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INTRODUCTION 
 

Effort estimation is a critical activity for planning and monitoring software project development and 

for delivering the product on time and within budget. Indeed, significant over or under-estimates 

expose a software project to several risks. As a matter of fact under-estimates could lead to addition 

of manpower to a late software project, making the project later (Brooks’s Law), or to the 

cancellation of activities, such as documentation and testing, negatively impacting on software 

quality and maintainability. Thus, the competitiveness of a software company heavily depends on 

the ability of its project managers to accurately predict in advance the effort required to develop 

software system. However, several challenges exists in making accurate estimates, e.g., the 

estimation is needed early in the software lifecycle, when few information about the project are 

available, or several factors can impact on project effort and these factors are usually specific for 

different production contexts. 

Several techniques have been proposed in the literature to support project managers in estimating 

software project development effort. 

To date, expert opinion is a commonly used estimation method and is still used by software and 

Web companies [66]. However, relying on the expertise of the company’s practitioners the results 

are less repeatable, being mainly based on subjective judgments [13]. Moreover, this made difficult 

to quantify and to determine those attributes that have been used to derive an estimate  [89]. 

To overcome this limitation, several techniques which rely on a more formal approach have been 

proposed. These include the application of some algorithms to a number of factors that influence the 

development cost, such as the size, to produce an estimate or a model providing the estimation in an 

objective way. COCOMO and COCOMO II are probably the best known generic methods [13]. 

They are based on a regression formula, with parameters that are derived from some historical 

project data and current project characteristics. They are generic methods that often need to be 

calibrated to local data to take into account the characteristics of the specific production context. 

Alternatively, a software company can construct its specific model (or estimation) using an 

estimation technique that takes as input the information coming from past projects. Usually the 

employed data consist of information about some relevant factors (named cost drivers) and the effort 
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actually spent by the company to develop prior projects. In this class of data-driven estimation 

techniques we can find Linear and Stepwise Regression [13][89] and some artificial intelligence 

techniques, such as Classification and Regression Tree (CART), Case-Based Reasoning (CBR), and 

Bayesian Networks (BN) [89]. 

In the last years the use of search-based (SB) approaches has been suggested to be employed as an 

effort estimation technique. These approaches include a variety of meta-heuristics, such as local 

search techniques (e.g., Hill Climbing, Tabu Search, Simulated Annealing) or Evolutionary 

Algorithms (e.g., Genetic Algorithms, Genetic Programming). They search for suitable solutions to 

problems characterized by large search space, using an objective function that gives an indication of 

how a solution is suitable for the problem under investigation. 

The generic nature of these meta-heuristics let them to be fruitful for different goals and issues, 

simply by redefining the solution representation and the objective function. As a matter of fact, in 

the last years there has been an explosion of researches on the use of SB techniques in many 

software engineering fields [55][56], giving rise to a very active field known as Search-Based 

Software Engineering (SBSE) [54]. The idea underlying the use of such techniques is based on the 

reformulation of software engineering problems as search or optimization problems whose goal is to 

find the most appropriate solutions that conform to some adequacy criteria (i.e., problem goals). In 

particular, the use of SB approaches in the context of effort estimation is twofold: they can be 

exploited to build effort estimation models or to enhance the use of other effort estimation 

techniques. In the first case the problem of building an estimation model is reformulated as an 

optimization problem where the SB method builds many possible models - exploiting past projects 

data - and tries to identify the best one, i.e., the one providing the most accurate estimates. In the 

second case, SB methods can be exploited in combination with other estimation techniques to 

improve critical steps of their application (e.g., features subset selection or the identification of 

critical parameters) aiming to obtain better estimates. 

The usage reported in the literature of the SB approaches for effort estimation have provided 

promising results that encourage further investigations. However, they can be considered 

preliminary studies [2]. As a matter of fact, the capabilities of these approaches were not fully 

exploited, either the employed empirical analyses did not consider the more recent recommendations 

on how to carry out this kind of empirical assessment in the effort estimation and in the SBSE  
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contexts [4][6][73][135]. The main aim of the PhD dissertation is to provide an insight on the use of 

SB techniques for the effort estimation trying to highlight strengths and weaknesses of these 

approaches for both the uses above mentioned. 

In particular, on the basis of the weakness highlighted in the state of the art, the research has been 

carried out aiming at answer the following questions: 

• How the design choices characterizing the use of the SB approaches impact on the 

performance of these techniques? 

• Are there any differences in the use of different SB techniques? 

• Are the SB techniques as effective as widely used effort estimation methods? 

• Are the SB techniques effective to improve the accuracy of other data-driven effort 

estimation techniques? 

In particular, as for the first question, an often overlooked aspect of research on computational 

search algorithms lies in the selection and tuning of the algorithmic parameters. Let us observe that a 

suitable setting is usually obtained via a trial-and-error process for each new problem to be 

addressed. As a matter of fact, in previous work the number of solutions and iterations of search-

based approaches was empirically determined carrying out a validation process with different values 

for these parameters and selecting the one providing the best results (see e.g., [42][43][44]). 

However, this practice is time consuming and it has to be repeated every time new data is used, thus 

limiting the adoption of search-based approaches by practitioners. To overcome this limitation we 

employed and assessed an heuristics originally suggested in [40] to set population size and 

generation number of a Genetic Algorithm. Moreover, special attention has been given to the role 

played by the use of different objective functions since this is the most important design choice to be 

made in the use of any SB technique. In particular, we experimented several objective functions 

based on both single and combined evaluation measures and assessed how the accuracy of GP and 

TS is affected by this choice. To answer the second question we designed and assessed the use of 

three different SB techniques, namely Hill Climbing, Tabu Search, and Genetic Programming, and 

compared them in terms of accuracy and cost-effectiveness. 
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To understand the actual effectiveness of SB effort estimation approaches, we compared them with 

baseline methods, such as the mean and median of effort, and some widely used effort estimation 

techniques, such as Manual Stepwise Regression (MSWR) [89] and Case-Based Reasoning (CBR) 

[122]. Indeed, if the investigated estimation method does not outperform the results achieved with 

these baseline methods it cannot be transferred to industry [89]. 

As for the last question, we employed SB techniques to configure Support Vector Regression (SVR) 

that is a new generation of Machine Learning algorithms that have turned out to be effective for 

effort estimation. Nevertheless, its prediction accuracy is heavily influenced by its parameter setting 

[25] and no general guidelines are available to select these parameters. Thus, we investigated the use 

of Tabu Search in combination with SVR to select the parameters of SVR to be employed for effort 

estimation. 

The research has been carried out to verify the effectiveness of the proposed techniques in a 

quantitative and reproducible way carrying out several empirical studies carefully taking into 

account the biases that might affect the obtained results (i.e., threats to validity). To this end we 

performed several empirical research following the guidelines proposed in [4][73][135].  

Preliminary results of this research have been published in 

[26][27][36][41][42][43][44][45][46][115]. 

 

Outline 
The thesis is structured as follows. Chapter 1 provides background on software development effort 

estimation and search-based approaches. Chapter 2 discusses the work carried out so far on the use 

of search-based approaches for software development effort estimation. Chapter 3 focuses on the 

definition and assessment of three search-based approaches (i.e., Hill Climbing, Tabu Search and 

Genetic Programming) to build effort estimation models reporting results concerning with their 

setting, effectiveness, and comparison. Chapter 4 presents the results of the empirical analysis 

aiming to assess the impact of using different objective functions with both Tabu Search and 

Genetic Programming. Chapter 5 focuses on the use of Tabu Search to configure a machine learning 

technique for effort estimation, namely Support Vector Regression. Final remarks conclude the 

thesis. 
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CHAPTER 1: Background 

 

1.1 Estimating Software Development Effort 
The prediction of software development effort plays a crucial role for the competitiveness of a 

software company and it is very important not only for the company that produces the software but 

also for its customers. Several benefits can be derived from an accurate estimate of software project 

development effort. Among them [13]: 

- the possibility of defining the appropriate software costs, thus obtaining the contracts for the 

development of the software projects; 

- the possibility of suitably planning/monitoring the project and allocate resources adequately, 

thus ensuring time to market and adequate software quality. 

Software development effort can be influenced by several factors, among them the size of the 

software is the main factor. Other factors are the skill and the experience of the subjects involved in 

the projects, the complexity of the software, the non functional requirements, the adopted software 

development process, etc. In the last decades, several approaches have been defined, which 

combine, in different ways, these factors by employing modeling techniques. A widely accepted 

taxonomy of estimation methods classified them in Non-Model Based and Model Methods [13]. 

While Non-Model Based Methods mainly take into account expert judgments (thus obtaining highly 

subjective evaluations), Model Based Methods involve the application of some algorithms to a 

number of factors to produce an effort estimation. These!approaches!use!data!from!past!projects,!
characterized! by! attributes! that! are! related! to! effort! (e.g.! the! size),! and! the! actual! effort! to!
develop!the!projects,!in!order!to!construct!a!model!that!is!used!to!estimate!the!effort!for!a!new!
project!under!development. 

Widely! employed!Model Based estimation!methods! are! Linear! Regression! (LR),! CaseBBased!
Reasoning! (CBR),! and! Classification! And! Regression! Tree! (CART)! [13][14][15][122].! Other!
novel!approaches!have!been!proposed!in!the!literature.!Any!new!approach!must!be!validated!
by!some!empirical!studies! in!order!to!verify! its!effectiveness,! i.e.,!whether or not the predicted 

efforts are useful estimations of the actual development efforts. To this aim historical datasets are 

employed. In order to ensure strength to the validation process, it is recommended that data coming 
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from the industrial world are employed. They can come from a single company or from several 

companies (cross-company datasets), such as the publicly available ISBSG repository that contains 

data from a great number of projects developed by companies around the world [64]. A technique 

that is widely employed to validate an estimation approach is cross-validation. One round of cross-

validation involves partitioning the dataset into two randomly complementary sets: the training set 

for model building and the test set (or validation set) for model evaluation [13]. To reduce 

variability, multiple rounds of cross-validation are performed using different partitions. The 

prediction accuracies are then averaged over the rounds. Several strategies have been proposed to 

obtain training and test sets. The k-fold cross validation suggests to partition the initial dataset of N 

observations in k randomly test sets of equal size, and then for each test set we have to consider the 

remaining observations as training set in order to build the estimation model. The leave-one-out 

cross-validation is widely used in the literature when dealing with small datasets (see, e.g. [14]). To 

apply the cross-validation, the original dataset of N observations is divided into N different subsets 

of training and validation sets, where each validation set has one project. Then, N steps are 

performed to get the predictions for the N validation sets. 

Another technique that is often exploited is the hold-out validation, where a subset of observations 

is chosen randomly from the initial dataset to form the training set, and the remaining observations 

compose the test set. Usually, about a third of the initial dataset is used as validation set. 

To assess the accuracy of the derived estimations some evaluation criteria are proposed in the 

literature. Among them several summary measures, like MMRE, MdMRE, and Pred(25) [22], are 

widely employed and considered de facto standard evaluation criteria. They are based on the 

evaluation of the residuals, i.e., the difference between the actual and estimated efforts. In the 

following, we will report the definitions of these summary measures taking into account a validation 

set of n elements. 

In order to take into account the error with respect to the actual effort, the Magnitude of Relative 

Error [22] is defined as!

EFreal - EFpred
MRE=

EFreal
!
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where EFreal and EFpred are the actual and the predicted efforts, respectively. MRE has to be 

calculated for each observation in the validation dataset. All the MRE values are aggregated across 

all the observations using the mean and the median, giving rise to the Mean of MRE (MMRE), and 

the Median MRE (MdMRE), where the latter is less sensitive to extreme values [98]. 

The Prediction at level l [22] is defined as 

kPred(l)=
n

 

where k is the number of observations whose MRE is less than or equal to l, and n is the total 

number of observations in the validation set. Generally, a value of 25 for the level l is chosen. In 

other words, Pred(25) is a quantification of the predictions whose error is less than 25%. According 

to Conte et al. [22], a good effort prediction model should have a MMRE≤0.25 and Pred(25)≥0.75, 

meaning that at least 75% of the predicted values should fall within 25% of their actual values. 

Kitchenham et al. [72] suggest also the use of the Magnitude of Relative Error relative to the 

Estimate (EMRE). The EMRE has the same form of MRE, but the denominator is the estimate, 

giving thus a stronger penalty to under-estimates:  

EMRE = EFreal – EFpred \ EFpred. 

 As with the MRE, we can also calculate the Mean of EMRE (MEMRE) and Median of EMRE  

(MdEMRE). 

Other summary measures less frequently used are the Balanced MMRE (BMMRE), the Mean 

Squared Error (MSE) [22] and the Adjusted Mean Square Error (AMSE) [16]. They are defined as 

follows: 

( )
100
n

n
i i

i=1 i i

EFreal - EFpred
BMMRE=

min EFreal ,EFpred
! "
# $# $
% &

∑  

∑
n

2

i=1

1MSE= (EFreal - EFpred)
n

 

2n
i i

i=1 i i

EFreal - EFpred
AMSE=

EFreal * EFpred∑  



F. Sarro 
Search-Based Approaches for Software Development Effort Estimation 

10 

 

where EFReali and EFpredi are the actual and the estimated efforts of the ith observation of the 

validation set and n is the number of observations in the validation set. 

Finally, in order to have an insight on the usefulness of a new method, its estimation accuracy is 

compared with the ones of other techniques. Several different benchmark methods are exploited to 

carry out such a comparison taking into account the above evaluation criteria. It is worth to noting 

that in the last years it has been widely recognized that the summary measures should be 

complemented by the analysis of boxplot of residuals and the comparisons among estimation 

techniques should be carried out by testing also the statistical significance of the absolute residuals. 

Such tests should be used to verify the following null hypothesis: “the considered populations of 

absolute residuals have identical distributions”, thus allowing us to assess if the differences exist due 

to chance alone or due to the fact that the samples are from different populations [72]. 

 

1.2 Search-Based Approaches for Effort Estimation 
On the basis of the observations in the previous section, it is clear that the problem of identifying an 

estimation method on the basis of historical data can be seen as the problem of finding an estimation 

method that minimise the residual values, i.e. the difference between the actual and predicted 

efforts. Thus, it can be seen as an optimisation problem and search-based approaches could be 

exploited to address it. As a matter of fact, in the last years Genetic Algorithms (GAs), which are 

based on the evolutionary ideas of natural selection [51], have been defined to estimate software 

development effort (e.g., [16][38][82][118]). At the same time, some other approaches have been 

proposed aiming to improve some existing techniques by suitably combining them with GA (e.g., 

[11][19][78][125]). 

In the following sections we describe the three search-based we employed in our work and in the 

next chapter we report on the most relevant empirical studies conducted to assess their effectiveness 

in estimating software development effort. 

 

1.2.1 Hill Climbing 

Hill climbing starts from a randomly chosen candidate solution. At each iteration, the elements of a 

set of ‘near neighbors’ to the current solution are considered. Just what constitutes a near neighbor is 
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problem specific, but typically neighbors are a ‘small mutation away’ from the current solution. A 

move is made to a neighbor that improves fitness. 

There are two choices: In next ascent hill climbing, the move is made to the first neighbour found to 

have an improved fitness. In steepest ascent hill climbing, the entire  neighborhood set is examined 

to find the neighbor that gives the greatest increase in fitness. If there is no fitter neighbor, then the 

search terminates and a (possibly local) maxima has been found. Figuratively speaking, a ‘hill’ in 

the search landscape close to the random starting point has been climbed. Clearly, the problem with 

the hill climbing approach is that the hill located by the algorithm may be a local maxima, and may 

be far poorer than a global maxima in the search space. For some landscapes, this is not a problem 

because repeatedly restarting the hill climb at a different locations may produce adequate results 

(this is known as multiple restart hill climbing). Despite the local maxima problem, hill climbing is a 

simple technique which is both easy to implement and surprisingly effective [57][103]. 

 

1.2.2 Tabu Search 

Tabu Search (TS) is a meta-heuristics search algorithm that can be used for solving optimization 

problems. The method was proposed originally by Glover to overcome some limitations of Local 

Search (LS) heuristics [50]. Indeed, while classical LS heuristics at each iteration constructs from a 

current solution i a next solution j and checks whether j is worse than i to determine if the search has 

to be stopped, a TS optimization step consists in creating from a current solution i a set of solutions 

N(i) (also called neighboring solutions) and selecting the best available one to continue the search. 

In particular, TS usually starts with a random solution and applies local transformations (i.e., moves) 

to the current solution i to create N(i). When no improving neighboring solution exists, TS allows 

for a climbing move, i.e., a temporary worsening move can be performed. The search terminates 

when a stopping condition is met (e.g., a maximum number of iteration is reached). To determine 

whether a solution is worse (or better) than another an objective function is employed. In order to 

prevent loops and to guide the search far from already visited portions of the search space, some 

moves can be classified as tabu which means that are forbidden. The tabu moves can be stored in a 

list, named Tabu List, of fixed or variable length following a short-term (i.e., moves leading to 

already visited solutions are stored) or a long-term memory strategy (i.e., moves that have been 

performed several times are stored). Since tabu moves sometimes may prohibit attractive solution or 
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may lead to an overall stagnation of the searching process [50], the so called aspiration criteria can 

be used to revoke the tabu status of a move. A common aspiration criterion allows for a tabu move if 

it results in a solution which has an objective value better than the current solution. 

To summarize, TS starting from a random solution, at each iteration explores a search space 

consisting of a set of moves. Such moves are often local transformations of the current solution and 

depend on the problem to be solved. Among these moves, the one that provides the best objective 

value and is not tabu or matches an aspiration criterion is selected to continue the search. 

Thus, to tailor the TS meta-heuristics to a given problem we have to perform the following choices: 

- define a representation of possible solutions and the way to generate the initial one; 

- define local transformations (i.e., moves) to be applied to the current solution for exploring the 

neighbor solutions; 

- choose a means to evaluate the neighborhood (i.e., an objective function), thus guiding the 

search in a suitable way; 

- define the Tabu list, the aspiration criteria, and the termination criteria. 

 

1.2.3 Genetic Algorithms 

Basically Genetic Algorithms (GAs) simulate the evolution of natural systems, emphasising the 

principles of survival of the strongest, first set by Charles Darwin. As such they represent an 

intelligent exploitation of a random search within a defined search space to solve a problem. Genetic 

Algorithms were first pioneered by John Holland in the 1960s [59]. Then they have been extensively 

studied, experimented, and applied in many fields in the world of science and practice. It is 

important to note that GA not only provides an alternative method to solving problems, but, in 

several cases, it consistently outperforms other traditional methods [51][54]. 

In the computer implementation of a genetic algorithm, a crucial role is played by the solution 

representation. In general a solution for the problem being solved is represented by a fixed length 

binary string, which is called chromosome (in analogy with the biological equivalent). Each solution 

is evaluated using a fitness function that gives an indication of its goodness. 

Despite of a number of variations, the elementary process of the genetic algorithm is the follows: (i) 

first a random initial population, i.e., a family of chromosome, is generated; (ii) then, a new 

population (i.e., generation) is created starting from the previous one by applying genetic operators 
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(e.g., crossover, mutation) to the best chromosomes (according to the fitness value); (iii) the second 

step is repeated until either the fitness of the best solution has converged or a certain number of 

generations have been made. The chromosome that gives the best solution in the final population is 

taken in order to define the best approximation to the optimum for the problem under investigation. 

The analysis of the process suggests that there are several key parameters that have to be determined 

for the application of GAs to any given optimisation problem [51][54]. In particular, the following 

issues have to be addressed: 

1. defining the way for encoding a solution and the number of solutions (i.e. population size). 

2. choosing the fitness function, to measure the goodness of a solution; 

3. defining the combination of genetic operators, to explore the search space; 

4. defining the stopping criteria. 
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CHAPTER 2: Literature Review 
 

Some investigations have been carried out so far on the use of SB approaches for effort estimation. 

These studies have provided promising results that encourage further investigations. However, they 

can be considered preliminary studies. As a matter of fact, the capabilities of SB approaches have 

not been fully exploited and often the empirical analyses have not taken into account the more 

recent recommendations on how to carry out this kind of empirical assessment in the effort 

estimation and in the SBSE contexts [4][6][73][135], as detailed in the follow. 

 

2.1 Empirical studies that investigated search based approaches to estimate 

software development effort 
Table 1 summarizes the main aspects (e.g., employed technique, dataset, validation method, and 

evaluation criteria) of the studies carried out so far to assess SB approaches for building effort 

estimation models.  

First of all we observe that all the previous studies [16][38][82][118] employed Genetic 

Programming (GP) and no attempts have been reported on the use of other SB techniques (e.g., the 

ones based on local-search), although they have many similarities but also distinguishing features. 

Moreover, each SB technique has specific design choices that may affect the performance of the 

method. As an example, for GP we have to choose the solution encoding, the fitness function (i.e., 

objective function), the strategy for creating the initial population, the operators for mating and 

survival selection, the crossover and mutation operators, and the stopping criteria. The choice of the 

objective function is common to all the SB techniques and represents one of the most critical step 

since such function guides the search towards suitable solutions. In the context of effort estimation 

this choice should be based on a measure of model accuracy. The studies carried out so far exploited 

two measures as fitness function, namely MMRE [16] [82] and MSE [38] [118]. However, several 

measures have been proposed to evaluate effort estimation accuracy and all of them could be 

exploited as objective function [53]. Nevertheless, the use of multiple criteria has not been 

investigated although there are recommendations on the use of several different accuracy measures 
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to carry out a more reliable evaluation of estimation models. The existing studies have neither fully 

investigated the impact of the other design choices such as the stopping criterion and its impact on 

the method convergence. 

 

Table 1.  Summary of the empirical studies that assessed SB approaches for building effort 

estimation models 

Reference Employed 

technique 

Case study 

Dataset 

Validation 

method 

Evaluation 

Criteria 

Benchmark 

Methods 

[16] GP with MMRE 

as fitness 

function 

Desharnais 

 

hold-out 

training set: 149 

test set: 15 

AMSE, MMRE, 

BMMRE, 

Pred(25) 

ANN, LR, CBR 

[38] GP with MSE 

as fitness 

function 

Academic 

projects 

hold-out 

training set: 30 

test set: 16 

MMRE, Pred(25) LR, ANN 

[82] GP with MMRE 

as fitness 

function 

Finnish hold-out 

training set: 63 

test set: 18 

AMSE, MMRE 

BMMRE, 

Pred(25) 

ANN, LR, CBR 

[118] GP with MSE 

as fitness 

function 

ISBSG hold-out 

training test: 

211 

test set: 212 

MMRE, Pred(25) 

Pred(50), MSE 

LR 

 

Concerning the empirical analyses, all the studies employed only one dataset thus affecting their 

external validity. Moreover, a hold-out validation was applied, where the dataset is split into a 

training set used to build the estimation model and a test used to validate it. Unfortunately this 

procedure can be biased since the prediction performance may depend on how the dataset is split. 

Regarding the evaluation criteria only summary measures were employed: in particular MMRE and 

Pred(25) in all the case studies, and in some cases also MSE, AMSE, BMMRE, and Pred(50). 

As for the benchmarks, useful to understand the actual effectiveness of the proposed approach, all 

the case studies employed several estimation methods, such as Linear Regression (LR) and Case-

Base Reasoning (CBR). However, often there is a lack of details about their application. As for 
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example, studies that employed LR did not state if the underlying assumptions were verified [71] 

while this aspect is crucial for the internal validity of the empirical study. 

Finally, little attention has been given by previous studies to the random variation in results due to 

the non-deterministic nature of SB techniques: indeed, very few executions were performed and 

often only results related to the best execution were reported, thus affecting the conclusion validity 

of these case studies. 

In the following, we provide some more details for each proposal, highlighting the validation results. 

 

Dolado [38] was the first to employ an evolutionary approach in order to automatically derive 

equations alternative to multiple linear regression. The aim was to compare the linear equations with 

those obtained automatically. The proposed algorithm was run a minimum of 15 times and each run 

had an initial population of 25 equations. Even if in each run the number of generation varied, the 

best results were obtained with three to five generations (as reported in the literature, usually more 

generations are used) and by using MSE as fitness function. As dataset, 46 projects developed by 

academic students (using Informix-4GL) were exploited through a hold-out validation. It is worth 

noting that the main goal of Dolado work was not the assessment of evolutionary algorithms but the 

validation of the component-based method for software sizing. However, he observed that the 

investigated algorithm provided similar or better values than regression equations. 

 

Burgess and Lefley [16] performed a case study using the Desharnais dataset [33] to compare the 

use of genetic algorithms for estimating software development effort with other techniques, such as 

LR, CBR, and ANN (Artificial Neural Networks). The comparison was carried out with respect 

three dimensions, namely estimation accuracy, transparency, and ease of configuration. The settings 

they used for the employed genetic algorithm were: an initial population of 1000, 500 generations, 

10 executions, and a fitness function designed to minimize MMRE. They compared the accuracy of 

the analysed estimation techniques by taking into account summary statistics based on MRE, 

namely MMRE, Pred(25), BMMRE, and AMSE.! Even if GP did not outperform the other 

techniques the results were promising and Burgess and Lefley suggested that a better set up of the 

evolutionary algorithm could improve the accuracy of the estimations. In particular they highlighted 
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that the use of a fitness function specifically tied to optimize one particular measure could degrade 

the other evaluation measures. As a matter of fact GA obtained the best estimates in terms of 

MMRE and the worst in terms of the other summary measures AMSE, Pred(25), BMMRE. As for 

the transparency of the solution, the authors highlighted that widely used techniques such as LR and 

CBR allowed the user to have a deep insight on the problem making explicit any information about 

the contribution of each variables in the prediction model and the degree of similarity to the target 

project respectively. GAs also produced transparent solution because the solution is an algebraic 

expression, while neural networks did not make explicit any information. As for the ease of 

configuration, i.e. the effort required to build the prediction system, LR and CBR were easy to use 

because are widely used method often well supported by tool [122]. Neural networks and GA 

approaches required instead some effort to choose appropriate values for control parameters because 

different settings may be lead to different results. 

 

Successively, Shepperd and Lefley  [82] also assessed the effectiveness of an evolutionary approach 

and compared it with several estimation techniques such as LR, ANN, and CBR. As for genetic 

algorithm setting, they applied the same choice of Burgess and Lefley[16], while a different dataset 

was exploited. This dataset is refereed as “Finnish Dataset” and included 407 observations and 90 

features, obtained from many organizations. After a data analysis, a training set of 149 observations 

and a test set of 15 observations were used for a hold-out validation. Even if the results revealed that 

there was not a method that provided better estimations than the others, the evolutionary approach 

performed consistently well. In particular the proposed approach applied on general company wide 

data obtained the best results in terms of AMSE, MMRE and Pred(25), while on the company 

specific dataset the best results were achieved only in terms of MMRE and BMMRE. However, the 

authors again observed that the algorithm was quite hard to configure and companies have to weigh 

the complexity of the algorithm against the small increases in accuracy to decide whether to use it to 

estimate development effort [82]. 

 

An evolutionary computation method, named Grammar Guided Genetic Programming (GGGP), was 

proposed in [118] to overcome some limitations of GAs, with the aim of improving the estimation of 

the software development effort. Indeed they proposed to use grammars in order to impose 
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syntactical constraints and incorporate background knowledge aiming to guide the evolutionary 

process in finding optimal or near-optimal results. Data of software projects from ISBSG [64] 

database was used to build the estimation models using GGGP and LR. The fitness function was 

designed to minimize MSE, an initial population of 1000 was chosen, the maximum number of 

generations was 200, and the number of executions was 5. The models were built and validated 

performing a hold-out validation with training and test sets of the same size. The results revealed 

that GPPP performed better than Linear Regression on all the exploited evaluation criteria, not just 

on the MSE, the criterion that was used as fitness function. 

 

2.2  Empirical studies that investigated search based approaches to improve the 

effectiveness of existing estimation techniques 
Despite some efforts have been made to improve the estimation performance of existing estimation 

techniques combining them with genetic algorithms, many of the above limitations can be found 

also in the studies that assessed the use of SB approaches to improve existing effort estimation 

techniques [5][11][19][61][78][83]. As we can observe from Table 2, all the studies exploited 

Genetic Algorithms.  

In particular, three of the six proposed approaches combines GA with CBR, the other ones combine 

GA with less frequently used techniques, such as Artificial Neural Networks (ANN), Support Vector 

Regression (SVR) and Gray Relational Analysis (GRA). To evaluate the goodness of a solution two 

settings exploited a combination of MMRE and Pred(25) as fitness function and three settings used a 

fitness function based only on MMRE. Only one setting used MSE values as fitness function.  

As for the empirical studies carried out to assess the above proposals, we can observe that all the 

case studies employed industrial dataset and several validation methods were applied, such as k-fold 

cross-validation [19][61][125], leave-one-out cross-validation [11][78] and hold-out validation [83]. 

Almost all case studies employed the summary measures MMRE, MdMRE, and Pred(25) to 

evaluate the accuracy of the obtained estimates. Only one case study used a statistical significance 

test to evaluate the residuals, i.e. the difference between actual and predicted effort. Several 

estimation methods are employed as benchmark in each case study, ranging from widely used 
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techniques, such as COCOMO, CBR, CART, and LR, to less frequently used techniques (e.g. GRA, 

SVR, ANN and its variants).  

In the following we provide a brief description for each proposal. 

 

Table 2.  Summary of the empirical studies that assessed the use of SB approaches in combination 

with existing estimation methods 

Reference Employed 

technique 

Case study 

Dataset 

Validation 

Method 

Evaluation 

Criteria 

Benchmark 

Methods 

[11] GA+SVR 

with MMRE and 

Pred(25) as fitness 

function 

Desharnais 

and NASA 

leave-one-out 

 

MMRE, 

Pred(25) 

SVR 

[19] GA+CBR 

with MMRE and 

Pred(25) as fitness 

function 

Canadian 

Financial service 

and IBM DP 

 

3-fold 

 

MMRE, 

MdMRE, 

Pred(25) 

OLSR, 

ANN, CART 

[83] GA+CBR 

with MMRE as 

fitness function 

Desharnais, 

Albrecht, and 

two artificial 

datasets 

hold-out 

 

MMRE, 

MdMRE, 

Pred(25) 

CBR, SVR, 

ANN, CART 

[78]  GA+CBR 

with MMRE as 

fitness function 

Albrecht, 

COCOMO, 

and ER 

leave-one-out 

 

MMRE, 

MdMRE, 

Pred(25) 

COCOMO, NN, 

LR, GRA, CBR, 

CART 

[61] GA+GRA 

with MMRE as 

fitness function 

Albrecht 

and COCOMO 

3-fold MMRE, 

Pred(25) 

CBR, ANN, 

CART 

[5] GA+NN 

with MSE as 

fitness function 

78 software 

projects 

hold-out (n 

times) 

training sets: 63 

test sets: 15 

Student’s t-

test 

Regression Tree NN. 

Back-Propagation 

NN, 

Quick Propagation 

NN 
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The first attempt to combine evolutionary approaches with an existing effort estimation technique 

was made by Shukla [125] applying genetic algorithms to Neural Networks (NN) predictor (namely, 

neuro-genetic approach, GANN) in order to improve its estimation capability. In particular, in the 

proposed approach the role played by NN was learning the correlation that exists between project 

features and actual effort and also learning any existing correlations among the predictor variables, 

while the GA had to minimize MSE values. The proposed case study exploited as dataset 

information from 78 software projects, obtained from the combination of the COCOMO [9] and the 

Kemerer [68] datasets and a statistical significance test was employed to assess whether the neuro-

genetic approach provided significant improvement respect of common used AI-oriented methods 

[127][111][108]. In particular the employed Student’s t-test revealed that the mean prediction error 

for GANN is less to that for CARTX and less to that for Quick Propagation trained NN [108]. These 

results showed that GANN obtained significantly better prediction than CARTX and QPNN. It is 

worth to nothing that the authors highlighted that the employed chromosome encoding played a 

crucial role in the NN predictor system and that a number of experiments were needed to determine 

a suitable choose. 

 

Recently, Chiu and Huang applied GA to another AI-based method such Case-Based Reasoning 

obtaining interesting results [19]. In particular, GA was adopted to adjust the reused effort obtained 

by considering similarity distances between pairs of software projects. As for the application of 

CBR, three similarity distances were considered, Euclidean, Minkowski, and Manhattan distances, 

and a linear equation was used to adjust the reused effort. As for the application of GA, the 

population included 10*V chromosomes and the generation was stopped after 1000*V trials, or 

when the best results did not change after 100*V trials, where V is the number of variables that GA 

explored. The performed case study exploited two industrial datasets [1][85] of 23 and 21 

observations respectively and the results based on the MMRE, Pred(25) and MdMRE evaluation 

criteria revealed that the adjustment of the reused effort obtained by applying GA improved the 

estimations of CBR even if the achieved accuracy did not satisfy threshold proposed by Conte et al. 

[22]. As a matter of fact applying the proposed approach on the IBM DP service [85] dataset an 

improvement of 58% and 126% is reached in terms of MMRE and Pred(25) respectively, but the 

obtained values were far enough from the proposed threshold (i.e. MMRE=0.52, Pred(25)=0.43). 
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Furthermore, the proposed approaches was also comparable with the models obtained by applying 

traditional techniques such as ordinary least square regression (OLS), CART and ANN, on both the 

exploited datasets. 

!

In [83] it was also proposed a combination of evolutionary approach with CBR aiming at exploiting 

genetic algorithms to simultaneously optimize the selection of the feature weights and projects. The 

proposed GA worked on a population of 10*V chromosomes and explored the solution space to 

minimize MMRE value by considering 1000*V evolutions, where V is the number of variables. As 

for CBR method the authors exploited several combinations of similarity measures, K value, and 

solution functions. The performed case study employed a hold-out validation on two industrial 

datasets [3][33] and two artificial datasets. The obtained estimates were compared with those 

achieved by applying only CBR and the results showed that the use of GA can provide significantly 

better estimations even if there was no clear conclusion about the influence of similarity and 

solution functions on the method performance. It is worth to nothing that on the Desharnais [33] 

[48] and Albrecht [3] dataset the accuracies of the obtained estimates did not satisfy the threshold 

proposed by Conte et al. [22], while this was true for the results obtained applying the proposed 

approach on the two artificial datasets. 

 

GA was also used to improve the accuracy of an effort estimation model built by combining social 

choice and analogy-based approaches [78]. In particular, voting rules were used to rank projects 

determining similar projects and GA was employed to find suitable weights to be associated to the 

project attributes. To this end, a weight between 0 and 99 was assigned to each attribute and GA 

started with a population of 2000 random weight vectors. By exploiting error based on summary 

measures, the proposed GA searched through 1000 generations an optimal assignment for the 

weights. The validation of the obtained weighted model was performed with a leave-one-out 

approach by considering as dataset those used in [3], [8], and [9]. The accuracy of the proposed 

model was compared with that obtained by applying other estimation techniques, such as LR, ANN, 

CART, COCOMO, and GRA. The results revealed that the proposed approach provided the best 

value for Pred(25) but the worst MMRE value with respect to the other techniques. 
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Finally, we report on two case studies carried out to investigate the combination of GA with 

techniques not frequently employed for effort estimation. Braga et al. [11] exploited the use of GAs 

with Support Vector Regression (SVR) [28], a machine learning techniques based on statistical 

learning theory, building a regression model employed to predict effort of novel projects on the 

basis of historical data. In particular they exploited a GA previously used to solve classification 

problems [62] to address the problems of feature selection and SVR [28] parameters optimization 

aiming to obtain better software effort estimations. The proposed GA started with a population of 

500 chromosomes and used roulette wheel selection, two-point crossover, mutation, and elitism 

replacement to create 25 generations. A combination of MMRE and Pred(25) is used as fitness 

function. To evaluate the proposed method they used two datasets, namely Desharnais [33] and 

NASA [107][124], and performed 10 runs for each dataset. The results showed that the proposed 

GA-based approach was able to improve the performance of SVR and outperformed some recent 

results reported in the literature [10][12][107][124]. It is worth nothing to note that the results 

obtained applying the proposed approach on NASA dataset satisfied the threshold proposed by 

Conte et al. [22]. On the other hand applying the same method on Desharnais dataset the obtained 

MMRE value is not less than 0.25, while the Pred(25) is greater than 0.75. 

 

Chiu and Huang in [61] integrated a GA to the Grey Relational Analysis (GRA) [32] method to 

build a formal software estimation method. Since GRA is a problem-solving method that is used to 

deal with similarity measures of complex relations, the GA was adopted in the GRA learning 

process to find the best fit of weights for each software effort driver in the similarity measures. To 

this end the weights of each effort driver were encoded in a chromosome and the MMRE was the 

value to be optimized. A case study was performed by exploiting the COCOMO [9] and the 

Albrecht [3] datasets and the experimental results showed that when GA was applied to the former 

dataset the accuracies of the obtained estimates outperformed those obtained using CBR, CART, 

and ANN, while on Albrecht dataset all the exploited methods achieved a comparable accuracy. In 

both cases the accuracy obtained applying the proposed approach did not satisfy the thresholds 

proposed by Conte et al. [22]. 
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CHAPTER 3: Using Search-based Approaches for Building Effort 

Estimation Models 

 
In the last decades, several methods have been proposed to estimate software development effort, 

among them data-driven methods exploit data from past projects to estimate the effort for a new 

project under development [14][15]. These data consist of information about some relevant factors 

(named cost drivers) and the effort actually spent to develop the projects. Usually a data-driven 

method tries to explain the relation between effort and cost drivers building an estimation model 

(equation) that is used to estimate the effort for a new project. Linear (StepWise) Regression [13] is 

a well known and widely used data-driven approach. Also search-based methods have been 

suggested to build effort estimation models [54]. The suggestion is based on the observation that, 

among possible estimation models, we have to identify the best one, i.e., the one providing the most 

accurate estimates. Thus, the effort estimation problem can be formulated as an optimization 

problem that can be addressed by search-based methods. Indeed, these meta-heuristics are able to 

find optimal or near optimal solutions to problems characterized by large space, using an objective 

function that gives an indication of how a solution is suitable for the problem under investigation. 

Examples of search-based methods are Simulated Annealing (SA), Tabu Search (TS), Hill Climbing 

(HC), Genetic Algorithms (GA) and Genetic Programming (GP), which differ under several aspects 

including the kind of employed search (local or global). 

Some investigations have been reported in the literature on the use of search-based techniques for 

effort estimation. They showed some potentialities of these metaheuristics to build accurate 

estimation models as well as some difficulties to adopt them mainly related to the interpretation of 

solutions and the choice of a suitable setting. Nevertheless those previous studies mainly focused on 

Genetic Programming, a global search technique inspired by biological evolution [16][38][82][118]. 

Local search approaches, e.g., TS, have been investigated only in few preliminary studies [42][44]. 

In this paper we deepen the analysis of these metaheuristics from the point of view of their settings 

and the empirical assessment of their predictive capability. As for the setting, differently from 

previous works where it was adopted a time consuming trial-and-error process to set search-based 

approach parameters (e.g., number of moves and iterations for TS), in the present study we 
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employed an heuristics which relates those parameters to the problem size and assessed its 

effectiveness by comparing it with five configurations varying for the number of solutions and 

iterations exploited. Moreover, we employed as objective function the sum of squared residuals 

(SSR) (also named sum of squared errors of prediction (SSE)) since we compared the results 

achieved with GP, TS, and HC with Linear (StepWise) regression which exploits SSR to fit data.  

Regarding the empirical assessment, let us observe that almost all previous studies employed only 

one dataset with a hold-out validation thus affecting both external and internal validity. In the 

present work, we assessed three search-based approaches, namely HC, TS, and GP, exploiting seven 

publicly available datasets (i.e., China, Desharnais, Finnish, Miyazaki, Kemerer, Maxweel, and 

Telecom) and performing a 3-fold cross validation. These datasets represent an interesting sample of 

industrial software projects containing both single- and cross-company data which vary for size, 

application domains, and project characteristics. Moreover, to assess the effectiveness of the three 

approaches we first compared them with respect to different baseline benchmarks (i.e., random 

search, mean and median of effort about past projects) since if they do not outperform the results 

achieved with simpler methods it cannot be transferred to industry [97]. Then, aiming to verify if 

HC, TS, and GP provide at least comparable results with respect to estimation techniques widely 

used in the literature and in industry, we considered as benchmark Manual StepWise Regression 

(MSWR). 

The estimates obtained with the employed techniques were evaluated and compared by exploiting 

SSR and statistical tests on squared residuals [72]. 

The remainder of the chapter is organized as follows. In Section 3.1 we provide a description of the 

three applied search-based approaches, showing the employed setting. In Section 3.2 we describe 

the experimental method we exploited to assess and compare the prediction accuracy of HC, TS, and 

GP. The results of the empirical analysis are reported and discussed in Section 3.3, while Section 3.4 

discusses the factors that can bias the validity of empirical studies. 

 

3.1 Designing Search-based Approaches for building effort estimation models 
Search-based methods are a set of algorithms that search for optimal or near optimal solutions to 

problems characterized by large space, using an objective function that indicates how a solution is 

suitable for the problem under investigation. 
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The idea of exploiting these methods to estimate software development effort is based on the 

observation that the effort estimation problem can be formulated as an optimization problem. As a 

matter of fact, among possible estimation models (equations), we have to identify the one that leads 

to the best predictions. 

In order to have a better insight on search-based methods in our analysis we exploited three 

methods, HC, TS, and GP that have complementary characteristics. Indeed, HC and TS are local 

search-based methods, while GP follows a global search. This means that HC and TS are more 

exploitation oriented being designed to intensify the search in local regions, on the contrary GP is 

more exploration oriented allowing for a better diversification in the whole search space. 

Some background on these three methods have been provided in Chapter 1, while in this section we 

present how we designed the HC, TS and GP for tying them to software development effort 

estimation. 

In the context of effort estimation, a solution consists of an estimation model described by an 

equation that combines several factors, i.e., 

                   Effort = c1 op1 f1 op2 ... op2n−2 cn op2n−1 fn op2n C   (1) 

where fi represents the value of the i-th project feature and ci is its coefficient, C represents a 

constant, while opi ∈{+, −, ·, ln, ^} represents the i-th mathematical operator of the model. It is 

worth noting that the equations feasible for the effort estimation problem are those providing 

positive value for Effort. 

The fitness function guides the search for the best estimation model. In the context of effort 

estimation such function should be able to determine whether a model leads to better predictions 

than another. In the literature several accuracy measures have been proposed to compare effort 

estimation models and each of them could be employed as objective function. In previous works 

[44][45], different designs have been experimented employing different accuracy measures 

revealing there was no significant difference in the results achieved with different objective 

functions except for Mean MRE [22] and Mean of EMRE [72] which should be avoided since they 

provided significantly worse predictions than other functions. Thus, in this work we employ SSR as 

objective function that is at the basis of MSWR, allowing a fair comparison with this benchmark. 

The same number of solutions and iterations characterizes all the SB approaches we employed. Let 

us observe that a suitable setting is usually obtained via a trial-and-error process for each new 

problem to be addressed. As a matter of fact, in previous work [42][44] the number of solutions and 
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iterations was empirically determined carrying out a validation process with different values for 

these parameters and selecting the one providing the best results. However, this practice is time 

consuming and it has to be repeated every time new data is used, thus limiting the adoption of such 

technique and in general of search-based approaches by practitioners. To overcome this limitation in 

the present paper we employed a heuristics originally suggested in [40] to set population size and 

generation number of a genetic algorithm employed for software clustering. The same heuristics has 

been successively adopted for setting GA in the context of effort estimation [19][61] and we 

employed it in this work also with HC and TS. In particular, given a project dataset containing V 

features, we set to 10V the number of solutions (i.e., neighbors for TS and HC), to V the Tabu List 

size, and stop the search after 1000V iterations or if the objective value of the best solution does not 

change in the last 100V iterations. Thus such heuristics allowed us to adapt the search process to the 

size of the problem under investigation. 

Finally, let us observe that since search-based approaches do not give the same solution each time it 

is executed, we performed 30 runs and we retained as final results the average SSR values obtained 

in the 30 runs. 

3.1.1 Setting of Hill Climbing and Tabu Search 

As for the move employed in HC and TS to obtain a neighboring solution we applied the following 

steps to the current solution S: 

• change each coefficient ci of S with probability 1/2. The new coefficient ci is calculated as 

follows:  ci' = f(ci , r) where f  ∈  {+,-,*,/,^,ln} and r is randomly chosen in the range ]0,1]; 

• change the constant factor C of S with probability 1/2, in the same way coefficients are 

changed; 

• change each arithmetic operator opi of S with probability 1/2. 

As for the design of TS, we employed as Tabu List a short-term strategy to store the moves leading 

to the most recent already visited solutions and the following aspiration criteria: a tabu move is 

allowed only if it results in a solution with an objective function value better than the one of the best 

solution reached so far. 
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3.1.2 Setting of Genetic Programming 

The initial population is generated by building random trees of fixed depth. As for the evolutionary 

process we employed two widely used selection operators, i.e., roulette wheel selector and 

tournament selector [80], whereas the crossover and mutation operators are specific for our solution 

encoding. In particular, we used the roulette wheel selector to choose the individuals for 

reproduction, while we employed the tournament selector to determine the individuals that are 

included in the next generation (i.e., survivals). The former assigns a roulette slice to each 

chromosome according to its fitness value. In this way, even if candidate solutions with a higher 

fitness have more chance to be selected, there is still a chance that they may be not. On the contrary, 

using the tournament selector only the best n solutions (usually n in [1, 10]) are copied straight into 

the next generation. Crossover and mutation operators were defined to preserve well-formed 

equations in all offspring. To this end, we used a single point crossover which randomly selects in 

each tree a node placed at the same depth and swaps the subtrees corresponding to the selected 

point. Since the two trees are cut at the same point, the trees resulting after the swapping have the 

same depth as compared to those of parent trees. Concerning the mutation, we employed an operator 

that selects a node of the tree and randomly changes the associated value. The mutation can affect 

internal node (i.e., operators) or leaves (i.e., coefficients) of the tree. In particular, when the 

mutation involves internal node, a new operator opi' in {{+,-,*,^,ln} - opi} is randomly generated 

and assigned to the node, while if the mutation involves a leaf a new coefficient ci' in R is assigned 

to the node. It is worth noting that the employed mutation preserves the syntactic structure of the 

equation. Crossover and mutation rate were fixed to 0.5 and 0.1, respectively. 

 

3.2 Empirical Study Design 
In this section we present the design of the empirical study we carried out to assess the effectiveness 

of the proposed HC, TS, and GP for estimating software development effort. In particular the 

research questions of our study can be outlined as follows: 

RQ1 Are there any differences in the accuracy of the predictions achieved with different 

settings? 
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RQ2 Is it possible to identify a suitable heuristics to configure the considered search-based 

approaches? 

RQ3 Are there any differences in the accuracy of the predictions achieved using different 

search-based approaches? 

RQ4 Do the considered search-based approaches provide significantly better prediction 

accuracy than those obtained by employing baseline benchmarks? 

RQ5 Do the considered search-based approaches provide prediction accuracy at least 

comparable with those provided by MSWR? 

The fact that an overlooked aspect of research on computational search algorithms lies in the 

selection and tuning of the algorithmic parameters motivated us to investigate RQ1 and RQ2. Let us 

observe that a suitable setting is usually obtained via a trial-and-error process for each new problem 

to be addressed. As a matter of fact, in previous work (see e.g., [16][38]) the number of moves and 

iterations was empirically determined carrying out a validation process with different values for 

these parameters and selecting the one providing the best results. However, this practice is time 

consuming and it has to be repeated every time new data is used, thus limiting the adoption of such 

technique and in general of search-based approaches by practitioners. To overcome this limitation in 

the present paper we employed a heuristics originally suggested in [40] to set population size and 

generation number of a genetic algorithm employed for software clustering. The same heuristics was 

successively adopted for setting genetic algorithms in the context of effort estimation [45][62][61] 

and in this work we extended it to work also with TS. In particular, given a project dataset 

containing V features, we set to 10V  the number of iterations, to V  the Tabu List size (in case of 

TS), and stop the search after 1000V  iterations or if the objective value of the best solution does not 

change in the last 100V iterations (in case of GP and TS). Thus such heuristics allowed us to adapt 

the search process to the size of the problem under investigation. To assess the effectiveness of the 

proposed heuristics we compared it with respect to the use of five different configurations 

characterized by very small, small, medium, large, and very large values for solutions as detailed in 

Table 3. All configurations were allowed an identical budget of objective function evaluations 

(250,000), thereby ensuring that all require the same computational effort, though they may differ in 

parameter settings. On the other hand the “search budget” required by the heuristics is at most 

10V*100V evaluations due to the two different stopping criteria employed. In particular we 

answered to the following questions: 
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RQ1a Are there any differences in the accuracy of the predictions achieved by HC 

configured with the settings VS, S, M, L, VL? 

RQ1b Are there any differences in the accuracy of the predictions achieved by TS 

configured with the settings VS, S, M, L, VL? 

RQ1c Are there any differences in the accuracy of the predictions achieved by GP 

configured with the settings VS, S, M, L, VL? 

RQ2a Is the prediction accuracy obtained with the Heuristics based setting comparable with 

those achieved with the other settings for HC? 

RQ2b Is the prediction accuracy obtained with the Heuristics based setting comparable with 

those achieved with the other settings for TS? 

RQ2c Is the prediction accuracy obtained with the Heuristics based setting comparable with 

those achieved with the other settings for GP? 

 

Table 3. Settings employed for HC, TS, and GP 

Configuration Number of Solutions Number of Iterations 
Tabu List Size   

(applicable only for TS) 

Very Small 50 5000 5 

Small 100 2500 10 

Medium 200 1250 20 

Large 500 500 50 

Very Large 1000 250 100 

Heuristic 10V 1000V || 100V ? BestFitness constant V 

 

RQ3 has been motivated by the fact that all previous work [16][38][82][118] exploited Genetic 

Programming (GP) to build effort estimation models. However, there exist different search-based 

methods that have complementary characteristics. In order to have a better insight on search-based 

methods in our analysis we compared three search-based methods, namely HC, TS, and GP. Indeed, 

HC and TS are local search-based methods, thus are more exploitation oriented, while GP follows a 

global search being more exploration oriented. In particular we answered to the following questions: 

RQ3a Is the prediction accuracy provided by TS superior to the one provided by HC? 

RQ3b Is the prediction accuracy provided by GP superior to the one provided by HC? 
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RQ3c Is the prediction accuracy provided by TS superior to the one provided by GP? 

Once we assessed whether there are differences in using different search-based techniques, we 

compared their performance with respect to the ones of different baseline benchmarks (RQ3), since 

if they do not outperform the results achieved with these baseline methods they cannot be 

transferred to industry [97]. To this end we considered the following baseline techniques: 

• Random: the same number of solutions investigated by the three search-based approaches 

was generated in a totally random fashion and the best one among them was selected 

according to the same criterion employed for HC, TS, and GP. This is a natural ``sanity 

check'' when using meta-heuristics search techniques. 

• Mean (Median) Effort: the mean (median) of the past project efforts is used as predicted 

effort for a new project. These are popular and simple baseline benchmarks for effort 

estimation techniques. 

In particular, to address RQ4 we answered to the following questions: 

RQ4a Is the prediction accuracy provided by HC superior to the one provided by Random, 

Mean Effort, and Median Effort? 

RQ4b Is the prediction accuracy provided by TS superior to the one provided by Random, 

Mean Effort, and Median Effort? 

RQ4c Is the prediction accuracy provided by GP superior to the one provided by Random, 

Mean Effort, and Median Effort? 

Once we verified the usefulness of the employed search-based techniques comparing them with 

baseline benchmarks, we assessed if they are also effective. Indeed, RQ5 aimed to verify if the 

search-based approaches that have been revealed superior to the baseline benchmarks provide 

prediction accuracy at least comparable with the one of the technique widely used in the literature 

and in industry, namely Manual StepWise Regression (MSWR). MSWR is a regression technique 

proposed by Mendes and Kitchenham [97] whereby an equation (i.e., the prediction model) is built 

and represents the relationship between independent (e.g., Team Experience, Function Points) and 

dependent variables (e.g., effort expressed in person/hours). This technique builds the prediction 

model by adding, at each stage, the independent variable with the highest association to the 

dependent variable, taking into account all variables currently in the model. It aims to find the set of 

independent variables (predictors) that best explain the variation in the dependent variable 
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(response). To apply MSWR we followed the guidelines provided in [76][97] including the 

verification of the assumptions underlying linear regression. In particular, to address RQ5 we 

answered to the following questions: 

RQ5a Does TS provide prediction accuracy at least comparable with MSWR? 

RQ5b Does GP provide prediction accuracy at least comparable with MSWR? 

In the following we present the datasets, the validation method, and the evaluation criteria employed 

in our empirical analysis. 

 

3.2.1 Dataset 

To carry out the empirical study we exploited seven publicly available datasets included in the 

PROMISE repository [109], namely China, Desharnais, Finnish, Miyazaki, Kemerer, Maxwell, and 

Telecom. All these datasets were previously used to evaluate estimation methods (see e.g., 

[16][25][42][102][121][122]). Our choice was motivated by the aim to select an interesting data 

sample of industrial software projects representing a diversity of application domains and project 

characteristics. In particular, the employed datasets contain data collected from a single software 

company (i.e., Desharnais, Telecom, and Kemerer) or several companies (i.e., China, Finnish, 

Miyazaki, and Maxwell) geographically dislocated around the world (e.g., Canada, China, Finland), 

thus enabling us to assess the estimation technique herein employed in single- and cross-company 

contexts. The use of a cross-company dataset is particularly useful for companies that do not have 

their own data on past projects from which to obtain their estimates, or that have data on projects 

developed in different application domains and/or technologies. 

The employed datasets include information about different features (the number varies ranging from 

1 to 17). Indeed, as for the independent variables three datasets (i.e., China, Finnish, and 

Desharnais) contain Function Points (or their basic components) as size measure and different cost-

drivers, such as manager and team experience, while one dataset (i.e., Miyazaki) contains only the 

components of Object Points as size measure; in all the datasets the dependent variable was the 

effort expressed in person-hours. As for the features, we excluded categorical variables (e.g., 

Language and YearEnd in Desharnais) and all the features that could not be available at the time the 

prediction would be made, such as the length of the code (LOC). This is important to avoid creating 

a false impression as to the efficacy of different prediction methods [122]. Also the number of 
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observations varies for the employed datasets (from 10 to 499). It is important to notice that in our 

analysis we excluded the observations that had missing values (i.e., four projects for Desharnais). 

The descriptive statistics of the employed variables for the seven datasets are shown in Table 3. A 

detailed description of each dataset is reported in Appendix A. 

 

3.2.2 Validation Method and Evaluation Criteria 

In order to verify whether or not a method gives useful estimations of the actual development effort 

a validation process is required. To this end, we performed a multiple-fold cross validation, 

partitioning the whole dataset into training sets, for model building, and test sets, for model 

evaluation. Indeed, when the accuracy of the model is computed using the same dataset employed to 

build the prediction model, the accuracy evaluation is considered optimistic [13][14][15]. Cross 

validation is widely used in the literature to validate effort estimation models when dealing with 

medium/small datasets (see, e.g. [14][15]). We applied a 3-fold cross validation obtaining for each 

dataset 3 randomly test sets and then for each test set we considered the remaining observations as 

training set to build the estimation model. To allow for replications of our study, the folds employed 

for each dataset are reported in Table 5. 

To evaluate the obtained estimates we employed the sum of squared residuals (SSR) in order to 

employ the same strategy exploited by both search-based techniques and MSWR to fit the data (i.e., 

minimizing SSR). Let us recall that SSR is defined as follows: 

)(
1
∑
=

−=
n

i
ii predictedactualSSR  

where n is the number of observations, actuali and predictedi are the actual and the predicted effort 

for the observation i, respectively.  

The analysis of SSR gives only an indication on which is the estimation method that globally gives 

best effort estimations. In order to establish if an estimation method provides better results than 

another it is necessary to test the statistical significance of the obtained results. For this reason we 

tested the statistical significance of the squared residuals achieved with the considered estimation 

methods [72][96][128]. Such an analysis aims at verifying that the estimations of one method are 

significantly better than the estimations provided by another method. Since (i) the squared residuals 
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for all the analyzed estimation methods were not normally distributed (as confirmed by the Shapiro 

test [110] for non-normality), and (ii) the data was naturally paired, we used the Wilcoxon test [20] 

setting the confidence limit at α = 0.05 (i.e., if the p-value of the test is less than 0.05 we can reject 

the null hypothesis) and applying Bonferroni correction in cases it is needed. 
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Table 4. Descriptive statistics of the employed variables 
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Table 5. The folds employed in our study 
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3.3 Analysis and Interpretation of the Results 

3.3.1 RQ1 and RQ2 

 
Table 6, Table 7 and Table 8 report the mean of the 30 SSR values obtained with the 30 executions 

of HC, TS, and GP employing each of the considered setting (i.e., VS, S, M, L, VL, Heuristic), 

respectively. We can observe that there are several differences in the prediction accuracy obtained 

using HC with the settings VS, S, M, L, VL and in general the smallest configuration provides better 

results when used with HC, while we observed less variability in the results when using TS and GP 

and thus there is not a clear winner among the five configurations. As for the comparison between 

the considered heuristics and the five settings, we can observe that the results obtained by HC with 

Heuristic are quite worse than those obtained with the other settings, while the results obtained by 

TS and GP with Heuristic are better or comparable with respect to the ones obtained with the other 

settings.  

We also statistically compared the squared residuals obtained with the Heuristic based setting with 

those achieved with the other settings by applying the Wilcoxon test (see Tables 9, 10 and 11). For 

each comparison X vs Y (where X and Y can be VS, S, M, L, VL, or Heuristic) the table reports the 

p-value obtained with the Wilcoxon Test. It is worth noting that we applied a Bonferroni correction, 

i.e., 0.05/5=0.01, since we performed five tests (one for each of the other configurations, i.e., VS, S, 

M, L, or VL) to address research questions RQ1a, RQ1b, and RQ1c. and RQ2a, RQ2b, and RQ2c. 

Thus, in the table a p-value less than 0.01 means that there is a statistical significant difference 

between the SSR values achieved with the setting X and those obtained by employing the Y based 

setting (these cases are highlighted by bold font). We can observe that the results in terms of SSR 

are confirmed by the Wilcoxon Test results. Indeed, regarding the results obtained using HC with 

VS, S, M, L and VL we found that there is a statistical difference in 26 cases, while the difference 

among the predictions obtained with these configurations is less frequent when they are used with 

TS and GP (11 and 15 cases, respectively). As for the comparison between the employed heuristics 

and the five settings, we found that the square residuals obtained setting HC with Heuristic were in 5 

cases significantly worse than the ones provided by another configuration (i.e., VS and S on China, 

VS on Finnish, VS on Maxwell, and VL on Miyazaki) and in three cases better than the other 

configurations (i.e., S, M and L on the Finnish dataset). This could be due to the fact that the HC 
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setting based on Heuristic and the settings based on the other 5 configurations just differ for the 

considered number of solutions and, in particular, the number of solutions considered by Heuristic is 

less or equals than those considered by the best configurations found except for the Maxwell dataset. 

Thus, we can partially positively answer to RQ2a (i.e., the predictions obtained with the heuristics 

based setting are comparable with those achieved with the other settings, for HC). On the other hand 

we found that the square residuals obtained using TS and GP with Heuristic were in 10 cases 

significant better than those obtained using other configurations (i.e., TS with Heuristics provided 

significantly better square residuals than using it with VS, S, M settings on the dataset China, and 

with S and VL on the Miyazaki dataset; GP with Heuristics provided significantly better square 

residuals than using it with all the other five configurations on the China datasets), while in the other 

cases no significant difference was found. Thus we can state that the considered heuristic is suitable 

to set TS and GP since it has allowed us to obtain comparable or superior prediction accuracy with 

respect to the other configurations. Moreover, if we look at the execution time obtained in 30 

executions by TS and GP with all the considered configurations (see the histograms in Figure 1 and 

Figure 2) we can observe the use of TS and GP with the heuristics is always much faster than using 

them with the other settings. This is due to the fact that using the heuristics both TS and GP halted 

always before the maximum number of iterations (i.e., they stopped when the objective value of the 

best solution does not change in the last 100V iterations), thus performing less than the 250,000 

evaluations required by the other settings on all the datasets. This allowed us to save time and 

computational resources without affecting the accuracy of the estimation models built with TS and 

GP, so we can state that the use of the heuristics has been revealed a cost-effective way to set these 

techniques on the considered datasets. Thus, we can positively answer to research questions RQ2b 

and RQ2c (i.e., the predictions obtained with the heuristics are comparable with those achieved with 

the other settings, for TS and GP). 

Based on the above considerations we can conclude that there are differences in using the 

considered search-based approaches with different settings and the investigated heuristics is suitable 

for setting TS and GP and less useful to set HC on the considered datasets. 
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Table 6. Results in terms of SSR obtained employing HC with different settings 

Dataset VS S M L VL Heuristic 

China 3.79E+10 3.87E+10 4.28E+10 4.28E+10 4.26E+10 4.30E+10 

Desharnais 1.08E+10 1.15E+10 1.35E+10 1.36E+10 1.19E+10 1.29E+10 

Finnish 5.50E+09 1.07E+10 1.48E+10 1.48E+10 1.36E+10 8.79E+09 

Kemerer 5.04E+06 4.29E+06 5.16E+06 5.16E+06 4.41E+06 4.82E+06 

Maxwell 1.95E+10 2.44E+10 2.47E+10 2.47E+10 2.11E+10 2.79E+10 

Miyazaki 4.66E+10 4.63E+10 4.52E+10 4.52E+10 4.58E+10 4.71E+10 

Telecom 6.22E+05 6.27E+05 6.18E+05 6.18E+05 6.44E+05 6.51E+05 

 

Table 7. Results in terms of SSR obtained employing TS  with different settings 

Dataset VS S M L VL Heuristic 

China 1.16E+10 1.16E+10 1.18E+10 1.05E+10 1.05E+10 1.04E+10 

Desharnais 5.29E+08 5.28E+08 5.30E+08 5.32E+08 5.35E+08 5.41E+08 

Finnish 7.42E+08 7.52E+08 7.45E+08 7.49E+08 7.52E+08 7.48E+08 

Kemerer 1.18E+06 1.18E+06 1.18E+06 1.18E+06 1.18E+06 1.19E+06 

Maxwell 1.80E+09 1.80E+09 1.81E+09 1.81E+09 1.81E+09 1.81E+09 

Miyazaki 3.62E+10 3.76E+10 3.49E+10 3.61E+10 3.82E+10 3.63E+10 

Telecom 4.27E+05 4.27E+05 4.38E+05 4.62E+05 4.70E+05 4.56E+05 

 

Table 8. Results in terms of SSR obtained employing GP with different settings 

Dataset VS S M L VL Heuristic 

China 1.50E+10 1.46E+10 1.46E+10 1.46E+10 1.49E+10 1.16E+10 

Desharnais 9.52E+08 9.50E+08 9.55E+08 9.58E+08 9.59E+08 9.51E+08 

Finnish 1.49E+09 1.48E+09 1.49E+09 1.48E+09 1.49E+09 1.53E+09 

Kemerer 9.48E+05 9.46E+05 9.41E+05 9.44E+05 9.29E+05 9.33E+05 

Maxwell 1.91E+09 1.93E+09 1.87E+09 1.88E+09 1.87E+09 2.02E+09 

Miyazaki 3.51E+10 3.50E+10 3.91E+10 3.49E+10 3.57E+10 3.56E+10 

Telecom 8.67E+05 8.65E+05 8.60E+05 8.56E+05 8.45E+05 8.37E+05 
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Table 9. Results of the Wilcoxon tests comparing different settings employed for HC 
China <> VS S M L VL Heuristic  Desharnais <> VS S M L VL Heuristic 

 VS - <0.0001 <0.0001 <0.0001 <0.0001 <0.0001  VS - 0.462 0.239 0.042 0.001 0.749 

 S  - <0.0001 <0.0001 0.110 <0.0001  S  - 0.109 0.013 0.327 0.549 

 M   - 1 0.143 0.648  M   - 0.507 0.042 0.113 

 L    - 0.143 0.648  L    - 0.673 0.012 

 VL     - 0.12  VL     - 0.765 

Finnish <> VS S M L VL Heuristic Kemerer <> VS S M L VL Heuristic 

 VS - <0.0001 <0.0001 <0.0001 0.001 <0.0001  VS - 0.001 0.932 0.932 0.001 0.551 

 S  - 0.000 0.000 0.451 0.000  S  - 0.029 0.029 0.514 0.379 

 M   - 1 0.954 <0.0001  M   - 1 0.001 0.798 

 L    - 0.954 <0.0001  L    - 0.001 0.798 

 VL     - 0.27  VL     - 0.32 

Maxwell <> VS S M L VL Heuristic Myiazaki <> VS S M L VL Heuristic 

 VS - <0.0001 <0.0001 <0.0001 0.669 0.000  VS - 0.898 0.09 0.09 0.002 0.619 

 S  - 0.29 0.29 0.017 0.111  S  - <0.0001 <0.0001 0.000 0.174 

 M   - 1 <0.0001 0.547  M   - 1 0.232 0.648 

 L    - <0.0001 0.547  L    - 0.232 0.648 

 VL     - 0.054  VL      <0.0001 

Telecom <> VS S M L VL Heuristic  

 VS - 0.571 0.571 0.571 0.459 0.663 

 S  - 0.728 0.728 0.486 0.514 

 M   - 1 0.486 0.408 

 L    - 0.486 0.408 

 VL     - 0.408 

 

 

Table 10. Results of the Wilcoxon tests comparing different settings employed for TS 

China <> VS S M L VL Heuristic  Desharnais <> VS S M L VL Heuristic 

 VS - 0.000 0.002 <0.0001 <0.0001 <0.0001   VS - 0.58 0.35 0.405 0.405 0.417 

 S  - 0.684 <0.0001 <0.0001 <0.0001   S  - 0.078 0.233 0.337 0.48 

 M   - <0.0001 <0.0001 <0.0001   M  0.078 - 0.437 0.863 0.863 

 L    - 0.002 0.704   L  0.233 0.437 - 0.206 0.215 

 VL     - 0.034   VL  0.337 0.863 0.206 - 0.688 

Finnish <> VS S M L VL Heuristic  Kemerer <> VS S M L VL TS 

 VS  0.728 0.417 0.695 0.155 0.505   VS - 0.629 0.689 0.977 0.065 0.065 

 S  - 0.919 0.85 0.376 0.931   S  - 0.67 0.551 0.057 0.065 

 M   - 0.761 0.885 0.817   M   - 0.551 0.05 0.065 

 L    - 0.002 0.739   L    - 0.044 0.065 

 VL     - 0.477   VL     - 0.065 
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Maxwell <> VS S M L VL Heuristic  Myiazaki <> VS S M L VL Heuristic 

 VS - 0.742 0.242 0.806 0.25 0.866   VS - 0.014 0.118 0.133 0.007 0.125 

 S  - 0.614 0.806 0.57 0.994   S  - 0.031 0.010 0.012 0.009 

 M   - 0.551 0.994 0.966   M   - 0.626 0.015 0.177 

 L    - 0.043 0.689   L    - 0.003 0.191 

 VL     - 0.785   VL     - 0.006 

Telecom <> VS S M L VL Heuristic          

 VS - 0.666 0.556 0.338 0.486 0.224          

 S  - 0.021 0.127 0.258 0.224          

 M   - 0.384 0.338 0.255          

 L    - 0.408 0.965          

 VL     - 0.896          

 
 
Table 11. Results of the Wilcoxon tests comparing different settings employed for GP 

China <> VS S M L VL Heuristic  Desharnais <> VS S M L VL Heuristic 

 VS - 0.000 <0.0001 <0.0001 <0.0001 <0.0001  VS - 0.431 0.601 0.875 0.815 0.44 

 S  - 0.003 <0.0001 <0.0001 <0.0001  S  - 0.235 0.157 0.419 0.264 

 M   - 0.001 0.005 <0.0001  M   - 0.594 0.651 0.369 

 L    - 0.047 <0.0001  L    - 0.546 0.35 

 VL     - <0.0001  VL     - 0.685 

Finnish <> VS S M L VL Heuristic Kemerer <> VS S M L VL Heuristic 

 VS - 0.164 0.828 0.331 0.965 0.417  VS - 0.262 0.164 0.222 0.164 0.514 

 S  - 0.114 0.523 0.202 0.523  S  - 0.164 0.32 0.182 0.551 

 M  0.114 - 0.27 0.218 0.392  M   - 0.132 0.182 0.755 

 L  0.523 0.27 - 0.592 0.392  L    - 0.164 0.629 

 VL  0.202 0.218 0.592 - 0.369  VL     - 0.244 

Maxwell <> VS S M L VL Heuristic Myiazaki <> VS S M L VL Heuristic 

 VS - 0.833 0.927 0.994 0.123 0.25  VS - 0.003 0.058 0.001 0.004 0.439 

 S  - 0.151 0.323 0.132 0.066  S  - 0.663 0.001 0.007 0.98 

 M   - 0.872 0.161 0.051  M   - 0.032 0.015 0.685 

 L    - 0.105 0.095  L    - 0.009 0.576 

 VL     - 0.044  VL     - 0.253 

Telecom <> VS S M L VL Heuristic  

 VS - 0.571 0.632 0.459 0.542 1 

 S  - 0.965 0.663 0.571 0.965 

 M   - 0.76 0.571 0.728 

 L    - 0.317 0.663 

 VL     - 0.24 
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Figure 1. Execution time achieved by TS using different configurations (30 executions) 
 

 

Figure 2. Execution time achieved by GP using different configurations (30 executions) 
 

3.3.2 RQ3 

Regarding the comparison among the three considered search-based approaches, the results reported 

in Table 12 reveal that both TS and GP provided better results in terms of SSR than HC on all the 

employed datasets. We also statistically compared the squared residuals obtained with the three 

search-based approaches by applying the Wilcoxon test, whose results are reported in Table 13. The 



F. Sarro 
Search-Based Approaches for Software Development Effort Estimation 

42 

 

p-values reported in the table suggest that the difference among the achieved SSR values is 

statistically significant in the case of TS versus HC for all the datasets and in case of GP versus HC 

for all the datasets except for the Miyazaki and Telecom datasets. As for the comparison between TS 

and GP, we can observe that TS provided better results in terms of SSR than GP on all the employed 

datasets except for Kemerer and Miyazaki datasets, however this difference is significant only on 

the China dataset in favor of TS and on Kemerer and Miyazaki datasets in favor of GP (see Table 

13). Thus, we can positively answer research question RQ3a (i.e., the accuracy provided by TS is 

superior to the one provided by HC) and partially positively answer RQ3b (i.e., the accuracy 

provided by GP is superior to the one provided by HC) and RQ3c (i.e., the accuracy provided by TS 

is superior to the one provided by GP).  

 

Table 12. Results in terms of SSR obtained employing HC, TS, and GP using SSR as objective 

function 

Dataset HC TS GP 

China 3.79E+10 1.04E+10 1.16E+10 

Desharnais 1.29E+10 5.41E+08 9.51E+08 

Finnish 5.5E+09 7.48E+08 1.53E+09 

Kemerer 4.82E+06 1.19E+06 9.33E+05 

Maxwell 1.95E+10 1.81E+09 2.02E+09 

Miyazaki 4.58E+10 3.63E+10 3.56E+10 

Telecom 6.51E+05 4.56E+05 8.37E+05 

 
Table 13. Results of the Wilcoxon test comparing HC, TS, and GP using SSR as objective function 

< TS vs HC GP vs HC TS vs GP 
China <0.001 <0.001 1 
Desharnais <0.001 <0.001 0.41 
Finnish <0.001 <0.001 0.123 
Kemerer <0.001 <0.001 0.466 
Maxwell <0.001 <0.001 0.177 
Miyazaki <0.001 0.169 0.027 
Telecom <0.001 0.129 0.257 
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3.3.3 RQ4 

Table 14 reports on the results achieved in terms of SSR for each employed baseline benchmarks 

and the mean of the 30 SSR values obtained with the 30 executions of HC, TS, and GP. Let us recall 

that the technique providing the less SSR value is considered better than the others. The analysis of 

these results suggests that the estimations obtained with TS and GP are better than those achieved by 

using Random Search, Mean Effort, and Median Effort on the employed datasets in terms of SSR, 

while HC provided better results only on 2 of 7 datasets (i.e., Miyazaki and Telecom) and worse on 

the other 5 (i.e., China, Desharnais, Finnish, Kemerer, and Maxwell). This is likely due to the fact 

that HC remained trapped in local optima, while TS and GP, being more sophisticated approaches, 

are able to escape from these points (see Chapter 1). 

 

Table 14. Results in terms of SSR obtained employing HC, TS, and GP using SSR as objective 

function and the employed baseline benchmarks 

Dataset HC TS GP Random Mean Median 
China 3.79E+10 1.04E+10 1.16E+10 2.31E+10 2.11E+10 2.31E+10 
Desharnais 1.29E+10 5.41E+08 9.51E+08 1.48E+09 1.33E+09 1.46E+09 
Finnish 5.5E+09 7.48E+08 1.53E+09 3.23E+09 2.73E+09 2.45E+09 

Kemerer 4.82E+06 1.19E+06 9.33E+05 1.46E+06 1.08E+06 1.09E+06 

Maxwell 1.95E+10 1.81E+09 2.02E+09 6.87E+09 6.75E+09 7.31E+09 
Miyazaki 4.58E+10 3.63E+10 3.56E+10 5.01E+10 7.49E+10 6.63E+10 

Telecom 6.51E+05 4.56E+05 8.37E+05 1.79E+06 1.51E+06 1.70E+06 

 

Table 15 reports the p-values obtained with the Wilcoxon Test to verify whether the SSR achieved 

by HC, TS, and GP were significantly less than those of the baseline benchmarks, for each dataset. It 

is worth noting that we applied a Bonferroni correction, i.e., 0.05/3=0.016, since we performed three 

tests (one for each baseline benchmark) to address research questions RQ4a, RQ4b, and RQ4c. 

Thus, in the table a p-value less than 0.016 means that the SSR values achieved with HC, (TS or 

GP) are significantly less than those obtained by the considered baseline benchmark. These cases are 

highlighted by bold font. We can observe that the results reported in Table 15 confirm those 

achieved in terms of SSR. Indeed, There were no difference between HC and the baseline 

benchmarks. On the contrary, TS and GP provided significant better squared residuals than those 
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achieved with the baseline benchmarks for all datasets except for Kemerer where no difference was 

found probably due the fact that this dataset is very small - both in terms of number of features (i.e., 

1) and observations (i.e., 15) - compared to the other ones. As a matter of fact many work pointed 

out that in case of a small number of observations the Wilcoxon Test might be not powerful enough 

to confirm a statistical difference at a 0.05 significance level, even when the data seem to suggest 

such a difference [4]. Thus, from the above results we can conclude that we can positively answer 

the third research question for TS and GP (i.e., the accuracy provided by TS (and GP) is superior to 

the one provided by Random, Mean and Median Effort). 

 

Table 15. Results of Wilcoxon Test comparing HC, TS, and GP using SSR as objective function 

and the employed baseline benchmarks 

 HC vs GP vs TS vs 
< Random Mean Median Random Mean Median Random Mean Median 

China 0.839 0.01 0.999 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.005 
Desharnais 0.999 0.999 0.999 0.008 0.003 0.006 0.003 <0.0001 0.012 

Finnish 0.994 0.924 0.97 0.019 0.001 0.003 0.003 <0.0001 0.001 
Kemerer 0.999 0.999 0.999 0.295 0.205 0.489 0.001 0.556 0.623 
Maxwell 0.995 0.999 0.999 <0.0001 0.006 0.024 <0.0001 0.002 0.003 
Miyazaki <0.0001 <0.0001 0.011 0.001 <0.0001 0.002 <0.0001 <0.0001 <0.0001 
Telecom 0.025 0.045 0.015 0.025 0.041 0.016 0.002 0.008 0.004 

 
3.3.4 RQ5 

Table 16 report results in terms of SSR obtained by applying TS and GP (using SSR as objective 

function) and MSWR. We can observe that GP and TS provided better SSR values than MSWR on 

3 out 7 (i.e., China, Finnish and Maxwell) and  on 5 out 7 datasets (i.e., China, Desharnais, Finnish, 

Maxwell and Telecom), respectively. The results of the Wilcoxon test reported in Table 16 revealed 

that there was significant difference between GP and MSWR in three cases. In particular, we found 

that both GP and TS provided significant better results than MSWR on the dataset Miyazaki, while 

GP provided worse results than MSWR on the dataset Kemerer. This result is likely due to the fact 

that the Kemerer dataset is composed by only one feature therefore the linear model provided by 

MSWR is sufficient to explain the relation with the effort. Thus, we can positively answer the 
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research questions RQ5a and RQ5b (i.e., TS and GP provide at least comparable results with 

MSWR, respectively). 

 

Table 16. Results in terms of SSR obtained employing TS and GP using SSR as objective function 

and MSWR 

Dataset TS GP MSWR 
China 1.04E+10 1.16E+10 1.48E+10 
Desharnais 5.41E+08 9.51E+08 8.55E+08 
Finnish 7.48E+08 1.53E+09 1.55E+09 
Kemerer 1.19E+06 9.33E+05 7.51E+05 
Maxwell 1.81E+09 2.02E+09 2.63E+09 
Miyazaki 3.63E+10 3.56E+10 2.34E+10 
Telecom 4.56E+05 8.37E+05 6.48E+05 

 

Table 17. Results of Wilcoxon Test comparing HC, TS, and GP using SSR as objective function 

and MSWR 

< > TS vs MSWR GP vs MSWR 
China 0.005 0.410 
Desharnais 0.992 0.394 
Finnish 0.400 0.739 
Kemerer 0.132 0.016 
Maxwell 0.217 0.274 
Miyazaki <0.0001 0.003 
Telecom 0.728 0.338 

 

3.4 Validity Evaluation 
It is widely recognized that several factors can bias the validity of empirical studies. In this section 

we discuss the validity of the empirical study based on four types of threats, namely construct, 

internal, conclusion, and external validity. As highlighted by Kitchenham et al. [77], to satisfy 

construct validity a study has “to establish correct operational measures for the concepts being 

studied'”. This means that the study should represent to what extent the predictor and response 

variables precisely measure the concepts they claim to measure [98]. Thus, the choice of the features 

and how to collect them represents the crucial aspects. We evaluated the employed estimation 
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methods on seven publicly available datasets included in the PROMISE repository [109] previously 

used in many other empirical studies carried out to evaluate effort estimation methods, e.g., 

[16][25][45][122]. As for internal validity, biases can be introduced by the intrinsic randomness of 

the search-based techniques. We mitigate such a threat by executing HC, TS, and GP 30 times and 

using average results. Concerning the conclusion validity we carefully applied the statistical tests, 

verifying all the required assumptions. Moreover, we used small/medium/large size datasets to 

mitigate the threats related to the number of observations composing the dataset. Finally, we tried to 

mitigate threats to the external validity employing both single- and cross-company datasets 

containing data about of industrial software projects that differ for size, application domains, and 

project characteristics. 
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CHAPTER 4: How the Objective Function Choice Affects the Effort 

Estimation Accuracy of Search-Based Approaches 
 

As discussed in Chapter 2 the investigations carried out so far on the use of search-based approaches 

for effort estimation have focused on the use of Genetic Programming (GP) and have provided 

promising results [16][38][39][82][118]. Nevertheless, the design of these techniques deserves to be 

further explored and empirically analyzed also employing the more recent recommendations 

suggested in the effort estimation context [77][72] and in the search-based software engineering [4]. 

In particular, a crucial design choice is the definition of the objective function that indicates how a 

solution is suitable for the problem under investigation driving the search towards optimal solutions. 

For the effort estimation problem the fitness function should be able to assess the accuracy of 

estimation models. It is worth noting that several different accuracy measures have been proposed 

for assessing the effectiveness/accuracy of effort prediction models. Among them the Mean 

Magnitude of Relative Error (MMRE) and the Prediction at level 25 (Pred(25)) represent the most 

widely used measures [22]. Each measure focuses the attention on a specific aspect, as a matter of 

fact “Pred(25) measures how well an effort model performs, while MMRE measures poor 

performance” [100]. Thus, the choice of the criterion for assessing predictions and establishing the 

best model can be a managerial issue: a project manager could prefer to use MMRE as the criterion 

for judging the quality of a model, while another might prefer to use another criterion, just for 

example Pred(25). From this point of view, search-based methods represent an opportunity since 

they allow a project manager to identify his/her preferred accuracy measure and explicitly use it as 

fitness function so that the search for the model is driven by such a criterion. Indeed, according to 

Harman and Clark view point, each measure that has been proposed as a means of evaluating some 

properties of interest can be used as fitness function [53]. It is worth noting that this is not possible 

for several other estimation techniques, such as Ordinary Least Squares Regression (OLSR), that 

have an embedded criterion (e.g., OLSR minimizes the sum of squared residuals). In the literature 

the studies that have reported on the use of GP for software development effort estimation were 

based on the use of MMRE [16][82] or Mean Square Error (MSE) [38] [118] as fitness function. 

Thus, we have carried out an empirical analysis to investigate how the use of different measures as 
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fitness function affects the overall accuracy of the estimation models built by GP. To do this, we 

evaluated the overall estimation accuracy by using the tools suggested in [72] to allow for a more 

reliable accuracy evaluation and a better comparison among different empirical analysis. These 

include the joint use of some different evaluation measures (e.g., MMRE, Pred(25), MdMRE), 

together with statistical tests [98][128]. 

The analysis has been carried out experimenting different objective functions based on some 

measures (and some combinations of these measures) proposed in the literature to evaluate the 

accuracy of the estimates. Preliminary empirical results based on the use of GP on the Desharnais 

dataset [33] were provided in [45]. The present chapter is an extension of [45] since we report and 

discuss the results obtained using also another technique (i.e., TS) and other publicly available 

datasets, namely Finnish [121], Miyazaki [102], Maxwell [87], Telecom [122], China [109], and 

Kemerer [68]. Moreover, we have analysed also the use of other fitness functions (i.e., SSR, a 

combination of MMRE and MEMRE, MEMRE and Pred(25) and a combination of MdEMRE and 

Pred(25)) not employed in [45]. 

The rest of the chapter is organized as follows. Section 4.1 describes the employed experimental 

method while the results are reported in Section 4.2 and empirical study validity is discussed in 

Section 4.3.  

 

4.1 Empirical Study Planning 
This section presents the design of the empirical study we carried out to analyze the impact of 

different objective functions on the accuracy of the estimation models built with GP and TS. In 

particular, in our analysis we defined the following research question: 

• RQ6a: Does the employed objective function impact on the accuracy of the estimation 

models built with GP. 

• RQ6b: Does the employed objective function impact on the accuracy of the estimation 

models built with TS. 

To address them we employed the same techniques and datasets described in Section 3.1 and 3.2 

respectively. Moreover, we experimented several objective functions that are described in Section 
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4.1.3. In the following we summarize the GP and TS settings, the validation method, and the 

evaluation criteria employed in the empirical analysis. 

 

4.1.1 Setting of Genetic Programming and Tabu Search 

To address research question RQ6a and RQ6b we experimented six of the accuracy measures 

described in Chapter 2 (i.e., SSR, MMRE, MdMRE, MEMRE, MdEMRE, Pred(25)) as objective 

function and analyzed the impact on the estimation accuracy of the models built with GP and TS. 

Moreover, the observation that different accuracy measures take into account different aspects of 

predictions accuracy [72][100] suggested us to investigate also the effectiveness of some 

combinations of those accuracy measures. In particular, we also experimented with Avg(MMRE, 

MEMRE), Pred(25)/MMRE, Pred(25)/MdMRE , Pred(25)/MEMRE, and Pred(25)/MdEMRE as 

objective functions. Table 18 summarizes the employed objective functions. 

 

Table 18. The experimented objective functions 

Employed Summary Measures Objective function 

Sum of Squared Residuals (SSR) min SSR 

Mean of Relative Magnitude (MMRE) min MMRE 

Median of Magnitude Relative Error (MdMRE) min MdMRE 

Prediction at Level 25 ( Pred(25)) max Pred(25)/MMRE 

Mean of Magnitude of Relative Error relative to Estimate (MEMRE) min MdEMRE 

Median of Magnitude of Relative Error relative to the Estimate (MdEMRE) min MdEMRE 

MMRE and MEMRE min Avg(MMRE, MEMRE) 

MMRE and Pred(25) max Pred(25)/MdMRE 

MdMRE and Pred(25) max Pred(25)/MdMRE 

MEMRE and Pred(25) max Pred(25)/MEMRE 

MdEMRE and Pred(25) max Pred(25)/MdEMRE 
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The GP and TS parameters were set using the heuristics presented in the previous chapter; the 

employed settings for each dataset are summarized in Table 19 and Table 20. Since these techniques 

do not give the same solution each time they are executed, we performed 30 runs and presented the 

average results obtained in 30 runs on the test sets. 

 

Table 19. The employed GP settings 

Dataset Population Size Generation Number Crossover Rate Mutation Rate 

China 50 <=5000 0.5 0.1 

Desharnais 50 <=5000 0.5 0.1 

Finnish 40 <=4000 0.5 0.1 

Kemerer 10 <=1000 0.5 0.1 

Miyazaki 30 <=3000 0.5 0.1 

Maxwell 170 <=17000 0.5 0.1 

Telecom 20 <=2000 0.5 0.1 

 

Table 20. The employed TS setting 

Dataset Number of Moves Number of Iterations Tabu List Size 

China 50 <=5000 5 

Desharnais 50 <=5000 7 

Finnish 40 <=4000 4 

Kemerer 10 <=1000 1 

Miyazaki 30 <=3000 3 

Maxwell 170 <=17000 17 

Telecom 20 <=2000 2 

 

4.1.2 Validation Method and Evaluation Criteria 

In order to verify whether or not a method gives useful estimations of the actual development effort 

we employed the same validation method described in Section 3.2.2 thus using the fold reported in 
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Table 5. Concerning the evaluation of the estimates obtained with the analyzed estimation methods, 

we used several summary measures, namely SSR, MMRE, MdMRE, Pred(25), MEMRE and 

MdEMRE [22][72]. Moreover, to establish if one of the prediction methods provides significant 

better estimates than the others, we tested the statistical significance of squared residuals achieved 

with the built models [72][98][128]. Since (i) the squared residuals for all the analysed estimation 

methods were not normally distributed (as confirmed by the Shapiro test [110] for non-normality), 

and (ii) the data were naturally paired, we used the Wilcoxon test [20] setting the confidence limit at 

α= 0.05 and applying Bonferroni correction in cases it is needed. 

 

4.2 Analysis and Interpretation of the Results 
Table 21 and Table 22 report on the results obtained on the test sets in terms of summary measures 

related to the accuracy achieved by the models constructed by GP and TS, respectively. First of all 

we analyzed whether the use of a specific criterion allowed us to effectively derive models with the 

best value for the selected criterion. Moreover, we analyzed the impact on the overall estimation 

accuracy based on some different summary measures (e.g., MMRE, MdMRE, Pred(25)) as well as 

on the use of statistical tests on squared residuals.  

We can observe that on almost all dataset all the objective functions provided the best value for the 

accuracy statistics for which they were specifically designed (e.g., TS optimizing SSR provided the 

best SSR values on all the employed datasets). However, if we consider the overall accuracy of the 

estimation models (i.e., considering also the other accuracy measures) we can observe that the 

improvements to the objective value often occur at the expense of the other measures. This is 

particularly evident when we used MMRE and MEMRE as objective function. Indeed, as we can 

observe from Figures 3 and 4 when MMRE is used as objective function, MMRE is the best and 

MEMRE the worst, and vice versa. This behavior seems to be mitigated employing 

Avg(MMRE,MEMRE) as objective function. Moreover, it appears clear that objective functions 

based on SSR, Pred(25), MdMRE or their combinations perform better across a wide range of 

accuracy statistics, indeed when used as objective function these measures are able to guide towards 

estimation models with better accuracy in terms of the selected criterion without degrading so much 

the other summary measures.  
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Figure 3. Comparing MMRE and MEMRE values achieved by TS using MMRE and MEMRE as 
objective functions. 
 

 

Figure 4. Comparing the MMRE and MEMRE values achieved by GP using MMRE and MEMRE 
as objective functions. 
 

 

Table 23 and 24 report the results of the Wilcoxon Test on the square residuals obtained by TS and 

GP, respectively, using different objective functions. It is worth noting that we applied a Bonferroni 
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correction, i.e., 0.05/3=0.016, since we performed three tests (one for each baseline benchmark) to 

address research questions RQ6a and RQ6b. In the following we report for each dataset the 

objective functions that allowed us to obtain estimates better than those achieved by all the 

employed baseline benchmarks: 

• China 

- TS_SSR, TS_MdMRE, TS_Avg(MMRE, MEMRE) 

- GP_SSR, GP_MdMRE, GP_Avg(MMRE, MEMRE), GP_Pred(25)/MdMRE 

• Desharnais 

- TS_SSR, TS_MdMRE, TS_MdEMRE, TS_Pred(25), TS_Avg(MMRE, 

MEMRE), TS_Pred(25)/MMRE, TS_Pred(25)/MEMRE, 

TS_Pred(25)/MdMRE, TS_Pred(25)/MdEMRE 

- GP_SSR, GP_MdMRE, GP_MdEMRE, GP_Pred(25), GP_Avg(MMRE, 

MEMRE), GP_Pred(25)/MMRE, GP_Pred(25)/MdMRE, 

GP_Pred(25)/MdEMRE 

• Finnish 

- TS_SSR, TS_MMRE, TS_MdMRE, TS_MdEMRE, TS_Pred(25), 

TS_Avg(MMRE, MEMRE), TS_Pred(25)/MdMRE,TS_Pred(25)/MdEMRE 

- GP_SSR, GP_Avg(MMRE, MEMRE), GP_Pred(25)/MMRE 

 

• Maxwell 

- TS_SSR, TS_MdMRE, TS_MdEMRE, TS_ Pred(25), TS_Avg(MMRE, 

MEMRE), TS_ Pred(25)/MEMRE, TS_Pred(25)/MdMRE, TS_ Pred 

(25)/MdEMRE 

- GP_SSR, GP_Avg(MMRE, MEMRE) 

• Miyazaki 

- TS_SSR, TS_MMRE, TS_MEMRE, TS_MdMRE, TS_MdEMRE, 

TS_Pred(25), TS_Avg(MMRE, MEMRE), TS_Pred(25)/MMRE, 

TS_Pred(25)/MEMRE, TS_Pred(25)/MdMRE, TS_Pred (25)/MdEMRE 
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- GP_SSR, GP_MMRE, GP_MEMRE, GP_MdMRE, GP_MdEMRE, 

GP_Pred(25), GP_Avg(MMRE, MEMRE), GP_Pred(25)/MMRE, 

GP_Pred(25)/MEMRE, GP_Pred(25)/MdMRE, GP_Pred(25)/MdEMRE 

• Telecom 

- TS_SSR, TS_MMRE, TS_MdMRE,TS_MdEMRE, 

TS_Pred(25),TS_Avg(MMRE, MEMRE), TS_Pred(25)/MMRE 

- GP_SSR, GP_Avg(MMRE, MEMRE) 

 

We can observe that only using TS with SSR, MdMRE, MdEMRE, Avg(MMRE,MEMRE) and GP 

with SSR and Avg(MMRE, MEMRE) as objective functions we obtained significantly superior 

results with respect to all the baseline benchmarks on all the employed datasets except for Kemerer 

where no significant difference was found. This is probably due to the fact dataset probably due the 

fact that this dataset is very small – both in terms of number of features (i.e., 1) and projects (i.e., 

15) - and as pointed out in the literature the Wilcoxon Test might be not powerful enough to confirm 

a statistical difference in case of few observations, even when the data seem to suggest such a 

difference [4]. Thus, we can positively answer to research questions RQ6a and RQ6b (i.e., the 

employed objective function impact on the accuracy of the estimation models built with TS and 

GP). 

 

Table 21 Accuracy measures achieved on test sets using TS with the employed fitness functions 

Dataset Technique MMRE MdMRE Pred(25) MEMRE MdEMRE SSR 

China TS_SSR 1.13 0.62 0.16 1.22 0.62 1.04E+10 

 TS_MMRE 0.65 0.68 0.16 3.15 1.77 1.80E+10 

 TS_MdMRE 1.13 0.55 0.12 1.20 0.65 1.25E+10 

 TS_Pred(25) 1.82 0.68 0.09 1.04 0.65 3.44E+10 

 TS_MEMRE 3.15 1.35 0.15 0.61 0.63 1.35E+11 

 TS_MdEMRE 1.60 0.64 0.17 0.87 0.54 1.75E+10 

 TS_AVG(MMRE.MEMRE) 1.07 0.59 0.14 1.02 0.61 1.31E+10 

 TS_Pred(25)/MMRE 0.70 0.63 0.15 2.40 1.23 1.57E+10 



F. Sarro 
Search-Based Approaches for Software Development Effort Estimation 

55 

 

 TS_Pred(25)/MdMRE 1.26 0.55 0.18 1.06 0.60 1.36E+10 

 TS_Pred(25)/MEMRE 2.60 0.94 0.17 0.65 0.59 9.89E+10 

 TS_Pred(25)/MdEMRE 1.62 0.63 0.15 0.94 0.58 2.06E+10 

Desharnais TS_SSR 0.76 0.36 0.34 0.40 0.35 5.41E+08 

 TS_MMRE 0.64 0.34 0.40 0.42 0.31 6.05E+08 

 TS_MdMRE 0.64 0.29 0.46 0.49 0.30 8.07E+08 

 TS_Pred(25) 0.71 0.33 0.38 0.44 0.33 8.28E+08 

 TS_MEMRE 0.88 0.35 0.40 0.36 0.34 8.21E+08 

 TS_MdEMRE 0.71 0.32 0.44 0.44 0.30 7.76E+08 

 TS_AVG(MMRE.MEMRE) 0.60 0.33 0.43 0.44 0.35 6.40E+08 

 TS_Pred(25)/MMRE 0.57 0.32 0.44 0.49 0.33 7.24E+08 

 TS_Pred(25)/MdMRE 0.66 0.33 0.44 0.46 0.30 7.75E+08 

 TS_Pred(25)/MEMRE 0.90 0.34 0.42 0.37 0.35 9.25E+08 

 TS_Pred(25)/MdEMRE 0.69 0.34 0.42 0.44 0.29 7.42E+08 

Finnish TS_SSR 0.97 0.53 0.23 0.63 0.44 7.48E+08 

 TS_MMRE 0.58 0.56 0.22 1.75 1.18 2.07E+09 

 TS_MdMRE 0.89 0.37 0.26 0.76 0.51 9.62E+08 

 TS_Pred(25) 1.00 0.56 0.32 0.71 0.47 9.20E+08 

 TS_MEMRE 1.70 1.08 0.28 0.49 0.50 1.72E+09 

 TS_MdEMRE 1.12 0.52 0.23 0.62 0.37 1.34E+09 

 TS_AVG(MMRE.MEMRE) 0.74 0.51 0.31 0.68 0.52 1.03E+09 

 TS_Pred(25)/MMRE 0.61 0.54 0.19 1.89 1.25 2.16E+09 

 TS_Pred(25)/MdMRE 0.83 0.38 0.37 0.78 0.54 9.41E+08 

 TS_Pred(25)/MEMRE 1.13 0.59 0.35 0.56 0.45 9.73E+08 

 TS_Pred(25)/MdEMRE 1.02 0.60 0.40 0.64 0.45 8.80E+08 

Kemerer TS_SSR 0.63 0.42 0.33 1.45 0.70 1.19E+06 

 TS_MMRE 0.46 0.45 0.40 3.78 3.34 1.35E+06 

 TS_MdMRE 0.58 0.31 0.47 1.71 0.63 1.24E+06 

 TS_Pred(25) 0.53 0.38 0.33 2.89 2.17 1.30E+06 

 TS_MEMRE 3.85 2.69 0.20 0.70 0.64 1.00E+07 

 TS_MdEMRE 2.21 1.62 0.40 1.54 0.41 7.54E+06 

 TS_AVG(MMRE.MEMRE) 0.63 0.43 0.33 1.45 0.70 1.19E+06 

 TS_Pred(25)/MMRE 0.46 0.43 0.40 3.81 3.35 1.35E+06 

 TS_Pred(25)/MdMRE 0.58 0.32 0.47 1.73 0.66 1.24E+06 

 TS_Pred(25)/MEMRE 0.59 0.36 0.47 1.59 0.67 1.22E+06 

 TS_Pred(25)/MdEMRE 0.58 0.32 0.47 1.71 0.64 1.24E+06 

Maxwell TS_SSR 0.75 0.52 0.26 0.48 0.47 1.80E+09 

 TS_MMRE 0.43 0.46 0.32 0.94 0.45 4.15E+09 

 TS_MdMRE 0.55 0.34 0.29 0.64 0.44 3.37E+09 

 TS_Pred(25) 0.67 0.49 0.34 0.68 0.49 3.21E+09 
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 TS_MEMRE 1.03 0.71 0.21 0.45 0.48 2.48E+09 

 TS_MdEMRE 0.53 0.47 0.29 0.64 0.35 2.76E+09 

 TS_AVG(MMRE.MEMRE) 0.52 0.45 0.32 0.55 0.41 2.25E+09 

 TS_Pred(25)/MMRE 0.44 0.50 0.39 0.83 0.43 3.96E+09 

 TS_Pred(25)/MdMRE 0.53 0.37 0.40 0.70 0.46 3.73E+09 

 TS_Pred(25)/MEMRE 0.87 0.56 0.39 0.46 0.47 2.15E+09 

 TS_Pred(25)/MdEMRE 0.53 0.41 0.34 0.75 0.48 3.85E+09 

Miyazaki TS_SSR 0.52 0.37 0.33 0.54 0.40 3.72E+10 

 TS_MMRE 0.41 0.35 0.35 0.84 0.52 4.21E+10 

 TS_MdMRE 0.46 0.36 0.27 0.68 0.40 3.95E+10 

 TS_Pred(25) 0.45 0.36 0.33 0.79 0.47 4.05E+10 

 TS_MEMRE 0.52 0.37 0.35 0.56 0.42 3.86E+10 

 TS_MdEMRE 0.51 0.50 0.21 1.46 0.84 5.26E+10 

 TS_AVG(MMRE.MEMRE) 0.49 0.34 0.35 0.59 0.41 3.89E+10 

 TS_Pred(25)/MMRE 0.42 0.36 0.40 0.82 0.50 4.00E+10 

 TS_Pred(25)/MdMRE 0.47 0.34 0.35 0.61 0.36 3.82E+10 

 TS_Pred(25)/MEMRE 0.48 0.34 0.40 0.59 0.38 3.89E+10 

 TS_Pred(25)/MdEMRE 0.48 0.35 0.42 0.59 0.36 3.78E+10 

Telecom TS_SSR 0.67 0.27 0.50 0.35 0.26 4.93E+05 

 TS_MMRE 0.37 0.23 0.56 0.49 0.23 6.39E+05 

 TS_MdMRE 0.70 0.22 0.56 0.39 0.30 5.71E+05 

 TS_Pred(25) 0.78 0.22 0.61 0.40 0.28 5.52E+05 

 TS_MEMRE 0.66 0.35 0.33 0.33 0.26 7.36E+05 

 TS_MdEMRE 0.89 0.27 0.50 0.43 0.26 7.71E+05 

 TS_AVG(MMRE.MEMRE) 0.40 0.22 0.56 0.41 0.21 6.43E+05 

 TS_Pred(25)/MMRE 0.38 0.20 0.61 0.49 0.21 6.25E+05 

 TS_Pred(25)/MdMRE 0.75 0.24 0.50 0.39 0.30 5.94E+05 

 TS_Pred(25)/MEMRE 0.87 0.25 0.50 0.41 0.27 8.31E+05 

 TS_Pred(25)/MdEMRE 0.80 0.23 0.56 0.38 0.25 6.45E+05 
 

Table 22 Accuracy measures achieved on test sets using GP with the employed fitness functions 

Dataset Technique MMRE MdMRE Pred(25) MEMRE MdEMRE SSR 

China GP_SSR 1.37 0.57 0.18 0.88 0.60 1.52E+10 

 GP_MMRE 0.72 0.69 0.12 3.16 1.64 2.00E+10 

 GP_MdMRE 1.18 0.57 0.16 1.06 0.61 1.40E+10 

 GP_Pred(25) 1.43 0.59 0.16 1.04 0.62 1.53E+10 

 GP_MEMRE 2.84 1.20 0.14 0.64 0.63 5.47E+10 

 GP_MdEMRE 1.81 0.62 0.16 0.77 0.59 2.16E+10 

 GP_AVG(MMRE.MEMRE) 1.10 0.56 0.18 1.00 0.61 1.37E+10 

 GP_Pred(25)/MMRE 0.80 0.63 0.10 2.23 1.07 1.77E+10 
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 GP_Pred(25)/MdMRE 1.37 0.57 0.17 1.02 0.61 1.43E+10 

 GP_Pred(25)/MEMRE 2.27 0.88 0.16 0.66 0.58 3.39E+10 

 GP_Pred(25)/MdEMRE 1.56 0.60 0.21 0.83 0.55 1.49E+10 

Desharnais GP_SSR 0.79 0.36 0.43 0.42 0.35 9.51E+08 

 GP_MMRE 0.57 0.50 0.18 1.02 0.71 1.35E+09 

 GP_MdMRE 0.75 0.34 0.43 0.44 0.35 7.87E+08 

 GP_Pred(25) 0.73 0.35 0.39 0.44 0.35 7.57E+08 

 GP_MEMRE 0.86 0.39 0.39 0.39 0.35 7.44E+08 

 GP_MdEMRE 0.80 0.34 0.39 0.42 0.34 8.02E+08 

 GP_AVG(MMRE.MEMRE) 0.67 0.35 0.39 0.46 0.40 8.29E+08 

 GP_Pred(25)/MMRE 0.64 0.38 0.34 0.54 0.41 9.21E+08 

 GP_Pred(25)/MdMRE 0.74 0.34 0.40 0.44 0.36 7.87E+08 

 GP_Pred(25)/MEMRE 0.82 0.37 0.40 0.40 0.33 7.56E+08 

 GP_Pred(25)/MdEMRE 0.79 0.35 0.38 0.42 0.35 7.81E+08 

Finnish GP_SSR 1.31 0.83 0.26 0.65 0.61 1.53E+09 

 GP_MMRE 0.64 0.65 0.19 1.94 1.38 2.37E+09 

 GP_MdMRE 1.73 0.87 0.23 0.56 0.52 1.53E+09 

 GP_Pred(25) 1.85 0.94 0.03 0.89 0.72 2.99E+09 

 GP_MEMRE 2.64 1.17 0.19 0.55 0.51 2.53E+09 

 GP_MdEMRE 1.73 0.87 0.23 0.56 0.52 2.06E+09 

 GP_AVG(MMRE.MEMRE) 0.97 0.67 0.25 0.78 0.58 1.43E+09 

 GP_Pred(25)/MMRE 0.65 0.65 0.14 1.79 1.31 2.22E+09 

 GP_Pred(25)/MdMRE 2.04 1.00 0.13 0.67 0.61 2.17E+09 

 GP_Pred(25)/MEMRE 2.40 0.90 0.12 0.57 0.58 2.39E+09 

 GP_Pred(25)/MdEMRE 1.97 1.04 0.18 0.63 0.54 2.55E+09 

Kemerer GP_SSR 1.08 0.90 0.00 1.08 0.90 1.02E+06 

 GP_MMRE 0.55 0.44 0.27 0.90 0.80 8.03E+05 

 GP_MdMRE 0.60 0.36 0.27 0.58 0.52 5.68E+05 

 GP_Pred(25) 0.69 0.56 0.13 0.86 0.85 7.44E+05 

 GP_MEMRE 0.66 0.36 0.33 0.41 0.28 6.10E+05 

 GP_MdEMRE 0.60 0.36 0.27 0.58 0.52 5.68E+05 

 GP_AVG(MMRE.MEMRE) 0.47 0.32 0.33 0.43 0.34 5.99E+05 

 GP_Pred(25)/MMRE 0.54 0.39 0.27 0.71 0.65 7.13E+05 

 GP_Pred(25)/MdMRE 0.62 0.42 0.20 0.88 0.91 6.77E+05 

 GP_Pred(25)/MEMRE 0.59 0.33 0.33 0.41 0.33 5.61E+05 

 GP_Pred(25)/MdEMRE 0.60 0.35 0.33 0.59 0.54 5.71E+05 

Maxwell GP_SSR 0.74 0.48 0.16 0.47 0.45 2.02E+09 

 GP_MMRE 0.42 0.43 0.32 0.96 0.47 3.92E+09 

 GP_MdMRE 0.70 0.54 0.15 0.81 0.50 4.29E+09 

 GP_Pred(25) 0.92 0.53 0.16 0.63 0.52 3.96E+09 
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 GP_MEMRE 1.11 0.91 0.21 0.50 0.51 3.78E+09 

 GP_MdEMRE 0.64 0.49 0.18 0.73 0.47 3.36E+09 

 GP_AVG(MMRE.MEMRE) 0.56 0.47 0.14 0.64 0.44 2.88E+09 

 GP_Pred(25)/MMRE 0.46 0.48 0.26 1.00 0.50 4.17E+09 

 GP_Pred(25)/MdMRE 0.832174424 0.56 0.08 0.74 0.52 4.24E+09 

 GP_Pred(25)/MEMRE 1.132274858 0.62 0.11 0.59 0.53 4.40E+09 

 GP_Pred(25)/MdEMRE 0.86 0.66 0.11 0.74 0.56 4.29E+09 

Miyazaki GP_SSR 0.52 0.42 0.25 1.08 0.76 3.56E+10 

 GP_MMRE 0.55 0.42 0.27 0.80 0.66 4.29E+10 

 GP_MdMRE 0.51 0.33 0.40 0.51 0.36 3.61E+10 

 GP_Pred(25) 0.52 0.36 0.27 0.58 0.40 3.77E+10 

 GP_MEMRE 0.54 0.33 0.40 0.46 0.35 3.46E+10 

 GP_MdEMRE 0.51 0.33 0.40 0.51 0.36 3.61E+10 

 GP_AVG(MMRE.MEMRE) 0.54 0.33 0.40 0.48 0.35 3.63E+10 

 GP_Pred(25)/MMRE 0.55 0.40 0.29 0.71 0.57 3.94E+10 

 GP_Pred(25)/MdMRE 0.51 0.34 0.33 0.56 0.37 3.82E+10 

 GP_Pred(25)/MEMRE 0.53 0.32 0.40 0.48 0.36 3.51E+10 

 GP_Pred(25)/MdEMRE 0.51 0.33 0.40 0.51 0.36 3.62E+10 

Telecom GP_SSR 0.52 0.36 0.33 0.51 0.43 8.37E+05 

 GP_MMRE 0.67 0.49 0.22 0.74 0.64 8.23E+05 

 GP_MdMRE 0.81 0.51 0.22 0.49 0.47 8.03E+05 

 GP_Pred(25) 0.74 0.54 0.17 0.55 0.48 7.93E+05 

 GP_MEMRE 0.73 0.54 0.33 0.40 0.35 8.06E+05 

 GP_MdEMRE 0.81 0.51 0.22 0.49 0.47 8.03E+05 

 GP_AVG(MMRE.MEMRE) 0.66 0.46 0.39 0.45 0.33 6.39E+05 

 GP_Pred(25)/MMRE 0.72 0.55 0.33 0.47 0.38 7.79E+05 

 GP_Pred(25)/MdMRE 0.74 0.53 0.17 0.51 0.50 7.54E+05 

 GP_Pred(25)/MEMRE 0.72 0.55 0.33 0.47 0.38 7.79E+05 

 GP_Pred(25)/MdEMRE 0.79 0.52 0.22 0.50 0.44 7.66E+05 
 

 
Table 23 Results of the Wilcoxon tests comparing TS objective functions on test sets 

Dataset < Random Mean Median 

China TS_SSR 0 0 0.005 

 TS_MMRE 0 0 0.968 

 TS_MEMRE 1 0.991 1 

 TS_MdMRE 0 0 0.011 
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 TS_MdEMRE 0 0 0.480 

 TS_Pred(25) 0.542 0 1 

 TS_Avg(MMRE, MEMRE) 0 0 0 

 TS_Pred(25)/MMRE 0 0 0.281 

 TS_Pred(25)/MEMRE 0.999 0.211 1 

 TS_Pred(25)/MdMRE 0 0 0.108 

 TS_Pred(25)/MdEMRE 0.031 0 0.934 

Desharnais < Random Mean Median 

 TS_SSR 0.003 0 0.012 

 TS_MMRE 0 0 0 

 TS_MEMRE 0.087 0.001 0.062 

 TS_MdMRE 0 0 0.001 

 TS_MdEMRE 0.001 0 0.003 

 TS_Pred(25) 0.008 0 0.007 

 TS_Avg(MMRE, MEMRE) 0 0 0 

 TS_Pred(25)/MMRE 0 0 0 

 TS_Pred(25)/MEMRE 0.001 0.001 0.001 

 TS_Pred(25)/MdMRE 0.001 0.001 0.001 

 TS_Pred(25)/MdEMRE 0.001 0 0.002 

Finnish < Random Mean Median 

 TS_SSR 0.003 0 0.001 

 TS_MMRE 0 0.042 0.023 

 TS_MEMRE 0.262 0.055 0.104 

 TS_MdMRE 0.006 0 0 

 TS_MdEMRE 0.011 0.003 0.005 

 TS_Pred(25) 0.04 0.002 0.01 

 TS_Avg(MMRE, MEMRE) 0 0 0 
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 TS_Pred(25)/MMRE 0 0.112 0.076 

 TS_Pred(25)/MEMRE 0.07 0.005 0.021 

 TS_Pred(25)/MdMRE 0.002 0 0 

 TS_Pred(25)/MdEMRE 0.036 0.002 0.012 

Kemerer < Random Mean Median 

 TS_SSR 0.001 0.556 0.623 

 TS_MMRE 0.189 0.725 0.918 

 TS_MEMRE 0.992 0.986 0.998 

 TS_MdMRE 0.001 0.579 0.623 

 TS_MdEMRE 0.511 0.853 0.941 

 TS_Pred(25) 0.008 0.685 0.878 

 TS_Avg(MMRE, MEMRE) 0.001 0.556 0.623 

 TS_Pred(25)/MMRE 0.147 0.725 0.909 

 TS_Pred(25)/MEMRE 0.001 0.556 0.623 

 TS_Pred(25)/MdMRE 0.001 0.579 0.685 

 TS_Pred(25)/MdEMRE 0.001 0.579 0.623 

Maxwell < Random Mean Median 

 TS_SSR 0 0.002 0.003 

 TS_MMRE 0 0.004 0.05 

 TS_MEMRE 0 0.014 0.189 

 TS_MdMRE 0 0 0.001 

 TS_MdEMRE 0 0 0.003 

 TS_Pred(25) 0 0.004 0.014 

 TS_Avg(MMRE, MEMRE) 0 0 0.001 

 TS_Pred(25)/MMRE 0 0.002 0.018 

 TS_Pred(25)/MEMRE 0 0.001 0.002 

 TS_Pred(25)/MdMRE 0 0 0.004 



F. Sarro 
Search-Based Approaches for Software Development Effort Estimation 

61 

 

 TS_Pred(25)/MdEMRE 0 0.001 0.012 

Miyazaki < Random Mean Median 

 TS_SSR 0 0 0 

 TS_MMRE 0 0 0.001 

 TS_MEMRE 0 0 0 

 TS_MdMRE 0 0 0 

 TS_MdEMRE 0.003 0 0.011 

 TS_Pred(25) 0 0 0 

 TS_Avg(MMRE, MEMRE) 0 0 0 

 TS_Pred(25)/MMRE 0 0 0 

 TS_Pred(25)/MEMRE 0 0 0 

 TS_Pred(25)/MdMRE 0 0 0 

 TS_Pred(25)/MdEMRE 0 0 0 

Telecom < Random Mean Median 

 TS_SSR 0.003 0.008 0.004 

 TS_MMRE 0.004 0.006 0.002 

 TS_MEMRE 0.069 0.058 0.045 

 TS_MdMRE 0.004 0.007 0.003 

 TS_MdEMRE 0.003 0.008 0.004 

 TS_Pred(25) 0.007 0.009 0.006 

 TS_Avg(MMRE, MEMRE) 0.015 0.013 0.01 

 TS_Pred(25)/MMRE 0.004 0.008 0.002 

 TS_Pred(25)/MEMRE 0.007 0.023 0.003 

 TS_Pred(25)/MdMRE 0.003 0.020 0.003 

 TS_Pred(25)/MdEMRE 0.003 0.020 0.003 
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Table 24 Results of the Wilcoxon tests comparing GP objective functions on test sets 
Dataset < Random Mean Median 

China GP_SSR 0 0 0.001 

 GP_MMRE 0 0.001 0.997 

 GP_MEMRE 1 0.43 1 

 GP_MdMRE 0 0 0.005 

 GP_MdEMRE 0.027 0 0.769 

 GP_Pred(25) 0 0 0.123 

 
GP_Avg(MMRE, 

MEMRE) 
0 0 0 

 GP_Pred(25)/MMRE 0 0 0.281 

 GP_Pred(25)/MEMRE 0.972 0.005 1 

 GP_Pred(25)/MdMRE 0 0 0.024 

 GP_Pred(25)/MdEMRE 0 0 0.061 

Desharnais < Random Mean Median 

 GP_SSR 0.008 0.003 0.006 

 GP_MMRE 0 0.182 0.62 

 GP_MEMRE 0.066 0.003 0.039 

 GP_MdMRE 0.001 0 0.002 

 GP_MdEMRE 0.003 0.001 0.006 

 GP_Pred(25) 0.001 0.001 0.002 

 
GP_Avg(MMRE, 

MEMRE) 
0 0.001 0.001 

 GP_Pred(25)/MMRE 0 0.004 0.009 

 GP_Pred(25)/MEMRE 0.023 0.002 0.022 

 GP_Pred(25)/MdMRE 0.001 0 0.001 

 GP_Pred(25)/MdEMRE 0.003 0.001 0.006 

Finnish < Random Mean Median 
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 GP_SSR 0.019 0.001 0.003 

 GP_MMRE 0 0.166 0.213 

 GP_MEMRE 0.437 0.321 0.414 

 GP_MdMRE 0.123 0.024 0.045 

 GP_MdEMRE 0.123 0.024 0.045 

 GP_Pred(25) 0.23 0.46 0.483 

 
GP_Avg(MMRE, 

MEMRE) 
0.001 0 0.001 

 GP_Pred(25)/MMRE 0 0.048 0.038 

 GP_Pred(25)/MEMRE 0.221 0.123 0.145 

 GP_Pred(25)/MdMRE 0.138 0.070 0.158 

 GP_Pred(25)/MdEMRE 0 0 0 

Kemerer < Random Mean Median 

 GP_SSR 0.644 0.601 0.811 

 GP_MMRE 0.002 0.147 0.025 

 GP_MEMRE 0.066 0.091 0.147 

 GP_MdMRE 0.011 0.101 0.022 

 GP_MdEMRE 0.011 0.101 0.022 

 GP_Pred(25) 0.082 0.239 0.705 

 
GP_Avg(MMRE, 

MEMRE) 
0.014 0.019 0.037 

 GP_Pred(25)/MMRE 0.004 0.101 0.014 

 GP_Pred(25)/MEMRE 0.029 0.053 0.066 

 GP_Pred(25)/MdMRE 0.012 0.111 0.335 

 GP_Pred(25)/MdEMRE 0.011 0.091 0.019 

Maxwell < Random Mean Median 

 GP_SSR 0 0.006 0.014 

 GP_MMRE 0 0.004 0.046 
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 GP_MEMRE 0.001 0.097 0.581 

 GP_MdMRE 0 0 0 

 GP_MdEMRE 0 0.015 0.145 

 GP_Pred(25) 0 0.002 0.031 

 
GP_Avg(MMRE, 

MEMRE) 
0 0.002 0.013 

 GP_Pred(25)/MMRE 0 0.006 0.085 

 GP_Pred(25)/MEMRE 0.001 0.143 0.713 

 GP_Pred(25)/MdMRE 0 0.021 0.287 

 GP_Pred(25)/MdEMRE 0.003 0.127 0.594 

Miyazaki < Random Mean Median 

 GP_SSR 0.001 0 0.002 

 GP_MMRE 0 0 0.001 

 GP_MEMRE 0 0 0 

 GP_MdMRE 0 0 0 

 GP_MdEMRE 0 0 0 

 GP_Pred(25) 0 0 0 

 
GP_Avg(MMRE, 

MEMRE) 
0 0 0 

 GP_Pred(25)/MMRE 0 0 0 

 GP_Pred(25)/MEMRE 0 0 0 

 GP_Pred(25)/MdMRE 0 0 0 

 GP_Pred(25)/MdEMRE 0 0 0 

Telecom < Random Mean Median 

 GP_SSR 0.015 0.011 0.016 

 GP_MMRE 0.01 0.148 0.015 

 GP_MEMRE 0.082 0.058 0.037 

 GP_MdMRE 0.138 0.082 0.069 
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 GP_MdEMRE 0.138 0.082 0.069 

 GP_Pred(25) 0.034 0.082 0.023 

 
GP_Avg(MMRE, 

MEMRE) 
0.013 0.014 0.013 

 GP_Pred(25)/MMRE 0.009 0.054 0.01 

 GP_Pred(25)/MEMRE 0.037 0.082 0.031 

 GP_Pred(25)/MdMRE 0.088 0.069 0.037 

 GP_Pred(25)/MdEMRE 0.088 0.054 0.028 

 

4.3 Validity Evaluation 
The construct, conclusion, and external validity threats described in Section 3.4 hold also for the 

empirical study presented in this chapter. 
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CHAPTER 5: Using Tabu Search to Configure Support Vector 

Regression for Effort Estimation 
 

Several studies have addressed the problem of obtaining early accurate effort estimates, (e.g., 

[13][14][15][88][98][120][121]), many of which focusing on the proposal and evaluation of 

techniques to construct predictive models able to estimate the effort of a new project exploiting 

information (actual effort and cost-drivers) related to past projects. In particular, recent studies 

[24][25][26] have investigated the effectiveness of Support Vector Regression (SVR) for software 

effort estimation. SVR is a technique based on Support Vector Machines, a family of Machine 

Learning algorithms that have been successfully applied for addressing several predictive data 

modeling problems [31][126]. The studies reported in [24][25] showed that SVR has potential use 

also for software development effort estimation; indeed it outperformed the most commonly adopted 

prediction techniques using the Tukutuku database [94], a cross-company dataset of Web projects 

widely adopted in Web effort estimation studies. It was argued that the main reason for that lies in 

the flexibility of the method. Indeed, SVR enables the use of kernels and parameter settings 

allowing the learning mechanism to better suit the characteristics of different chunks of data, which 

is a typical characteristic of cross-company datasets. However, the setting of parameters needs to be 

done carefully, since an inappropriate choice can lead to over- or under-fitting, heavily worsening 

the performance of the method [17][69]. Nevertheless, there are no guidelines on how to best select 

these parameters [116][130][132] since the appropriate setting depends on the characteristics of the 

employed dataset. Moreover, an examination of all possible values for parameters is not 

computationally affordable, as the search space is too large, also due to the interaction among 

parameters, which cannot be separately optimized. 

The issues abovementioned have motivated us to investigate the use of Tabu Search (TS) to 

automatically select SVR parameters [26]. TS is a meta-heuristics search technique used to address 

several optimization problems [50]. The TS-based approach was first investigated in [26] employing 

SVR in combination with different kernels and variables’ preprocessing strategies, using as dataset 

the Tukutuku database [94]. In particular, we compared SVR configured with TS (SVR+TS) with 

other effort estimation techniques, namely Manual StepWise Regression (MSWR), Case-Based 
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Reasoning (CBR), Bayesian Networks [92], and the Mean and Median effort of the training sets. 

SVR+TS gave us the best results ever achieved with the Tukutuku database. However, these results 

were based on two random splits of only one cross-company dataset and it is widely recognized that 

several empirical analysis are needed to generalize empirical findings. Thus, the aim of this paper is 

to further investigate the combination of TS and SVR using data from several single- and cross-

company datasets. Let us recall that the former represents a dataset containing data on projects from 

a single software company while the latter includes project data gathered from several software 

companies. In our analysis, we employed 13 different datasets from the PROMISE repository and 

also other 8 datasets obtained by splitting the Tukutuku database according to the values of its four 

categorical variables (see Appendix A). The choice to use datasets from the PROMISE repository is 

motivated due to the following points: 

- Availability of datasets on industrial software projects, representing a diversity of application 

domains and projects´ characteristics. This is also in line with recommendation made by 

Kitchenham and Mendes [71]. 

- Availability of projects that are not Web-based, thus enabling the assessment of the effectiveness 

of the estimation technique employed herein when applied to different types of applications – 

Web, using the Tukutuku, and non-Web, using the PROMISE datasets. We would also like to 

point out that, in our view, Web and software development differ in a number of areas, such as: 

application characteristics, primary technologies used, approach to quality delivered, 

development process drivers, availability of the application, customers (stakeholders), update 

rate (maintenance cycles), people involved in development, architecture and network, disciplines 

involved, legal, social, and ethical issues, and information structuring and design. A detailed 

discussion on this issue is provided in [99]. 

- Availability of single- and cross-company datasets, thus enabling the assessment of the 

estimation technique employed herein when applied to single- and cross-company datasets. We 

would also like to point out that the use of a cross-company dataset is particularly useful for 

companies that do not have their own data on past projects from which to obtain their estimates, 

or that have data on projects developed in different application domains and/or technologies. To 

date, several studies have investigated if estimates obtained using cross-company datasets can be 

as accurate as the ones obtained using single-company datasets (e.g., 
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[14][65][75][88][95][82][97][133]) achieving different findings (see [74] for a systematic 

review). 

In relation to the choice of SVR kernels and pre-processing strategies, we focused our analysis on 

the RBF kernel and a logarithmic transformation of the variables since they provided the best results 

in our previous study [26].  

In order to verify whether the proposed TS technique is able to make a suitable choice of SVR 

parameters we also compared the estimates obtained with SVR+TS with those obtained applying 

SVR using different strategies for parameters selection, namely:  

- random SVR configurations. This means that the same number of solutions investigated for 

SVR+TS was generated in a totally random fashion and the best one among them was selected 

according to the same criteria employed for SVR+TS. This is a natural benchmark when using 

meta-heuristics search techniques;  

- default parameters employed by the Weka tool [52];  

- the Grid-search algorithm provided by LibSVM [9]. 

In addition, we also assessed whether the estimates provided by the proposed approach were better 

than those obtained using the Mean and Median effort (popular and simple benchmarks for effort 

estimation techniques) and those achieved with MSWR and CBR. These techniques were chosen 

because they are the two techniques widely used in the literature and also in industry, and the mostly 

employed estimation techniques [84].  

Consequently, the research questions addressed in this paper are: 

RQ7: Is Tabu Search able to effectively set Support Vector Regression parameters? 

RQ8: Are the effort predictions obtained by using Support Vector Regression configured 

with Tabu Search significantly superior to the ones obtained by other techniques? 

The remainder of the chapter  is organized as follows. Section 5.1 first reports on the main aspects 

of SVR and TS and then describes the proposed approach based on TS to set-up SVR parameters. 

Section 5.2 presents the design of our empirical study, i.e., the datasets, the null hypotheses, the 

validation method, and the evaluation criteria employed to assess the prediction accuracy. Results 

are presented in Section 5.3, followed by a discussion on the empirical study validity in Section 5.4. 
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5.1 Using Support Vector Regression in combination with Tabu Search for effort 

estimation 
In this section, we describe Support Vector Regression, Tabu Search, and how we have combined 

them for effort estimation. 

 

5.1.1 Support Vector Regression 

Support Vector Regression is a regression technique based on Support Vector (SV) machines, a 

learning approach originally introduced for linear binary classification. Linear classifiers construct a 

hyperplane separating the training set points belonging to the two classes. In the SV machine 

classifier [131][132], the hyperplane maximizes the classification margin, that is the minimum 

distance of the hyperplane from the training points [131], as shown in Figure 5. Choosing such 

optimal hyperplane requires the solution of a quadratic optimization problem subject to linear 

constraints, corresponding to the fact that each point of the training set must be correctly labeled. 

The hyperplane resulting from this optimization only depends on a subset of the training points, 

called support vectors. As an example, in Figure 5 the three points closest to the classification 

hyperplane are highlighted, as they represent the support vectors. 

Thus, the system admits a solution only if there is a hyperplane separating the two classes in the 

training set (as in Figure 5), i.e., when the training set is linearly separable. Nevertheless, this can be 

considered too restrictive to be of any practical interest. Thus, in 1995, Cortes and Vapnik [28] 

defined a modified version of the approach, by introducing a parameter C to allow (but penalize) 

misclassifications in the training set, thus obtaining soft margin SVM’s. The choice of the best value 

for C is crucial to performance, as it decides the trade-off between classification errors in the 

training set and model complexity [58][106]. 

When the SV approach is applied to a regression problem, a function has to be derived, which 

minimizes the deviation between observed and predicted values. To solve this problem we apply an 

SV approach that, rather than minimizing a function of the errors on the training set, aims at 

minimizing a bound on a generalized error, which also takes into account a regularization term in 

addition to the training error. Thus, the goal is to find a linear function that obtains an error lower 

than a constant ε on the training data and that at the same time is as flat as possible. 
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Figure 5. Hyperplane, margin and support vectors in linearly separable set 

 

This formulation of the problem can be softened, as discussed above, by using parameter C, so that 

an error larger than the bound can be allowed on some of the points in the training set. Therefore, 

the parameter C determines the trade-off between the occurrences of errors larger than ε in the 

training set and the flatness of the function. On the other hand, ε controls the wideness of a tube 

such that points occurring inside are considered correct and only points outside the tube are 

evaluated as errors (see Figure 6). The two parameters are therefore strictly correlated, even if their 

suitable values depend on the dataset [18], so no rule of thumb exists. 

 

ε

ε

Support'Vectors
Non'Support'Vectors
Regression Line
Limits'of'the'tube

 
Figure 6. ε-tube in SVR 
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The non-linear case and the kernel choice 

The SV approaches described above are conceived for the linear case. Thus, they could be not 

suitable for development effort estimation where the dependent variable (i.e., effort) does not 

necessarily linearly depend on the independent variables (i.e., cost drivers). To deal with the 

nonlinear case we can map the input vectors into a feature space before the linear SV approach is 

applied. 

Mathematically, such mapping requires the substitution of dot products between the input vector x 

and each support vector s, with a function describing their similarity in the feature space: such 

function k(x, s) with two variables (x and s) is called kernel function.  

A wide variety of kernel functions has been proposed in the literature: a good overview can be found 

in [58]. An important kernel family is given by Radial Basis Function (RBF) where the output value 

only depends on the distance of the two points in the input space. In particular, the most popular 

kernel belonging to the RBF family is the Gaussian one, which is defined as follows: 

k(x,s) = exp(-γ |x - s|2 ), with γ>0 .   (1) 

The Gaussian RBF kernel has been successfully applied in a variety of contexts, both alone (e.g., 

[106][124]) and in combination with SV approaches (e.g., [24][25][117]). Furthermore, Gaussian 

RBF kernel is usually suggested as the first choice in many practical guides (e.g., [60]) and is 

implemented in LibSVM, a popular library for SV approaches [17]. All the above considerations 

motivated our choice to use this kernel in the study reported in the present paper.  

Using the Gaussian RBF kernel, a value for the kernel parameter γ needs to be selected in addition 

to the values for C and ε parameters. The main issue is how to set these parameters ensuring good 

generalization performance for a given dataset. In the following we report some existing approaches 

to address the problem and then describe our proposal. 

 

SVR parameter setting 

Many alternative strategies have been defined in the literature to select suitable values for SVR 

parameters. As pointed out in [18], many studies related to the use of SVR are based on the opinion 

of experts that select parameter values on the basis of their knowledge of both the approach and the 

application domain. Of course the reliance upon experts severely bounds the applicability of this 

approach. Another possibility is the use of heuristics based on noise characteristics [81]. However, 
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in addition to some technical limitations of these approaches, they require either an expert with a 

deep understanding of the problem or a statistical model for the noise. Parameters choice based on 

more direct information, such as the range of output values, are prone to other problems, including 

outliers [86].  

In Grid-search approaches a certain number of parameter values are explored to identify the best 

option. Nevertheless, the points are chosen a-priori and do not depend on the specific case. For 

instance, the software library LibSVM provides a mechanism that explores a combination of 8 

values for each of the parameters C, ε, and γ (in the ranges [1.0E-3, 32000], [1.0E-6, 1], and [1.0E-6, 

8]) using a five-fold cross-validation on the training set [17]. Thus, a total of 512 fixed points are 

assessed and the one with the best cross-validation accuracy is returned. Even if Grid-searches are 

easy to apply, they have a main drawback: the search is performed always on the same (coarse 

grained) points, without taking into account the dataset to guide the search. 

In [24][25] the problem was addressed in the context of effort estimation, adopting an automatic 

approach to explore a large number of parameter values (employing various nested cycles with 

small incremental steps). For each run, depending on the kernel, the number of executions ranged 

from some dozens to more than 4000 executions. An inner leave-one-out cross validation was 

performed on the training set (each cycle of execution required a number of iterations corresponding 

to the cardinality of the training set) and for each iteration the goodness of the solution was 

evaluated using a combination of effort accuracy estimation measures 1. Thus, the setting providing 

the best estimation (according to the selected criterion) on the training set was chosen.  

Although such optimization strategy included a quite large combination of parameter values, it 

proceeded by brute force, by predefined steps, and did not use any information related to the prior 

steps trying to improve the search. Moreover, it was computationally too expensive. Smarter 

optimization strategies, on the contrary, use all possible clues to focus the search in the most 

promising areas of parameter values for a given dataset. Among such strategies, in [26] we proposed 

the use of the meta-heuristics Tabu Search to search for the best parameter settings. This approach is 

further investigated in this paper and will be described in the next section. One of the strengths of 

                                                
1 The same combination of effort estimation measures is used as objective function in the present paper, so it will be detailed in 

Section 2.3. 
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the Tabu Search strategy is that it uses information both in a positive way, to focus the search, and in 

a negative way, to avoid already explored areas and loops. 

 

5.1.2 Using Tabu Search to configure SVR 

In this section we describe how we designed TS (see Chapter 1) for setting SVR parameters. Let us 

formulate our goal: starting from a dataset of past projects we have to identify a good solution S, 

represented by values for variables C, ε, and γ (see step 1 in Figure 7), so that SVR configured with 

those parameter values can accurately predict the unknown effort for new incoming projects (see 

step 2 in Figure 7). Thus, in this section we will detail step 1, whose process is illustrated in Figure 

8.  

An initial solution is generated by randomly choosing the values for each variable in a defined 

range. In particular, since the values for C, ε, and γ can vary from zero to infinity, an upper bound 

has usually to be chosen. To this end, we employ the same ranges of the Grid-search algorithm [60] 

for C, ε, and γ, respectively, and, as it is usual, we perform the search for parameter values in the 

logarithmic space of these ranges [60][70]. 

 

 
Figure 7. The two steps of applying SVR+TS: parameters identification and use 
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Starting from the random initial solution, at each iteration 25 moves are performed, each one 

according to the pseudocode provided in Figure 9 and explained herein. A parameter to be changed 

is selected among C, ε, and γ (with equal probability). The current value of the chosen parameter in 

the 80% of the cases is incremented up to its 20% adding (or subtracting, with the same probability) 

a random value, while in the remaining 20% of the cases the new parameter value is chosen in a 

totally random fashion within the specified range. The rationale for the percentage of 80% is to 

investigate as much as possible an actual promising solution. Indeed, once a “better” region on the 

space has been identified, a finer search on that region is conducted performing small changes 

around a potentially interesting solution (Figure 9 line 6). On the other hand, we defined also a 

mechanism to allow for a diversification in the search space (obtained using total random move) to 

escape from local optima (Figure 9 line 8). 

Once all moves are performed, a set of 25 new neighboring solutions is created and the neighboring 

solution with the best objective function value and which is not tabu or matches an aspiration 

criterion is selected as current best solution and then as starting point to explore a new neighborhood 

in the next iteration. It is worth noting that a move is marked as tabu if it leads to a solution whose 

parameter values are very similar (i.e., the difference between parameter values is less than 10%) to 

those of a solution stored in the Tabu List. In order to allow one to revoke tabu moves, we employ 

the most commonly used aspiration criterion, namely we permit a tabu move if it results in a 

solution with an objective function value better than the one of the best solution reached so far. 

Moreover, if the current best solution’s objective value is better than the one achieved by the best 

solution found so far, the latter is replaced. Finally, to avoid retracing the moves previously used, 

the current solution is stored in the Tabu List. Note that since only a fairly limited quantity of 

information is usually recorded in the Tabu List [50], we decided to employ a short-term memory of 

fixed length with 7 elements.  The search is stopped after a fixed number of iterations is performed 

(i.e., 100). It is worth noting that we adopted the same choices for number of moves, Tabu List size, 

and iterations employed in our previous study [26]. Those numbers were empirically determined as 

it is usual when no guidelines are available. In particular, they were chosen for the work presented 

herein because our previous research showed that increasing them did not allow us to improve the 

estimation accuracy while wasting computation time.  
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Figure 8. The proposed TS-based approach for SVR parameters selection 

 

 

 

 

 

 

 

Figure 9. The TS move 

1 function applyMove(currentSolution):newSolution 

2 newSolution=currentSolution 

3 paramToChange= rand(C, ε,  γ) 

4 p = rand(0,1) 

5 if (p < 0.8) then 

6  newValue = paramToChange ± rand(0, paramToChange*0.2) 

7 else  

8  newValue= rand(paramToChange.lowerBound, paramToChange.upperBound) 

9 newSolution.paramToChange = newValue 

10 return newSolution 
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As for the objective function, a number of accuracy measures can be used to compare effort 

estimates, usually based on the residuals, i.e., the differences between predicted and actual efforts. 

Among them, two widely summary measures are the Mean Magnitude of Relative Error (MMRE) 

and the Mean Magnitude of Relative Error relative to the Estimate (MEMRE) [22][72]. Let us recall 

that MMRE is the Mean of MRE and MEMRE is the Mean of EMRE, where: 

           e
ee

MRE
ˆ−

=     (2) 

          e
ee

EMRE
ˆ
ˆ−

=    (3) 

where e represents actual effort and ê estimated effort. We can observe that EMRE has the same 

form of MRE, but the denominator is the estimate, giving thus a stronger penalty to under-estimates. 

In [24][26] [25] we employed as objective function, the mean of them: 

                  Objective Function = (MMRE+MEMRE) / 2   (4) 

The rationale was that, since MRE is more sensitive to overestimates and EMRE to underestimates, 

an objective function minimizing them should find better solutions. Since the present paper provides 

a further assessment of the technique proposed in [26], we exploited the same objective function. 

It is worth noting that the solution we are proposing attempts to capture the necessary domain 

knowledge by using performance indicators as the objective function. On the other hand, it requires 

a meta-heuristics as robust as possible with respect to the target function characteristics, which are 

completely unexplored. We think that the TS strategy has these characteristics because of its 

capability to adapt to the input function both by concentrating search efforts on promising areas and 

keeping away from already visited regions by means of the Tabu List.  

Finally, in order to cope with the non-deterministic nature of TS, we performed 10 executions of 

SVR+TS and, among the obtained configurations, we retained as final the one which provided 

objective value closest to the mean of the objective values obtained in the 10 executions. 
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5.2 Empirical Study Design 
In this section, we present the design of the empirical study carried out to assess the effectiveness of 

the proposed approach. In particular, we present the employed datasets, the null hypotheses, the 

adopted validation method, and evaluation criteria. The results of the empirical analysis are 

discussed in Section 5.4. 

 

5.2.1 Datasets 

To carry out the empirical evaluation of the proposed technique we employed a total of 21 industry 

software project datasets selected both from the PROMISE repository [109] and the Tukutuku 

database [94]. PROMISE contains publicly available single and cross-company datasets, while the 

Tukutuku database contains data about Web projects (i.e., Web hypermedia systems and Web 

applications) developed in different companies and gathered by the Tukutuku project, which aimed 

to develop Web cost estimation models and to benchmark productivity across and within Web 

Companies. 

Concerning the PROMISE repository, it is worth noting that we did not employ all the datasets that 

it contains, since we were interested only on the ones that can be employed for early effort 

estimation (i.e., datasets containing information that would be available at the early stages of a 

software development process), which is the managerial goal of our investigation. To this end, we 

avoided the use of datasets like NASA and COCOMO containing as size measures only features 

available once a project is completed, such as the Lines of Code (LOCs). Moreover, we pruned the 

remaining datasets from this kind of features, since their use could bias the results [120]. As for the 

categorical variables contained in some datasets, we used them as done in [79][120] to obtain 

different more homogenous splits from the original datasets or we excluded them from our analysis 

in case splitting was not possible (e.g., the resulting sub datasets were too small). As an example, we 

used the categorical variable “Languages” in the Desharnais dataset to split the original data into 

three different datasets corresponding to Languages 1, 2, and 3, respectively. After applying the 

above criteria, 13 PROMISE datasets were kept for our empirical analysis, namely Albrecht, China, 

Desharnais1, Desharnais2, Desharnais3, Finnish, Kemerer, MaxwellA2, MaxwellA3, MaxwellS2, 

MaxwellT1, Miyazaki, and Telecom. We applied the same procedure on the Tukutuku database 
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obtaining 8 splits since all the categorical variables (i.e., TypeProj, DocPro, ProImpr, and Metrics) 

were binary. 

Table 8 summarizes the main characteristics of the considered datasets while further details together 

with the descriptive statistics of the involved features are provided in Appendix A. They represent 

an interesting sample of software projects, since they contain data about projects that are Web-based 

(i.e. the ones from Tukututku) and not Web-based (i.e., the ones from PROMISE) and include 

datasets that were collected from a single software company or several companies. Moreover, all the 

datasets contain data about industrial projects, representing a diversity of application domains and 

projects´ characteristics. In particular, they all differ in relation to: 

- geographical locations: software projects coming from Canada, China, Finland, Japan, New 

Zealand, Italy, United States, etc.; 

- number of involved companies; 

- observation number: from 10 to 499 observations; 

- number and type of features: from 1 to 27 features, including a variety of features describing 

the software and Web projects, such as number of entities in the data model, number of 

basic, logical transactions, number of developers involved in the project and their 

experience, number of Web page or image;  

- technical characteristics: software projects developed in different programming languages 

and for different application domains, ranging from telecommunications to commercial 

information systems. 

Nevertheless, note that none of these datasets are random samples of software and Web projects. 

Therefore the information provided in Appendix A can be useful for readers to assess whether the 

results we gathered can scale up to their own contexts. 

In order to avoid that large differences in the ranges of the features’ values can have the unwanted 

effect of giving greater importance to some characteristics than to others, a data preprocessing step 

should be applied when using SVR [17][126]. In our previous studies [24][25], we experimented 

different preprocessing strategies, such as normalization and logarithmic.  The latter is a typical 

approach in the field of effort estimation [30][15][37][75], since it reduces ranges and at the same 

time it limits the linearity issue. It provided the best results in [24][25], thus, we adopted it in [26] 

and in the present paper. Moreover, we removed from the employed datasets the observations which 

have missing values (see Appendix A). 
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Table 25. Summary of the employed datasets 

 
Dataset Description Observations 

Employed 

Features 

Si
ng

le
-C

om
pa

ny
 

Albrecht [3] 
Applications developed by the IBM DP Services 

organization 
24 4 

Desharnais [33] 
Software projects derived from a Canadian software 

house 

77 

 
- 

           Desharnais1 Projects developed with Language1 44 6 

 Desharnais2 Projects developed with Language2 23 6 

 Desharnais3 Projects developed with Language3 10 6 

Maxwell [87] 
Software projects coming from one of the  biggest 

commercial bank in Finland 
62 - 

            MaxwellA2 
Projects developed for Application2 (i.e., transaction 

control, logistics, and order processing applications) 
29 17 

 MaxwellA3 
Projects developed for Application3 (i.e., customer 

service applications) 
18 17 

 MaxwellS2 Projects developed in outsourcing 54 17 

 MaxwellT1 Projects developed using the Telon CASE tool 47 17 

Telecom [120] 

 

Data about enhancement projects for a U.K. 

telecommunication product. 
18 2 

C
ro

ss
-C

om
pa

ny
 

China [109] Projects developed by Chinese software companies 499 5 

Finnish [121] 
Data collected by the TIEKE organizations on projects 

from different Finnish software companies 
38 4 

Kemerer [68] 

Data on large business applications collected by a 

national computer consulting and services firm, 

specialized in the design and development of data-

processing software 

15 1 

Miyazaki [102] 

 

Data on projects developed in 20 companies by Fujitsu 

Large Systems Users Group. 
48 3 

Tukutuku [94] 

Data about Web hypermedia systems and Web 

applications coming from several software companies 

across ten different countries. 

195 - 

 DocProNo 
Projects that did not  follow a defined and documented 

process. 
90 15 
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 DocProYes 
Projects that followed a defined and documented 

process. 
105 15 

 
Enhancement 

Projects 
Projects that are enhancement projects 67 15 

 NewProjects Projects that are new projects 128 15 

 MetricYes 
Projects whose team was part of a software metrics 

programme 
65 15 

 MetricNo 
Projects whose team was not part of a software metrics 

programme 
130 15 

 ProImprYes 
Projects whose team was involved in a process 

improvement programme 
91 15 

 ProImprNo 
Projects whose team was not involved in a process 

improvement programme 
104 15 

 

5.2.2 Null Hypotheses 

To address the first research question (i.e., assessing the effectiveness of TS for configuring SVR) 

we first verified the benefits of using a search-based approach like TS to configure SVR against a 

simpler approach considering random configurations (SVRrand, in the following). In this case, to be 

fair the same number of solutions has to be generated and compared with those achieved with the 

meta-heuristics search approach. Thus, we randomly generated 25100 SVR configurations ten times 

(within the same ranges defined for TS in Section 5.2) and the best one of these was selected based 

on the same criteria employed for SVR+TS but without guiding the search in any way. Moreover, 

we also considered the use of the default configuration (i.e., C = 1, ε = 0.001, γ = 0) provided by the 

Weka tool [52] (SVRweka in the following) and the Grid-search algorithm provided by LibSVM 

[17] (SVRgrid in the following). 

As a consequence, the following null hypotheses were formulated: 

Hn0: SVR+TS does not provide significant better estimates than SVRrand; 

Hn1: SVR+TS does not provide significant better estimates than SVRweka; 

Hn2: SVR+TS does not provide significant better estimates than SVRgrid; 

which contrast with the following alternative hypotheses: 

Hn0: SVR+TS provides significant better estimates than SVRrand; 
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Hn1: SVR+TS provides significant better estimates than SVRweka; 

Hn2: SVR+TS provides significant better estimates than SVRgrid. 

With regard to the second research question, we assessed whether the estimates obtained with 

SVR+TS were better than those obtained using the Manual StepWise Regression (MSWR) [75][97] 

and the Case-Based Reasoning (CBR) [119] that are two techniques widely used in the literature and 

also in industry (probably the most employed estimation methods).  

MSWR is a statistical technique whereby a prediction model (Equation) is built and represents the 

relationship between independent (e.g., number of Web pages) and dependent variables (e.g., total 

Effort). This technique builds the model by adding, at each stage, the independent variable with the 

highest association to the dependent variable, taking into account all variables currently in the 

model. It aims to find the set of independent variables (predictors) that best explain the variation in 

the dependent variable (response).  

Within the context of our investigation, the idea behind the use of CBR is to predict the effort of a 

new project by considering similar projects previously developed. In particular, the completed 

projects are characterized in terms of a set of p features (i.e., variables) and form the case base 

[119]. The new project is also characterized in terms of the same p features and it is referred as the 

target case. Then, the similarity between the target case and the other cases in the p-dimensional 

feature space is measured, and the most similar cases are used, possibly with adaptations, to obtain a 

prediction for the target case. In our empirical study we employed CBR in two ways:  

i) by considering only the independent variables that are statistically correlated to the 

dependent variable (CBRfss in the following), and  

ii) without applying any kind of selection of the variables (CBR in the following).  

The key aspects of MSWR and CBR are detailed in Appendix B and C, respectively. 

In addition, we also assessed whether the estimates obtained with SVR+TS were significantly 

better than those obtained using the mean of effort (MeanEffort in the following) and the median of 

effort (MedianEffort in the following). This was done because, as suggested by Mendes and 

Kitchenham in [97], if an estimation technique does not outperform the results achieved by using 

MeanEffort and MedianEffort, it cannot be transferred to industry since there would be no value in 

dealing with complex computations of estimation methods to predict development effort compared 

to simply using as estimate the mean or the median effort of its own past projects. 
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Thus, we formulated the following null hypotheses: 

Hn3: SVR+TS does not provide significant better estimates than MSWR; 

Hn4: SVR+TS does not provide significant better estimates than CBRfss; 

Hn5: SVR+TS does not provide significant better estimates than CBR; 

Hn6: SVR+TS does not provide significant better estimates than MeanEffort; 

Hn7: SVR+TS does not provide significant better estimates than MedianEffort; 

which contrast with the following alternative hypotheses: 

Ha3: SVR+TS provides significant better estimates than MSWR; 

Ha4: SVR+TS provides significantly better estimations than CBRfss; 

Ha5: SVR+TS provides significantly better estimations than CBR; 

Ha6: SVR+TS provides significantly better estimations than Mean Effort; 

Ha7: SVR+TS provides significantly better estimations than Median Effort. 

 

5.2.3 Validation Method 

To assess the effectiveness of the effort predictions obtained using the techniques employed herein 

we exploited a multiple-fold cross validation, partitioning each original dataset into training sets, for 

model building, and test sets, for model evaluation. This is done to avoid optimistic predictions [13]. 

Indeed, cross validation is widely used in the literature to validate effort estimation models when 

dealing with medium/small datasets (e.g., [15]). When applying the multiple-fold cross validation, 

we decided to use the leave-one-out cross validation on the datasets that have less than 60 

observations (i.e., Albrecht, Desharnais1, Desharnais2, Desharnais3, Finnish, Kemerer, Miyazaki, 

and Telecom). In those cases the original datasets of N observations were divided into N different 

subsets of training and validation sets, where each validation set had one project. On the other hand, 

we decided to partition the datasets having more than 60 observations (i.e., China and the 8 splits 

obtained from the Tukutuku database) into k=10 randomly test sets, and then for each test set to 

consider the remaining observations as training set to build the estimation model. This choice was 
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made trying to find a trade-off between computational costs and effectiveness of the validation. The 

10 folds for the China datasets are given in Appendix A (Table 33) 2. 

 

5.2.4 Evaluation Criteria 

Several accuracy measures have been proposed in the literature to assess and compare the estimates 

achieved with effort estimation methods [22][72], e.g., Mean of MRE, Median of MRE; Mean of 

EMRE, Median of EMRE, and Pred(25) (i.e., Prediction at level 25%). Considering that all the 

above measures are based on the absolute residuals (i.e., the absolute values of differences between 

predicted and actual efforts) in our empirical analysis we decided to compare the employed 

estimation techniques in terms of the Median of Absolute Residuals (MdAR), which is a cumulative 

measure widely employed as the Mean of Absolute Residuals (MAR). We chose to employ MdAR 

since it is less sensitive to extreme values with respect to MAR [98]. The use of a single summary 

measure was motivated by the aim to improve the readability of the discussion on the comparison of 

the analyzed effort estimation methods (that is not confused by the fact that some measures have to 

be minimized and other maximized). Moreover, to make the comparison more reliable we used, 

behind this summary measure, also a statistical test. Indeed, to verify if the differences observed 

using the above measure were legitimate or due to chance, we checked if the absolute residuals 

obtained with the application of the various estimation techniques come from the same population. 

If they do, it means that there are no significant differences between the data values being compared. 

We accomplished the statistical significance test using a nonparametric statistical significance test 

[72], namely Wilcoxon Signed Rank test, with α = 0.05. We decided to use the Wilcoxon test since 

it is resilient to strong departures from the t-test assumptions [21]. 

 

5.3 Results and Discussion 
Table 26 reports the Median of the Absolute Residuals (MdAR) obtained with each technique for all 

the employed datasets. Let us recall that the results of TS+SVR reported herein were obtained 

                                                
2 We cannot report the 10 folds used for the Tukutuku datasets since the information included in the Tukutuku database are not public available, for 

confidence reasons. 
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applying on test set the final configuration provided by TS, namely the one having objective value 

closest to the mean of the objective values obtained in the 10 executions performed on training set.  

Notice that for CBR we used 1, 2, and 3 analogies and due to space constraints, only the best results 

are reported herein. The number of analogies used to obtain each of these best results is specified in 

Table 26. The details about the application of MSWR and CBR are reported in Appendix B and C, 

respectively. 

In order to provide better readability, all the best results (i.e., the minimum MdAR values) obtained 

for each dataset across the employed techniques are reported in bold (see Table 26). Table 26 shows 

that SVR+TS provided the best MdAR values for all the datasets, except for NewProjects, where 

CBR provided a slightly better result. To quantify how much SVR+TS provided better results than 

the other employed techniques, for each dataset we calculated the ratio BestSVR/SVR+TS 

(AvgSVR/SVR+TS, and WorstSVR/SVR+TS, respectively) between the best (the mean, and the 

worst, respectively) MdAR provided by the other SVR based approaches with the MdAR of 

SVR+TS. Similarly, we also provided the same ratios (named BestBench/SVR+TS, 

AvgBench/SVR+TS, and WorstBench/SVR+TS) with respect to the other estimation techniques 

used as benchmarks. These results are reported in Table 27, together with the median values of these 

ratios obtained on all the datasets. Thus, we can observe that with respect to the other SVR 

techniques: 

- the error (i.e., MdAR) made using the other SVR technique providing the best estimates is 

on median about one half (i.e., 1.48) the error made employing SVR+TS; 

- the mean of the errors made using the other SVR techniques is on median about twice (i.e., 

1.75) the error made employing SVR+TS; 

- the error made using the other SVR technique providing the worst result is on median about 

twice (i.e., 2.06) the error made employing SVR+TS. 

As for the comparison with the other estimation techniques used as benchmarks (i.e., MSWR, CBR, 

MeanEffort, and MedianEffort), the results in Table 27 suggest that:  

- the error made using the technique providing the best estimates is on median about twice 

(i.e., 1.65) the error made employing SVR+TS; 

- the mean of the errors made using the other techniques is on median about four (i.e., 3.99) 

times the error made employing SVR+TS; 
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- the error made using the technique providing the worst result is on median about nine times 

(i.e., 8.93) the error made employing SVR+TS. 

In order to verify whether the differences observed using MdAR values were legitimate or due to 

chance, we employed the Wilcoxon test (α= 0.05) to assess if the absolute residuals from all the 

techniques used came from the same population. The results are reported in Table 28 where “Yes” 

in a cell means that SVR+TS is significantly superior to the technique indicated on the column (i.e., 

it means that the absolute residuals achieved with SVR+TS are significantly less than the ones 

obtained with the technique indicated on the column).  

These results allowed us to state that the predictions obtained with SVR+TS were significantly 

superior than those obtained with SVRrand, SVRweka, SVRgrid, MSWR, CBR (with and without 

feature selection), MedianEffort, and MeanEffort for all PROMISE and Tukutuku datasets, except 

for a few cases (i.e., the China, EnhancementProjects, MetricNo, ProImprYes, and ProImprNo 

datasets with respect to SVRgrid, SVRweka, SVRgrid, CBR, and SVRweka approaches, 

respectively) where no significant difference was found. 

According to these results we can reject all the null hypotheses presented in Section 5.4 (with a 

confidence of 95%), highlighting that SVR+TS provided significant better estimates than: 

- SVRrand for all the datasets; 

- SVRweka for 19 out of 21 datasets; 

- SVRgrid for 19 out of 21 datasets; 

- MSWR for all the datasets; 

- CBR for 20 out of 21 datasets; 

- CBRss for all the datasets; 

- Mean Effort for all the datasets; 

- Median Effort for all the datasets. 

Thus, we conclude that we can positively answer our research questions RQ7 and RQ8, i.e., Tabu 

Search was able to effectively set Support Vector Regression parameters and the effort predictions 

obtained by using the combination of Tabu Search and Support Vector Regression were 

significantly superior to the ones obtained by other techniques. Note that these results confirm and 

extend those previously obtained and detailed in [26], thus supporting the usefulness of TS for 

configuring SVR. Indeed, TS has allowed us to improve the accuracy of the obtained estimates with 

respect to the use of random configurations, the use of a default configuration, and the use of Grid- 
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Table 26. Accuracy in terms of MdAR 
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-search algorithm for parameter selection provided by LibSVM. Moreover, we want to stress that 

the analysis showed that SVR outperformed the two techniques that are to date the most widely and 

successfully employed prediction techniques in Software Engineering (e.g., 

[30][13][15][75][95][97][119]), namely MSWR and CBR.  In addition, note that SVR+TS 

outperformed all the other techniques both for single- and cross- company datasets and for both 

Web-based and not Web-based applications datasets.  

 

Table 27. A comparison between SVR+TS and the other techniques 
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Table 28. Comparison of the absolute residuals using Wilcoxon test (p-values are reported between 

brackets) for PROMISE and Tukutuku datasets 
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5.4 Validity Assessment 
We mitigated the construct validity threats arising from the choice of the features and their 

collection by evaluating the employed estimation methods on publicly available datasets from the 

PROMISE repository. These datasets have been previously used in many other empirical studies 

carried out to evaluate effort estimation methods [109]. With respect to the Tukutuku datasets, the 

size measures and cost drivers used in the Tukutuku database, and therefore in our study, have been 

obtained from the results of a survey investigation [96], using data from 133 on-line Web forms 

aimed at giving quotes on Web development projects. In addition, these measures and cost drivers 

have also been confirmed by an established Web company and a second survey involving 33 Web 

companies in New Zealand. Consequently, it is our belief that the variables identified are measures 

that are meaningful to Web companies and are constructed from information their customers can 

provide at a very early stage in the project development. As for data quality, to identify effort 

guesstimates from more accurate effort data, companies were asked on how their effort data was 

collected (see Table 29). At least for 93.8% of Web projects in the Tukutuku database, effort values 

were based on more than just guesstimates. 

 

Table 29. How effort data was collected 

Data Collection Method # Projects % Projects 

Hours worked per project task per day 81 41.5 

Hours worked per project per day/week 40 20.5 

Total hours worked each day or week 62 31.8 

No timesheets (guesstimates) 12 6.2 

 

In relation to the conclusion validity we carefully applied the statistical tests, verifying all the 

required assumptions. Moreover, we used medium size datasets to mitigate the threats related to the 

number of observations composing the dataset.  

As for the external validity, let us observe that both PROMISE and Tukutuku datasets comprise data 

on projects volunteered by individual companies, and therefore they do not represent random 

samples of projects from a defined population. This means that we cannot conclude that the results 

of this study promptly apply to other companies different from the ones that volunteered the data 
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used here. However, we believe that companies that develop projects with similar characteristics to 

those included in the Tukutuku and PROMISE database may be able to apply our results to their 

software projects. However, the adoption of this technique by industry may require to build and 

calibrate the initial model, prior to its use for effort estimation. This also applies to most effort 

estimation techniques investigated to date in the literature, and some examples of how to bridge the 

gap between research and practice are given in [93].  
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CONCLUSIONS 
The main aim of this PhD dissertation was to provide an insight on the use of the search-based (SB) 

techniques for the effort estimation trying to highlight strengths and weaknesses of these approaches 

for building effort estimation models and enhancing existing effort estimation techniques. 

In particular, the research has been carried out aiming at answer the following questions: 

• How the design choices characterizing the use of SB approaches impact on the performance 

of these techniques? 

• Are there any differences in the use of different SB techniques? 

• Are SB techniques as effective as widely used effort estimation methods? 

• Are SB techniques effective to improve the accuracy of other data-driven effort estimation 

techniques? 

To this end we defined and employed three search-based approaches, namely Hill Climbing (HC), 

Tabu Search (TS), and Genetic Programming (GP) for software development effort estimation and 

analyzed their effectiveness with respect to both baseline benchmarks (i.e., Random, Mean Effort, 

and Median Effort) and widely used estimation methods (i.e., MSWR). The experimentation was 

performed by considering different settings and objective functions, exploiting seven publicly 

available datasets (i.e., China, Desharnais, Finnish, Miyazaki, Maxwell, Kemerer, Telecom) and 

using a 3-fold cross-validation. 

The results, evaluated in terms of Sum of Squared Residuals (SSR) and statistical tests, have 

highlighted that HC is the worst of the three techniques, while TS and GP provided significantly 

better results than all the baseline benchmarks and can offer estimation models more accurate than 

those obtained by applying MSWR on almost all the datasets. However, apart from the accuracy, 

other factors can be relevant for practitioners and crucial for the adoption of a predictive technique 

in industry, namely transparency of solutions, ease of use, and required resources [16]. As for 

transparency of solutions, all the proposed search-based approaches and MSWR build an estimation 

model (i.e., an equation) that makes clear the weight and the contribution of each employed feature, 

allowing for making easy the solution interpretation. Differently, other techniques (e.g., CBR) give 

no indication on the contribution of specific features, thus limiting the understating by the user [16]. 
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As for the ease of use, let us observe that to properly apply MSWR a practitioner should have a 

good statistical background. As a matter of fact, a recent study by Kitchenham et al. [71] pointed out 

that in the literature often invalid regression models have been reported because Linear Regression 

was applied without taking care of good statistical practices. On the contrary, the use of search-

based approaches do not require specific knowledge to be applied since there are no assumptions to 

be verified on the employed data and also because they are supported by automated tools. However, 

for using search-based approaches some design choices have to be made and generally different 

choices may lead to different results. As an example for TS many parameters should be settled (e.g., 

tabu list size,  number of moves and iterations) and such setting in the literature has been generally 

obtained after a trial-and-error process depending on the problem under investigation. However, in 

this thesis we have employed an heuristics to set TS and GP which revealed to be effective on all the 

considered datasets. These findings can allow a practitioner to employ TS or GP overcoming the 

difficulties related to the set up of these techniques [16]. 

Concerning the resources required to apply the considered estimation techniques, we can observe 

that a practitioner has to apply MSWR manually executing the selection process at most n times (n 

is the number of dataset features), making its use especially time consuming and more error-prone in 

case of datasets containing a lot of features. On the other hand, the automated tools provided for 

search-based approaches require in general a longer time to be executed with respect to MSWR, 

since their execution time depends on both dataset size and the explored search space (i.e., number 

of moves and iterations). 

Finally, we can say that a search-based approach can represent a flexible technique for project 

managers giving them the possibility to choose the preferred criterion to drive the search for the 

estimation model. We have empirically analyzed the impact of several existing evaluation criteria as 

objective function and observed that some of them have the effect to degrade a lot of other criteria. 

Thus, project managers should be informed on this effect and should take care to select the 

evaluation criterion as objective function. On the other hand, the research community working in the 

area of effort estimation is still searching for a suitable and reliable accuracy criterion to assess and 

compare estimation models (e.g. see [123]). When it will be identified it can be easily exploited as 

objective function with a search-based technique thanks to the flexibility of these approaches and in 

case more than one criterion will be identified it could be interesting to investigate multi-objective 
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optimization approaches (e.g., the ones based on Pareto optimality) [55] to simultaneously optimize 

several criteria. Moreover, multi-objective optimization has proved to be able to provide decision 

support for other early-stage software project management activities (see e.g., [47][112]), so its use 

deserves to be further investigated also in the effort estimation context.  

As for the use of search-based approaches to improve other existing estimation techniques, we have 

assessed whether Support Vector Regression configured by using the proposed Tabu Search 

approach can be effective to estimate software development effort exploiting 21 datasets (both 

single- and cross- company datasets related to both Web-based and not Web-based applications). 

The results of the empirical analysis have highlighted the goodness of TS for configuring SVR. 

Indeed, SVR+TS provided significant better estimates than SVR configured with simpler 

approaches, such as random configuration, default configuration provided by the Weka tool, and the 

Grid-search algorithm provided by LibSVM. Moreover, SVR+TS allowed us to obtain significantly 

better effort estimates than the ones obtained using MSWR and CBR, two techniques widely 

employed both in academic and industrial contexts. Many studies reported in the literature show the 

ability of SVR to construct accurate predictive models in different contexts [18]. Nevertheless, those 

studies are usually based on the opinion of experts that select SVR parameter values on the basis of 

their knowledge of both the approach and the application domain [18]. Of course the reliance upon 

experts severely bounds the practical applicability of this approach in the software industries. The 

approach investigated in the present paper does not only address the problem to find a suitable SVR 

setting for effort estimation but it also allows practitioners of software industries to effectively use it 

without requiring  to be an expert in the field of those techniques. These observations together with 

the results presented in this paper suggest SVR+TS among the techniques that are suitable for 

software development effort estimation in industrial world. 

The good results herein reported concerning the ability of TS to configure SVR motivated us to add 

to our agenda of future work the use of a TS to improve other estimation techniques, such as 

Extreme Learning Machine [63], and the use of the proposed approach in other field of Software 

Engineering, such as fault prediction where some preliminary studies provided encouraging results 

[36][115]. 
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Appendix 
 
A. Datasets descriptions 
 

In this appendix we provided further information on the employed datasets from the PROMISE 

repository and the Tukutuku database. In particular, summary statistics for the employed variables 

are shown Tables 6, 7, and 8, and each dataset is detailed in the following.  

 

Table 30. Summary statistics for the variables of the datasets extracted from the PROMISE 

repository 

Dataset Variable Min Max Mean St Dev 

Albrecht Input 7 193 40.25 36.91 
 Output 12 150 47.25 35.17 
 Inquiry 0 75 16.88 19.34 
 File 3 60 17.38 15.41 
 Effort 0.50 105.20 21.88 28.42 
China Input 0 9404 167.1 486.34 
 Output 0 2455 113.6 221.27 
 Inquiry 0 952 61.6 105.42 
 File 0 2955 91.23 210.27 
 Interface 0 1572 24.23 85.04 
 Effort 26 54620 3921 6481 
Desharnais TeamExp 0 4 2.3 1.33 
 ManagerExp 0 4 2.65 1.52 
 Entities 7 386 121.54 86.11 
 Transactions 9 661 162.94 146.08 
 AdjustedFPs 73 1127 284.48 182.26 
 Envergure 5 52 27.24 8.6 
 Effort 546 2349 4903.95 4188.19 
Desharnais1 TeamExp 0 4 2.43 1.39 
 ManagerExp 0 7 2.30 1.59 
 Entities 7 332 118.30 77.43 
 Transactions 33 886 169.52 143.43 
 AdjustedFPs 83 1116 277.91 179.73 
 Envergure 6 51 29.75 277.91 
 Effort 805 23940 5413 4366 
Desharnais2 TeamExp 1 4 2.17 1.11 
 ManagerExp 1 7 3.09 1.38 
 Entities 31 387 137.96 109.95 
 Transactions 9 482 166.30 135.46 
 AdjustedFPs 62 688 279.91 194.24 
 Envergure 5 52 23.30 11.27 
 Effort 1155 14973 5095.391 4123.559 
Desharnais3 TeamExp 0 4 2 1.56 
 ManagerExp 1 4 3.20 1.14 
 Entities 38 176 90.40 51.08 
 Transactions 97 661 256.10 177.60 
 AdjustedFPs 99 698 325.70 216.57 
 Envergure 6 43 26.90 13.73 
 Effort 546 5880 1685 1631 
Finnish HW 1 3 1.26 0.64 
 AR 1 5 2.24 1.5 
 FP 65 1814 763.58 510.83 
 CO 2 10 6.26 2.73 
 Effort 460 25670 7678.29 7135.28 
Kemerer AdjFP 99.3 2306.8 999.14 589.59 
 Effort 23.2 1107.31 219.25 263.06 
Maxwell Nlan 1 4 2.55 1.02 
 T01 1 5 3.05 1 
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 T02 1 5 3.05 0.71 
 T03 2 5 3.03 0.89 
 T04 2 5 3.19 0.70 
 T05 1 5 3.05 0.71 
 T06 1 4 2.90 0.69 
 T07 1 5 3.24 0.90 
 T08 2 5 3.81 0.96 
 T09 2 5 4.06 0.74 
 T10 2 5 3.61 0.89 
 T11 2 5 3.42 0.98 
 T12 2 5 3.82 0.69 
 T13 1 5 3.06 0.96 
 T14 1 5 3.26 1.01 
 T15 1 5 3.34 0.75 
 SizeFP 48 3643 673.31 784.08 
 Effort 583 63694 8223.21 10499.90 
MaxwellA2 Nlan 1 4 2.41 1.12 
 T01 2 5 3.34 0.90 
 T02 1 4 3.03 0.68 
 T03 2 5 3.10 0.86 
 T04 2 5 3.28 0.75 
 T05 1 5 3.10 0.82 
 T06 1 4 2.86 0.64 
 T07 2 5 3.41 0.98 
 T08 2 5 3.69 0.97 
 T09 3 5 4.17 0.66 
 T10 2 5 3.83 0.97 
 T11 2 5 3.17 0.89 
 T12 2 5 3.79 0.82 
 T13 1 5 3.07 0.92 
 T14 1 5 3.07 1.03 
 T15 2 5 3.45 0.78 
 SizeFP 59 3368 687.86 769.84 
 Effort 845 63694 9628.86 12946.97 
MaxwellA3 Nlan 1 4 2.67 0.97 
 T01 2 5 2.89 0.96 
 T02 2 5 3.11 0.83 
 T03 2 5 3.17 0.92 
 T04 2 4 3.17 0.71 
 T05 2 4 2.89 0.58 
 T06 1 4 2.72 0.75 
 T07 1 4 3.17 0.86 
 T08 2 5 3.83 0.99 
 T09 3 5 4.22 0.55 
 T10 2 5 3.50 0.71 
 T11 2 5 4.00 0.97 
 T12 3 5 3.89 0.58 
 T13 1 4 3.00 1.03 
 T14 2 5 3.28 1.02 
 T15 1 4 3.28 0.83 
 SizeFP 48 3643 874.17 1006.22 
 Effort 583 39479 9824.44 9555.48 
MaxwellS2 Nlan 1 4 2.54 1.00 
 T01 1 5 2.89 0.96 
 T02 1 5 3.11 0.69 
 T03 2 5 2.96 0.89 
 T04 2 4 3.22 0.66 
 T05 2 4 2.98 0.49 
 T06 1 4 2.93 0.67 
 T07 1 5 3.15 0.83 
 T08 2 5 3.83 0.97 
 T09 2 5 4.04 0.73 
 T10 2 5 3.61 0.86 
 T11 2 5 3.50 0.99 
 T12 3 5 3.83 0.50 
 T13 1 5 3.11 0.96 
 T14 1 5 3.22 1.00 
 T15 1 5 3.28 0.63 
 SizeFP 48 3643 636.96 821.61 
 Effort 583 63694 8347.222 11211.18 
MaxwellT1 Nlan 1 4 2.30 0.95 
 T01 1 5 3.09 1.00 
 T02 2 5 3.13 0.71 
 T03 2 5 3.06 0.92 
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 T04 2 5 3.15 0.75 
 T05 1 5 2.98 0.77 
 T06 1 4 2.74 0.64 
 T07 1 5 3.23 0.91 
 T08 2 5 3.87 0.92 
 T09 2 5 4.04 0.75 
 T10 2 5 3.62 0.92 
 T11 2 5 3.21 0.88 
 T12 2 5 3.77 0.70 
 T13 1 5 3.13 0.95 
 T14 1 5 3.34 0.96 
 T15 1 5 3.28 0.80 
 SizeFP 48 3643 606.77 791.48 
 Effort 583 63694 7806.72 10781.81 
Miyazaki SCRN 0 281 33.69 47.24 
 FORM 0 91 22.38 20.55 
 FILE 2 370 20.55 53.56 
 Effort 896 253760 13996 36601.56 
Telecom Changes 3 377 138.06 119.95 
 Files 3 284 110.33 91.33 
 Effort 23.54 1115.54 284.34 264.71 

 

Table 31. Summary statistics for the variables of the Tukutuku database 

Variable Min Max Mean Std. Dev 

Nlang 1 8 3.9 1.4 
DevTeam 1 23 2.6 2.4 
TeamExp 1 10 3.8 2.0 
TotWP 1 2,000 69.5 185.7 
NewWP 0 1,980 49.5 179.1 
TotImg 0 1,820 98.6 218.4 
NewImg 0 1,000 38.3 125.5 
Fots 0 63 3.2 6.2 
HFotsA 0 611 12.0 59.9 
Hnew 0 27 2.1 4.7 
totHigh 611 611 1 0.0 
FotsA 0 38 2.2 4.5 
New 0 99 4.2 9.7 
totNHigh 0 137 6.5 13.2 
TotEff 1.1 5,000 468.1 938.5 

 

Table 32. Summary statistics for variables of the Tukutuku split 

Dataset Variable Min Max Mean St Dev 

DocProNo Nlang 1 8 4.17 1.21 
 DevTeam 1 6 1.63 0.97 
 TeamExp 1 10 5.02 1.77 
 TotWP 3 1390 49.07 147.96 
 NewWP 0 1333 28.03 140.10 
 TotImg 0 780 59.97 107.38 
 NewImg 0 583 22.01 66.49 
 Fots 0 63 3.58 7.53 
 HFotsA 0 611 25.67 86.35 
 Hnew 0 8 0.72 1.84 
 totHigh 0 611 26.39 86.16 
 FotsA 0 38 3.06 6.04 
 New 0 99 6.36 13.34 
 totNHigh 0 137 9.41 18.60 
 TotEff 4 5000 350.90 851.41 
DocProYes Nlang 1 8 3.65 1.59 
 DevTeam 1 23 3.39 2.88 
 TeamExp 1 10 2.80 1.65 
 TotWP 1 2000 86.97 211.94 
 NewWP 0 1980 67.99 205.72 
 TotImg 0 1820 131.69 276.92 
 NewImg 0 1000 52.21 158.61 
 Fots 0 21 2.86 4.90 
 HFotsA 0 4 0.21 0.57 
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 Hnew 0 27 3.24 5.95 
 totHigh 0 27 3.45 5.93 
 FotsA 0 16 1.54 2.47 
 New 0 19 2.43 3.78 
 totNHigh 0 19 3.97 4.04 
 TotEff 1.1 3712 568.58 1000.30 
EnhancementProjects Nlang 1 6 3.15 1.17 
 DevTeam 1 15 2.46 1.94 
 TeamExp 1 8 2.87 1.60 
 TotWP 1 2000 97.51 299.33 
 NewWP 0 1980 65.03 289.61 
 TotImg 0 1238 100.73 219.81 
 NewImg 0 1000 48.46 150.17 
 Fots 0 19 1.84 4.17 
 HFotsA 0 4 0.37 0.85 
 Hnew 0 10 1.19 2.43 
 totHigh 0 12 1.57 2.67 
 FotsA 0 16 2.72 3.10 
 New 0 19 1.58 3.39 
 totNHigh 0 19 4.30 4.07 
 TotEff 1.1 5000 203.65 634.19 
NewProjects Nlang 1 8 4.27 1.43 
 DevTeam 1 23 2.64 2.58 
 TeamExp 1 10 4.33 2.05 
 TotWP 1 440 54.80 74.02 
 NewWP 0 440 41.45 72.40 
 TotImg 0 1820 97.46 218.46 
 NewImg 0 800 32.94 110.66 
 Fots 0 63 3.90 7.00 
 HFotsA 0 611 18.02 73.24 
 Hnew 0 27 2.54 5.48 
 totHigh 0 611 20.56 72.82 
 FotsA 0 38 1.99 5.12 
 New 0 99 5.63 11.43 
 totNHigh 0 137 7.63 15.96 
 TotEff 4 3712 606.54 1039.35 
MetricsYes Nlang 1 7 3.18 1.32 
 DevTeam 1 23 3.12 3.27 
 TeamExp 1 10 2.84 1.79 
 TotWP 1 600 55.08 99.97 
 NewWP 0 440 31.12 71.85 
 TotImg 0 1064 84.14 160.88 
 NewImg 0 500 34.69 91.44 
 Fots 0 15 1.11 2.79 
 HFotsA 0 4 0.22 0.62 
 Hnew 0 12 1.23 2.69 
 totHigh 0 12 1.45 2.72 
 FotsA 0 16 1.89 2.79 
 New 0 13 1.66 2.95 
 totNHigh 0 16 3.55 3.50 
 TotEff 1.1 2768 197.41 461.20 
MetricsNo Nlang 1 8 4.24 1.39 
 DevTeam 1 7 2.31 1.72 
 TeamExp 1 10 4.32 1.97 
 TotWP 3 2000 76.68 216.20 
 NewWP 0 1980 58.76 213.17 
 TotImg 0 1820 105.81 242.31 
 NewImg 0 1000 40.06 139.70 
 Fots 0 63 4.23 7.18 
 HFotsA 0 611 17.83 72.69 
 Hnew 0 27 2.50 5.39 
 totHigh 0 611 20.33 72.28 
 FotsA 0 38 2.42 5.19 
 New 0 99 5.53 11.43 
 totNHigh 0 137 7.95 15.82 
 TotEff 4 5000 603.46 1078.75 
ProImprYes Nlang 1 7 3.45 1.17 
 DevTeam 1 23 2.79 2.93 
 TeamExp 1 10 3.23 1.75 
 TotWP 1 600 55.89 95.09 
 NewWP 0 440 36.52 76.21 
 TotImg 0 1238 102.38 199.66 
 NewImg 0 800 37.48 111.45 
 Fots 0 63 2.43 7.56 
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 HFotsA 0 4 0.19 0.61 
 Hnew 0 12 1.10 2.37 
 totHigh 0 12 1.29 2.40 
 FotsA 0 38 2.97 5.69 
 New 0 99 5.60 13.31 
 totNHigh 0 137 8.57 18.23 
 TotEff 1.1 2768 192.36 399.99 
ProImprNo Nlang 1 8 4.27 1.57 
 DevTeam 1 7 2.39 1.74 
 TeamExp 1 10 4.35 2.12 
 TotWP 3 2000 81.37 238.20 
 NewWP 0 1980 60.95 234.70 
 TotImg 0 1820 95.26 234.43 
 NewImg 0 1000 38.96 137.10 
 Fots 0 21 3.86 4.74 
 HFotsA 0 611 22.26 80.73 
 Hnew 0 27 2.93 5.93 
 totHigh 0 611 25.19 80.14 
 FotsA 0 20 1.61 3.09 
 New 0 15 3.05 4.17 
 totNHigh 0 35 4.65 5.64 
 TotEff 4 5000 709.39 1180.34 

 

Albrecht 

The Albrecht dataset contains data on 24 applications developed by the IBM DP Services 

organization with different programming language (i.e., COBOL, PL/I or DMS). We employed as 

independent variables the four types of external input/output elements (i.e., Input, Output, Inquiry, 

File) used to compute Function Points [3] and as dependent variable the Effort quantified in person-

hours and representing the time employed to design, develop, and test each application. We 

excluded from the analysis the number of SLOC. 

 

China 

The China dataset contains data on 499 projects developed in China by various software companies 

in multiple business domains. We employed as independent variables the external input/output 

elements used to calculate Function Points (i.e., Input, Output, Inquiry, File, Interface) and Effort as 

dependent variable [109]. 

 

Desharnais 

Desharnais [33] has been widely used to evaluate estimation methods, e.g.,[16][42][120][121]. It 

contains data about 81, but we excluded four projects that have some missing values, as done in 

other studies (e.g., [120][121]). 

As independent variables we employed: TeamExp (i.e., the team experience measured in years), 

ManagerExp (i.e., the manager experience measured in years) Entities (i.e., the number of the 
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entities in the system data model), Transactions (i.e., the number of basic logical transactions in the 

system), AdjustedFPs (i.e., the adjusted Function Points), and Envergure (i.e., a complex measure 

derived from other factors defining the environment). We considered as dependent variable the total 

effort while we excluded the length of the code. The categorical variable YearEnd was also 

excluded from the analysis as done in other works (e.g., [79][119]) since this not an information that 

could influence the effort prediction of new applications. The other categorical variable, namely 

Languages, was used (as done in [79][120]) to split the original dataset into three different datasets 

Desharnais1 (having 44 observations), Desharnais2 (having 23 observations), and Desharnais3 

(having 10 observations) corresponding to Languages 1, 2, and 3, respectively.  

 

Finnish 

Finnish contains data on 38 projects from different Finnish companies [121]. In particular, the 

dataset consists of a dependent variable, the Effort expressed in person-hours, and five independent 

variables. We decided to do not consider the PROD variable because it represents the productivity 

expressed in terms of Effort and size (FP). 

 

Kemerer 

This dataset contains 15 large business applications, 12 of which were written entirely in Cobol. In 

particular, for each application the number of both adjusted and raw function points is reported (only 

AdjFP has been exploited in our study). The Effort is the total number of actual hours expended by 

staff members (i.e., not including secretarial labor) on the project through implementation, divided 

by 152.We excluded from our analysis the KSLOC variable which counts the thousands of delivered 

source instructions, the variable Duration, which represents the project durations in calendar months, 

and two categorical variables, Software and Hardware, that indicate the software (i.e., Bliss, Cobol, 

Natural ) and the hardware (e.g., IBM 308X, IBM 43XX, DEC Vax) employed in each project, 

respectively. Note that differently from Desharnais dataset these categorical variables could not be 

used to create subsets since the resulting sets were too small. 

 

Maxwell 

The Maxwell dataset [87] contains data of 62 projects in terms of 17 features: Function Points and 

16 ordinal variables, i.e., number of different development languages used (Nlan), customer 
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participation (T01), development environment adequacy (T02), staff availability (T03), standards 

used (T04), methods used (T05), tools used (T06), software's logical complexity (T07), 

requirements volatility (T08), quality requirements (T09), efficiency requirements (T10), installation 

requirements (T11), staff analysis skills (T12), staff application knowledge (T13), staff tool skills 

(T14), staff team skills (T15). As done for the Desharnais dataset, we used the categorical variables 

to split the original dataset. In particular, using the three variables, App, Source, and TelonUse (the 

former indicates the application type, the second indicates in-house or outsourcing development, and 

the last indicates whether the Telon CASE tool was employed) we obtained 9 datasets, however 

only those datasets having a number of observations greater than the feature number were used in 

our experimentation. In particular, we employed the set of 29 observations having App equals to 2, 

the set of 18 observations having App equals to 3, the set of 54 observation having Source equals to 

2, and the set of 47 observations having TelonUse equals to 1. In the following we refer to these 

datasets as MaxwellA2, MaxwellA3, MaxwellS2, and MaxwellT1, respectively. 

 

Miyazaki 

The Miyazaki dataset is composed by projects data collected from 48 systems in 20 Japanese 

companies by Fujitsu Large Systems Users Group [102]. We considered the independent variables 

SCRN (i.e., the number of different input or output screen formats), and FORM (i.e., the number of 

different form) as done in [102]. The dependent variable is the Effort defined as the number of 

person-hours needed from system design to system test, including indirect effort such as project 

management.  

 

Telecom 

It includes information on two independent variables, i.e., Changes and Files, and the dependent 

variable Effort [120]. Changes represents the number of changes made as recorded by the 

configuration management system and Files is the number of files changed by the particular 

enhancement project.  

 

Tukutuku 

It contains Web hypermedia systems and Web applications. The former are characterized by the 

authoring of information using nodes (chunks of information), links (relations between nodes), 
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anchors, access structures (for navigation) and its delivery over the Web. Conversely, the latter 

represent software applications that depend on the Web or use the Web's infrastructure for execution 

and are characterized by functionality affecting the state of the underlying business logic. Web 

applications usually include tools suited to handle persistent data, such as local file system, (remote) 

databases, or Web Services.  

The Tukutuku database has data on 195 projects, where:  

- projects came mostly from 10 different countries, mainly New Zealand (47%), Italy (17%), 

Spain (16%), Brazil (10%), United States (4%), England (2%), and Canada (2%); 

- project types are new developments (65.6%) or enhancement projects (34.4%); 

- about dynamic technologies, PHP is used in 42.6% of the projects, ASP (VBScript or .Net) in 

13.8%, Perl in 11.8%, J2EE in 9.2%, while 9.2% of the projects used other solutions; 

- the remaining projects used only HTML and/or Javascript, 

- each Web project in the database is characterized by process and product variables [94].  

The features characterizing the web projects have the following meaning: 

- nlang: Number of programming languages adopted in the project. 

- DevTeam: Number of Developers involved in the project. 

- TeamExp: Mean number of years of experience for the team members. 

- TotWP: Total number of Web pages (new and reused). 

- NewWP: Total number of new Web pages.  

- TotImg: Total number of images (new and reused).  

- NewImg: Total number of new images. 

- Fots: Number of features/functions reused without any adaptation. 

- HFotsA: Number of reused high-effort features/ functions adapted. 

- Hnew: Number of new high-effort features/ functions. 

- totHigh: Total number of high-effort features/ functions. 

- FotsA: Number of reused low-effort features adapted. 

- New: Number of new low-effort features/functions. 

- totNHigh: Total number of low-effort features/ functions. 

- TotEff: Effort in person-hours (dependent variable). 

The Tukutuku database contains also the following categorical variables: 

- TypeProj: Type of project (new or enhancement). 
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- DocProc: If project followed defined and documented process. 

- ProImpr: If project team was involved in a process improvement programme. 

- Metrics: If project team was part of a software metrics programme. 

 

Table 33. The 10 fold for China dataset 

 
 

B. Manual Stepwise Regression 
We applied MSWR using the technique proposed by Kitchenham [76]. Basically the idea is to use 

this technique to select the important independent variables according to the R2 values and the 

significance of the model obtained employing those variable, and then to use linear regression to 

obtain the final model. 
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In our study we employed the variables shown in Tables 6, 7, and 8 during cross validation and we 

selected the variables for the training set of each split by using the MSWR procedure. In particular, 

at the first step we identified the numerical variable that had a statistically significant effect on the 

variable denoting the effort and gave the highest R2. This was obtained by applying simple 

regression analysis using each numerical variable in turn. Then, we constructed the single variable 

regression equation with effort as the dependent variable using the most highly (and significantly) 

correlated input variable and calculated the residuals. In the subsequent step we correlated the 

residuals with all the other input variables. We continued in this way until there were no more input 

variables available for inclusion in the model or none of the remaining variables were significantly 

correlated with the current residuals [76]. At the end of the procedure, the obtained variables were 

used to build the estimation model for the considered training set, which was then used to obtain the 

estimates for the observations in the corresponding validation set.  

It is worth mentioning that whenever variables were highly skewed they were transformed before 

being used in the MSWR procedure. This was done to comply with the assumptions underlying 

stepwise regression [87] (i.e. residuals should be independent and normally distributed; relationship 

between dependent and independent variables should be linear). The transformation employed was 

to take the natural log(Ln), which makes larger values smaller and brings the data values closer to 

each other [71]. A new variable containing the transformed values was created for each original 

variable that needed to be transformed. In addition, whenever a variable needed to be transformed 

but had zero values, the Ln transformation was applied to the variable’s value after adding 1. 

To verify the stability of each effort estimation model built using MSWR, the following steps were 

employed [71][75]: 

- Use of a residual plot showing residuals vs. fitted values to investigate if the residuals are 

randomly and normally distributed. 

- Calculate Cook’s distance values [23] for all projects to identify influential data points. Any 

projects with distances higher than 3 × (4/n), where n represents the total number of projects, are 

immediately removed from the data analysis [75]. Those with distances higher than 4/n but 

smaller than 3 × (4/n) are removed to test the model stability by observing the effect of their 

removal on the model. If the model coefficients remain stable and the adjusted R2 (goodness of 

fit) improves, the highly influential projects are retained in the data analysis. 
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C. Case-Based Reasoning  
To apply CBR we have to choose the similarity function, the number of analogies to pick the similar 

projects to consider for estimation, and the analogy adaptation strategy for generating the estimation. 

Moreover, also relevant project features could be selected.  

In our case study, we applied CBR by employing the tool ANGEL [120] that implements the 

Euclidean distance which is the measure used in the literature with the best results [98]. As for the 

number of analogies, we used 1, 2, and 3 analogies, as suggested in other similar works [15][97]. 

Moreover, to select similar projects for the estimation, we employed as adaptation strategies the 

mean of k analogies. Regarding the feature selections, we considered the independent variables that 

are statistically correlated to the effort (at level 0.05), obtained by carrying out a Pearson correlation 

test [92] on the training set of each split. We did not use feature subset selection of ANGEL since it 

might be inefficient, as reported in [14][120]. In addition, all the project attributes considered by the 

similarity function had equal influence upon the selection of the most similar project(s). We also 

decided to apply CBR employing all the variables of Table 1 as set of features, as done for the 

application of SVR+TS, considering all relevant factors for designers and developers. In the paper 

we distinguish between the two different applications of CBR, using CBRfss for denoting the use of 

the method with feature selection. 


