
projects, like the famous 71000 Genomes Project[14].

This is giving rise to a considerable amount of NGS-type sequences (short reads),
for which traditional storage and processing approaches have proven inadequate: e.g., to
assemble these reads in order to obtain the overall DNA sequence of the sampled individual,
new alignments algorithms and tool have been developed.

Independently from the sampling method, the final product of a sequencing process
is indeed the sampled individual DNA genomic sequence or a part of it, and this sequence
must be stored anywhere in some format.

The most used data formats for genomic sequences are:

e FASTA, which is a text format for representing nucleotide or peptide sequences, en-
coding each sequence element with a single ASCII character;

e FASTQ, which is another text format for storing both a sequence and its corresponding
quality scores, also encoding sequence letters and quality scores with single ASCII
characters.
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Both are very expensive in terms of disk space; moreover they do not support fast
search and alignments versus their content, because they do not intrinsically provide any
type of indexing.

In order to overcome these issues compressed full-text indexes, like FM-indexes[15],
are often used in Bioinformatics to allow fast searches on compressed genomic data; they
constitute the basis of many alignment tools, like Bowtie2.

Hashing and other indexing methods have been used instead to implement BLAST
and other alignment and search tools which compare an input sequence with all those stored
in big databases, in order to find the most similar ones.

Genomic databases and confidentiality protection

Tipically genomic data are organized in structured and searchable collections of in-
formation, named databases. There are two kinds of genomic sequence databases: public
and private databases. The first ones are accessible by everyone in the world at no charge:
some examples are DDBJ, EMBL and GenBank; the second ones contain collections of
data sequenced by private companies, which let them accessible only when paying an ac-
cession fee: therefore public databases are mostly used for academical research, while
private ones are used by pharmaceutical companies.

Both the above mentioned categories of databases have been designed to improve
scientific research in genomics: sequence data are stored in clear format and the only
applied privacy protection rule consists in anonymizing data, avoiding to associate them
with personal data like surname, name and tax code. This type of anonymization well suites
to big worldwide databases designed only for research purposes: not only they contain data
sequenced from individuals coming from all world regions, but there is no need to access
the related personal data.

My research work instead addresses a very different type of multi-user databases,
designed to be used both in clinical and in research contexts: they must contain collections
of genomic sequences from several individuals, potentially coming from a circumscribed
region; they must implement moreover a security model enabling their users to work only
on the set of genomic information to which they have been granted access.

This need arises from a simple observation: genomic sequences are indeed clas-
sifiable as sensitive data and so confidentiality and privacy concerns must be taken into
account.

In fact, not only the genomic information alone could afford to trace the identity of the
individual, but it could be used for discriminatory and not legitimate purposes. For example,
an insurance company may deny the stipulation of a health insurance agreement depending
on the predisposition to develop certain types of diseases, or a company may not hire a
worker inferring from his DNA an aggressiveness higher than the average.

So, genomic data should be kept away from prying eyes, both using methods that
guarantee its privacy and establishing new appropriate laws.

In recent years, new regulations were introduced at European level, which govern the
access to databases enabling the so-called Forensic DNA profiling: this is a method used
by forensic scientists and police to identify individuals on the basis of a DNA profile, some
mutations of their DNA, which are extremely unlikely to happen together.

Genetic profiles are stored into data banks designed to compare a crime scene DNA
record with DNA records contained in the database: American “Combined DNA Index Sys-
tem” (CODIS) is an example of such a database and of the related accession rules.



INTRODUCTION 5

European Union States have subscribed in 2005 the Prum Convention: it “provides
for the automated exchange of DNA, fingerprints and vehicle registration data, as well as for
other forms of police cooperation between the 27 EU States. Access to DNA profiles and
fingerprints held in national databases is granted on a hit/no-hit basis, which means that
DNA profiles or fingerprints found at a crime scene in one EU State can be compared with
profiles held in the databases of other EU States.”

Most of the above described conventions and laws only regulate the storage and us-
age of DNA profiles in parentage testing and criminal investigation. However, DNA profiling
should not be confused with whole genome sequencing, which has as its objectives the
determination, and possibly the long-term storage, of the whole genomic sequence of an
individual.

The ltalian Data Protection Authority has recently released a “General authorization
for genetic data processing”, establishing a set of rules which regulate the several process-
ing purposes, the security measures to adopt and the informed consent procedures to follow
so that an individual can know and limit the usage of his/her genetic data to a given set of
purposes.

In conclusion, currently new regulations are appearing with the aim of disciplining
the treatment of genetic data, but there is a lack of technical standards adequate to enable
confidential storage and fast accession to it.

This is why | started my research project: my aim was to model new indexed, com-
pressed and encrypted data structures:

e enabling the long-term storage and retrieval of individuals genomic sequences, and
not only of the limited set of genetic information needed for his/her identification;

e allowing fast pattern searches directly on encrypted and compressed data;

e easily integrable with standard relational databases containing clinical information.
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Thesis outline

The aim of this thesis is to present two new compressed and encrypted self-index
models for genomic sequences: indexes of this type do not currently exist in literature.

The thesis is organized in three chapters.

Chapter 1 gives some basic details on Burrows and Wheeler Transform (BWT)[9]
and FM-Index[15], from whose analysis | started my research activities; furthermore, at the
end of this chapter | propose my first contribution: a new fast method to efficiently compute
the BWT of genomic sequences.

Chapter 2 presents my first encrypted self-index model, named EFM-index: it com-
bines an approach known in literature as Scrambled BWT[25] with a structure similar to that
of FM-index, together with a block encryption method based on the Salsa20[6] stream ci-
pher. It has optimal search performance and exhibits optimal compression ratios on a single
sequence and on collections of lowly similar sequences; however, it cannot fully exploit the
inter-sequence redundancy that exists in collections of highly similar sequences.

Chapter 3 presents my second encrypted self-index model, named ER-index: when
used on collections of highly similar sequences, it allows to obtain compression ratios which
are an order of magnitude smaller than EFM-index, maintaining optimal search perfor-
mance. Moreover, its multi-user and multiple-keys encryption model permits to store ge-
nomic sequences of different individuals with distinct encryption keys within the same index:
this allows each user to perform search operations only on the sequences to which he/she
was granted access.

Durign my PhD studies, which lasted three years, | developed, tested and incremen-
tally refined several software prototypes of the above mentioned indexes. The experimental
results obtained by the two last prototypes on several collections of genomic sequences
show that both the proposed index models could be successfully used in real-world applica-
tions.



Chapter 1

Compression and indexing of
genomic data

Introduction

To date, great efforts have been made to obtain compress and indexed representa-
tions of genomic sequences. In particular, methods based on the Burrows Wheeler Trans-
form (BWT) [9] have been introduced that obtain excellent results in terms of compression
ratio, search efficiency and sequence alignment: for example, Bzip2 is a compressor that
gets very good space-efficiency on most files thanks to the BWT followed by a move-to-front
transform and Huffman coding [35], whereas Bowtie is a short read aligner that is capable
of aligning short reads to the human genome at a rate of over 25 million 35-bp reads per
hour [28].

In this chapter | explain some BWT details needed to understand the methods and
algorithms that | present in the following chapters; afterwards | speak about the FM-index,
from which | started my research activities, and finally | present a my first contribution: an
original method to compute efficiently the BWT of genomic sequences, | called FastGe-
nomicBWT.

1.1 Burrows and Wheeler transform

The Burrows and Wheeler Transform (BWT) [9] is based on the idea that a permuta-
tion of the text given in input may give rise to a more easily compressible output. Let 7" be
an n-length sequence of characters over an alphabet . Then BWT(T) is a permutation of
T with respect to the lexicographical order of 3, which is obtained as follows (see Fig. 1.1):

1. A special symbol $ is placed after text 7', with the convention that $ precedes lexico-
graphically all the other symbols in 3;

2. The resulting text is shifted by one place on the right for n + 1 times, so to obtain a
n + 1-order rotations matrix M, whose adjacent rows differ by a single circular shift;

3. The rows of M are sorted with respect to the canonical (lexicographical) ordering
induced by ¥, giving rise to the sorted rotations matrix My;
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4. BWT(T) = L, where L is the text given by reading the last column of Msy; from the
top.

BWT(T) is generally much more compressible than 7" because adjacent rows in My, start
with common corresponding substrings (contexts), which in some cases can be quite long,
and characters preceding the same contexts are more probably equals. The BWT can be
compressed with a run-length coder and/or a move-to-front coder [39].

To restore T from BWT(T) = L, it is needed to know where T starts and which
letters follow which others. The crucial observation in such respect is that, if F' is the first
column of My, then for each 1 < i < n + 1 the element F (i) follows L(z) in T'. Thus, the
inversion of BWT'(T') can be easily accomplished by restoring 7" backwards as follows (see
Fig. 1.1):

1. The L column is lexicographically ordered, giving rise to F;

2. Let M’ = [F, L] be the 2 x n + 1 matrix having F' and L as first and last column,
respectively;

3. The last character of 7' is the first of L, i.e. T'(n) = L(1), since L(1) precedes $ and
$ is the first character in F;

4. T(j) = L(i) for j =n —1,...,1, where i is the minimum row index in M’ such that
F(i)=T@+1).

Rotations matrix BWT computation BWT inversion

GATTACRAS $GATTACA
ATTACASG AS$SGATTA|C
TTACASGA ACAS$SGATHT
TACASGAT ATTACRAS|IG
ACASGATT CASGATTA
CASGATTA GATTACAS
ASGATTAC TACASGAT
SGATTACA TTACAS GA

Figure 1.1: An example of BWT computation and its inversion for the text ' =
“GATTACA”

1.2 FM-index

The Fast index in Minute Space (FM-index) [15]) is an example of self-index, namely
a data-structure which replaces a given text compressing it and allowing in addition a fast
search of its substrings.

The FM-index of a text T'is composed of a binary sequence Z, which results from the
compression of L = BWT(T)), plus a set of auxiliary data structures: these data structures
describe the subdivision of Z into data blocks of variable length, each block being related to
a single l-length block of L. For improved performance, the n/l data blocks are clustered in
n/1? super-blocks. The length [ > 0 is a parameter affecting compression ratio and search
speed in opposite way: decreasing [ usually results in a faster searching but in a bigger size
index. Indeed, blocks and super-blocks increase in number as ! decreases, and carry in
auxiliary information which speeds up searches but results in a bigger index.
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The compression is achieved by splitting L = BWT(T) in I-length blocks and by
applying to each of them a set of coders in the following order: a move-to-front (MTF)
transform, a zero-run-length encoder (RLEOQ), and a prefix-free encoding.

The MTF transform [33, 4] is a simple way of generating a code based on the probability
of occurrence of symbols in the input strings. First, an ordered sequence of symbols (MTF
table) is constructed by following the lexicographical ordering of X, in such way that each
symbol is mapped to a unique integer in (0,|X| — 1). Then, each symbol of the input
sequence is coded as the corresponding integer in the MTF table, after which the table
is updated with such a symbol moved to the top (position 0). The MTF output results in a
string of integers where runs of same characters are mapped to runs of zeros, with the more
frequently occurring characters appearing near the top of the list.

The RLEO simply turns each run of zeros in a single zero followed by a count (in binary) of
the number of times it occurs, and leaving the encodings of the other numbers.

Lastly, the PFE encodes the sequence of binary digits produced by RLEOQ using a variable-
length prefix code [39].

Apart from the binary sequence Z obtained by concatenating all the output blocks
given by the previous compression process, the FM-index consists of the following auxiliary
data structures:

e an array containing, for each character, the number of occurrences of all the charac-
ters preceding it;

e a super-blocks array, whose j-th element stores:

— the sum of the sizes of all compressed blocks until the end of super-block j;

— a rank table containing, for each ¢ € X, the number of occurrences of ¢ until the
beginning of super-block j;

e an array whose i-th element corresponds to the i-th block of L = BWT(T") and
stores:

— the sum of the sizes of all blocks up to the i-th block (included), starting from the
super-block to which it belongs;

— the MTF table status before applying the MTF to block ¢;

— a rank table containing, for each c € ¥, the number of occurrences of c up to the
beginning of block 7, starting from the super-block to which it belongs.

1.3 Fast Genomic BWT: a new multi-threading BWT com-
putation algorithm

In order to perform a fast BWT computation of big genomic sequences, | designed
an algorithm to parallelize it on modern multi-core and hyper-threading CPUs.

My algorithm origins from a simple observation: given a genomic sequence s, which
is a string on the alphabet 3., its rotations can be distributed uniformly in contiguous symbols
ranges of an extended alphabet ¥, on the basis of each rotation first k& characters. This
happens in a useful way for our purposes yet for low & values (i.e. for k >= 4).

In order to obtain an additional performance increment, | reserved a special treat-
ment to long repetitions of the same character, which make the ordering very difficult: the
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ranges containing long repetitions are split in several subranges, which in turn are sepa-
rately ordered as | show hereafter. An example of such repetitions are the very long N
character regions often occurring in genomic reference sequences.

Shortly, the overall computation algorithm evolves as follows:

1. it accepts in input a sequence s, an alphabet extension degree k£ and the maximum
number nt of threads executable in parallel on the running machine.

2. it builds the extended alphabet ¥, where X consists only of the symbols effectively
appearing in s.

3. it distributes the rotations in a sufficiently high number of ranges of the extended
alphabet and retrieves long repetitions. This is a multi-thread step: the input text is
divided into several regions of consecutive characters and each region is analyzed by
a separate thread; the final result of this step is an array R of ranges, each of which
contains a set of rotations.

4. if necessary, it joins the repetitions found by the several threads of the step 2, because
a repetition positioned at the end of a region could continue from the first character of
the next region (single-thread step).

5. it assembles the not empty ranges in nt groups, splitting the array R into nt sub-arrays
so that the number of rotations in the several sub-arrays is approximately the same
(single-thread step, performed by a greedy sub-algorithm that | named array splitting,
which permits to balance the workload of the sorting threads).

6. it sorts in parallel the rotations belonging to each group of ranges (multi-thread step).
7. finally it merges the sort results and computes BWT (single-thread step).

The sorting of each range/subrange is performed through the multi-key quick sort
algorithm[3]; | chose this algorithm for two reasons: it is very fast and moreover its main
building block compares strings starting from a given position (depth), which was very im-
portant in designing my strategy to treat long repetitions.

After giving an overall view of my method, | am going to explain some useful details to
reproduce it, omitting the detailed description of the steps that do not require further study;
finally, | will show some interesting experimental results.

1.3.1 Method details

The algorithm 1 shows the array splitting details: it splits an array A into a set sn
adjacent subarrays, so that the sum of the elements in each sub-array is almost the same.
In other words, if the array elements are seen as weights, this problem is equivalent to split
the array in sub-arrays with almost the same total weight.

The algorithm tries to minimize, with a greedy approach, an objective function defined
as the sum of square quadratic errors between each sub-arrays weigths and an optimal
weight: this optimal weight corresponds to an ideal assignment of splitters in which all the
subarrays have exactly the same total weight and therefore it can be computed summing all
the elements of A and dividing the obtained sum by sn.

The computation stops when the number of steps exceeds maxSteps or when the
percentage gain obtained during last step falls below min PercentageGain.
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Moreover, also the method used to sort each range of rotations » € R needs to be
described more in detail. Indeed the sorting algorithm is trivial if » does not contain long-
repetitions rotations, as it simply consists in a single execution of multi-key quick sort with
depth = 0. On the contrary, if r contains long-repetitions rotations, i.e. rotations whose
initial part falls within a long repetition of the same character, the algorithm splits r in:

1. a subrange containing all the rotations whose starting character precedes the re-
peated character;

2. a set of subranges containing only rotations starting with the repeated character, ob-
tained as follows: if mrl is the maximum length of that character repetitions and n4, is
the number of desired subranges, the interval |0, mrI] can be divided into n,; subin-
tervals of length mrl/ns.s; each of the ng,, subranges will correspond biunivocally
to one of these subintervals and will contain only rotations starting with a number of
repeated characters falling in that subinterval.

This approach has two advantages: not only the several subranges can be ordered in
parallel, but the long repetition subrange corresponding to a subinterval |/, r] can be
ordered avoiding to compare the first [ symbols, in that they certainly match.

3. a subrange containing all the rotations whose starting character follows the repeated
character.

An example will better clarify the method. Suppose that mrl = 12, N is the repeated char-
acter and ng,;, = 3. The interval ]0, 12] will be divided into 3 subintervals: ]0, 4], 15, 8],]9, 12].
Consider some rotations starting with the long repetition character V:

N N N A C G T
N A C G C G T
N N T C C AT
N N N N C A A
N N N N N C A
N N N N N T A
N N N N N N A

The first four rotations will be assigned to a first subrange, corresponding to the
subinterval ]ly, 9] =]0,4]: they can be sorted starting the comparisons from the position
lp +1 = 1, as their first character is certainly a IV; so they can be sorted running the
multi-key quick sort algorithm with depth = 1.

Similarly, the last three rotations will be assigned to a second subrange, correspond-
ing to the subinterval i1, 7] =]4, 8]: they can be sorted starting the comparisons from the
position [; + 1 = 5, as their first 5 characters are all equal to NV; so they can be sorted
running the multi-key quick sort algorithm with depth = 5.

Note that the above described method ensures that, in order to compare two se-
quences, the sorting algorithm will do at most mrl/ng., = 12/3 = 4 steps before exiting
from the repeated character region, and it will find in a few other steps two different charac-
ters. The aforementioned depths have been computed thinking of a 0-based (C-like) string
representation, in which the elements indexes start from 0.

Another key point of my method concerns the merging operation: once all ranges
and subranges have been separately ordered, their rotations must be organized according a
unique global ordering, before starting the BWT computation. Again, this is trivial for ranges,
as they correspond to consecutive intervals of the * alphabet: therefore their rotations can
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be naturally organized so that the second range suffixes follow the first one suffixes, the
third range suffixes follow the second one suffixes, and so on.

A not trivial approach must instead be used when merging the long repetitions sub-
ranges. Consider the above example rotations after the sorting phase:

N A C G C G T
N N N A C G T
N N N N C A A
N N T C C A T
N N N N N C A
N N N N N N A
N N N N N T A

The horizontal line marks a split point in the ordered list of rotations belonging to the
first subrange; it splits the subrange rotations in two parts:

e a right side containing all rotations whose first non-repeated character follows the
repeated character N in lexicographical ordering;

e a left side containing the remaining rotations.

Ultimately, the above mentioned split point is the insertion point of the following subranges
rotations into the current subrange rotations ordered list. When reconstructing the global
ordering, the left side rotations must precede the second subrange rotations, which in turn
precede the right side rotations; again, the left side suffixes of second subrange must pre-
cede the third subrange rotations, which in turn precede the second subrange’s right side
rotations, and so on.

Therefore | used a recursive approach, reported in the algorithm 2.
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Algorithm 1 SplitArray: splits an array A into a set of consecutive sub-arrays so that the sum of the
elements in each sub-array is almost the same

INPUT:

A: array of weights

sn: number of desired sub-arrays

maxSteps: maximum number of steps

minPercentageGain: minimum objective function gain in a step

OUTPUT:

25:
26:
27:

CoNOaRON

splitters: array of splitters

. > Returns the sum of square quadratic errors between the sub-arrays weigths and the optimal weight
. function COMPUTEOBJUECTIVEFUNCTION(A,sn,splitters,optimal W eight)

result < 0

for sat <— 0to sn — 1 do
subArrayW eight < computeSubarrayWeight(A, splitters, sai);
result « result + (subArrayW eight — optimalW eight)?;

end for

return result;

. end function

: > Returns a sub-array weight, i.e. the sum of all the weights contained in a subarray
. function COMPUTESUBARRAYWEIGHT(A,sn,splitters,subArrayIndex)

if subArrayIndexr = 0 then
start Position = 0;
else
startPosition = splitters|interval — 1];
end if
if subArrayIndexr = sn — 1 then
endPosition = n — 1;
else
endPosition = splitters[interval] — 1;
end if
sum <+ 0;
for i <— startPosition to endPosition do
sum < sum + Alil;
end for
return sum;
end function
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Algorithm 1 SpilitArray (continued)

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:

n < length(A);
> Sums all weights to compute the total weight
sumO fWeights < 0;
fori =0ton — 1do
sumO fWeights < sumO fWeights + Alil;
end for
splitters=[]; > Trial splitters positions
> Do an initial assignment of splitters, so that they are equally spaced
interval Length < n/sn;
forj=0tosn—1do
splitters[j] < round((j + 1) x interval Length);
end for
mazxGainSplitters < []; > Assignment of splitters corresponding to the best value of the objective function
optimal W eight < n;
steps < 0;
gain < 1;
> Try to move the splitter right so that at least one element remains in the next interval
while steps < maxSteps AND gain > minPercentageGain do
objective FunctionInitialValue < computeObjective Function(A, splitters,

optimalWeight);
maxGainSplitters < splitters;
forj =0tosn — 1do > for each splitter
> Try to move the splitter left so that at least one element remains in the previous interval
if j = 0 then
leftmost Position + 1;
else
leftmostPosition < splitters[j — 1] + 1;
end if

for trial Position = splitters[j] — 1 downto le ft MostPosition do
trial Splitters < splitters;
trialSplitters[j] < trial Position;
objective FunctionTrialValue < computeObjective Function(A, trial Splitters(A,
splitters, optimalWeight));
trialGain < objective FunctionInitialV alue — objective FunctionT'rialV alue;
if trialGain > maxGain then
mazxGainSplitters < trial Splitters;
maxGain < trialGain;
end if
end for
if j = sn — 1 then
rightmostPosition < n — 1;
else
rightmostPosition < splitters[j + 1] — 1;
end if
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Algorithm 1 SpilitArray (continued)

70: for trial Position = splitters[j] + 1 to right MostPosition do

71: trialSplitters < splitters;

72: trial Splitters[j] < trial Position;

73: objective FunctionTrialV alue < computeObjective Function(A, trial Splitters,
optimalW eight);

74: trialGain < objective FunctionInitialV alue — objective FunctionTrialV alue;

75: if trialGain > maxGain then

76: maxGainSplitters < trial Splitters;

77: maxGain < trialGain;

78: end if

79: end for

80: end for

81: if maxGain > 0 then splitters < maxGainSplitters; gain = maxGain;

82: end if

83: end while

Algorithm 2 Permits to process long repetitions subranges, scanning their rotations according to the
global ordering needed for BWT computation

INPUT:
sri: subrange index

GLOBAL VARIABLES:

longRepetitionsSubRanges: array containing all the long repetitions subranges
1: procedure PROCESSLONGREPETITIONSSUBRANGE(sT%)
2 subRange + longRepetitionsSubRanges|sril;
3 > Compute the number of rotations belonging to this subrange
4: n = size(subRange.rotations);
5: > Compute the insertion point: it is the position of the first rotation whose first non-repeated character
6
7
8

> follows the repeated character IV in lexicographical ordering
insertionPoint < computelnsertion Point(subRange);
for ¢ < 0 to insertionPoint — 1 do

> Process rotation i, taking its last character to build the BWT
10: processRotation(i);
11: end for
12: ProcessLongRepetitionsSubRange(sri + 1);
13: for i « insertionPointton — 1 do
14: > Process rotation i, taking its last character to build the BWT
15: processRotation(i);
16: end for

17: end procedure

1.3.2 Experimental results

In order to test the FastGenomicBWT algorithm, | implemented a prototype in C++
language, comparing its execution times with those obtained through the libdivsufsort li-
brary, which is considered the state of the art in matter of BWT computation.

Figure 1.2 compares the BWT computation times of FastGenomicBwt and libdivsuf-
sort on three sequences very different in length:

e the reference sequence for E. coli genome (4638690 bp);

e the reference sequence for human chromosome 20, from hs37d5 assembly (63025520
bp);

o the reference sequence for human chromosome 1, from hs37d5 assembly (249250621
bp).
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The experiments were conducted on a small-sized server equipped with two Intel(R)
Xeon(R) CPU X5680 3.33GHz 6-core hyper-threading processors.

The experimental results show that already on a machine with a low actual paral-
lelism (the machine in question can only run 24 threads in parallel) our algorithm is signifi-
cantly faster than libdivsufsort; the speed-up could be increased running FastGenomicBWT
on machines with an higher number of cores.
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Figure 1.2: Comparison between FastGenomicBWT and libdivsufsort



Chapter 2

EFM-index

Introduction

The availability of low-cost digitized genome is a great opportunity for Life sciences: it
will allow to conduct in silico more and more genomic applications and tests, enabling a real
personalized medicine. However, such uses require protection from disclosure of digitized
genome, whose misuse could have repercussions not only on the life of individuals to whom
it belongs, but also on those of their relatives.

State-of-the-art techniques for performing efficiently various operations on compressed
data do not offer natively any secrecy, and a traditional way to get confidentiality protection is
the so called “compress-then-encrypt” paradigm, in which encryption is performed through
a dedicated algorithm after data indexing and compression steps have taken place. For
example, compress-then-encrypt methods have been documented in the ZIP File Format
Specification since version 5.2 [19], and an AES-based standard has been developed for
WinZip [41] and are used also in other file archivers (e.g. 7-Zip [32]). However, this approach
has the drawback that one must first decrypt the file or the archive in its entirety before to
operate on the compressed file. For massive data amounts, as in case of genomic data, this
can lead to big downgrades in performance; moreover, it exposes data during operations,
which can be an issue if the databases are in outsourcing or in multi-tenants environments
(e.g- cloud environments). Therefore, it takes relevance the study of new approaches to the
representation and storage of genomic data that:

e achieve high compression rates;
e preserve confidentiality, and;
e make it possible to quickly perform calculations on compressed and encrypted data.

In this chapter | present a new full-text index that allows to perform searches and queries on
both encrypted and compressed genomic sequences: like the Fast index in Minute space
(FM) index [15], this index is structured in data blocks and super-blocks, and compression on
data blocks is performed through a pipeline in which a BWT is followed by a move-to-front
(MTF) transform [33, 4] and a run-length Encoding of zero’s patterns (RLEQ). Achieving
lossless compression through such kind of coders is customary in BWT-based compressors
[39], but in addition:

e | carefully optimized my index for genomic sequences;
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e | interspersed some high speed encryption transformations in the compression pipeline.

Using the BWT-MTF two-stage process to ensure confidentiality of compressed text

was first considered in [24, 25]: the idea was to scramble the lexicographical ordering used
in the construction of the BWT, a method referred by the author as scrambled BWT or sBWT
for short. It is easy to show that the sBWT results in a permutation of the text given in input,
and that the reconstruction of the original data from its sSBWT or the backward search of a
pattern requires the knowledge of the order given to the characters composing the alphabet.
Scrambling the BWT induces also a second garbling by the MTF transform, since the MTF
output also depends on the ordering given to the letters of the alphabet.
This simple approach results in a poly-alphabetic substitution cipher that, for alphabets of
suitable size and homophonic input data, can thwart exhaustive key-search attacks and
cryptanalytic attacks based only on ciphertext knowledge (ciphertext-only attacks). Unfor-
tunately, poly-alphabetic substitution ciphers are deterministic, in the sense that under a
fixed key a particular (fraction of) plaintext is always encrypted to the same (fraction of) ci-
phertext. This fact makes them highly vulnerable to more advanced cryptanalysis such as
know-plaintext attacks and chosen-plaintext attacks. These are attacks where an adversary
knows a quantity of ciphertext and its corresponding plaintext, because she was able to find
such plaintext or get it encrypted by the target, respectively. In fact, the insecurity of sSBWT
approach was proved in [38], showing its vulnerabilities to both those two types of attack.

In some respects, preserving confidentiality of genetic data and datasets but allowing
their compression through the BWT-MTF pipeline is much more challenging than for natural
language messages or free-text data.

First, genetic data and applications which operate on them are very exposed to know-
plaintex attacks. For example, the Human Reference Genome (HRG) is used as a stan-
dard sequence reference, and most analyses estimate that substitutions in individual bases
along a chromosome (i.e. single-nucleotide polymorphisms or SNPs) occur 1 in 1000 base
pairs, on average, in the human genome.

Secondly, the genome alphabet composes of only four letters, so that using the sBWT ap-
proach results in a easy to mount exhaustive key-search attack.

In order to face these issues, | used a dual-stage encryption process in which the
BWT input is subject to a poly-alphabetic substitution with respect to a suitable extension
of the genetic alphabet, and the BWT-MTF-RLEOQ pipeline is interspersed with a suitable
set of instances of a very fast and cryptographically secure pseudo-random generator. This
results in a full-text index offering high degrees of data compression and data confidentiality,
as | will show in the sequel.

2.1 The EFM-index: data structures and algorithms

The proposed index is a compressed and encrypted full-text index tailored for ge-
nomic sequences that allows to perform searches and queries of strings on the IUPAC nu-
cleic acid notation alphabet that | named X ;7p ¢ it contains the five symbols {A, C, G, T, U}
corresponding to the DNA and RNA bases and a set of 11 additional symbols representing
possible ambiguities caused by sequencing machines errors or inaccuracy (for example, the
“N”symbol stands for “aNy”).

My index takes from the FM-index its main architecture, since it uses the pipe BWT-
MTF-RLEO to get compression and a similar organization in data blocks and super-blocks
to manage auxiliary information. However, it makes use of multiple mechanisms in order
to achieve confidentiality, which is not supported in the FM-index. Moreover, | carefully
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optimized its design and implementation for the searching and querying of compressed and
encrypted genomic sequences. An overall sketch of the index building process is given in
Fig. 2.1.

bucketsPerSuperbucket

ize

Nucleic acid sequence K Encryption key

A

» Extended sequence construction

Scrambled Extended seqlience
Extended Alphabet
A L 4

BWT computation

Transrorm{rj sequence Marked|rows
Y

Index construction

A A f‘

Figure 2.1: An overall view of the EFM-index building process

The index is constructed taking in input the following five main parameters:

a plaintext 7', which consists of an arbitrary length sequence of symbols from ¥ C
Yupac;

e an integer k indicating the extension of ., that is the k-fold Cartesian product ¥* =
Y X ...

o the size bucketSize of data blocks composing the index;
e the number bucketsForSuperbucket of blocks for each super-block;

e an enciphering/deciphering key secretKey consisting of a 64 byte array, for a total
size of 512 bits.

The index construction composes of three main steps, as shown in Fig. 2.1: Extended
sequence construction, BWT computation and the effective Index construction. | give details
about each of them in the following subsections.

2.1.1 Extended sequence construction

The purpose of this phase, depicted in Fig. 2.2, is the construction of the input for
the BWT-MTF-RLEO pipeline from 7. It is performed by the homonym module shown in
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Fig. 2.1, and results in a recoding of 1" with respect to a permutation of the symbols of the
k-extension of X.

The first step of such module consists in finding which of the symbols of X;pac
are actually present in T, in order to determine the alphabet > C X ;ypac for which the
computations must have actually place. This step is performed for performance reason by
module Retrieve Symbols. Indeed, in many cases one or more symbols of X ;;7pac might
not be present in the input sequence (e.g. all the symbols indicating uncertainty are not
present in the genome of Escherichia Coli), and this results in an exponential decrease in
complexity for the index under construction.

The second step concerns the construction of the extended alphabet »* and of its
permutation X ¥, through the modules Build extended alphabet, Compute scrambling key
and Scramble alphabet. The scrambling key is derived from the encryption key secret Key
thanks to a pseudo-random generator, as | am going to detail in Section 2.3.

Lastly, the third step is performed by module Build Sequence, which outputs the

coding 7}, of T" with respect to the symbols of 3.

Nucleic acid Eequen(n ﬂ Encryption key

[3

—» Retrieve symbols

Compute scrambling key
Primigenious alphabet

Scrampling key

Bulld extended alphabet
Extended alphabet

k.

Scramble alphabet

Scrambled extended alphabet

> Build sequence }17

Extended|sequence

N

Figure 2.2: Extended sequence construction

2.1.2 BWT computation
The module BWT computation of Fig. 2.1 performs the following two main tasks:
e computation of L = BWT(T},) with respect to the ordering in ok;

e marking of the rows of the rotations matrix (see Section 1.1) that must have their
position recorded in the index.
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In order to minimize the time and the memory footprint needed to calculate the BWT of
very long texts as genomic sequences, | used a “block-based” approach similar to that
introduced in [21] to build the rotations matrix. The idea is very simple: a suitable set
of “splitters” is chosen, so that the ranges of suffixes delimited by them can be ordered
separately. Unlike [21], | used for choosing the splitters an algorithm devised by observing
the statistical properties exhibited by k-mers in the genome of input. Moreover, | adopted a
suitable approach to speed up the ordering in ranges where rotations share a long prefix of
equal symbols, as in the case of DNA segments that are coded as allN (i.e. long sequences
of N symbols) since they are not well characterized. Overall, the above results in a new
strategy for the calculation of the BWT of genomic sequences which allows to obtain a
considerable increase in computing speed, and is well suited to be parallelized with a multi-
threading approach, resulting in a significant speed-up already on systems having a couple
of quad-core CPUs.

2.1.3 Index construction

This last phase (see Fig. 2.1) relates to the effective construction of the index, and it
is schematically shown in Fig. 2.3. It is performed by an homonym module, which:

e through module Split and remap subdivides L. = BWT(T}) in blocks and super-
blocks, performing the remapping of characters;

e applies module Encode bucket text to each block. This module (see Fig. 2.3(b)) in
turn does the following:

— performs a Move To Front transform (MTF) followed by a Run Length Encoding
of zeros (RLEO);

— computes a keystream from the secret key secret Key and the bucket number,
as described in Section 2.3;

— encrypts the output of the RLEO with a stream cipher, using the keystream com-
puted at the previous step;

— uses a memory-efficient binary encoding for each block. Notice that | do not use
the Multiple Tables Huffman (MTH) encoding adopted for the FM-index, because
of the large memory footprint of its related decoding tables.

e uses module Write index to write the index on disk.

2.2 Pattern search

Like the FM-index, the EFM-index implements an exact pattern search by the back-
ward search algorithm given in [15]. However, | reengineered that algorithm in order to
obtain good performance on indexes built with respect to an extended alphabet. Compared
to the extension X*, a search for a single pattern P € X is indeed equivalent to search for a
set of super-patterns. This set consists of super-patterns being associated with each of the
k possible displacements (d = 0,1, ...,k — 1) between P and the symbols of ©*. Table 2.1
illustrates this circumstance for X = {$, A,C,G, N, T}, k =4and P = “ACGAACTGA".
Symbol “?” denotes any single character of X, with the only constraint that the special
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Figure 2.3: Effective index construction (a) and bucket text encoding (b)

symbol “$” cannot occur in a super-pattern. It is easy to see that the set related to each dis-
placement is composed by exactly (]3| — 1)(*~IP| mod k) glements. Thus, the total number
of super-patterns that must be searched in order to look for P is given by

k(|| — 1) IP med B 2.1)

which can be a significant value for some choices of %, &, and |P|. For example, in the
case illustrated in Table 2.1, the set of super-patterns corresponding to d = 0 composes
of the 125 strings of 12 characters having the required pattern as prefix. Thus, looking for
P = “ACGAACTGA" in a naive way would correspond to search for a total number of
500 super-patterns.

Table 2.1: Example of super-patterns with variable symbols *.

Displacement Super-patterns

0 || ACGA | ACTG | A2??
1 || ?ACG | AACT | GA??
2 ??AC | GAAC | TGA?
3 ???A | CGAA | CTGA

Searching for pattern “ACGAACTGA" inthe al-
phabet © = {$, A, C, G, N, T} corresponds to search
for the above set of super-patterns in %, Symbol “?”
denotes any single character of X.

Performing the backward search algorithm a considerable number of times involves
reading a large number of blocks from disk, which in turn can significantly degrade perfor-
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Algorithm 3 CheckLastChar: a function called by algorithm SuperPatternSearch in order to verify if
a row i satisfying P also satisfies P

1: function CHECKLASTCHAR(Z,P,m)

2 pos < Locate(i);

3 ¢ < Extract(pos +m — 1);

4 if c like P,,,_; then

5: return pos; > The position pos is also that of the entire pattern P
6 else

7 return null; > no match
8 end if

9: end function

Algorithm 4 SuperPatternSearch: an optimized algorithm to search for patterns over a k-extension
alphabet X%,

1. function SS-SEARCH(original Pattern)

2 positions=[]; > Positions of the pattern occurrences
3 superPatterns=computeSuperPatterns(original Pattern);

4 for P in superPatterns do

5: m < length(P);

6: P = PyPPp_s;

7 P« Pn_1;

8: [sp, €p] < backwardSearch(P,m — 1);

9: foriin [sp, €p] do

10: pos=CheckLastChar(i,P,m);

11: if posis not null then

12: d < displacement(P); > Displacement of the super-pattern
13: add(positions,pos*k+d); > k is the alphabet extension order
14: end if

15: end for

16: end for

17: return positions;

18: end function

mance; in order to avoid this problem | designed a backward search algorithm optimized for
super-patterns having variable super-characters, like those shown in Table 2.1. As it should
be clear, variable super-characters can occur just in the first and/or last position of a super-
pattern. Actually, variable-super characters in the first position can be managed through
one more iteration of the backward search algorithm. Thus, it remains to describe the inner
working of the algorithm in the case of a super-pattern with only the last super-character
of variable type. Let P = PyP...Pp—1 = PP,,_i bea super-pattern with P; € ¥*, and
where P,,_1 is its unique variable symbol. Searching for P requires a single execution of
the backward search algorithm, and results in the range of rows with consecutive indexes
[sp, €p] in the array of suffixes [15]. On the other hand, it is easy to show that the rows in
[$b, €p] having P,,—_1 in their position m — 1 are all and only the suffixes having as prefix the
pattern P. Thus, an efficient way to find P consists in checking if the character in position
m — 1 for each of the rows [sp, €p] is encompassed in the variable symbol P, ;. Such
check is performed by function CheckLastChar (see Algorithm 3), which uses the standard
algorithms Locate and Extract of the FM-index [15] and returns the position of the entire
pattern P if such pattern exists, and the null string otherwise .

The above overall search strategy is summed up in Algorithm 4.
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2.3 Security

Roughly speaking, a security analysis requires the specification of both a threat
model and a breach model. The first model aims at defining which kind of (harmful) in-
teractions an opponent can have with a system, whilst the second aims to clarify in what
circumstances such system should be considered violated. To be meaningful and effective
these two models must of course be related and justified with respect to the actual system
possibly under attack.

| will suppose in the sequel that the proposed index is implemented in a on-line
database service which allows authenticated users to perform actions in function of their
roles, as established by a suitable role-based access control (RBAC) policy [34]. At the
lowest level, users can submit their genomic data in a suitable plaintext format, and get it
stored by the service in compressed and encrypted form. At any time later, such users can
just query for one or more patterns in their own stored data, or alternatively ask for retrieving
their data in plaintext. Higher level users are allowed not only to manage their own stored
data as basic user, but also data sets of users for which they got an authorization in function
of their role.

From a cryptographic point of view, the data stored by the above on-line service are obtained
from strings p of symbols of ¥;;pac of any length through an enciphering transformation:

Enc: (pk)ePx K —ce(C,

where P denotes the plaintext space composed of the strings of symbols of X, & is the key
varying in a sufficiently large key space K, and each ciphertext c is a string of integers (see
Section 2.1). The resulting encryption scheme is symmetric, that is it exists a deciphering
transformation Dec such that

Dec(Enc(p, k), k) =p forany(p,k) € P x K .

The above scheme actually represents an abstraction of the operations performed by the
system using the full-text index introduced in this paper, with respect to which | made the
following two assumptions:

Property 1 (Service integrity). The flow of computations performed by the system in order
to get transformations Enc, Dec and to derive the secret key k£ cannot be altered in any
way. In particular, no read/write or other spurious operations can be interleaved during the
computations of k, Enc(p, k) and Dec(c, k)) performed by the system.

The above property can be obtained through the tamper resistance technologies
introduced for software (see e.g. [1, 10]), used in conjunction with the various protection
mechanisms available both in software and hardware [36, 11].

Property 2 (Key privacy). The key k(u) of an organism u cannot be inferred from the infor-
mation owned neither by any user u’ # u, nor by the System Administrator.

This last property follows from the fact that the system associates to each organism
u (and thus to each genome) a pseudo-random key k£ = k(u) € K, so that any two different
uy,ug get two different and unrelated keys & (uy ), k(uz). Moreover, each key k(u) is stored
in encrypted form, and its decryption is managed for u by the system, in a way that cannot
be circumvented by any user, also with the highest privileges. These features can be easily
realized thanks to suitable cryptographic primitives, such as key derivation functions and
asymmetric ciphers [29].
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2.3.1 Threat model

Concerning the threat model, | considered an adversary that can possibly be regis-
tered to the database service, but that in any case can interact with it in a more powerful
way than any other user. This encompasses the case of insider attacks, that is attacks per-
formed by entities that have got authorization to interact in some way with the system. On
the basis of various studies (e.g. [7, 12]), these attacks are by far the most dangerous and
frequent threats, since opponents are already on the inside and they enjoy a certain implicit
trust. Besides the fact of being an insider, the adversary is allowed to:

e read as much as ciphertext it wants, where the ciphertext can belong to any of the
authorized users on the system;

e have plaintext of its choice encrypted by the service with any key £ € K .

In other words, the adversary can have access to the data repository of any user, and can
impersonate each of them with respect to the encryption service. However, the adversary
has also some limitations that easily follows from service integrity and key privacy (see
Properties 1 and 2). More precisely, the adversary cannot:

e query for known patterns and/or ask for the deciphering of any data which is different
from that it is entailed to manage as a consequence of its role as authorized user;

e perform meet-in-the-middle attacks [29], that is it cannot interleave any operation dur-
ing the processes of indexing and searching.

2.3.2 Breach model

One main concept in modern cryptography is that of semantic security, which rep-
resents the notion of breach of message confidentiality, and relates to the improvement an
adversary can get in its knowledge of a plaintext by observing the related ciphertext plus
some other ciphertext obtained with the same key from plaintext of its choice [29].

Translated in my case, the goal of the adversary would be to gain some more infor-
mation about the genomic data of one or more organisms for which it is not a trustee; that
is, it did not get the authorization to operate with their genomic data. Let 7" denote the the
set of organisms for which the adversary is a trustee, and let I = I(u) be some auxiliary
information the adversary known about a given organism u, besides its ciphertext ¢ = ¢(u).
In the worst case, I(u) can consist of nothing, as when the adversary does not even known
the species of w.

More often, however, the adversary can dispose of one or more reference genomes
for u, genomic (sub-)sequences of u’s relatives, or even of the same u. Because of the ca-
pabilities assumed for the adversary (see Section 2.3.1), the above turns out in the chosen-
plaintext attacks considered in case of semantic security, that is when the adversary can
obtain ciphertext from plaintext of its choice, encrypted with the same key of the target ci-
phertext. Ultimately, in my case the following should be an equivalent problem to that posed
by semantic security:

Problem 1. Let u denote an organism whose genome is stored in the system, where u ¢ T..
Given the ciphertext ¢ = ¢(u) € C and possibly some auxiliary information I = I(u), find
some more information on plaintext p, where ¢ = Enc(p, k(u)).
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Of course, the above definition is quite informal and its scope is far from being the

starting point of a provable security approach, which is instead often the case for the tech-
nical notions of semantic security. After all, the security in the proposed algorithm is in the
realm of information security rather than complexity-theoretic security.
On the other hand, Problem 1 specifies some important kinds of cryptographic attacks that
my system has to face, allowing to focus the security analysis. These attacks can as usual
be divided into the following two main categories, depending on whether they do or not use
cryptanalytic techniques.

2.3.3 Key-search attacks

Exhaustive key-search attacks consist in decrypting the target ciphertext ¢ with each

trial key through the entire key space, and discarding those keys which do not yield the
plaintext p corresponding to c [29]. In natural languages this is possible, also without any
preliminary information on p, because of redundancy and grammatical patters contained in
plaintexts: the attacker can simply try all possible keys until eventually the decryption of ¢,
possibly, gives rise to a meaningful plaintext (in the language in which the original plaintext
is supposed to be).
Although no such redundancy or grammatical rules are known for genetic code, at least at
the time being, nevertheless an adversary can mount a kind of attack described in Problem
1 that results in a termination condition for a key search. Given a sub-sequence ¢’ of the
target ciphertext c¢(u), the adversary can indeed make an hypothesis o(c’,u) about the
related genomic sequence for u, and then searching for a key & such that the decryption of
¢ matches o(c’, u). Thus, the goal of the adversary is to solve the following problem:

Problem 2 (Exhaustive key search). Given ¢’ C ¢(u) and an hypothesis o(¢/, u), find k € K
such that Dec(c’, k) = o(u).

An hypothesis o(¢’, ) can be easily obtained from a reference genomic data (e.g. the
HRG, or a know genome from a relative of the individual being under attack), by assuming
that it has undergone appropriate mutations.

It can worth to notice here that exhaustive key search are the only key-search attacks
concerning my system, since dictionary attacks are ruled out by the system key derivation
policy described before Section 2.3.1.

My approach thwarts exhaustive key-search attacks for two reasons (see Section
2.1):

1. The enciphering/deciphering key & is 64 byte long, giving rise to a key space of 2512
elements. This is more than 1077 times that provided for the strongest version of the
current standard for encryption, AES-256 [31], which is supposed to be safe for many
decades to come;

2. Unlike the method proposed in [25], searching for one or more patterns in p through its
scrambled BWT requires the knowledge of &, because my method requires a partial
deciphering of the index before performing any search.

2.3.4 Cryptanalytic attacks

The cryptanalytic attacks threatening my index range from ciphertext-only to chosen-
plaintext attacks.
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In ciphertext-only attacks it is assumed that the adversary - besides knowledge of
all the details of the encryption function, which is a basic assumption in modern cryptog-
raphy known as Kerckhoffs’ assumption [29] - has no additional information other than the
ciphertext, so that its cryptanalytic efforts root on flaws in the encryption function and/or cor-
relations between pattern statistics in the ciphertext and its plaintext (frequency analysis).
In [25] compression is suggested in order to remove redundancy in the data and to produce
an homophonic sequence of input for the sBWT. An homophonic sequence is when the fre-
quency distribution of symbols in the sequence is flat, so that an adversary cannot benefit
from applying statistical attacks (monogram, digram and other statistics). In other words,
statistical attacks on sBWT can be mounted if and only if its input does not consist in an
homophonic sequence.

In my approach, as detailed in Section 2.1.1 and depicted in Figure 2.2, | give in
input to the BWT a sequence obtained by applying a permutation to the k-extension X of
the alphabet X. It is easy to show that such a permutation turns out in a poly-alphabetic
substitution for the symbols in the input sequence, and that the multiplicity of substitutions
increases with k. Since a poly-alphabetic substitution flattens the statistics in a sequence,
then the sequence | pass in input to the BWT is much more homophonic, the greater is the
value k. Actually, provided that module Encode bucket text (see Section IlI-C and Figure
5) works on blocks with bs > 8K, test results showed that a good degree of flatness in
the frequency distribution of symbols is achieved already for £ > 4, and that any residual
correlations between pattern statistics in the ciphertext and its plaintext are completely ruled
out after the application of the stream cipher to the output of RLEO.

However, the most dangerous threat for my system are chosen-plaintext attacks. In
such an attack, an adversary selects a plaintext of its choice, submits it to the system and
gets back the related ciphertext. Because of the high percentages of similarities in genomes
of different individuals, these attacks (alongside with know-plaintext attacks, that represent
a weaker variant) are actually feasible in my application scenario.

On the other hand, deterministic encryption schemes like that proposed in [25] are
very vulnerable to this kind of attacks. This is because, with the same encryption key, the
same ciphertext corresponds to identical (portions of) plaintexts.

Our approach thwarts such attacks thanks to the second (and last) stage of encryp-
tion, since module Encode bucket text realizes a probabilistic encryption [29]. Indeed, in this
stage | encrypt the output of the RLEO with a XOR-style cipher, using a keystream which is
computed from the secret key secret Key and the bucket number (see Section 2.1.3). This,
assuming that the keystream is pseudorandom, guarantees that different and unrelated en-
crypted blocks correspond to the same blocks of plaintext, and that the cipher itself behaves
like a pseudorandom function, fully obfuscating frequency and pattern differences between
two related plaintexts.

In my implementation | used the Salsa20 stream cipher in its full version Salsa20/20
[6] to get the keystream. Salsa20 is one of the ciphers selected as part of the eSTREAM
portfolio of stream ciphers [2], and has been designed for high performance in software
implementations. It has a compact source code and uses few resources and inexpensive
operations that makes it suitable for implementation on a wide range of architectures. More-
over, it has been designed to prevent leakage of information through side channel analysis.
As of 2014, there are no published attacks on Salsa20/12 or the full Salsa20/20; the best
attack known breaks just 8 of the 12 or 20 rounds.
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2.3.5 Security tests

| conducted a set of security tests in order to corroborate through experimental evi-
dence our security analysis: the goal of these tests was to verify that the implemented cipher
behaves as a pseudorandom function, allowing protection also against chosen-plaintext at-
tacks.

Figures 2.4, 2.5 and 2.6 show the results of two kinds of test.

The first kind measures the differences in the occurrence frequency of symbols be-
tween two ciphertexts: symbols are ordered as increasing integer values along the x-axis,
and each y-value is the difference between the number of times a symbol appears in the
two ciphertexts.

The second kind of tests have produced some scatter plots that measure the variation
in the position of each symbol when passing from one ciphertext to the other: symbols are
splitin ranges, in function of the position they have in one ciphertext (x-axis) and in the other
(y-axis). Symbols having the same position appear on the diagonal of a square, whilst the
most a square is filled, the greater is the number of symbols that have changed their position
in the transition from one cryptogram to the other.

In any case, the two ciphertexts were obtained with the same key from a reference
genome of an organism and its modification is due to a simple mutation.

Figure 2.4 gives experimental evidence of the fact that ciphertexts obtained by ap-
plying only the sBWT do not obfuscate the changes in plaintexts, whilst our cipher does.
Indeed, a simple perturbation in the plaintext (specifically, a single substitution between A
and T bases in the 10-th position of the E. Coli reference genome) turns out in both diffu-
sion (the perturbation affects many symbols of the ciphertexts) and avalanche effect (the
intensity of the perturbation is amplified in cryptograms).

These results are confirmed by Figure 2.5, which shows two scatter plots related to
the same simple perturbation in the plaintext considered in the previous case. However,
Figure 2.4 shows the average case of tests performed for different values of the encryption
key, whilst Figure 2.5 reports the best and worst cases. Notice the relevance of scattering
also in the worst case, where a lot of symbols between positions 700000 and 900000 change
location.

Finally, Figure 2.6 illustrates what happens as consequence of the multiple insertion
identified in [18] for E. Coli-K12 MG1655. This last example shows that the cipher realized
through our full-text index is such that bigger perturbations in plaintext turns out in more
diffusion and avalanche effect.

2.4 Performance results

In order to measure the efficiency of the approach and to compare its performance
with the FM-index, | developed a prototype of the EFM-index using the Java language; this
section illustrates some of the tests | performed through that prototype.

The tests were performed on a machine with an Intel i7 4500U microprocessor hav-
ing clock frequency of 1.80 GHz and 4MB of L3 cache , main memory of 8 GB, and an SSD
hard drive of 512 GB. The software stack consisted of Ubuntu 13.10 and Java HotSpot™64-
Bit Server version 1.7.0.51_b13. It is well known that the result of compiling a Java program,
unlike what happens with other languages such as C++ gives not rise to code directly ex-
ecutable by the microprocessor of a physical machine, but to the bytecode, i.e. a machine
language for a virtual platform called Java Virtual Machine (JVM) . In order to optimize the
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performance of an application, the JVM uses the so-called Just-in-Time compilation. Just-
in-Time compilers are essentially very fast traditional compilers that translate “on the fly”
bytecode into native code. The new versions of the JVM (so-called HotSpot) make use of
an adaptive optimization technique of Just-in-Time compilation, which is based on the fol-
lowing observation: the vast majority of programs run most of the time a very small portion of
their source code. Therefore, rather than compiling just-in-time each method before its exe-
cution, the HotSpot VM runs first the bytecode to determine the performance of critical parts
(“hot spots”), and then compiles them into native code[13]. Therefore, the performance of
a program written in Java are those of an interpreted language before the above operation,
and become comparable to those of native code only after it. In order to take into account
that behaviour and to get more reliable results, the figures report data obtained after a first
batch of tests, enough to allow the “warming up” of the JVM with the compilation of the hot
spots.

The tests concerned reference sequences from different human chromosomes, ex-
tracted from the assembly GRCH37 downloaded from the FTP site of the 1000 Genomes
Project. For each test sequence, | built compressed and encrypted indexes correspond-
ing to different values of k£ (degree of extension of the alphabet ), bs (size of blocks) and
percentage M RP of marked rows (i.e. relative number of lines marked for searching pur-
poses). Then, | conducted two types of tests aimed at detecting the performance of our
prototype:

e search of patterns of predetermined lengths (through count and locate);

e Electronic polymerase chain reaction (e-PCR) operations. An e-PCR consists in the
extraction of the fragment of the nucleotide sequence between two terminations, de-
nominated left and right primer.

For brevity, | report only the results for chromosome 20, one of the smallest, and for chro-
mosome 1, the largest one. In order to compare the performance of my prototype with a
tool of reference, | ran the same tests using the implementation of the FM-index version 1
downloaded from [16].

2.4.1 Compression ratios

The graphs of this section show compression ratios (percent values) versus block
sizes bs for a fixed percentage M RP of marked rows and different degrees k of extension
for alphabet . Block sizes bs are expressed as kibi (K) of characters in ¥, since this
corresponds to the logical segmentation of our index as result of the splitting phase (see
Section 2.1.3). Figure 2.7, which concerns human chromosome 20, clearly shows that
the best compression ratio is achieved by increasing bs as k increases. Precisely: up to
bs = 8K it is achieved for k = 4, and from bs = 16K to bs = 32K it results by choosing
k = 5. From bs = 64K to bs = 256K the best choice is k = 6, whilst k& = 7 is the best
choice for bs = 512K.

It should be noted that the use of too large block sizes causes the production of an
index with a very low number of blocks, which is virtually equivalent to do no indexing at
all. This degrades performance in searching, as | will show hereafter. The horizontal line
corresponds to the compression ratio for a type Fat 1 FM-index, which can perform both
count and locate operations [15]. These results show very clearly that my prototype allows
for a very good compression efficiency. Moreover, compression ratios are better than for
the FM-index (which does not make use of encryption) for values of bs and k that, as | will
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discuss in Section 2.3, offer appropriate levels of security. Similar results hold for the human
chromosome 1 (see Figure 2.8), and all the other tested chromosomes (human or not).

As | previously said, the use of large values for the size of blocks results in a poor
indexing, and thus in low search performance. This is clearly shown by graph 2.8(b), where
the number of blocks composing our index for chromosome 1 is plotted versus different
values of k and bs. For example, for bs = 512K the index has just 60 blocks in front of the
15212 blocks corresponding to a block size of 4K.

2.4.2 Pattern search performance

In order to evaluate the search performance of my prototype, | run test sequences for
patterns of predetermined lengths . For each [, | randomly chose 100 patterns from a given
chromosome. Then, for each of the above patterns | performed a search (through a Count
and a Locate operation) for a given set of values of the parameters k, bs and M RP. The
obtained values are the average searching-time values computed over those set of patterns
and each triple (k, bs, M RP).

For reason of space, | report only the results for patterns composed of 50 and 500
nucleotides. | chose the length [ = 50 since it corresponds to short patterns that rarely have
multiple occurrences in a given chromosome, whilst the value I = 500 allowed me to test the
prototype for large sequences (of course, also in this case there was a single occurrence of
the pattern in the given chromosome). | decided to search for patterns occurring just one
time in order to get more reliable timing figures: in fact, in this way the average search time
matches with the average search time for occurrence, and this is appropriate because the
search time for a pattern depends on the number of its occurrences.

The obtained results show that the searching time increases with the block size bs for
a fixed extension degree k, and with & for a fixed bs. Moreover, as shown in Figure 2.9(a),
the searching time for patterns of small sizes decreases as the percentage of marked lines
M RP increases. Such behaviour does not occur in case of larger patterns (see Figure
2.10(b)), for which performance becomes slightly worse by increasing the M RP, and | think
that it is due to the way in which my prototype handles the marked rows: they are stored in
the block headers, and searching for large patterns requires a larger number of blocks, thus
resulting in more 1/O operations.

As before, in order to compare the performance of our prototype with a tool of refer-
ence, each figure reports a horizontal line corresponding to values obtained by performing
the same operation with the FM-index. In general, the FM-index achieves better perfor-
mance: searching times were better than for the FM-index only in some cases, for values
of k and bs too small to ensure good compression ratios. However, the searching times
achieved with our prototype are of the same order or just one order of magnitude larger
than those achieved with the FM-index, and in the worst cases they are few tens of millisec-
onds (ms). In particular, for k = 4 and bs = 4K, our index outperforms the Fat FM-index in
compression ratio, offering a good level of confidentiality (see Section 2.3) at the price of an
increment of only 8 ms in searching time.

2.4.3 e-PCR performance

As | wrote above, an e-PCR consists in the extraction from a genomic sequence of
the fragment between the initial and final terminations, called, respectively, the left and right
primers. The e-PCR is the equivalent in silico of a polymerase chain reaction in vitro, and
it is realized through the following: (a) a Count operation followed by a Locate operation,
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performed twice in order to find the positions of both the left and the right primers, and (b)
the determination of the fragment of the sequence which is comprised between the two
positions above.

| conducted the tests to evaluate the performance of my prototype in doing e-PCRs
as follows. We randomly chose 100 genetic markers from a database of the 1000 Genome
Project [17], determining for each marker its name and its left and right primers. Then
| performed the e-PCR for each of the above markers with respect to different values of
the parameters k, bs and M RP. The figures shown are the average e-PCR time values
computed over that set of patterns for each triple (k,bs, M RP). As shown by the graphs
given in Figure 2.12, | obtained results comparable and in some cases better than those
obtained with the FM-index.
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Figure 2.12: Average times for performing an e-PCR on (a) human chromosome 1 and (b) human
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MRP = 2%
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2.5 Collections of genomic data

In this section | show how the EFM-index can be used to store collections of genomic
data, obtaining good compression ratios and search performance.

2.5.1 Method

Given a collection C' = {51, Sa,- -+, S, } of sequences, strings on the alphabet 3, a
compressed and indexed representation of the whole collection can be obtained[37] building
a unique self-index on the concatenated string:

Sc = 51#52# T #Sns

where # is a character not belonging to X.
So, | extended the EFM-index implementation to handle a collection of sequences
C ={51,852,--,S,} on the alphabet &, so that it behaves as follows:

e it represents the single sequences in the k-mers extended alphabet Xj;;

e it concatenates in a single string S. € X the obtained representations, separating
them through a #;. super-character (this super-character is obtained repeating % times
a character # ¢ Y);

e it builds an index on S,;
e it stores the sequence identifiers in the index header.

I chose not to explicitly store the #, separators positions, because they can be retrieved
by a single very fast locate operation. Moreover, | slightly modified the locate operation
to transform the global positions returned by the previously described EFM-index locate
operation in sequence-relative positions, on the basis of the aforementioned separators
positions.

2.5.2 Experimental results

In order to measure the efficiency of the above described method, | converted in
C++ the prototype of the EFM-index originally written in Java and | extended it to handle
collections of sequences; this section illustrates some tests that | performed through my
C++ prototype.

To evaluate the EFM-index performance | built first of all the consensus sequences
related to chromosomes 20 and 11 of 50 individuals of 1000 Genomes Project, on the basis
of the BAM files downloaded from that project FTP site; then | built the EFM-indexes of
the two obtained collections. In order to ensure a good compromise between security and
performance, | chose to build the indexes with the following combination of parameters:
k =5, bucketSize = 8192 and marked RowsPercentage = 2.

Moreover, in order to compare the performance of my prototype with a state of the art
software, | used the Sdsl C++ library, which implements some succinct data structures[20]
usable to construct self-indexes like Compressed Suffix Arrays (CSA) and wavelet tree FM-
indexes. | had to extend the wavelet tree FM-index supplied by that library so that it was
able to manage collections of items and to report sequence-relative locations: | used the
same approach of EFM-index, but with a separator consisting in a single # character.
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It was impossible to perform comparisons with the FM-index version 1, because it
can’t handle texts larger than 2GB.

| performed the tests a on virtual machine hosted by a RHEV (Red Hat Enterprise
Virtualization) 3.4 system with 196 GB of RAM memory and 4 Intel(R) Xeon(R) CPU E5-
2697 v2 @ 2.70GHz 6-core processors.

Figure 2.13 compares the compression ratios obtained with EFM-index with those
exhibited by the Sdsl library on three sequence collections of different size:

1. 20_FULL: the chromosome 20 sequences of the aforementioned 71000 Genomes
Project 50 individuals;

2. 20_1M B: the first 1 million bases of those sequences;
3. 20_5M B: the first 5 million bases of those sequences.

The compression ratios exhibited by EFM-index are better than those obtained with
Sdsl, although both indexes are BWT-based: this is due to the alphabet extension used
in my index, which helps the Move To Front transformation to achieve universal coding
performance[5], i.e. those of a compressor having a data compression ratio which differs at
most for a constant factor from that of the optimal prefix code.
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Figure 2.13: Compression ratio

Table 2.2 shows that the construction times of the EFM and Sdsl indexes are very
close each others, despite the fact that EFM-index implements data encryption.

1MB 5MB FULL
EFM Sdsl EFM | Sdsl || EFM | Sdsl
22.94 | 20.08 || 106.9 | 132.1 || 2222 | 2061

Table 2.2: Construction times (s)

The time taken to perform a pattern search is proportional to the number of occur-
rences found. So, in order to evaluate the performance in search operations, | chose 500
patterns for several pattern lengths (20,50,100,200,500) and, for each pattern length, | com-
puted the mean search time per occurrence, i.e. the mean of times taken by my prototype
to report each pattern occurrence.
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Figures 2.14 and 2.15 show, first of all, that those times grow with pattern length both
for my index and the Sdsl one: this behaviour depends on the greater number of backward
steps in BWT that are needed to search for a larger pattern. The indexes based on Sdsl
library exhibit better performance, but in any case the EFM-index times per occurrence are
very close to the Sdsl ones and they do not exceed 10ms; furthermore, it is important to
consider that:

1. again, Sdsl implements no kind of encryption;

2. Sdsl needs to load the entire index in memory before starting a search operation,
whilst my index loads in memory the minimal number of needed blocks during search
operations: this is an EFM-index strength, but penalizes it in the described compari-
son.
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Figure 2.14: Mean search (count+locate) times per occurrence on the collections (a) 20_1M B and
(b) 20_5M B, for several pattern lengths

In conclusion, EFM-index exhibits good compression ratios, short construction times
and optimal search performance also on collections of genomic sequences, outperforming
in compression the Sdsl library despite of the encryption implementation.
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ER-index: an index model
designhed to handle collections of
similar genomic sequences

Introduction

The EFM-index presented in chapter 2 has two major issues:

e itis not suitable to handle collections of highly similar genomic sequences, as it cannot
fully exploit the inter-sequence redundancy, defined as the redundancy that exists
between the several sequences of a collection;

e its encryption model does not permit to store the genomic sequences of different
individuals with distinct encryption keys within the same index.

The first issue strongly affects the compression ratio, while the second forces to
create one index for each set of individual sequences whose access must be separately
authorized; consequently, it is necessary to search for patterns in several indexes, potentially
slowing down search performance.

In order to overcome the above problems | had to orient towards other models of
indexes capable of storing a collection of sequences:

e exploiting the inter-sequence redundancy;
e encrypting the sequence of different individuals with distinct encryption keys;
e offering good search performance.

| focused my attention on indexes based on the Lempel Ziv parsing, and especially on
the original LZ77 variant. Most of the self-indexes inspired to the Lempel Ziv parsing used
the LZ78 variant, because the LZ78 factorization of a text has some interesting properties
which allow[37] to design efficient pattern search algorithms; on the other hand, LZ78 does
not permit to gain the most advantage from the high similarity of genomic sequences.

The first self-index based on LZ77 was presented in [22]: it offered good compression
ratio and search performance, but its internal data structures were not designed to explicitly
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handle the several items of a collection and so in my opinion that index is not suitable to be
a valid starting point for my aims.

That index also does not exploit a fundamental property of my application domain: |
need to store human genomic sequences and | have a reference sequence for it.

Both the LZ77 and LZ78 algorithms compress a text 7" building a dictionary of phrases
occurring in the yet scanned part of 7" and then encoding the remaining part of it in term
of that phrases; however, for human genomic sequences there is no need to create such a
dictionary, in that it is already available once and for all: it is the reference sequence.

The first attempt to “referentially compress” a collection of individual genomes, just
encoding the differences with respect to a reference sequence, was made by the authors of
[8]: that work, as [26] and [27], aimed to build data structures suitable to efficiently compress
the collection, while allowing fast random access to parts of it. Pattern search still remained
an open question.

The problem of efficiently searching patterns in a such index was addressed and
resolved by a recent work[40], but once again some of the used data structures cannot be
used to achieve one of my goals, i.e. to encrypt the sequences of different individuals with
distinct encryption key.

Once described the state of the art, hereafter | introduce my contribution: the first
encrypted self-index based on referential Lempel-Ziv compression, designed to be the core
of a multi-user database engine. This type of engine must allow pattern search in a set of
such indexes, permitting a logged user to retrieve results only from the sequences for which
he/she has been explicitly authorized.

3.1 Definitions and background

3.1.1 Relative Lempel-Ziv factorization

Let a text S be a string of symbols over a finite alphabet A.

All the lossless compression algorithms known in literature are aimed to exploit the
repetitions in a text .S in order to to obtain more compact representations of it. The Lempel-
Ziv dictionary-based family is not an exception to this rule, as its basic idea is to replace
repetitions with references to previous occurrences of them.

Both LZ77 and LZ78, the most used family members, consist in rules for parsing
a text S into a sequence of factors, which are substrings occurring in it before the current
scanning position. Their main differences are the the dictionary definition rules: while LZ78
builds explicitly the dictionary, LZ77 is a so called “sliding window compression algorithm”,
as a factor can only be a reference to a substring found till w positions earlier in the text, that
is within a sliding window of width w. In both cases the dictionary consists of substrings of
the same text S.

Let us suppose now that S is a genomic sequence of an individual belonging to a
given species, for which a reference sequence R is known: S is very similar to R, presenting
only a few number of mutations, deletions and insertions, often in a percentage not greater
than 1%.

Let us suppose that we want to express S as a sequence of phrases. Rather than
search for these phrases within a dictionary of previously occurred substrings of .S, it would
be better to search for them in R; in fact, a given portion of S is more similar to the corre-
sponding portion of the reference sequence than to a previously seen substring of S. This
is the basic idea of the so-called Relative Lempel-Ziv factorization.
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Definition 3.1. Relative Lempel-Ziv factorization

Let S and R be an individual and a reference sequence, respectively. The Relative
Lempel-Ziv factorization of .S with respect to R, denoted as LZ(S|R), is a sequence of fn
factors

20" Rfn—1

Each factor can be seen as the concatenation of a referential part, that is a substring of R,
and a mismatch character; so the generic ;" factor (for j = 0,..., fn — 1) is representable
with a triple (p;,;, mc;), where:

e p; is the position of its referential part in ;
e [; is the length of its referential part;
e mc; is the mismatch character.

For example, let
R =ACTAACCGTACATGA

be the reference sequence and
S =ACTACACCCTACATGQCTAA

be the individual sequence to factorize. Both the sequences are strings over the IUPAC
extended alphabet, which | will call from now on Xpxa. The first one generally contains
only N (aNy) characters in addition to those representing the bases A, C, G, T, whilst the
second could be, for example, the consensus sequence for a diploid individual and could
contain all ¥ p x4 characters.

The Relative Lempel-Ziv factorization of S with respect to R is:

LZ(S|R) = ] ACTA|C | AC’C\CITACATG\Q | CTA|A \ =

= (1,4,C)(5,3,C)(9,6,Q)(3, 3, A)

To understand how this representation can be used to compress the string S, just think that
in an actual scenario the referential parts consist of hundreds or even thousands of bases.

3.1.2 B+ trees

B Trees[42] and their B+ variant are the most used index structures in Relational
Database Management Systems. Substantially, a B Tree is a N-ary search tree providing
efficient algorithms aimed to mantain a sorted set of numbers, or keys and to do fast search
operations on it; moreover, like every N-ary search tree, a B Tree consists of nodes orga-
nized as a hierarchy starting from a root node and descending from each node to its children
until reaching the last level of nodes, called leafs.

Every node contains a certain number n of keys, to each of which is associated a
value; furthermore, each node contains a set of n + 1 pointers to its children.

The above described data structure supports efficient updates and exact match
queries, which find the value/s associated to a given key; it also permits to do efficiently
an operation known in literature as range query, which finds all the values associated to
keys falling within a range [I,7]. In RDBMS B Tree based indexes, by example, node keys
correspond to the values of a table column C' and node values uniquely identify a row of that
table T: so the index permits fast access to the rows of 7" satisfying the condition [ < C' < 7.

More in detail, defined the order m of a B Tree as the minimum number of keys a
non-leaf node may hold, a B Tree of order m has the following properties:
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e all leaf nodes are in the same level, i.e. the tree is balanced;

e every node contains at most n < 2m keys (and associated values);

e every node, except the root node, contains at least m keys (and associated values);
e every node stores values in increasing key order;

e a non-leaf node containing n keys contains also n + 1 pointers to node children; the
i'h key act as separation value between the subtrees corresponding to the ' and the
(i + 1)t" pointer;

o if the root node is not a leaf node, it has at least 2 children.

In B+ Trees, the B Trees variant | took as a model for the ER-index auxiliary data structures,
only leaf nodes store values, while root and internal nodes only store search keys; therefore
in such a tree it is possibile to distinguish two kinds of nodes:

e index nodes (root and internal nodes), containing only search keys and pointers to
children nodes;

e leaf nodes, containing only keys and values.

Tipically B Trees nodes are stored on secondary storage as fixed size disk pages, whose
size is a multiple of the hosting file system page size; the pages are retrieved from a cache
when needed, modified and transfered again to the cache if it is necessary to do an update
on their content.

In order to increase pages capacity, i.e. the number of keys and pointers stored in
each page, several compression schemes can been applied[23]. They are all based on the
assumption that the keys stored in a node page are very close each other. An example is
the Invariable Coding method that | used to compress my auxiliary data structures. Itis very
simple, in that:

1. it stores the node’s first key, which is the smallest one;

2. then it stores all the differences between each key and the first one, on a number of
bits sufficient to express the difference between the last and the first key.

3.1.3 A bit of cryptography

In order to fully understand the ER-index data structures and algorithms, some no-
tions about cryptography are also needed.

Basically, let p € P be a text to encrypt, also said plaintext, and ¢ € C the en-
cryption result, also said ciphertext. There are two great categories of encryption methods:
symmetric and asymmetric.

In symmetric ciphers, also called secret-key ciphers, the same secret key k € K is
used both to encrypt a plaintext and to decrypt a ciphertext and it is necessary to define two
separate functions:

e an enciphering function E : (p,k) € P x K — c € C,

e adeciphering function D : (c,k) e C x K — p € P.
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The first one transforms a plaintext in a ciphertext and the second one does the reverse
transformation, using the same secret key. Symmetric ciphers can be in turn divided into
two categories:

e block ciphers split the plaintext in blocks, encrypting each block at a time with the
same key, so that the encryption of each plaintext bit depends on other plaintext bits
contained in that block;

e stream ciphers encrypt bits individually, first generating a keystream from the secret
key and subsequently adding (modulo 2) the i plaintext bit to the i*" keystream bit.

The addition modulo 2 is a very simple and fast operation, as it is equivalent to an XOR, and
so stream ciphers are generally faster than block ciphers; moreover, some stream ciphers
are hardware-optimized, that is designed to work even more efficiently on certain hardware
architectures.

In particular, Salsa20[6] is one of the ciphers selected as part of the eSTREAMI[2]
portfolio of stream ciphers [2], and has been designed for high performance in software
implementations on Intel platforms; it produces a keystream long 27° bytes starting from a 32
bytes (256 bits) key and a 8 bytes (64 bits) nonce (unique message number); it subsequently
encrypts a plaintext, seen as sequence of b bytes, simply by XOR-ing the plaintext with the
first b bytes of the stream and discarding the rest of the stream.

The aforementioned nonce is an arbitrary number used to ensure that several plain-
texts or, in our scenario, several plaintext portions are encrypted with different keystreams.

Asymmetric ciphers, also called public-key ciphers, use instead a couple of keys
consisting of a private key k,,; and a public key k., so that a message encrypted with any
of them can be deciphered only using the other one. To achieve confidentiality of messages
between several individuals, a couple (kp.:, kpup) has to be generated for each of them: the
public key must be available for everyone, while the private one must remain known only by
the owner.

If an individual A wants to send B a confidential message M, A will encrypt M with
the public key of B, so that only B can decrypt it using his private key.

3.2 The ER-index

The Encrypted Referential Index (ER-index) is an encrypted full-text index designed
to handle a collection of highly similar genomic sequences. It consists substantially in two
major components:

e a set of relative Lempel-Ziv factorizations, one for each sequence of the collection;
e a set of auxiliary data structures, inspired to B+ Trees.

Both the factorizations and the auxiliary data structures are designed to permit efficient
pattern searching, while allowing the user to search only on that sequences to which he/she
was granted access.

In particular, to apply encryption mantaining good search and compression perfor-
mance, | split each factorization in a series of fixed-length blocks of factors, so that each
of them contains the same number of factors; then | processed each block, producing a
compact representation of it, whose size depends on the compressibility of the information
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describing its factors; finally, | encrypted the obtained variable size blocks independently
from each other using the Salsa20 cipher.

To design the auxiliary data structures | was inspired instead to B+ Trees indexes,
the most used index data structures in the field of relational databases; this choice derived
from three considerations:

e they support range queries;

o they are by design stored in blocks, the so-called tree nodes, that | could compress
and encrypt independently from each other;

e it could be quite simple to bring the ER-index inside a relational database, to integrate
genomic information with personal and clinical data.

The encryption model design for tree nodes required however a greater effort. The major
issue | had to address was the coexistence within the same node of information regarding
different individuals, each of which had to be enciphered using a different encryption key.
The result was an index structure over all the individual factorizations, designed to retrieve
through a unique range query the factors falling in a range, limited to the set of individuals
to which the user was granted access.

Another design choice covered the data structure to handle the reference sequences.
My factorization and search algorithms, as other methods known in literature to approach
the same problem, needed a set of data structures enabling to find all the factors ending
with certain pattern substrings, as well as the factors starting with other pattern substrings.
Differently from the authors of [40], who used Compressed Suffix Trees, | chose to store
each reference sequence R as a couple of FM-indexes, the first build on R and the second
on its reverse R,.,; this allowed me to address the above needs obtaining good search
performance while saving disk space.

Below | describe the ER-index in detail.

Let {S1,..., S} be a collection of sequences corresponding to [ different individuals
and R a reference sequence. Let f; = LZ(S;|R) be the Relative LZ-factorization of the
individual sequence S; with respect to R; let BL; 1, ..., BL; y,(;) be the sequence of bs-
length blocks factors get from LZ(S;|R), where bn(i) denotes the obtained number of blocks
and each block contains exactly bs factors.

Let moreover S20 = S20(plaintext, key, nonce) denote the enciphering function of
the Salsa20 cipher, as previously described, and k; be the secret encryption key used to
encode the genome of the i*”* individual.

ER-index encrypts each of the aforementioned blocks with Salsa20, using the block
number as nonce, so that the encrypted representation of the i* factorization, denoted as
E(f:, k), could be build as a concatenation of encrypted blocks, as follows:

Moreover, in order to speed up search operations, | needed a data structure en-
abling fast access to factors of all the individual factorizations by a search key related to the
referential parts position in the reference genome.

| designed for this purpose the Encrypted B+ tree (abbreviated as EB+ Tree). An
ordinary B+ tree simply would store for each key k; a list of all the values

V5,05« + -5 Vj,h;
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associated to that key: this would be my case if | had only a single factorization and the
values corresponded to factor indexes, each of which uniquely identifies a factor in that
factorization.

|- kdlogo v, - s vgn Il -+ |

Figure 3.1: Structure of an ordinary B+ Tree node
h; is the number of values associated to the key k; and vjo, vj1,- - - s Vjh; is the list of those values.

My aim instead was to build a B+ Tree indexing a collection of individual genomic se-
quence factorizations; so, each value (factor index) had to be associated with the individual
identifier that uniquely selects the right factorization; moreover, the value had to be ciphered
with the encryption key associated to that individual, as well as the entire factorization to
which it refers.

| Ikd 1o vjo), {ijn. vin), - Gy vgn,)l - |

Figure 3.2: Structure of an EB+ Tree node
h; is the number of values associated to the key k; and v;o, vj1, - - - s Ujng s While 450,451, -+, 45n;
are the related individual identifiers.

In EB+ trees | applied the Invariable Coding compression method both to keys and
values, but in a different way than [42]. The authors of that work applied compression to
arrange more values into fixed size node pages; instead, | used it in order to obtain smaller
variable length nodes and to maximize in this way the overall index size.

After the compression phase, | encrypted the values (factor indexes) contained in
each leaf with Salsa20, virtually considering the list of values related to each individual as a
unique bytestream. The encryption method works for each leaf as follows:

e it initializes an encryption context for each individual, computing a Salsa20 keystream
on the basis of that individual’s encryption key;

e it ciphers the leaf data not related to a specific individual with a Salsa20 keystream
obtained using a system encryption key, corresponding to a system encryption con-
text;

e every time it meets a factor index related to an individual, it switchs to that individual’s
encryption context, encrypts the value and switches again to the system encryption
context.

Definition 3.2. Encrypted Referential index

An Encrypted Referential index (ER-index) build over a collection of individual sequences
{S1, ..., S} with respect to a reference sequence R and a set of individual keys {k1, ..., ki }
is a self-index consisting of:

o all the encrypted relative Lempel Ziv factorizations of the individual sequences to-
wards a reference sequence: {E(f1,k1),..., E(fi,ki)};

e a set of three EB+ Trees build over the factors of all the factorizations, whose search
keys are respectively:
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1. a suffix array index corresponding to a R,., suffix prefixing the reverse of the
factor referential part;

2. a suffix array index corresponding to a R suffix prefixing the factor referential
part;

3. the position of the referential part in the reference R.
and whose values are couples (i, v), where i identify an individual and v a factor of

the related genomic sequence; v is ciphered with the encryption key associated to the
individual .

3.2.1 Factorization algorithm

My factorization algorithm slightly differs from that proposed in [26] and [40], as the
ER-index uses a couple of FM-indexes to represent the reference sequence R and its re-
verse R,.,. The jt" factor is always representable as a triple (sai_rev_start;,l;, mec;) of
numbers, but in my index they have a different semantic:

e sai_rev_start; is the RR,., suffix array index from which to start the backward scan of
R,.., in order to obtain the factor;

e [; is the length of the entire factor, comprehensive of the mismatch character;
e mc; is the mismatch character.

In order to speed-up pattern search, the algorithm retrieves also three auxiliary data, storing
them as search keys in as many encrypted B+ Trees:

e sai_rev;, a suffix array index corresponding to a R,., suffix prefixing the reverse of
the factor referential part;

e saij, a suffix array index corresponding to a R suffix prefixing the factor referential
part;

e ip;, the position of the referential part in the reference R.

The algorithm 5 uses four data structures related to the reference sequence:
e the FM-index of the reference R, denoted as F'M;
e the FM-index of the reversed reference R,..., denoted as F'M,..;

e a correspondence table between the suffix array of R, and the suffix array of R,
denoted with R2F', which permits to move from a suffix of R,.., to the R suffix starting
from the same character;

e the reverse correspondence table, denoted with F'2R, which permits to move from a
suffix of R to the R,.., suffix starting from the same character.

In short, the algorithm aims to find a series of factors whose concatenation gives as
result the sequence S. From an overall point of view, it scans S from left to right and at
each step it tries to factorize the suffix S;, searching the maximum length referential factor
starting from ¢: at this purpose it scans the BWT of the reverse reference R,., through
FM,.,, starting from S[i] and proceeding backward on R,., until a mismatch is found
(further details are given within the pseudo-code).
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The backward search gives as result the R,., suffix array range containing the suf-
fixes prefixing the reverse of S,: the algorithm choose the first among them, as they are all
logically equivalent for its purposes.

The next step consists in retrieving the auxiliary information related to the just found
factor.

| do not report the getTextPosition and backwardStep functions implementation
details in the pseudo-code, as they match exactly the canonical FM-index implementations.

Algorithm 5 Factorization algorithm

1: function FACTORIZE(S,F Myey,FF M ,R2F ,F2R)

2: j«0 > Current factor index
3 lmaz < 0; > Maximum factor length
4: len « length(S);

5: 1+ 0;
6:
7
8

while i < len do
> Retrieve the next factor

: numberOfN + 0; > Number of N characters found in the next factor referential part
9: nrc < S[if; > Current character, not yet remapped in the FM index compact alphabet
10: if nrc = N then
11: numberOfN < numberOfN + 1;
12: end if
13: l+1 > Current length of the next factor referential part
14; if i < len — 1 AND isInReference(F M;.c.,nrc) then
15; lastNrc < nrc;
16: > Start a backward search on the reverse reference index
17: ¢ < remap(F Myey, nre)l; > Remap current character
18: sp « C(F Myey,c);
19: ep + C(FMyey,c+1) —1;
20: backwardStepSuccess ful < true;
21: > The backward search stops when
22: > - the referential part includes the last but one character of S or
23: > - the next character is not in the reference sequence or
24: > - the last backward step was not successful or
25: > - the next character is N and the last was different from N or
26: > - the next is different from N and the last was N
27: while i + 1 < len — 1 AND

isInReference(F Mey,nrc < S[i + 1]) AND
backwardStepSuccess ful AND
(lastNrec # N AND nrc # N OR lastNrc = N AND nrc = N) do

28: if nrc = N then

29: numberOfN < numberOfN + 1;

30: end if

31: ¢ < remap(F Myey,nre)l;

32: trySp < C(FMyey,c) + Occ(FMyey, EOF_shift(FMyey,sp — 1), c);
33: tryEp < C(FMyev,c) + Occ(F Mrey, EOF_shift(F Mrev, ep),c) — 1;
34: if trySp <= tryLEp then

35: sp « trySp;

36: ep « tryEp;

37: L+ 1+4+1;

38: backwardStepSuccessful <+ true;

39: else

40: backwardStepSuccessful < false;

41: end if

42; lastNrc < nrc;

43: end while
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Algorithm 5 Factorization algorithm (continued)

44: sai_rev_pref < sp;

45: mc <+ S[i+1]

46: > Find sai_rev_start, sai_pref and tp, as follows:

47: > 1) Find the suffix array index sat of R corresponding to the suffix array index sai_rev_pref of
Rre'u

48: sat = R2F (sai_rev_pref);

49: >2) Do [ — 1 backward steps on the straight index, in order to find sai_pref

50: fori < 1Tol—1do

51: sai « backwardStep(F M, sai);

52: end for

53: sai_pref < sai;

54: > 3) Find the position ¢p of R corresponding to sai_pref using the F'M index marked rows

55: tp = getTextPosition(F M, sai_pref)

56: > 4) Do another backward step on the straight index, in order to find sai_rev_start

57: sai_rev_start < backwardStep(FM, sai_pref);

58: > 5) Store the retrieved factor in the factors array

59: factors[j] < (sai_rev_start,l,mc);

60: end if

61: i i+1

62: end while
63: end function

Return to the factorization example presented in the last section, where:
e S = CTACACCCTACATGQCTAA is the sequence to be factorized;
e R =ACTAACCGTACATGA is a reference string;
e R.., = AGTACATGCCAATCA is the reverse reference string.

Remember that FM-index is a compact and high speed pattern search data structure
build over the BWT of a text 7', and BWT is computed sorting the rotations matrix of T7;
therefore, in order to fully understand the details of the factorization algorithm in a simple
example, it is needed to visualize the rotations matrices, the BWT and the suffix arrays of R
and R,.,, shown in tables 3.2 and 3.1.

A # character, preceding each X pny 4 character in lexicographical order, has been
appended to both the strings before the BWT computation. The # character does not belong
to the strings and so the FM-index does not store the BWT position occupied by #, but it
stores in its header the virtual position of that character in order to signal the end of text
and to skip it during the backward search operation; note too that the rotation starting with
# does not contribute to the suffix array, as # does not really belong to the strings.

Moreover, obviously the suffixes of R and R,., are related, as for 0-based strings
the suffix starting from the i*" place of R corresponds to the suffix of R,., starting from
position n — i — 1. So | computed once and for all a correspondence table between the
two suffix arrays, in order to speed-up the factorization operations, as | will show afterwards.
The correspondence table R2F', shown in table 3.3, permits to move from a suffix of R,.,
to the R suffix starting from the same character.

Suppose the algorithm has just started and it has to find the first factor: the maximal
referential factor is CTA-C, whose referential part CTA corresponds to the R,.., suffix array
range [4, 4]. This implies that sai_rev_pref = 4, and from 3.1 it is simple to see that the
R, suffix corresponding to the index 4 prefixes ATC, which is the reverse of the factor's
referential part. The algorithm proceeds:

1. moving to the corresponding suffix of R: this happens simply computing
sai=R2F (4) =1, as can be evicted from 3.3;
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2. doing 1-1=2 backward steps on BWT'(R), in order to compute the sai_pref=9
index of a R suffix prefixing the factor’s referential part;

3. doing another backward step on BWT in order to reach the sai_start=4 suffix ar-
ray index, and finally computing sai_rev_start=F2R (sai_start)=F2R (4)=0:
it is simple to see from table 3.1 that, starting from the index sai_rev_start=0and
doing two backward steps, it is possible to obtain all the referential part characters,
from the last one to the first one;

4. computing the text position corresponding to the R suffix array index sai_pref=9,

Summarizing, the algorithm has retrieved until now the first factor (0, 4, C) and the auxiliary
data sai_rev_pref=4, sai_pref=9 and tp=1 to use as search keys within the three
aforementioned B+ trees.

BWT index SA index SA rotation BWT
0 #AGTACATGCCAATCA A
1 0 14 A#AGTACATGCCAATC C
2 1 10 AATCA#AGTACATGCC C
3 2 3 ACATGCCAATCA#AGT T

3 0 AGTACATGCCAATCA#
4 4 11 ATCA#AGTACATGCCA A
5 5 5 ATGCCAATCA#AGTAC C
6 6 13 CA#AGTACATGCCAAT T
7 7 9 CAATCA#AGTACATGC C
8 8 4 CATGCCAATCA#AGTA A
9 9 8 CCAATCA#AGTACATG G
10 10 7 GCCAATCA#AGTACAT T
11 11 1 GTACATGCCAATCA#A A
12 12 2 TACATGCCAATCA#AG G
13 13 12 TCA#AGTACATGCCAA A
14 14 6 TGCCAATCA#AGTACA A

Table 3.1: BWT and suffix array of R,

BWT index SA index SA rotation BWT
0 #ACTAACCGTACATGA A
1 0 14 A#ACTAACCGTACATG G
2 1 3 AACCGTACATGA#ACT T
3 2 9 ACATGA#ACTAACCGT T
4 3 4 ACCGTACATGA#ACTA A

4 0 ACTAACCGTACATGA#
5 5 11 ATGA#ACTAACCGTAC C
6 6 10 CATGA#ACTAACCGTA A
7 7 5 CCGTACATGA#ACTAA A
8 8 6 CGTACATGA#ACTAAC C
9 9 1 CTAACCGTACATGA#A A
10 10 13 GA#ACTAACCGTACAT T
11 11 7 GTACATGA#ACTAACC C
12 12 2 TAACCGTACATGA#AC C
13 13 8 TACATGA#ACTAACCG G
14 14 12 TGA#ACTAACCGTACA A

Table 3.2: BWT and suffix array of R
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Table 3.3: Suffix arrays correspondence table

3.2.2 Pattern Search

ER-index supports exact pattern matching through the algorithm 6.

Before describing the algorithm details, it is appropriate to make some considera-
tions. A pattern search operation on a relative Lempel-Ziv factorization can retrieve two
types of occurrences:

e internal occurrences, which are completely contained in a factor’s referential part;

e external occurrences, also known in literature as overlapping occurrences, which have
at least a character outside of a factor’s referential part: these occurrences can span
two or more factors or stop on a factor’s mismatch character.

A solution to find external occurrences on a LZ78 factorization has been proposed
in [30] and it is based on trie data structures, belonging to the tree search data structures
category and also known as prefix trees.

A trie built on a collection of strings stores all the collection items so that the children
of a given node share a common prefix; therefore such a data structure allows searching
quickly for all the collection items prefixed by an assigned string.

The proposed method uses two tries: given a text T, the first trie, named LZT'rie,
stores the collection of the LZ78 factors of 7', whilst the second one, named RevT'rie,
stores the reversed factors. It splits the searched pattern P in all possible ways and, for
each split point, it searches for the reverse left side prefix in RevTrie and the right side
prefix in LZTrie, obtaining respectively two set of factors:

o the first set contains all the factors ending with the pattern’s left side;
o the second one contains all the factors starting with the pattern’s right side.

Ultimately, the proposed algorithm joins the two sets in order to obtain couples of consec-
utive factors. The first element of each couple ends with the pattern’s left side, while the
second element starts with the right side.

This approach could also be used for relative Lempel-Ziv factorizations, but it has a
big issue: trie is a very expensive data structure, because it requires too much disk space,
and so it is infeasible to build a couple of tries for each individual factorization. In order to
overcome this issue, my external occurrences search algorithm keeps the main idea to split
the pattern in all possible ways, but uses very different and less expensive data structures:
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e the same F'M,., and F'M indexes of the above presented factorization algorithm,
used respectively to search for the maximal prefix of the reversed left side in the
reverse reference string R...,, and for the maximal right side prefix in the reference
string R;

e acouple of EB+ trees:

1. the first one allows to retrieve all the individuals factors that end with the maximal
prefix of the reversed left side;

2. the second one allows to retrieve all the individuals factors that start with the
maximal right side suffix.

As regards the internal occurrences, the approach proposed in [30] is not applicable
to relative Lempel Ziv factorization, because it is based on a specific LZ78 property: each
factor can be seen as the concatenation of a previous factor and an additional character.

Therefore, | designed an original algorithm to retrieve the internal occurrences using
once again the F'M index built on the R reference sequence, together with a third £EB+
tree, named posTree, whose search keys are the starting positions of factors referential
parts in R: it allows to retrieve the factors whose referential part starts in a given positions
range of the reference sequence.

My algorithm uses also the auxiliary information [,,,,.., defined as the maximum length
of all factors contained in the ER-index: it is determined during the factorization process and
it is stored into the index header.

| started from a simple consideration: an internal occurrence of a pattern P is com-
pletely contained into a factor’s referential part and so it corresponds exactly to a P occur-
rence in the reference sequence. Therefore, the first step could consist in retrieving all the
pattern’s occurrences in the reference sequence, but two not trivial problems remained to
be addressed:

e is a reference sequence occurrence really an individual sequence occurrence, that is
it exists an individual sequence factor really containing that reference occurrence?

e if yes, how it is possible to retrieve the position of that occurrence in the individual
sequence?

| explain now the way | dealt with these problems. Suppose that the suffix array
interval [sp, ep] is the result of the pattern search on the reference sequence: the position
tp of each interval's element in the reference sequence can be retrieved using the related
reference index marked rows (likewise the ordinary FM-index locate operation).

Let f be a factor, [ the length of its referential part and ¢pf its starting position in the
reference sequence; let moreover m be the pattern length. A reference occurrence located
in tp is also an individual sequence occurrence if and only if:

tpf <tp
tpf+1—1>tp+m—1

The first condition ensures that the factor referential part does not start after the first char-
acter of the reference occurrence; the second one ensures that the factor referential part
does not end before the ending of the reference occurrence. The above conditions can be
written as:
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tpf <tp
tpf >tp+m—1

and finally as:
tp+m—1<tpf <tp(1)

This means that tpf must fall in a range and then the factors could be retrieved by
a range query on posTree if both the range bounds were fixed values; the lower bound
however is not a fixed value, as it depends from the specific factor’s referential part length I.
In order to overcome this issue | considered that

lmaz Z1L=tp+m —lpa: <tp+m —1
So tpf satisfies also the following condition:
tp +m — lmax S tpf S tp (2)

However a range query based on condition (2) also returns factors not satisfying the
original condition (1): they can be filtered out keeping only factors complying to the additional
conditiontpf > tp+m — L.

The algorithm described above is implemented by the LocatelnternalOccurrences
function, reported into the whole Pattern search algorithm 6 pseudo-code.
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Algorithm 6 Pattern search algorithm

1: function LOCATE(pattern)
2: occurrences < LOCATEEXTERNALOCCURRENCES (pattern) | J LOCATEINTERNALOCCURRENCES(

pattern);
3: SORT(occurrences); > sorts each individual occurrence by position
4. REMOVEDUPLICATES (occurrences); > remove any duplicates
5: FINDTEXTPOSITIONS (occurrences); > find each occurrence text position from its factorld and
FactorOffset
6: return occurrences;
7: end function
8: function LOCATEEXTERNALOCCS(pattern)
9: occurrences = ||
10:  pl < LENGTH(pattern);
11: for sp <+ Otopl — 1do
12: split PointCharacter < pattern[sp];
13: if splitPoint > pl/2 then
14: > The left side part is longest than the right side part: so the number of factors expected to end
15: > with the left side part is less than the number of factors expected to start with the right side
16: ls « substr(pattern, 0, splitPoint); > the 24 argument is the substring starting point, the 3™
one is its length
17: [lsFactors,lsLongestSuf fixLength]| < FINDLEFTSIDEFACTORS(Is);
18: for each distinct individualld in [sFactors do
19: > Retrieves the factorization from an associative array containing all the individual factorizations
20: factorization < factorizations[individualId];
21: for each factorIndex in GETINDIVIDUALRETRIEVEDFACTORS(IsFactors, individualld) do
22: factor < factorization|factorIndex];
283: > Excludes the case in which the left side crosses the starting point of the current factor:
24: > an occurrence of this type will be found for a preceding split point
25: if factor.length — 1 > length(ls) then
26: if factor.letter = splitPointCharacter then
27: occurrence. factorIndex < factorIndex;
28: occurrence. factorOf fset < factor.length — 1 — length(ls);
29: occurrence.endingFactorIndex < factorIndex;
30: occurrence.endingFactorO f fset < factor.length — 1;
31: IsVerifiedLength < lsLongestSuf fixLength; > Left side verified length
32: rsVerifiedLength < 0; > Right side verified length
33: if VERIFYPATTERNREMAININGPART( factorization, pattern, sp, lsvl, rsvl,
occurrence) then
34: ADDOCCURRENCE(occurrence);
35: end if
36: end if
37: end if
38: end for
39: end for
40: else
41: > The right side part is equal-length or longest than the left side one: so the number of factors
expected to start
42: > with the right side part is less than the number of factors expected to end with the left side
43: rs +— SUBSTR(pattern, split Point + 1, pl — splitPoint — 1);

44 [rsFactors, rsLongestPrefixzLength] < FINDRIGHTSIDEFACTORS(rs);
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Algorithm 6 Pattern search algorithm (continued)

45: for each distinct individualld in rsFactors do

46: > Retrieves the factorization from an associative array containing all the individual factorizations

47: factorization < factorizations[individualId];

48: for each factorIndex in GETINDIVIDUALRETRIEVEDFACTORS(rsFactors, individualld) do

49: factor < factorization|factorIndex];

50: if rslpLength < factor.length — 1 then

51: rsvl <= rslpLength; > Right side verified length

52: else

53: rsvl < factor.length — 1;

54. end if

55: if factorIndex > 0 then

56: IsFactor < factorization|factorIndex — 1|;

57: if lsFactor.letter = split PointCharacter then

58: occurrence. factorIndex < factorInder — 1;

59: occurrence. factorO f fset < lsFactor.length — 1;

60: occurrence.endingFactorIndex < factorIndex;

61: occurrence.endingFactorO f fset < rsVerifiedLength — 1;

62: lsvl < O; > Left side verified length

63: if VERIFYPATTERNREMAININGPART( factorization, pattern, sp, lsvl, rsvl,
occurrence) then

64: ADDOCCURRENCE(occurrence);

65: end if

66: end if

67: end if

68: end for

69: end for

70: end if

71: end for

72: return occurrences;

73: end function

74: function LOCATEINTERNALOCCS (pattern)

75: occurrences = ||

76: > An internal occurrence occurs certainly in the reference sequence

77: if SEARCHPATTERNINREFERENCEINDEX(F' M, pattern, sp, ep) then

78: for i < sptoepdo

79: m < LENGTH(pattern);

80: tp < GETPOSITIONINREFERENCE(F'M, 7);

81: > Imax is the maximum factor length in the index and it is stored into the index header

82: factors < GETFACTORSINRANGE(posTree, tp + m — lmawx, tp);

83: for each distinct individualld in rsFactors do

84: > Retrieves the factorization from an associative array containing all the individual factorizations
85: factorization + factorizations|individualld];

86: for each factorIndex in GETINDIVIDUALRETRIEVEDFACTORS(rsFactors, individualld) do
87: factor < factorization|factorIndex];

88: tpf < factor.referential PartPositionInRe ference;

89: l « factor.length — 1; > length of the factor’s refential part
90: if tpf >= tp+m-I then

91: occurrence. factorIndex < factorInde;

92: occurrence. factorOf fset < tp — tpf;

93: occurrence.endingFactorIndex < factorIndez;

94: occurrence.endingFactorOf fset < occurrence.factorOf fset +m — 1;

95: lsvl « 0; > Left side verified length
96: ADDOCCURRENCE(occurrence);

97: end if

98: end for

99: end for

100: end for

101: end if

102: return occurrences;

103: end function
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Algorithm 6 Pattern search algorithm (continued)

104: > Verifies if the partial occurrence given as parameter is really a whole pattern occurrence

105: > If successful it returns true and adjusts coherently the occurrence information, otherwise it returns false

106: function VERIFYPATTERNREMAININGPART(factorization, pattern, splitPoint,lsVerifiedLength,
rsVerifiedLength, occurrence)

107: > | omit the implementation details for reasons of space: the algorithm simply tries to extend the verified
part

108: > of the pattern both on the left and on the right side it compares the yet not verified pattern characters

109: > with the several factors characters that lie to the left and to the right respect to the pattern verified part

110: > In order to obtain good performance, the aforementioned extension is made without extracting the full
text

111: > of the involved factors, but scanning that text one character at a time through using once again

112: > the reverse reference index.

113: end function

114: > Returns a couple whose first element is a list of factors ending with the left side longest suffix
115: > and whose second element is the left side longest suffix length

116: function FINDLEFTSIDEFACTORS(Is)

117: > Find the left side longest suffix (the longest left side suffix that occurs in the reference string)
118: l < FINDLEFTSIDELONGESTSUFFIX(Is);

119: lsls < suUBSTR(ls, ls.length — [, 1);

120: if SEARCHPATTERNREVERSEINREFERENCEINDEX(F Myey, Lsls, sp, ep) then > sp and ep are output
parameters

121: > Find the factors whose suffixArrayPosition is included into the [sp,ep] interval

122: return [GETFACTORSINRANGE(reverseTree, sp, ep), l;

123: else

124: return [[],0];

125: end if

126: end function

127: > Returns a couple whose first element is a list of factors starting with the right side longest prefix
128: > and whose second element is the right side longest prefix length
129: function FINDRIGHTSIDEFACTORS(rs)

130: > Find the right side longest prefix (the longest right side prefix that occurs in the reference string)
131: l + FINDRIGHTSIDELONGESTPREFIX(Is);

132: rslp < SUBSTR(rs,0,1);

133: if SEARCHPATTERNINREFERENCEINDEX(F' M, rslp, sp, ep) then

134: > Retrieve the factors whose suffixArrayPosition is included into the [sp,ep] interval

135: return [GETFACTORSINRANGE( forwardTree, sp, ep), l];

136: else

137: return [[],0];

138: end if

139: end function

140: function FINDRIGHTSIDELONGESTPREFIX(rs)

141: > | omit the implementation details of this function: it simply scans backward the reverse index,
142: > starting from the first character of the right side and going on until a mismatch is found.

143: > Substantially the algorithm is the same used during sequence factorization

144: > The function returns the right side longest prefix length

145: end function

146: function FINDLEFTSIDELONGESTSUFFIX(Is)

147: > | omit the implementation details of this function: it simply scans backward the straight index,
148: > starting from the last character of the left side and going on until a mismatch is found.
149: > The function returns the left side longest suffix length

150: end function
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Algorithm 6 Pattern search algorithm (continued)

151: function SEARCHPATTERNINREFERENCEINDEX(F'M _index, pattern, sp, ep)

152: > | omit the implementation details of this function: it is a canonical backward search on the given FM-
index

1583: > It returns true if the search is successful, false otherwise.

154: > It returns also the [sp,ep] suffix array range corresponding to the pattern

155: end function

156: function SEARCHPATTERNREVERSEINREFERENCEINDEX(F' M _index, pattern, sp, ep)

157: > | omit the implementation details of this function: it is simply a backward search on the given FM-index,
but

158: > it starts from the first patterns character, goes forward to its second characters, and so on

159: > It returns true if the search is successful, false otherwise.

160: > It returns also the [sp,ep] suffix array range corresponding to the pattern

161: end function

3.3 Encrypted Referential Database

| detail in this section how several ER-indexes can be joined to form an Encrypted
Referential database, i.e. a unique encrypted multi-user database storing genomic informa-
tion about a set of individuals. | give first of all a formal definition of such a database and on
a second stage | explain some implementation details of my ER-database propotype.

Definition 3.3. Encrypted Referential Database Let = {1, ..., } be a set of [ individuals
and S = {s;;, |j€{1,...,22, X, Y}, k € {1..l}} be a set of sequences corresponding to
their chromosomes. Let moreover R = {R; | j € {1,...,22,X,Y}} be a set of reference

sequences for human chromosomes. An Encrypted Referential Database (abbreviated
ER-database) is a tuple
D={I,K,UER,P, RS}

where:
e [ ={iy,...,i} is a set of individuals;
e K = {ki,...,k;} is a set of symmetric encryption keys associated biunivocally to

those individuals;

e U = {uy,...,u,} is a set of users, each of which is allowed to access only to se-
guences related to a subset I’ of the individuals;

ERis a set consisting of an ER-index for each chromosome;

P is a relation between U and I, which indentifies the individuals to whose genomic
information each user is authorized to access;

R is the above described set of reference sequences.

| implemented the database D so that it could simply be hosted by a file system
directory, named the database root. The root directory contains a catalog.xml file which
contains the database catalog: it identifies all the individuals, the users and the reference
sequences involved with the database. Moreover, the root directory is articulated in different
subdirectories:

e references: it contains the reference sequences;
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e indexes: it contains the ER-indexes;

e security: it contains the key portfolio, informally the “bunch of keys”, of each
database user.

The key portfolio contains only the symmetric (Salsa20) encryption keys related to the in-
dividuals whose genomic information the user has been granted access; the portfolio is
handled with asymmetric encryption techniques and it is enciphered with the specific user’'s
public key so that only that user could decipher it using his/her private key.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Figure 3.3: ER-database: a simple scenario
User 1 can access only the individuals 1 and 2 genomes

3.4 Experimental results

In order to evaluate the ER-Index performance, | designed and built the prototype of
a small database management system: it can handle a test ER-database hosted by a file
system directory, as described in the previous section. The prototype was implemented in
C++11 language.

Moreover, in order to compare the performance of my prototype with a state of the art
software, | used the Sdsl C++ library: it implements some succint data structures usable to
construct self-indexes like Compressed Suffix Arrays (CSA) and wavelet tree FM-indexes,
but | had to extend the wavelet tree FM-index supplied by that library so that it was able to
manage collections of items and to report sequence-relative locations.

3.4.1 Experimental setup

In order to obtain a set of individual sequences on which to assess the prototype
performance, | built first of all the diploid consensus sequences related to chromosomes 20
and 11 of 50 individual genomes sequenced whithin the 1000 Genomes Project: to do this
| started from the respective BAM files and | used the samtools mpileup command,
combined with the bcftools and vefutils utilities.

On a second stage | did the encryption system set-up, and precisely I:

e randomly generated a 256 bit SALSA20 encryption key for each of the 50 individuals,
using the openssl rand command,
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e randomly generated a couple of RSA keys for each of the 10 users of the test database,
using the openssl genrsa and openssl rsa commands;

e generated the key portfolio of each user, adding to it some individual encryption keys
and ciphering it with the user’s public key.

3.4.2 Results

| carried out a series of ER-index construction and pattern search tests on 6 different
collections:

1. 20_FULL: the chromosome 20 sequences of the aforementioned 1000 Genomes
Project 50 individuals;

2. 20_1M B: the first 1 million bases of those sequences;
3. 20_5M B: the first 5 million bases of those sequences;

4. 11_FULL: the chromosome 11 sequences of the aforementioned 71000 Genomes
Project 50 individuals;

5. 11_1M B: the first 1 million bases of those sequences;
6. 11_5M B: the first 5 million bases of those sequences;

All tests were conducted on a small-size server equipped with an Intel(R) Xeon(R) CPU
E5-2697 v2 @ 2.70GHz processor and 180GB of RAM memory.

Figure 3.4 reports ER-index compression ratios, compared with those obtained using
the Sdsl library wavelet-tree FM-index: in all cases my index exhibits compression ratios
which are an order of magnitude smaller than those offered by Sdsl.

Table 3.4 shows that ER-index construction times are significantly lower than the Sdsl
indexes ones, despite the fact that ER-index implements data encryption: this noticeable
perfomance has been obtained parallelizing the factorization process so as to exploit the
multi-core hyper-threading architecture of modern processors. Note that the test machine
has only 24 cores: the speed-up could be greater on a higher-end machine, equipped with
more processor cores. The only case in which the Sdsl index exhibits a construction time
lower than my index is the 11_1MB collection, but it is not too significant, in that it relates to
a very small collection (its total size is only 50 Mbases).

20_1MB | 20 5MB | 20_FULL || 11_1MB | 11_5MB | 11_FULL
ER 11.38 33.74 455.7 2318 | 42.79 1005
Sdsl 20.08 132.1 2061 19.33 1549 5693

Table 3.4: Construction times (s)

Watching the results shown up to this point, | can affirm that ER-index outperforms
Sdsl FM-index both in compression ratio and in costruction times: it can store genomic
sequence collections in a compressed and encrypted format using less than 5% of the
original disk space and its construction time is compatible with the storage of large amounts
of data.

| show now some results regarding pattern search performance. For each of the
aforementioned collections, | carried out multiple search tests as follows:
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Figure 3.4: Compression ratios (a) on chromosome 20 collections and (b) on chromosome 11 col-

lections
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1. | built the ER-index;

2. for each pattern length pl € {20, 50, 100, 200,500}, | randomly selected a set of 500
patterns from the collection sequences;

3. for each pattern length:

(a) | opened the index, loading in memory only the index header;

(b) | searched for any of the 500 patterns, computing for each of them the search
time and the search time per occurrence;

(c) | computed means and medians of the 500 search times and search times per
occurrences;

(d) I closed the index.

Figure 3.5 shows pattern search performance on two quite big sequence collections,
20_FULL and 11_FULL, having respectively a total size of about 2.97 GiB and 6.4 GiB. For
both collections pattern search time decreases passing from length 20 to length 50: this
occurs because search time is proportional to the number of occurrences and patterns of
length 20 have many more occurrences than those of length 50. The length 50 forward,
mean time grows with pattern length: it is due to the algorithm adopted for external oc-
currences and in particular to the greater number of split points checked. However, this
behaviour could be noticeably improved using a multi-threaded approach to parallelize the
several split points operations, which are naturally independent from each others: this multi-
threading strategy has not yet been implemented in my software prototype.

Figure 3.5(b) shows the medians of pattern search times: they are significantly lower
than mean times showed in figure 3.5(a), cause of a 10-15% of outliers. These outliers
belong to 2 categories:

e the first one consists of really harder to search patterns, for two reasons:

1. they have a number occurrence much greater than other patterns of the same
length;

2. they span on many short factors and so the left or right side related to some
split points are very short strings: this can slow down the external occurrences
search algorithm;

e the second category simply consists of the first patterns elaborated after the index
file opening, when only a small amount of factorization and EB+ indexes blocks have
been loaded in memory.

Since pattern search times are proportional to the number of found occurrences, it is
appropriate to look at mean and median of search times per occurrence, reported in figure
3.6.

Figure 3.6(a) shows that mean search times per occurrence grow with pattern length,
starting from a few milliseconds for length 20 to a maximum of 190.622 ms for length 500
on 11_FULL; moreover mean search times does not exceed some tenth of a second per
occurrence on an encrypted and compressed 6.4 GiB collection, and it is really a very good
result.

Figure 3.6(b) shows instead that medium case performance is much better than worst
case: the median computation indeed exclude the above mentioned outliers and, apart from
them, times per occurrence start from some hundredth of a millisecond for small patterns to



CHAPTER 3 66

e =§—=11 FULL

—e—20 FULL

Pattern length

(a)
140

120

8

80

60 =11 FULL
)0 FULL

Search time (ms)

40

20

Pattern length

(b)

Figure 3.5: (a) Mean and (b) median of pattern search times on 20_FULL and 11_FULL collections
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some millisecond for length 500 patterns. Moreover the curves for the 2.97 GiB and 6.4 GiB
collections perfectly overlap, and this attests the scalability of my approach: the ER-index
can scale to bigger sequence collections without a significant loss in performance.
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At this point | compare the ER-index search performance with those exhibited by the
Sdsl library wavelet tree FM-index.

50
45
40
35
30
25

—@—ER-index
20

Search time (ms)

= Slsi
15

10

0 L]
20 50 100 200 500

Pattern length

(a)

35

25

=== ER-index
15

Search time (ms)
(%]

e 5050

05

L

20 50 100 200 500
Pattern length

(o)

Figure 3.7: (a) Mean and (b) median of ER-index and Sdsl library search times per occurrence on
the 20_FULL collection
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The Sdsl library index has a big issue: it requires to be entirely loaded in RAM before
searching, while my index loads in RAM the only needed blocks during search operations.
Therefore, in order to properly compare the two index models performance, | run an addi-
tional series of tests loading my indexes entirely in memory before starting pattern search
operations, although the ER-index has been designed to meet different needs.

Figure 3.7(a) shows that mean times per occurrences are very similar for small pat-
terns, but Sdsl exhibits better performance on large patterns; 3.7(b) shows even that for
small patterns, apart from the above mentioned outliers, ER-index performs better, while
Sdsl outperforms ER-index on larger patterns. However remember that:

1. Sdsl does not implement encryption;
2. Sdsl has an order of magnitude greater compression ratio respect to ER-index.

Finally, | can conclude that ER-index can store ciphered collections of genomic se-
quences in less than 1/20 of their original space, indexing them so to have great pattern
search performance, which in some cases are better than state of the art third-parties tools.

Morever, the pattern search times could be noticeably slow down for large patterns
with the help of multi-threading techniques, as search algorithms are well suited to be par-
allelized.

The implementation of such a multi-threading search strategy and the introduction of
inexact search operations are now under investigation and will be object of future develop-
ments.



Conclusions

This thesis gives a new contribution in the area of genomic sequences storage and
management: two encrypted and compressed self-index models designed to be the core
nucleus of big privacy-preserving genomic databases storage engines.

The first index model, named EFM-index, well suites to collections of lowly similar
data that require to be encrypted as a whole, using a single encryption key for each col-
lection: it exhibits optimal compression ratios and pattern search times both on a single
sequence and on sequence collections.

The second index model, named ER-index, was designed instead to handle col-
lections of highly similar sequences, like collections of human genomes: it exploits inter-
sequence redundancy to obtain better compression ratios and allows to store sequences
related to different individuals using different encryption keys within the same index. The
ER-index exhibits optimal exact pattern search performance, scales very well with respect
to data amount and so it naturally candidates to be used in the context of big multi-user
genomic databases.
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