

UNIVERSITÀ DEGLI STUDI DI SALERNO

Dottorato di Ricerca in Scienze Matematiche, Fisiche ed Informatiche

Curriculum in Sistemi e Tecnologie del Software

XI Ciclo

Search-Based Approaches for

Software Development Effort Estimation

Doctoral Dissertation of

Federica Sarro

 Coordinator Advisor

 Prof. Patrizia Longobardi Prof. Filomena Ferrucci

ACKNOWLEDGEMENT

I am deeply grateful to my supervisor Professor Filomena Ferrucci for her continuous and

invaluable advice, encouragement and support. I had the honor and privilege to benefit from the

expertise of an extraordinarily passionate professor.

I wish to thank Dr. Carmine Gravino for all our valuable discussions and his advice which was

always delivered with passion and rigor. I also wish to thank my colleagues for providing a

stimulating and fun-filled environment and to my friends in Salerno and other parts of the world.

They were always a great source of laughter, joy and support.

A special thanks to my mum and sister, for believing in my dreams, and to Maria Laura, whose

endless love and encouragement allowed me to take this journey. I owe them everything and

wish I could show them just how much I love and appreciate them.

To them and to the rest of my family I say, ‘my name is written on the first page but your names

are written on every page because there wasn’t a moment of this journey that you weren’t by my

side.’

Finally, I would like to dedicate this work to my father, who left us too soon. I hope that this

work makes you proud.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

1

Contents

INTRODUCTION ... 3!
Outline ... 6

CHAPTER 1: Background .. 7!

1.1 Estimating Software Development Effort ... 7!
1.2 Search-Based Approaches for Effort Estimation ... 10!

1.2.1 Hill Climbing .. 10!
1.2.2 Tabu Search .. 11!
1.2.3 Genetic Algorithms ... 12

CHAPTER 2: Literature Review ... 14!

2.1 Empirical studies that investigated search based approaches to estimate software development
effort .. 14!
2.2 Empirical studies that investigated search based approaches to improve the effectiveness of
existing estimation techniques ... 18

CHAPTER 3: Using Search-based Approaches for Building Effort Estimation Models 23!

3.1 Designing Search-based Approaches for building effort estimation models 24!
3.1.1 Setting of Hill Climbing and Tabu Search ... 26!
3.1.2 Setting of Genetic Programming .. 27!

3.2 Empirical Study Design ... 27!
3.2.1 Dataset .. 31!
3.2.2 Validation Method and Evaluation Criteria .. 32!

3.3 Analysis and Interpretation of the Results ... 36!
3.3.1 RQ1 and RQ2 ... 36!
3.3.2 RQ3 ... 41!
3.3.3 RQ4 ... 43!
3.3.4 RQ5 ... 44!

3.4 Validity Evaluation .. 45!

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

2

CHAPTER 4: How the Objective Function Choice Affects the Effort Estimation Accuracy of
Search-Based Approaches ... 47!

4.1 Empirical Study Planning .. 48!
4.1.1 Setting of Genetic Programming and Tabu Search .. 49!
4.1.2 Validation Method and Evaluation Criteria .. 50!

4.2 Analysis and Interpretation of the Results ... 51!
4.3 Validity Evaluation .. 65

CHAPTER 5: Using Tabu Search to Configure Support Vector Regression for Effort Estimation 66!

5.1 Using Support Vector Regression in combination with Tabu Search for effort estimation 69!
5.1.1 Support Vector Regression ... 69!
5.1.2 Using Tabu Search to configure SVR .. 73!

5.2 Empirical Study Design ... 77!
5.2.1 Datasets ... 77!
5.2.2 Null Hypotheses ... 80!
5.2.3 Validation Method .. 82!
5.2.4 Evaluation Criteria .. 83!

5.3 Results and Discussion .. 83!
5.4 Validity Assessment .. 89

CONCLUSIONS ... 91

REFERENCES .. 94

Appendix ... 106!

A. Datasets descriptions .. 106!
B. Manual Stepwise Regression .. 114!
C. Case-Based Reasoning .. 116!

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

3

INTRODUCTION

Effort estimation is a critical activity for planning and monitoring software project development and

for delivering the product on time and within budget. Indeed, significant over or under-estimates

expose a software project to several risks. As a matter of fact under-estimates could lead to addition

of manpower to a late software project, making the project later (Brooks’s Law), or to the

cancellation of activities, such as documentation and testing, negatively impacting on software

quality and maintainability. Thus, the competitiveness of a software company heavily depends on

the ability of its project managers to accurately predict in advance the effort required to develop

software system. However, several challenges exists in making accurate estimates, e.g., the

estimation is needed early in the software lifecycle, when few information about the project are

available, or several factors can impact on project effort and these factors are usually specific for

different production contexts.

Several techniques have been proposed in the literature to support project managers in estimating

software project development effort.

To date, expert opinion is a commonly used estimation method and is still used by software and

Web companies [66]. However, relying on the expertise of the company’s practitioners the results

are less repeatable, being mainly based on subjective judgments [13]. Moreover, this made difficult

to quantify and to determine those attributes that have been used to derive an estimate [89].

To overcome this limitation, several techniques which rely on a more formal approach have been

proposed. These include the application of some algorithms to a number of factors that influence the

development cost, such as the size, to produce an estimate or a model providing the estimation in an

objective way. COCOMO and COCOMO II are probably the best known generic methods [13].

They are based on a regression formula, with parameters that are derived from some historical

project data and current project characteristics. They are generic methods that often need to be

calibrated to local data to take into account the characteristics of the specific production context.

Alternatively, a software company can construct its specific model (or estimation) using an

estimation technique that takes as input the information coming from past projects. Usually the

employed data consist of information about some relevant factors (named cost drivers) and the effort

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

4

actually spent by the company to develop prior projects. In this class of data-driven estimation

techniques we can find Linear and Stepwise Regression [13][89] and some artificial intelligence

techniques, such as Classification and Regression Tree (CART), Case-Based Reasoning (CBR), and

Bayesian Networks (BN) [89].

In the last years the use of search-based (SB) approaches has been suggested to be employed as an

effort estimation technique. These approaches include a variety of meta-heuristics, such as local

search techniques (e.g., Hill Climbing, Tabu Search, Simulated Annealing) or Evolutionary

Algorithms (e.g., Genetic Algorithms, Genetic Programming). They search for suitable solutions to

problems characterized by large search space, using an objective function that gives an indication of

how a solution is suitable for the problem under investigation.

The generic nature of these meta-heuristics let them to be fruitful for different goals and issues,

simply by redefining the solution representation and the objective function. As a matter of fact, in

the last years there has been an explosion of researches on the use of SB techniques in many

software engineering fields [55][56], giving rise to a very active field known as Search-Based

Software Engineering (SBSE) [54]. The idea underlying the use of such techniques is based on the

reformulation of software engineering problems as search or optimization problems whose goal is to

find the most appropriate solutions that conform to some adequacy criteria (i.e., problem goals). In

particular, the use of SB approaches in the context of effort estimation is twofold: they can be

exploited to build effort estimation models or to enhance the use of other effort estimation

techniques. In the first case the problem of building an estimation model is reformulated as an

optimization problem where the SB method builds many possible models - exploiting past projects

data - and tries to identify the best one, i.e., the one providing the most accurate estimates. In the

second case, SB methods can be exploited in combination with other estimation techniques to

improve critical steps of their application (e.g., features subset selection or the identification of

critical parameters) aiming to obtain better estimates.

The usage reported in the literature of the SB approaches for effort estimation have provided

promising results that encourage further investigations. However, they can be considered

preliminary studies [2]. As a matter of fact, the capabilities of these approaches were not fully

exploited, either the employed empirical analyses did not consider the more recent recommendations

on how to carry out this kind of empirical assessment in the effort estimation and in the SBSE

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

5

contexts [4][6][73][135]. The main aim of the PhD dissertation is to provide an insight on the use of

SB techniques for the effort estimation trying to highlight strengths and weaknesses of these

approaches for both the uses above mentioned.

In particular, on the basis of the weakness highlighted in the state of the art, the research has been

carried out aiming at answer the following questions:

• How the design choices characterizing the use of the SB approaches impact on the

performance of these techniques?

• Are there any differences in the use of different SB techniques?

• Are the SB techniques as effective as widely used effort estimation methods?

• Are the SB techniques effective to improve the accuracy of other data-driven effort

estimation techniques?

In particular, as for the first question, an often overlooked aspect of research on computational

search algorithms lies in the selection and tuning of the algorithmic parameters. Let us observe that a

suitable setting is usually obtained via a trial-and-error process for each new problem to be

addressed. As a matter of fact, in previous work the number of solutions and iterations of search-

based approaches was empirically determined carrying out a validation process with different values

for these parameters and selecting the one providing the best results (see e.g., [42][43][44]).

However, this practice is time consuming and it has to be repeated every time new data is used, thus

limiting the adoption of search-based approaches by practitioners. To overcome this limitation we

employed and assessed an heuristics originally suggested in [40] to set population size and

generation number of a Genetic Algorithm. Moreover, special attention has been given to the role

played by the use of different objective functions since this is the most important design choice to be

made in the use of any SB technique. In particular, we experimented several objective functions

based on both single and combined evaluation measures and assessed how the accuracy of GP and

TS is affected by this choice. To answer the second question we designed and assessed the use of

three different SB techniques, namely Hill Climbing, Tabu Search, and Genetic Programming, and

compared them in terms of accuracy and cost-effectiveness.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

6

To understand the actual effectiveness of SB effort estimation approaches, we compared them with

baseline methods, such as the mean and median of effort, and some widely used effort estimation

techniques, such as Manual Stepwise Regression (MSWR) [89] and Case-Based Reasoning (CBR)

[122]. Indeed, if the investigated estimation method does not outperform the results achieved with

these baseline methods it cannot be transferred to industry [89].

As for the last question, we employed SB techniques to configure Support Vector Regression (SVR)

that is a new generation of Machine Learning algorithms that have turned out to be effective for

effort estimation. Nevertheless, its prediction accuracy is heavily influenced by its parameter setting

[25] and no general guidelines are available to select these parameters. Thus, we investigated the use

of Tabu Search in combination with SVR to select the parameters of SVR to be employed for effort

estimation.

The research has been carried out to verify the effectiveness of the proposed techniques in a

quantitative and reproducible way carrying out several empirical studies carefully taking into

account the biases that might affect the obtained results (i.e., threats to validity). To this end we

performed several empirical research following the guidelines proposed in [4][73][135].

Preliminary results of this research have been published in

[26][27][36][41][42][43][44][45][46][115].

Outline
The thesis is structured as follows. Chapter 1 provides background on software development effort

estimation and search-based approaches. Chapter 2 discusses the work carried out so far on the use

of search-based approaches for software development effort estimation. Chapter 3 focuses on the

definition and assessment of three search-based approaches (i.e., Hill Climbing, Tabu Search and

Genetic Programming) to build effort estimation models reporting results concerning with their

setting, effectiveness, and comparison. Chapter 4 presents the results of the empirical analysis

aiming to assess the impact of using different objective functions with both Tabu Search and

Genetic Programming. Chapter 5 focuses on the use of Tabu Search to configure a machine learning

technique for effort estimation, namely Support Vector Regression. Final remarks conclude the

thesis.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

7

CHAPTER 1: Background

1.1 Estimating Software Development Effort
The prediction of software development effort plays a crucial role for the competitiveness of a

software company and it is very important not only for the company that produces the software but

also for its customers. Several benefits can be derived from an accurate estimate of software project

development effort. Among them [13]:

- the possibility of defining the appropriate software costs, thus obtaining the contracts for the

development of the software projects;

- the possibility of suitably planning/monitoring the project and allocate resources adequately,

thus ensuring time to market and adequate software quality.

Software development effort can be influenced by several factors, among them the size of the

software is the main factor. Other factors are the skill and the experience of the subjects involved in

the projects, the complexity of the software, the non functional requirements, the adopted software

development process, etc. In the last decades, several approaches have been defined, which

combine, in different ways, these factors by employing modeling techniques. A widely accepted

taxonomy of estimation methods classified them in Non-Model Based and Model Methods [13].

While Non-Model Based Methods mainly take into account expert judgments (thus obtaining highly

subjective evaluations), Model Based Methods involve the application of some algorithms to a

number of factors to produce an effort estimation. These!approaches!use!data!from!past!projects,!
characterized! by! attributes! that! are! related! to! effort! (e.g.! the! size),! and! the! actual! effort! to!
develop!the!projects,!in!order!to!construct!a!model!that!is!used!to!estimate!the!effort!for!a!new!
project!under!development.

Widely! employed!Model Based estimation!methods! are! Linear! Regression! (LR),! CaseBBased!
Reasoning! (CBR),! and! Classification! And! Regression! Tree! (CART)! [13][14][15][122].! Other!
novel!approaches!have!been!proposed!in!the!literature.!Any!new!approach!must!be!validated!
by!some!empirical!studies! in!order!to!verify! its!effectiveness,! i.e.,!whether or not the predicted

efforts are useful estimations of the actual development efforts. To this aim historical datasets are

employed. In order to ensure strength to the validation process, it is recommended that data coming

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

8

from the industrial world are employed. They can come from a single company or from several

companies (cross-company datasets), such as the publicly available ISBSG repository that contains

data from a great number of projects developed by companies around the world [64]. A technique

that is widely employed to validate an estimation approach is cross-validation. One round of cross-

validation involves partitioning the dataset into two randomly complementary sets: the training set

for model building and the test set (or validation set) for model evaluation [13]. To reduce

variability, multiple rounds of cross-validation are performed using different partitions. The

prediction accuracies are then averaged over the rounds. Several strategies have been proposed to

obtain training and test sets. The k-fold cross validation suggests to partition the initial dataset of N

observations in k randomly test sets of equal size, and then for each test set we have to consider the

remaining observations as training set in order to build the estimation model. The leave-one-out

cross-validation is widely used in the literature when dealing with small datasets (see, e.g. [14]). To

apply the cross-validation, the original dataset of N observations is divided into N different subsets

of training and validation sets, where each validation set has one project. Then, N steps are

performed to get the predictions for the N validation sets.

Another technique that is often exploited is the hold-out validation, where a subset of observations

is chosen randomly from the initial dataset to form the training set, and the remaining observations

compose the test set. Usually, about a third of the initial dataset is used as validation set.

To assess the accuracy of the derived estimations some evaluation criteria are proposed in the

literature. Among them several summary measures, like MMRE, MdMRE, and Pred(25) [22], are

widely employed and considered de facto standard evaluation criteria. They are based on the

evaluation of the residuals, i.e., the difference between the actual and estimated efforts. In the

following, we will report the definitions of these summary measures taking into account a validation

set of n elements.

In order to take into account the error with respect to the actual effort, the Magnitude of Relative

Error [22] is defined as!

EFreal - EFpred
MRE=

EFreal
!

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

9

where EFreal and EFpred are the actual and the predicted efforts, respectively. MRE has to be

calculated for each observation in the validation dataset. All the MRE values are aggregated across

all the observations using the mean and the median, giving rise to the Mean of MRE (MMRE), and

the Median MRE (MdMRE), where the latter is less sensitive to extreme values [98].

The Prediction at level l [22] is defined as

kPred(l)=
n

where k is the number of observations whose MRE is less than or equal to l, and n is the total

number of observations in the validation set. Generally, a value of 25 for the level l is chosen. In

other words, Pred(25) is a quantification of the predictions whose error is less than 25%. According

to Conte et al. [22], a good effort prediction model should have a MMRE≤0.25 and Pred(25)≥0.75,

meaning that at least 75% of the predicted values should fall within 25% of their actual values.

Kitchenham et al. [72] suggest also the use of the Magnitude of Relative Error relative to the

Estimate (EMRE). The EMRE has the same form of MRE, but the denominator is the estimate,

giving thus a stronger penalty to under-estimates:

EMRE = EFreal – EFpred \ EFpred.

 As with the MRE, we can also calculate the Mean of EMRE (MEMRE) and Median of EMRE

(MdEMRE).

Other summary measures less frequently used are the Balanced MMRE (BMMRE), the Mean

Squared Error (MSE) [22] and the Adjusted Mean Square Error (AMSE) [16]. They are defined as

follows:

()
100
n

n
i i

i=1 i i

EFreal - EFpred
BMMRE=

min EFreal ,EFpred
! "
$# $
% &

∑

∑
n

2

i=1

1MSE= (EFreal - EFpred)
n

2n
i i

i=1 i i

EFreal - EFpred
AMSE=

EFreal * EFpred∑

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

10

where EFReali and EFpredi are the actual and the estimated efforts of the ith observation of the

validation set and n is the number of observations in the validation set.

Finally, in order to have an insight on the usefulness of a new method, its estimation accuracy is

compared with the ones of other techniques. Several different benchmark methods are exploited to

carry out such a comparison taking into account the above evaluation criteria. It is worth to noting

that in the last years it has been widely recognized that the summary measures should be

complemented by the analysis of boxplot of residuals and the comparisons among estimation

techniques should be carried out by testing also the statistical significance of the absolute residuals.

Such tests should be used to verify the following null hypothesis: “the considered populations of

absolute residuals have identical distributions”, thus allowing us to assess if the differences exist due

to chance alone or due to the fact that the samples are from different populations [72].

1.2 Search-Based Approaches for Effort Estimation
On the basis of the observations in the previous section, it is clear that the problem of identifying an

estimation method on the basis of historical data can be seen as the problem of finding an estimation

method that minimise the residual values, i.e. the difference between the actual and predicted

efforts. Thus, it can be seen as an optimisation problem and search-based approaches could be

exploited to address it. As a matter of fact, in the last years Genetic Algorithms (GAs), which are

based on the evolutionary ideas of natural selection [51], have been defined to estimate software

development effort (e.g., [16][38][82][118]). At the same time, some other approaches have been

proposed aiming to improve some existing techniques by suitably combining them with GA (e.g.,

[11][19][78][125]).

In the following sections we describe the three search-based we employed in our work and in the

next chapter we report on the most relevant empirical studies conducted to assess their effectiveness

in estimating software development effort.

1.2.1 Hill Climbing

Hill climbing starts from a randomly chosen candidate solution. At each iteration, the elements of a

set of ‘near neighbors’ to the current solution are considered. Just what constitutes a near neighbor is

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

11

problem specific, but typically neighbors are a ‘small mutation away’ from the current solution. A

move is made to a neighbor that improves fitness.

There are two choices: In next ascent hill climbing, the move is made to the first neighbour found to

have an improved fitness. In steepest ascent hill climbing, the entire neighborhood set is examined

to find the neighbor that gives the greatest increase in fitness. If there is no fitter neighbor, then the

search terminates and a (possibly local) maxima has been found. Figuratively speaking, a ‘hill’ in

the search landscape close to the random starting point has been climbed. Clearly, the problem with

the hill climbing approach is that the hill located by the algorithm may be a local maxima, and may

be far poorer than a global maxima in the search space. For some landscapes, this is not a problem

because repeatedly restarting the hill climb at a different locations may produce adequate results

(this is known as multiple restart hill climbing). Despite the local maxima problem, hill climbing is a

simple technique which is both easy to implement and surprisingly effective [57][103].

1.2.2 Tabu Search

Tabu Search (TS) is a meta-heuristics search algorithm that can be used for solving optimization

problems. The method was proposed originally by Glover to overcome some limitations of Local

Search (LS) heuristics [50]. Indeed, while classical LS heuristics at each iteration constructs from a

current solution i a next solution j and checks whether j is worse than i to determine if the search has

to be stopped, a TS optimization step consists in creating from a current solution i a set of solutions

N(i) (also called neighboring solutions) and selecting the best available one to continue the search.

In particular, TS usually starts with a random solution and applies local transformations (i.e., moves)

to the current solution i to create N(i). When no improving neighboring solution exists, TS allows

for a climbing move, i.e., a temporary worsening move can be performed. The search terminates

when a stopping condition is met (e.g., a maximum number of iteration is reached). To determine

whether a solution is worse (or better) than another an objective function is employed. In order to

prevent loops and to guide the search far from already visited portions of the search space, some

moves can be classified as tabu which means that are forbidden. The tabu moves can be stored in a

list, named Tabu List, of fixed or variable length following a short-term (i.e., moves leading to

already visited solutions are stored) or a long-term memory strategy (i.e., moves that have been

performed several times are stored). Since tabu moves sometimes may prohibit attractive solution or

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

12

may lead to an overall stagnation of the searching process [50], the so called aspiration criteria can

be used to revoke the tabu status of a move. A common aspiration criterion allows for a tabu move if

it results in a solution which has an objective value better than the current solution.

To summarize, TS starting from a random solution, at each iteration explores a search space

consisting of a set of moves. Such moves are often local transformations of the current solution and

depend on the problem to be solved. Among these moves, the one that provides the best objective

value and is not tabu or matches an aspiration criterion is selected to continue the search.

Thus, to tailor the TS meta-heuristics to a given problem we have to perform the following choices:

- define a representation of possible solutions and the way to generate the initial one;

- define local transformations (i.e., moves) to be applied to the current solution for exploring the

neighbor solutions;

- choose a means to evaluate the neighborhood (i.e., an objective function), thus guiding the

search in a suitable way;

- define the Tabu list, the aspiration criteria, and the termination criteria.

1.2.3 Genetic Algorithms

Basically Genetic Algorithms (GAs) simulate the evolution of natural systems, emphasising the

principles of survival of the strongest, first set by Charles Darwin. As such they represent an

intelligent exploitation of a random search within a defined search space to solve a problem. Genetic

Algorithms were first pioneered by John Holland in the 1960s [59]. Then they have been extensively

studied, experimented, and applied in many fields in the world of science and practice. It is

important to note that GA not only provides an alternative method to solving problems, but, in

several cases, it consistently outperforms other traditional methods [51][54].

In the computer implementation of a genetic algorithm, a crucial role is played by the solution

representation. In general a solution for the problem being solved is represented by a fixed length

binary string, which is called chromosome (in analogy with the biological equivalent). Each solution

is evaluated using a fitness function that gives an indication of its goodness.

Despite of a number of variations, the elementary process of the genetic algorithm is the follows: (i)

first a random initial population, i.e., a family of chromosome, is generated; (ii) then, a new

population (i.e., generation) is created starting from the previous one by applying genetic operators

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

13

(e.g., crossover, mutation) to the best chromosomes (according to the fitness value); (iii) the second

step is repeated until either the fitness of the best solution has converged or a certain number of

generations have been made. The chromosome that gives the best solution in the final population is

taken in order to define the best approximation to the optimum for the problem under investigation.

The analysis of the process suggests that there are several key parameters that have to be determined

for the application of GAs to any given optimisation problem [51][54]. In particular, the following

issues have to be addressed:

1. defining the way for encoding a solution and the number of solutions (i.e. population size).

2. choosing the fitness function, to measure the goodness of a solution;

3. defining the combination of genetic operators, to explore the search space;

4. defining the stopping criteria.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

14

CHAPTER 2: Literature Review

Some investigations have been carried out so far on the use of SB approaches for effort estimation.

These studies have provided promising results that encourage further investigations. However, they

can be considered preliminary studies. As a matter of fact, the capabilities of SB approaches have

not been fully exploited and often the empirical analyses have not taken into account the more

recent recommendations on how to carry out this kind of empirical assessment in the effort

estimation and in the SBSE contexts [4][6][73][135], as detailed in the follow.

2.1 Empirical studies that investigated search based approaches to estimate

software development effort
Table 1 summarizes the main aspects (e.g., employed technique, dataset, validation method, and

evaluation criteria) of the studies carried out so far to assess SB approaches for building effort

estimation models.

First of all we observe that all the previous studies [16][38][82][118] employed Genetic

Programming (GP) and no attempts have been reported on the use of other SB techniques (e.g., the

ones based on local-search), although they have many similarities but also distinguishing features.

Moreover, each SB technique has specific design choices that may affect the performance of the

method. As an example, for GP we have to choose the solution encoding, the fitness function (i.e.,

objective function), the strategy for creating the initial population, the operators for mating and

survival selection, the crossover and mutation operators, and the stopping criteria. The choice of the

objective function is common to all the SB techniques and represents one of the most critical step

since such function guides the search towards suitable solutions. In the context of effort estimation

this choice should be based on a measure of model accuracy. The studies carried out so far exploited

two measures as fitness function, namely MMRE [16] [82] and MSE [38] [118]. However, several

measures have been proposed to evaluate effort estimation accuracy and all of them could be

exploited as objective function [53]. Nevertheless, the use of multiple criteria has not been

investigated although there are recommendations on the use of several different accuracy measures

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

15

to carry out a more reliable evaluation of estimation models. The existing studies have neither fully

investigated the impact of the other design choices such as the stopping criterion and its impact on

the method convergence.

Table 1. Summary of the empirical studies that assessed SB approaches for building effort

estimation models

Reference Employed

technique

Case study

Dataset

Validation

method

Evaluation

Criteria

Benchmark

Methods

[16] GP with MMRE

as fitness

function

Desharnais

hold-out

training set: 149

test set: 15

AMSE, MMRE,

BMMRE,

Pred(25)

ANN, LR, CBR

[38] GP with MSE

as fitness

function

Academic

projects

hold-out

training set: 30

test set: 16

MMRE, Pred(25) LR, ANN

[82] GP with MMRE

as fitness

function

Finnish hold-out

training set: 63

test set: 18

AMSE, MMRE

BMMRE,

Pred(25)

ANN, LR, CBR

[118] GP with MSE

as fitness

function

ISBSG hold-out

training test:

211

test set: 212

MMRE, Pred(25)

Pred(50), MSE

LR

Concerning the empirical analyses, all the studies employed only one dataset thus affecting their

external validity. Moreover, a hold-out validation was applied, where the dataset is split into a

training set used to build the estimation model and a test used to validate it. Unfortunately this

procedure can be biased since the prediction performance may depend on how the dataset is split.

Regarding the evaluation criteria only summary measures were employed: in particular MMRE and

Pred(25) in all the case studies, and in some cases also MSE, AMSE, BMMRE, and Pred(50).

As for the benchmarks, useful to understand the actual effectiveness of the proposed approach, all

the case studies employed several estimation methods, such as Linear Regression (LR) and Case-

Base Reasoning (CBR). However, often there is a lack of details about their application. As for

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

16

example, studies that employed LR did not state if the underlying assumptions were verified [71]

while this aspect is crucial for the internal validity of the empirical study.

Finally, little attention has been given by previous studies to the random variation in results due to

the non-deterministic nature of SB techniques: indeed, very few executions were performed and

often only results related to the best execution were reported, thus affecting the conclusion validity

of these case studies.

In the following, we provide some more details for each proposal, highlighting the validation results.

Dolado [38] was the first to employ an evolutionary approach in order to automatically derive

equations alternative to multiple linear regression. The aim was to compare the linear equations with

those obtained automatically. The proposed algorithm was run a minimum of 15 times and each run

had an initial population of 25 equations. Even if in each run the number of generation varied, the

best results were obtained with three to five generations (as reported in the literature, usually more

generations are used) and by using MSE as fitness function. As dataset, 46 projects developed by

academic students (using Informix-4GL) were exploited through a hold-out validation. It is worth

noting that the main goal of Dolado work was not the assessment of evolutionary algorithms but the

validation of the component-based method for software sizing. However, he observed that the

investigated algorithm provided similar or better values than regression equations.

Burgess and Lefley [16] performed a case study using the Desharnais dataset [33] to compare the

use of genetic algorithms for estimating software development effort with other techniques, such as

LR, CBR, and ANN (Artificial Neural Networks). The comparison was carried out with respect

three dimensions, namely estimation accuracy, transparency, and ease of configuration. The settings

they used for the employed genetic algorithm were: an initial population of 1000, 500 generations,

10 executions, and a fitness function designed to minimize MMRE. They compared the accuracy of

the analysed estimation techniques by taking into account summary statistics based on MRE,

namely MMRE, Pred(25), BMMRE, and AMSE.! Even if GP did not outperform the other

techniques the results were promising and Burgess and Lefley suggested that a better set up of the

evolutionary algorithm could improve the accuracy of the estimations. In particular they highlighted

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

17

that the use of a fitness function specifically tied to optimize one particular measure could degrade

the other evaluation measures. As a matter of fact GA obtained the best estimates in terms of

MMRE and the worst in terms of the other summary measures AMSE, Pred(25), BMMRE. As for

the transparency of the solution, the authors highlighted that widely used techniques such as LR and

CBR allowed the user to have a deep insight on the problem making explicit any information about

the contribution of each variables in the prediction model and the degree of similarity to the target

project respectively. GAs also produced transparent solution because the solution is an algebraic

expression, while neural networks did not make explicit any information. As for the ease of

configuration, i.e. the effort required to build the prediction system, LR and CBR were easy to use

because are widely used method often well supported by tool [122]. Neural networks and GA

approaches required instead some effort to choose appropriate values for control parameters because

different settings may be lead to different results.

Successively, Shepperd and Lefley [82] also assessed the effectiveness of an evolutionary approach

and compared it with several estimation techniques such as LR, ANN, and CBR. As for genetic

algorithm setting, they applied the same choice of Burgess and Lefley[16], while a different dataset

was exploited. This dataset is refereed as “Finnish Dataset” and included 407 observations and 90

features, obtained from many organizations. After a data analysis, a training set of 149 observations

and a test set of 15 observations were used for a hold-out validation. Even if the results revealed that

there was not a method that provided better estimations than the others, the evolutionary approach

performed consistently well. In particular the proposed approach applied on general company wide

data obtained the best results in terms of AMSE, MMRE and Pred(25), while on the company

specific dataset the best results were achieved only in terms of MMRE and BMMRE. However, the

authors again observed that the algorithm was quite hard to configure and companies have to weigh

the complexity of the algorithm against the small increases in accuracy to decide whether to use it to

estimate development effort [82].

An evolutionary computation method, named Grammar Guided Genetic Programming (GGGP), was

proposed in [118] to overcome some limitations of GAs, with the aim of improving the estimation of

the software development effort. Indeed they proposed to use grammars in order to impose

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

18

syntactical constraints and incorporate background knowledge aiming to guide the evolutionary

process in finding optimal or near-optimal results. Data of software projects from ISBSG [64]

database was used to build the estimation models using GGGP and LR. The fitness function was

designed to minimize MSE, an initial population of 1000 was chosen, the maximum number of

generations was 200, and the number of executions was 5. The models were built and validated

performing a hold-out validation with training and test sets of the same size. The results revealed

that GPPP performed better than Linear Regression on all the exploited evaluation criteria, not just

on the MSE, the criterion that was used as fitness function.

2.2 Empirical studies that investigated search based approaches to improve the

effectiveness of existing estimation techniques
Despite some efforts have been made to improve the estimation performance of existing estimation

techniques combining them with genetic algorithms, many of the above limitations can be found

also in the studies that assessed the use of SB approaches to improve existing effort estimation

techniques [5][11][19][61][78][83]. As we can observe from Table 2, all the studies exploited

Genetic Algorithms.

In particular, three of the six proposed approaches combines GA with CBR, the other ones combine

GA with less frequently used techniques, such as Artificial Neural Networks (ANN), Support Vector

Regression (SVR) and Gray Relational Analysis (GRA). To evaluate the goodness of a solution two

settings exploited a combination of MMRE and Pred(25) as fitness function and three settings used a

fitness function based only on MMRE. Only one setting used MSE values as fitness function.

As for the empirical studies carried out to assess the above proposals, we can observe that all the

case studies employed industrial dataset and several validation methods were applied, such as k-fold

cross-validation [19][61][125], leave-one-out cross-validation [11][78] and hold-out validation [83].

Almost all case studies employed the summary measures MMRE, MdMRE, and Pred(25) to

evaluate the accuracy of the obtained estimates. Only one case study used a statistical significance

test to evaluate the residuals, i.e. the difference between actual and predicted effort. Several

estimation methods are employed as benchmark in each case study, ranging from widely used

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

19

techniques, such as COCOMO, CBR, CART, and LR, to less frequently used techniques (e.g. GRA,

SVR, ANN and its variants).

In the following we provide a brief description for each proposal.

Table 2. Summary of the empirical studies that assessed the use of SB approaches in combination

with existing estimation methods

Reference Employed

technique

Case study

Dataset

Validation

Method

Evaluation

Criteria

Benchmark

Methods

[11] GA+SVR

with MMRE and

Pred(25) as fitness

function

Desharnais

and NASA

leave-one-out

MMRE,

Pred(25)

SVR

[19] GA+CBR

with MMRE and

Pred(25) as fitness

function

Canadian

Financial service

and IBM DP

3-fold

MMRE,

MdMRE,

Pred(25)

OLSR,

ANN, CART

[83] GA+CBR

with MMRE as

fitness function

Desharnais,

Albrecht, and

two artificial

datasets

hold-out

MMRE,

MdMRE,

Pred(25)

CBR, SVR,

ANN, CART

[78] GA+CBR

with MMRE as

fitness function

Albrecht,

COCOMO,

and ER

leave-one-out

MMRE,

MdMRE,

Pred(25)

COCOMO, NN,

LR, GRA, CBR,

CART

[61] GA+GRA

with MMRE as

fitness function

Albrecht

and COCOMO

3-fold MMRE,

Pred(25)

CBR, ANN,

CART

[5] GA+NN

with MSE as

fitness function

78 software

projects

hold-out (n

times)

training sets: 63

test sets: 15

Student’s t-

test

Regression Tree NN.

Back-Propagation

NN,

Quick Propagation

NN

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

20

The first attempt to combine evolutionary approaches with an existing effort estimation technique

was made by Shukla [125] applying genetic algorithms to Neural Networks (NN) predictor (namely,

neuro-genetic approach, GANN) in order to improve its estimation capability. In particular, in the

proposed approach the role played by NN was learning the correlation that exists between project

features and actual effort and also learning any existing correlations among the predictor variables,

while the GA had to minimize MSE values. The proposed case study exploited as dataset

information from 78 software projects, obtained from the combination of the COCOMO [9] and the

Kemerer [68] datasets and a statistical significance test was employed to assess whether the neuro-

genetic approach provided significant improvement respect of common used AI-oriented methods

[127][111][108]. In particular the employed Student’s t-test revealed that the mean prediction error

for GANN is less to that for CARTX and less to that for Quick Propagation trained NN [108]. These

results showed that GANN obtained significantly better prediction than CARTX and QPNN. It is

worth to nothing that the authors highlighted that the employed chromosome encoding played a

crucial role in the NN predictor system and that a number of experiments were needed to determine

a suitable choose.

Recently, Chiu and Huang applied GA to another AI-based method such Case-Based Reasoning

obtaining interesting results [19]. In particular, GA was adopted to adjust the reused effort obtained

by considering similarity distances between pairs of software projects. As for the application of

CBR, three similarity distances were considered, Euclidean, Minkowski, and Manhattan distances,

and a linear equation was used to adjust the reused effort. As for the application of GA, the

population included 10*V chromosomes and the generation was stopped after 1000*V trials, or

when the best results did not change after 100*V trials, where V is the number of variables that GA

explored. The performed case study exploited two industrial datasets [1][85] of 23 and 21

observations respectively and the results based on the MMRE, Pred(25) and MdMRE evaluation

criteria revealed that the adjustment of the reused effort obtained by applying GA improved the

estimations of CBR even if the achieved accuracy did not satisfy threshold proposed by Conte et al.

[22]. As a matter of fact applying the proposed approach on the IBM DP service [85] dataset an

improvement of 58% and 126% is reached in terms of MMRE and Pred(25) respectively, but the

obtained values were far enough from the proposed threshold (i.e. MMRE=0.52, Pred(25)=0.43).

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

21

Furthermore, the proposed approaches was also comparable with the models obtained by applying

traditional techniques such as ordinary least square regression (OLS), CART and ANN, on both the

exploited datasets.

!

In [83] it was also proposed a combination of evolutionary approach with CBR aiming at exploiting

genetic algorithms to simultaneously optimize the selection of the feature weights and projects. The

proposed GA worked on a population of 10*V chromosomes and explored the solution space to

minimize MMRE value by considering 1000*V evolutions, where V is the number of variables. As

for CBR method the authors exploited several combinations of similarity measures, K value, and

solution functions. The performed case study employed a hold-out validation on two industrial

datasets [3][33] and two artificial datasets. The obtained estimates were compared with those

achieved by applying only CBR and the results showed that the use of GA can provide significantly

better estimations even if there was no clear conclusion about the influence of similarity and

solution functions on the method performance. It is worth to nothing that on the Desharnais [33]

[48] and Albrecht [3] dataset the accuracies of the obtained estimates did not satisfy the threshold

proposed by Conte et al. [22], while this was true for the results obtained applying the proposed

approach on the two artificial datasets.

GA was also used to improve the accuracy of an effort estimation model built by combining social

choice and analogy-based approaches [78]. In particular, voting rules were used to rank projects

determining similar projects and GA was employed to find suitable weights to be associated to the

project attributes. To this end, a weight between 0 and 99 was assigned to each attribute and GA

started with a population of 2000 random weight vectors. By exploiting error based on summary

measures, the proposed GA searched through 1000 generations an optimal assignment for the

weights. The validation of the obtained weighted model was performed with a leave-one-out

approach by considering as dataset those used in [3], [8], and [9]. The accuracy of the proposed

model was compared with that obtained by applying other estimation techniques, such as LR, ANN,

CART, COCOMO, and GRA. The results revealed that the proposed approach provided the best

value for Pred(25) but the worst MMRE value with respect to the other techniques.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

22

Finally, we report on two case studies carried out to investigate the combination of GA with

techniques not frequently employed for effort estimation. Braga et al. [11] exploited the use of GAs

with Support Vector Regression (SVR) [28], a machine learning techniques based on statistical

learning theory, building a regression model employed to predict effort of novel projects on the

basis of historical data. In particular they exploited a GA previously used to solve classification

problems [62] to address the problems of feature selection and SVR [28] parameters optimization

aiming to obtain better software effort estimations. The proposed GA started with a population of

500 chromosomes and used roulette wheel selection, two-point crossover, mutation, and elitism

replacement to create 25 generations. A combination of MMRE and Pred(25) is used as fitness

function. To evaluate the proposed method they used two datasets, namely Desharnais [33] and

NASA [107][124], and performed 10 runs for each dataset. The results showed that the proposed

GA-based approach was able to improve the performance of SVR and outperformed some recent

results reported in the literature [10][12][107][124]. It is worth nothing to note that the results

obtained applying the proposed approach on NASA dataset satisfied the threshold proposed by

Conte et al. [22]. On the other hand applying the same method on Desharnais dataset the obtained

MMRE value is not less than 0.25, while the Pred(25) is greater than 0.75.

Chiu and Huang in [61] integrated a GA to the Grey Relational Analysis (GRA) [32] method to

build a formal software estimation method. Since GRA is a problem-solving method that is used to

deal with similarity measures of complex relations, the GA was adopted in the GRA learning

process to find the best fit of weights for each software effort driver in the similarity measures. To

this end the weights of each effort driver were encoded in a chromosome and the MMRE was the

value to be optimized. A case study was performed by exploiting the COCOMO [9] and the

Albrecht [3] datasets and the experimental results showed that when GA was applied to the former

dataset the accuracies of the obtained estimates outperformed those obtained using CBR, CART,

and ANN, while on Albrecht dataset all the exploited methods achieved a comparable accuracy. In

both cases the accuracy obtained applying the proposed approach did not satisfy the thresholds

proposed by Conte et al. [22].

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

23

CHAPTER 3: Using Search-based Approaches for Building Effort

Estimation Models

In the last decades, several methods have been proposed to estimate software development effort,

among them data-driven methods exploit data from past projects to estimate the effort for a new

project under development [14][15]. These data consist of information about some relevant factors

(named cost drivers) and the effort actually spent to develop the projects. Usually a data-driven

method tries to explain the relation between effort and cost drivers building an estimation model

(equation) that is used to estimate the effort for a new project. Linear (StepWise) Regression [13] is

a well known and widely used data-driven approach. Also search-based methods have been

suggested to build effort estimation models [54]. The suggestion is based on the observation that,

among possible estimation models, we have to identify the best one, i.e., the one providing the most

accurate estimates. Thus, the effort estimation problem can be formulated as an optimization

problem that can be addressed by search-based methods. Indeed, these meta-heuristics are able to

find optimal or near optimal solutions to problems characterized by large space, using an objective

function that gives an indication of how a solution is suitable for the problem under investigation.

Examples of search-based methods are Simulated Annealing (SA), Tabu Search (TS), Hill Climbing

(HC), Genetic Algorithms (GA) and Genetic Programming (GP), which differ under several aspects

including the kind of employed search (local or global).

Some investigations have been reported in the literature on the use of search-based techniques for

effort estimation. They showed some potentialities of these metaheuristics to build accurate

estimation models as well as some difficulties to adopt them mainly related to the interpretation of

solutions and the choice of a suitable setting. Nevertheless those previous studies mainly focused on

Genetic Programming, a global search technique inspired by biological evolution [16][38][82][118].

Local search approaches, e.g., TS, have been investigated only in few preliminary studies [42][44].

In this paper we deepen the analysis of these metaheuristics from the point of view of their settings

and the empirical assessment of their predictive capability. As for the setting, differently from

previous works where it was adopted a time consuming trial-and-error process to set search-based

approach parameters (e.g., number of moves and iterations for TS), in the present study we

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

24

employed an heuristics which relates those parameters to the problem size and assessed its

effectiveness by comparing it with five configurations varying for the number of solutions and

iterations exploited. Moreover, we employed as objective function the sum of squared residuals

(SSR) (also named sum of squared errors of prediction (SSE)) since we compared the results

achieved with GP, TS, and HC with Linear (StepWise) regression which exploits SSR to fit data.

Regarding the empirical assessment, let us observe that almost all previous studies employed only

one dataset with a hold-out validation thus affecting both external and internal validity. In the

present work, we assessed three search-based approaches, namely HC, TS, and GP, exploiting seven

publicly available datasets (i.e., China, Desharnais, Finnish, Miyazaki, Kemerer, Maxweel, and

Telecom) and performing a 3-fold cross validation. These datasets represent an interesting sample of

industrial software projects containing both single- and cross-company data which vary for size,

application domains, and project characteristics. Moreover, to assess the effectiveness of the three

approaches we first compared them with respect to different baseline benchmarks (i.e., random

search, mean and median of effort about past projects) since if they do not outperform the results

achieved with simpler methods it cannot be transferred to industry [97]. Then, aiming to verify if

HC, TS, and GP provide at least comparable results with respect to estimation techniques widely

used in the literature and in industry, we considered as benchmark Manual StepWise Regression

(MSWR).

The estimates obtained with the employed techniques were evaluated and compared by exploiting

SSR and statistical tests on squared residuals [72].

The remainder of the chapter is organized as follows. In Section 3.1 we provide a description of the

three applied search-based approaches, showing the employed setting. In Section 3.2 we describe

the experimental method we exploited to assess and compare the prediction accuracy of HC, TS, and

GP. The results of the empirical analysis are reported and discussed in Section 3.3, while Section 3.4

discusses the factors that can bias the validity of empirical studies.

3.1 Designing Search-based Approaches for building effort estimation models
Search-based methods are a set of algorithms that search for optimal or near optimal solutions to

problems characterized by large space, using an objective function that indicates how a solution is

suitable for the problem under investigation.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

25

The idea of exploiting these methods to estimate software development effort is based on the

observation that the effort estimation problem can be formulated as an optimization problem. As a

matter of fact, among possible estimation models (equations), we have to identify the one that leads

to the best predictions.

In order to have a better insight on search-based methods in our analysis we exploited three

methods, HC, TS, and GP that have complementary characteristics. Indeed, HC and TS are local

search-based methods, while GP follows a global search. This means that HC and TS are more

exploitation oriented being designed to intensify the search in local regions, on the contrary GP is

more exploration oriented allowing for a better diversification in the whole search space.

Some background on these three methods have been provided in Chapter 1, while in this section we

present how we designed the HC, TS and GP for tying them to software development effort

estimation.

In the context of effort estimation, a solution consists of an estimation model described by an

equation that combines several factors, i.e.,

 Effort = c1 op1 f1 op2 ... op2n−2 cn op2n−1 fn op2n C (1)

where fi represents the value of the i-th project feature and ci is its coefficient, C represents a

constant, while opi ∈{+, −, ·, ln, ^} represents the i-th mathematical operator of the model. It is

worth noting that the equations feasible for the effort estimation problem are those providing

positive value for Effort.

The fitness function guides the search for the best estimation model. In the context of effort

estimation such function should be able to determine whether a model leads to better predictions

than another. In the literature several accuracy measures have been proposed to compare effort

estimation models and each of them could be employed as objective function. In previous works

[44][45], different designs have been experimented employing different accuracy measures

revealing there was no significant difference in the results achieved with different objective

functions except for Mean MRE [22] and Mean of EMRE [72] which should be avoided since they

provided significantly worse predictions than other functions. Thus, in this work we employ SSR as

objective function that is at the basis of MSWR, allowing a fair comparison with this benchmark.

The same number of solutions and iterations characterizes all the SB approaches we employed. Let

us observe that a suitable setting is usually obtained via a trial-and-error process for each new

problem to be addressed. As a matter of fact, in previous work [42][44] the number of solutions and

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

26

iterations was empirically determined carrying out a validation process with different values for

these parameters and selecting the one providing the best results. However, this practice is time

consuming and it has to be repeated every time new data is used, thus limiting the adoption of such

technique and in general of search-based approaches by practitioners. To overcome this limitation in

the present paper we employed a heuristics originally suggested in [40] to set population size and

generation number of a genetic algorithm employed for software clustering. The same heuristics has

been successively adopted for setting GA in the context of effort estimation [19][61] and we

employed it in this work also with HC and TS. In particular, given a project dataset containing V

features, we set to 10V the number of solutions (i.e., neighbors for TS and HC), to V the Tabu List

size, and stop the search after 1000V iterations or if the objective value of the best solution does not

change in the last 100V iterations. Thus such heuristics allowed us to adapt the search process to the

size of the problem under investigation.

Finally, let us observe that since search-based approaches do not give the same solution each time it

is executed, we performed 30 runs and we retained as final results the average SSR values obtained

in the 30 runs.

3.1.1 Setting of Hill Climbing and Tabu Search

As for the move employed in HC and TS to obtain a neighboring solution we applied the following

steps to the current solution S:

• change each coefficient ci of S with probability 1/2. The new coefficient ci is calculated as

follows: ci' = f(ci , r) where f ∈ {+,-,*,/,^,ln} and r is randomly chosen in the range]0,1];

• change the constant factor C of S with probability 1/2, in the same way coefficients are

changed;

• change each arithmetic operator opi of S with probability 1/2.

As for the design of TS, we employed as Tabu List a short-term strategy to store the moves leading

to the most recent already visited solutions and the following aspiration criteria: a tabu move is

allowed only if it results in a solution with an objective function value better than the one of the best

solution reached so far.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

27

3.1.2 Setting of Genetic Programming

The initial population is generated by building random trees of fixed depth. As for the evolutionary

process we employed two widely used selection operators, i.e., roulette wheel selector and

tournament selector [80], whereas the crossover and mutation operators are specific for our solution

encoding. In particular, we used the roulette wheel selector to choose the individuals for

reproduction, while we employed the tournament selector to determine the individuals that are

included in the next generation (i.e., survivals). The former assigns a roulette slice to each

chromosome according to its fitness value. In this way, even if candidate solutions with a higher

fitness have more chance to be selected, there is still a chance that they may be not. On the contrary,

using the tournament selector only the best n solutions (usually n in [1, 10]) are copied straight into

the next generation. Crossover and mutation operators were defined to preserve well-formed

equations in all offspring. To this end, we used a single point crossover which randomly selects in

each tree a node placed at the same depth and swaps the subtrees corresponding to the selected

point. Since the two trees are cut at the same point, the trees resulting after the swapping have the

same depth as compared to those of parent trees. Concerning the mutation, we employed an operator

that selects a node of the tree and randomly changes the associated value. The mutation can affect

internal node (i.e., operators) or leaves (i.e., coefficients) of the tree. In particular, when the

mutation involves internal node, a new operator opi' in {{+,-,*,^,ln} - opi} is randomly generated

and assigned to the node, while if the mutation involves a leaf a new coefficient ci' in R is assigned

to the node. It is worth noting that the employed mutation preserves the syntactic structure of the

equation. Crossover and mutation rate were fixed to 0.5 and 0.1, respectively.

3.2 Empirical Study Design
In this section we present the design of the empirical study we carried out to assess the effectiveness

of the proposed HC, TS, and GP for estimating software development effort. In particular the

research questions of our study can be outlined as follows:

RQ1 Are there any differences in the accuracy of the predictions achieved with different

settings?

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

28

RQ2 Is it possible to identify a suitable heuristics to configure the considered search-based

approaches?

RQ3 Are there any differences in the accuracy of the predictions achieved using different

search-based approaches?

RQ4 Do the considered search-based approaches provide significantly better prediction

accuracy than those obtained by employing baseline benchmarks?

RQ5 Do the considered search-based approaches provide prediction accuracy at least

comparable with those provided by MSWR?

The fact that an overlooked aspect of research on computational search algorithms lies in the

selection and tuning of the algorithmic parameters motivated us to investigate RQ1 and RQ2. Let us

observe that a suitable setting is usually obtained via a trial-and-error process for each new problem

to be addressed. As a matter of fact, in previous work (see e.g., [16][38]) the number of moves and

iterations was empirically determined carrying out a validation process with different values for

these parameters and selecting the one providing the best results. However, this practice is time

consuming and it has to be repeated every time new data is used, thus limiting the adoption of such

technique and in general of search-based approaches by practitioners. To overcome this limitation in

the present paper we employed a heuristics originally suggested in [40] to set population size and

generation number of a genetic algorithm employed for software clustering. The same heuristics was

successively adopted for setting genetic algorithms in the context of effort estimation [45][62][61]

and in this work we extended it to work also with TS. In particular, given a project dataset

containing V features, we set to 10V the number of iterations, to V the Tabu List size (in case of

TS), and stop the search after 1000V iterations or if the objective value of the best solution does not

change in the last 100V iterations (in case of GP and TS). Thus such heuristics allowed us to adapt

the search process to the size of the problem under investigation. To assess the effectiveness of the

proposed heuristics we compared it with respect to the use of five different configurations

characterized by very small, small, medium, large, and very large values for solutions as detailed in

Table 3. All configurations were allowed an identical budget of objective function evaluations

(250,000), thereby ensuring that all require the same computational effort, though they may differ in

parameter settings. On the other hand the “search budget” required by the heuristics is at most

10V*100V evaluations due to the two different stopping criteria employed. In particular we

answered to the following questions:

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

29

RQ1a Are there any differences in the accuracy of the predictions achieved by HC

configured with the settings VS, S, M, L, VL?

RQ1b Are there any differences in the accuracy of the predictions achieved by TS

configured with the settings VS, S, M, L, VL?

RQ1c Are there any differences in the accuracy of the predictions achieved by GP

configured with the settings VS, S, M, L, VL?

RQ2a Is the prediction accuracy obtained with the Heuristics based setting comparable with

those achieved with the other settings for HC?

RQ2b Is the prediction accuracy obtained with the Heuristics based setting comparable with

those achieved with the other settings for TS?

RQ2c Is the prediction accuracy obtained with the Heuristics based setting comparable with

those achieved with the other settings for GP?

Table 3. Settings employed for HC, TS, and GP

Configuration Number of Solutions Number of Iterations
Tabu List Size

(applicable only for TS)

Very Small 50 5000 5

Small 100 2500 10

Medium 200 1250 20

Large 500 500 50

Very Large 1000 250 100

Heuristic 10V 1000V || 100V ? BestFitness constant V

RQ3 has been motivated by the fact that all previous work [16][38][82][118] exploited Genetic

Programming (GP) to build effort estimation models. However, there exist different search-based

methods that have complementary characteristics. In order to have a better insight on search-based

methods in our analysis we compared three search-based methods, namely HC, TS, and GP. Indeed,

HC and TS are local search-based methods, thus are more exploitation oriented, while GP follows a

global search being more exploration oriented. In particular we answered to the following questions:

RQ3a Is the prediction accuracy provided by TS superior to the one provided by HC?

RQ3b Is the prediction accuracy provided by GP superior to the one provided by HC?

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

30

RQ3c Is the prediction accuracy provided by TS superior to the one provided by GP?

Once we assessed whether there are differences in using different search-based techniques, we

compared their performance with respect to the ones of different baseline benchmarks (RQ3), since

if they do not outperform the results achieved with these baseline methods they cannot be

transferred to industry [97]. To this end we considered the following baseline techniques:

• Random: the same number of solutions investigated by the three search-based approaches

was generated in a totally random fashion and the best one among them was selected

according to the same criterion employed for HC, TS, and GP. This is a natural ``sanity

check'' when using meta-heuristics search techniques.

• Mean (Median) Effort: the mean (median) of the past project efforts is used as predicted

effort for a new project. These are popular and simple baseline benchmarks for effort

estimation techniques.

In particular, to address RQ4 we answered to the following questions:

RQ4a Is the prediction accuracy provided by HC superior to the one provided by Random,

Mean Effort, and Median Effort?

RQ4b Is the prediction accuracy provided by TS superior to the one provided by Random,

Mean Effort, and Median Effort?

RQ4c Is the prediction accuracy provided by GP superior to the one provided by Random,

Mean Effort, and Median Effort?

Once we verified the usefulness of the employed search-based techniques comparing them with

baseline benchmarks, we assessed if they are also effective. Indeed, RQ5 aimed to verify if the

search-based approaches that have been revealed superior to the baseline benchmarks provide

prediction accuracy at least comparable with the one of the technique widely used in the literature

and in industry, namely Manual StepWise Regression (MSWR). MSWR is a regression technique

proposed by Mendes and Kitchenham [97] whereby an equation (i.e., the prediction model) is built

and represents the relationship between independent (e.g., Team Experience, Function Points) and

dependent variables (e.g., effort expressed in person/hours). This technique builds the prediction

model by adding, at each stage, the independent variable with the highest association to the

dependent variable, taking into account all variables currently in the model. It aims to find the set of

independent variables (predictors) that best explain the variation in the dependent variable

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

31

(response). To apply MSWR we followed the guidelines provided in [76][97] including the

verification of the assumptions underlying linear regression. In particular, to address RQ5 we

answered to the following questions:

RQ5a Does TS provide prediction accuracy at least comparable with MSWR?

RQ5b Does GP provide prediction accuracy at least comparable with MSWR?

In the following we present the datasets, the validation method, and the evaluation criteria employed

in our empirical analysis.

3.2.1 Dataset

To carry out the empirical study we exploited seven publicly available datasets included in the

PROMISE repository [109], namely China, Desharnais, Finnish, Miyazaki, Kemerer, Maxwell, and

Telecom. All these datasets were previously used to evaluate estimation methods (see e.g.,

[16][25][42][102][121][122]). Our choice was motivated by the aim to select an interesting data

sample of industrial software projects representing a diversity of application domains and project

characteristics. In particular, the employed datasets contain data collected from a single software

company (i.e., Desharnais, Telecom, and Kemerer) or several companies (i.e., China, Finnish,

Miyazaki, and Maxwell) geographically dislocated around the world (e.g., Canada, China, Finland),

thus enabling us to assess the estimation technique herein employed in single- and cross-company

contexts. The use of a cross-company dataset is particularly useful for companies that do not have

their own data on past projects from which to obtain their estimates, or that have data on projects

developed in different application domains and/or technologies.

The employed datasets include information about different features (the number varies ranging from

1 to 17). Indeed, as for the independent variables three datasets (i.e., China, Finnish, and

Desharnais) contain Function Points (or their basic components) as size measure and different cost-

drivers, such as manager and team experience, while one dataset (i.e., Miyazaki) contains only the

components of Object Points as size measure; in all the datasets the dependent variable was the

effort expressed in person-hours. As for the features, we excluded categorical variables (e.g.,

Language and YearEnd in Desharnais) and all the features that could not be available at the time the

prediction would be made, such as the length of the code (LOC). This is important to avoid creating

a false impression as to the efficacy of different prediction methods [122]. Also the number of

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

32

observations varies for the employed datasets (from 10 to 499). It is important to notice that in our

analysis we excluded the observations that had missing values (i.e., four projects for Desharnais).

The descriptive statistics of the employed variables for the seven datasets are shown in Table 3. A

detailed description of each dataset is reported in Appendix A.

3.2.2 Validation Method and Evaluation Criteria

In order to verify whether or not a method gives useful estimations of the actual development effort

a validation process is required. To this end, we performed a multiple-fold cross validation,

partitioning the whole dataset into training sets, for model building, and test sets, for model

evaluation. Indeed, when the accuracy of the model is computed using the same dataset employed to

build the prediction model, the accuracy evaluation is considered optimistic [13][14][15]. Cross

validation is widely used in the literature to validate effort estimation models when dealing with

medium/small datasets (see, e.g. [14][15]). We applied a 3-fold cross validation obtaining for each

dataset 3 randomly test sets and then for each test set we considered the remaining observations as

training set to build the estimation model. To allow for replications of our study, the folds employed

for each dataset are reported in Table 5.

To evaluate the obtained estimates we employed the sum of squared residuals (SSR) in order to

employ the same strategy exploited by both search-based techniques and MSWR to fit the data (i.e.,

minimizing SSR). Let us recall that SSR is defined as follows:

)(
1
∑
=

−=
n

i
ii predictedactualSSR

where n is the number of observations, actuali and predictedi are the actual and the predicted effort

for the observation i, respectively.

The analysis of SSR gives only an indication on which is the estimation method that globally gives

best effort estimations. In order to establish if an estimation method provides better results than

another it is necessary to test the statistical significance of the obtained results. For this reason we

tested the statistical significance of the squared residuals achieved with the considered estimation

methods [72][96][128]. Such an analysis aims at verifying that the estimations of one method are

significantly better than the estimations provided by another method. Since (i) the squared residuals

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

33

for all the analyzed estimation methods were not normally distributed (as confirmed by the Shapiro

test [110] for non-normality), and (ii) the data was naturally paired, we used the Wilcoxon test [20]

setting the confidence limit at α = 0.05 (i.e., if the p-value of the test is less than 0.05 we can reject

the null hypothesis) and applying Bonferroni correction in cases it is needed.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

34

Table 4. Descriptive statistics of the employed variables

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

35

Table 5. The folds employed in our study

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

36

3.3 Analysis and Interpretation of the Results

3.3.1 RQ1 and RQ2

Table 6, Table 7 and Table 8 report the mean of the 30 SSR values obtained with the 30 executions

of HC, TS, and GP employing each of the considered setting (i.e., VS, S, M, L, VL, Heuristic),

respectively. We can observe that there are several differences in the prediction accuracy obtained

using HC with the settings VS, S, M, L, VL and in general the smallest configuration provides better

results when used with HC, while we observed less variability in the results when using TS and GP

and thus there is not a clear winner among the five configurations. As for the comparison between

the considered heuristics and the five settings, we can observe that the results obtained by HC with

Heuristic are quite worse than those obtained with the other settings, while the results obtained by

TS and GP with Heuristic are better or comparable with respect to the ones obtained with the other

settings.

We also statistically compared the squared residuals obtained with the Heuristic based setting with

those achieved with the other settings by applying the Wilcoxon test (see Tables 9, 10 and 11). For

each comparison X vs Y (where X and Y can be VS, S, M, L, VL, or Heuristic) the table reports the

p-value obtained with the Wilcoxon Test. It is worth noting that we applied a Bonferroni correction,

i.e., 0.05/5=0.01, since we performed five tests (one for each of the other configurations, i.e., VS, S,

M, L, or VL) to address research questions RQ1a, RQ1b, and RQ1c. and RQ2a, RQ2b, and RQ2c.

Thus, in the table a p-value less than 0.01 means that there is a statistical significant difference

between the SSR values achieved with the setting X and those obtained by employing the Y based

setting (these cases are highlighted by bold font). We can observe that the results in terms of SSR

are confirmed by the Wilcoxon Test results. Indeed, regarding the results obtained using HC with

VS, S, M, L and VL we found that there is a statistical difference in 26 cases, while the difference

among the predictions obtained with these configurations is less frequent when they are used with

TS and GP (11 and 15 cases, respectively). As for the comparison between the employed heuristics

and the five settings, we found that the square residuals obtained setting HC with Heuristic were in 5

cases significantly worse than the ones provided by another configuration (i.e., VS and S on China,

VS on Finnish, VS on Maxwell, and VL on Miyazaki) and in three cases better than the other

configurations (i.e., S, M and L on the Finnish dataset). This could be due to the fact that the HC

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

37

setting based on Heuristic and the settings based on the other 5 configurations just differ for the

considered number of solutions and, in particular, the number of solutions considered by Heuristic is

less or equals than those considered by the best configurations found except for the Maxwell dataset.

Thus, we can partially positively answer to RQ2a (i.e., the predictions obtained with the heuristics

based setting are comparable with those achieved with the other settings, for HC). On the other hand

we found that the square residuals obtained using TS and GP with Heuristic were in 10 cases

significant better than those obtained using other configurations (i.e., TS with Heuristics provided

significantly better square residuals than using it with VS, S, M settings on the dataset China, and

with S and VL on the Miyazaki dataset; GP with Heuristics provided significantly better square

residuals than using it with all the other five configurations on the China datasets), while in the other

cases no significant difference was found. Thus we can state that the considered heuristic is suitable

to set TS and GP since it has allowed us to obtain comparable or superior prediction accuracy with

respect to the other configurations. Moreover, if we look at the execution time obtained in 30

executions by TS and GP with all the considered configurations (see the histograms in Figure 1 and

Figure 2) we can observe the use of TS and GP with the heuristics is always much faster than using

them with the other settings. This is due to the fact that using the heuristics both TS and GP halted

always before the maximum number of iterations (i.e., they stopped when the objective value of the

best solution does not change in the last 100V iterations), thus performing less than the 250,000

evaluations required by the other settings on all the datasets. This allowed us to save time and

computational resources without affecting the accuracy of the estimation models built with TS and

GP, so we can state that the use of the heuristics has been revealed a cost-effective way to set these

techniques on the considered datasets. Thus, we can positively answer to research questions RQ2b

and RQ2c (i.e., the predictions obtained with the heuristics are comparable with those achieved with

the other settings, for TS and GP).

Based on the above considerations we can conclude that there are differences in using the

considered search-based approaches with different settings and the investigated heuristics is suitable

for setting TS and GP and less useful to set HC on the considered datasets.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

38

Table 6. Results in terms of SSR obtained employing HC with different settings

Dataset VS S M L VL Heuristic

China 3.79E+10 3.87E+10 4.28E+10 4.28E+10 4.26E+10 4.30E+10

Desharnais 1.08E+10 1.15E+10 1.35E+10 1.36E+10 1.19E+10 1.29E+10

Finnish 5.50E+09 1.07E+10 1.48E+10 1.48E+10 1.36E+10 8.79E+09

Kemerer 5.04E+06 4.29E+06 5.16E+06 5.16E+06 4.41E+06 4.82E+06

Maxwell 1.95E+10 2.44E+10 2.47E+10 2.47E+10 2.11E+10 2.79E+10

Miyazaki 4.66E+10 4.63E+10 4.52E+10 4.52E+10 4.58E+10 4.71E+10

Telecom 6.22E+05 6.27E+05 6.18E+05 6.18E+05 6.44E+05 6.51E+05

Table 7. Results in terms of SSR obtained employing TS with different settings

Dataset VS S M L VL Heuristic

China 1.16E+10 1.16E+10 1.18E+10 1.05E+10 1.05E+10 1.04E+10

Desharnais 5.29E+08 5.28E+08 5.30E+08 5.32E+08 5.35E+08 5.41E+08

Finnish 7.42E+08 7.52E+08 7.45E+08 7.49E+08 7.52E+08 7.48E+08

Kemerer 1.18E+06 1.18E+06 1.18E+06 1.18E+06 1.18E+06 1.19E+06

Maxwell 1.80E+09 1.80E+09 1.81E+09 1.81E+09 1.81E+09 1.81E+09

Miyazaki 3.62E+10 3.76E+10 3.49E+10 3.61E+10 3.82E+10 3.63E+10

Telecom 4.27E+05 4.27E+05 4.38E+05 4.62E+05 4.70E+05 4.56E+05

Table 8. Results in terms of SSR obtained employing GP with different settings

Dataset VS S M L VL Heuristic

China 1.50E+10 1.46E+10 1.46E+10 1.46E+10 1.49E+10 1.16E+10

Desharnais 9.52E+08 9.50E+08 9.55E+08 9.58E+08 9.59E+08 9.51E+08

Finnish 1.49E+09 1.48E+09 1.49E+09 1.48E+09 1.49E+09 1.53E+09

Kemerer 9.48E+05 9.46E+05 9.41E+05 9.44E+05 9.29E+05 9.33E+05

Maxwell 1.91E+09 1.93E+09 1.87E+09 1.88E+09 1.87E+09 2.02E+09

Miyazaki 3.51E+10 3.50E+10 3.91E+10 3.49E+10 3.57E+10 3.56E+10

Telecom 8.67E+05 8.65E+05 8.60E+05 8.56E+05 8.45E+05 8.37E+05

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

39

Table 9. Results of the Wilcoxon tests comparing different settings employed for HC
China <> VS S M L VL Heuristic Desharnais <> VS S M L VL Heuristic

 VS - <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 VS - 0.462 0.239 0.042 0.001 0.749

 S - <0.0001 <0.0001 0.110 <0.0001 S - 0.109 0.013 0.327 0.549

 M - 1 0.143 0.648 M - 0.507 0.042 0.113

 L - 0.143 0.648 L - 0.673 0.012

 VL - 0.12 VL - 0.765

Finnish <> VS S M L VL Heuristic Kemerer <> VS S M L VL Heuristic

 VS - <0.0001 <0.0001 <0.0001 0.001 <0.0001 VS - 0.001 0.932 0.932 0.001 0.551

 S - 0.000 0.000 0.451 0.000 S - 0.029 0.029 0.514 0.379

 M - 1 0.954 <0.0001 M - 1 0.001 0.798

 L - 0.954 <0.0001 L - 0.001 0.798

 VL - 0.27 VL - 0.32

Maxwell <> VS S M L VL Heuristic Myiazaki <> VS S M L VL Heuristic

 VS - <0.0001 <0.0001 <0.0001 0.669 0.000 VS - 0.898 0.09 0.09 0.002 0.619

 S - 0.29 0.29 0.017 0.111 S - <0.0001 <0.0001 0.000 0.174

 M - 1 <0.0001 0.547 M - 1 0.232 0.648

 L - <0.0001 0.547 L - 0.232 0.648

 VL - 0.054 VL <0.0001

Telecom <> VS S M L VL Heuristic

 VS - 0.571 0.571 0.571 0.459 0.663

 S - 0.728 0.728 0.486 0.514

 M - 1 0.486 0.408

 L - 0.486 0.408

 VL - 0.408

Table 10. Results of the Wilcoxon tests comparing different settings employed for TS

China <> VS S M L VL Heuristic Desharnais <> VS S M L VL Heuristic

 VS - 0.000 0.002 <0.0001 <0.0001 <0.0001 VS - 0.58 0.35 0.405 0.405 0.417

 S - 0.684 <0.0001 <0.0001 <0.0001 S - 0.078 0.233 0.337 0.48

 M - <0.0001 <0.0001 <0.0001 M 0.078 - 0.437 0.863 0.863

 L - 0.002 0.704 L 0.233 0.437 - 0.206 0.215

 VL - 0.034 VL 0.337 0.863 0.206 - 0.688

Finnish <> VS S M L VL Heuristic Kemerer <> VS S M L VL TS

 VS 0.728 0.417 0.695 0.155 0.505 VS - 0.629 0.689 0.977 0.065 0.065

 S - 0.919 0.85 0.376 0.931 S - 0.67 0.551 0.057 0.065

 M - 0.761 0.885 0.817 M - 0.551 0.05 0.065

 L - 0.002 0.739 L - 0.044 0.065

 VL - 0.477 VL - 0.065

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

40

Maxwell <> VS S M L VL Heuristic Myiazaki <> VS S M L VL Heuristic

 VS - 0.742 0.242 0.806 0.25 0.866 VS - 0.014 0.118 0.133 0.007 0.125

 S - 0.614 0.806 0.57 0.994 S - 0.031 0.010 0.012 0.009

 M - 0.551 0.994 0.966 M - 0.626 0.015 0.177

 L - 0.043 0.689 L - 0.003 0.191

 VL - 0.785 VL - 0.006

Telecom <> VS S M L VL Heuristic

 VS - 0.666 0.556 0.338 0.486 0.224

 S - 0.021 0.127 0.258 0.224

 M - 0.384 0.338 0.255

 L - 0.408 0.965

 VL - 0.896

Table 11. Results of the Wilcoxon tests comparing different settings employed for GP

China <> VS S M L VL Heuristic Desharnais <> VS S M L VL Heuristic

 VS - 0.000 <0.0001 <0.0001 <0.0001 <0.0001 VS - 0.431 0.601 0.875 0.815 0.44

 S - 0.003 <0.0001 <0.0001 <0.0001 S - 0.235 0.157 0.419 0.264

 M - 0.001 0.005 <0.0001 M - 0.594 0.651 0.369

 L - 0.047 <0.0001 L - 0.546 0.35

 VL - <0.0001 VL - 0.685

Finnish <> VS S M L VL Heuristic Kemerer <> VS S M L VL Heuristic

 VS - 0.164 0.828 0.331 0.965 0.417 VS - 0.262 0.164 0.222 0.164 0.514

 S - 0.114 0.523 0.202 0.523 S - 0.164 0.32 0.182 0.551

 M 0.114 - 0.27 0.218 0.392 M - 0.132 0.182 0.755

 L 0.523 0.27 - 0.592 0.392 L - 0.164 0.629

 VL 0.202 0.218 0.592 - 0.369 VL - 0.244

Maxwell <> VS S M L VL Heuristic Myiazaki <> VS S M L VL Heuristic

 VS - 0.833 0.927 0.994 0.123 0.25 VS - 0.003 0.058 0.001 0.004 0.439

 S - 0.151 0.323 0.132 0.066 S - 0.663 0.001 0.007 0.98

 M - 0.872 0.161 0.051 M - 0.032 0.015 0.685

 L - 0.105 0.095 L - 0.009 0.576

 VL - 0.044 VL - 0.253

Telecom <> VS S M L VL Heuristic

 VS - 0.571 0.632 0.459 0.542 1

 S - 0.965 0.663 0.571 0.965

 M - 0.76 0.571 0.728

 L - 0.317 0.663

 VL - 0.24

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

41

Figure 1. Execution time achieved by TS using different configurations (30 executions)

Figure 2. Execution time achieved by GP using different configurations (30 executions)

3.3.2 RQ3

Regarding the comparison among the three considered search-based approaches, the results reported

in Table 12 reveal that both TS and GP provided better results in terms of SSR than HC on all the

employed datasets. We also statistically compared the squared residuals obtained with the three

search-based approaches by applying the Wilcoxon test, whose results are reported in Table 13. The

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

42

p-values reported in the table suggest that the difference among the achieved SSR values is

statistically significant in the case of TS versus HC for all the datasets and in case of GP versus HC

for all the datasets except for the Miyazaki and Telecom datasets. As for the comparison between TS

and GP, we can observe that TS provided better results in terms of SSR than GP on all the employed

datasets except for Kemerer and Miyazaki datasets, however this difference is significant only on

the China dataset in favor of TS and on Kemerer and Miyazaki datasets in favor of GP (see Table

13). Thus, we can positively answer research question RQ3a (i.e., the accuracy provided by TS is

superior to the one provided by HC) and partially positively answer RQ3b (i.e., the accuracy

provided by GP is superior to the one provided by HC) and RQ3c (i.e., the accuracy provided by TS

is superior to the one provided by GP).

Table 12. Results in terms of SSR obtained employing HC, TS, and GP using SSR as objective

function

Dataset HC TS GP

China 3.79E+10 1.04E+10 1.16E+10

Desharnais 1.29E+10 5.41E+08 9.51E+08

Finnish 5.5E+09 7.48E+08 1.53E+09

Kemerer 4.82E+06 1.19E+06 9.33E+05

Maxwell 1.95E+10 1.81E+09 2.02E+09

Miyazaki 4.58E+10 3.63E+10 3.56E+10

Telecom 6.51E+05 4.56E+05 8.37E+05

Table 13. Results of the Wilcoxon test comparing HC, TS, and GP using SSR as objective function

< TS vs HC GP vs HC TS vs GP
China <0.001 <0.001 1
Desharnais <0.001 <0.001 0.41
Finnish <0.001 <0.001 0.123
Kemerer <0.001 <0.001 0.466
Maxwell <0.001 <0.001 0.177
Miyazaki <0.001 0.169 0.027
Telecom <0.001 0.129 0.257

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

43

3.3.3 RQ4

Table 14 reports on the results achieved in terms of SSR for each employed baseline benchmarks

and the mean of the 30 SSR values obtained with the 30 executions of HC, TS, and GP. Let us recall

that the technique providing the less SSR value is considered better than the others. The analysis of

these results suggests that the estimations obtained with TS and GP are better than those achieved by

using Random Search, Mean Effort, and Median Effort on the employed datasets in terms of SSR,

while HC provided better results only on 2 of 7 datasets (i.e., Miyazaki and Telecom) and worse on

the other 5 (i.e., China, Desharnais, Finnish, Kemerer, and Maxwell). This is likely due to the fact

that HC remained trapped in local optima, while TS and GP, being more sophisticated approaches,

are able to escape from these points (see Chapter 1).

Table 14. Results in terms of SSR obtained employing HC, TS, and GP using SSR as objective

function and the employed baseline benchmarks

Dataset HC TS GP Random Mean Median
China 3.79E+10 1.04E+10 1.16E+10 2.31E+10 2.11E+10 2.31E+10
Desharnais 1.29E+10 5.41E+08 9.51E+08 1.48E+09 1.33E+09 1.46E+09
Finnish 5.5E+09 7.48E+08 1.53E+09 3.23E+09 2.73E+09 2.45E+09

Kemerer 4.82E+06 1.19E+06 9.33E+05 1.46E+06 1.08E+06 1.09E+06

Maxwell 1.95E+10 1.81E+09 2.02E+09 6.87E+09 6.75E+09 7.31E+09
Miyazaki 4.58E+10 3.63E+10 3.56E+10 5.01E+10 7.49E+10 6.63E+10

Telecom 6.51E+05 4.56E+05 8.37E+05 1.79E+06 1.51E+06 1.70E+06

Table 15 reports the p-values obtained with the Wilcoxon Test to verify whether the SSR achieved

by HC, TS, and GP were significantly less than those of the baseline benchmarks, for each dataset. It

is worth noting that we applied a Bonferroni correction, i.e., 0.05/3=0.016, since we performed three

tests (one for each baseline benchmark) to address research questions RQ4a, RQ4b, and RQ4c.

Thus, in the table a p-value less than 0.016 means that the SSR values achieved with HC, (TS or

GP) are significantly less than those obtained by the considered baseline benchmark. These cases are

highlighted by bold font. We can observe that the results reported in Table 15 confirm those

achieved in terms of SSR. Indeed, There were no difference between HC and the baseline

benchmarks. On the contrary, TS and GP provided significant better squared residuals than those

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

44

achieved with the baseline benchmarks for all datasets except for Kemerer where no difference was

found probably due the fact that this dataset is very small - both in terms of number of features (i.e.,

1) and observations (i.e., 15) - compared to the other ones. As a matter of fact many work pointed

out that in case of a small number of observations the Wilcoxon Test might be not powerful enough

to confirm a statistical difference at a 0.05 significance level, even when the data seem to suggest

such a difference [4]. Thus, from the above results we can conclude that we can positively answer

the third research question for TS and GP (i.e., the accuracy provided by TS (and GP) is superior to

the one provided by Random, Mean and Median Effort).

Table 15. Results of Wilcoxon Test comparing HC, TS, and GP using SSR as objective function

and the employed baseline benchmarks

 HC vs GP vs TS vs
< Random Mean Median Random Mean Median Random Mean Median

China 0.839 0.01 0.999 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.005
Desharnais 0.999 0.999 0.999 0.008 0.003 0.006 0.003 <0.0001 0.012

Finnish 0.994 0.924 0.97 0.019 0.001 0.003 0.003 <0.0001 0.001
Kemerer 0.999 0.999 0.999 0.295 0.205 0.489 0.001 0.556 0.623
Maxwell 0.995 0.999 0.999 <0.0001 0.006 0.024 <0.0001 0.002 0.003
Miyazaki <0.0001 <0.0001 0.011 0.001 <0.0001 0.002 <0.0001 <0.0001 <0.0001
Telecom 0.025 0.045 0.015 0.025 0.041 0.016 0.002 0.008 0.004

3.3.4 RQ5

Table 16 report results in terms of SSR obtained by applying TS and GP (using SSR as objective

function) and MSWR. We can observe that GP and TS provided better SSR values than MSWR on

3 out 7 (i.e., China, Finnish and Maxwell) and on 5 out 7 datasets (i.e., China, Desharnais, Finnish,

Maxwell and Telecom), respectively. The results of the Wilcoxon test reported in Table 16 revealed

that there was significant difference between GP and MSWR in three cases. In particular, we found

that both GP and TS provided significant better results than MSWR on the dataset Miyazaki, while

GP provided worse results than MSWR on the dataset Kemerer. This result is likely due to the fact

that the Kemerer dataset is composed by only one feature therefore the linear model provided by

MSWR is sufficient to explain the relation with the effort. Thus, we can positively answer the

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

45

research questions RQ5a and RQ5b (i.e., TS and GP provide at least comparable results with

MSWR, respectively).

Table 16. Results in terms of SSR obtained employing TS and GP using SSR as objective function

and MSWR

Dataset TS GP MSWR
China 1.04E+10 1.16E+10 1.48E+10
Desharnais 5.41E+08 9.51E+08 8.55E+08
Finnish 7.48E+08 1.53E+09 1.55E+09
Kemerer 1.19E+06 9.33E+05 7.51E+05
Maxwell 1.81E+09 2.02E+09 2.63E+09
Miyazaki 3.63E+10 3.56E+10 2.34E+10
Telecom 4.56E+05 8.37E+05 6.48E+05

Table 17. Results of Wilcoxon Test comparing HC, TS, and GP using SSR as objective function

and MSWR

< > TS vs MSWR GP vs MSWR
China 0.005 0.410
Desharnais 0.992 0.394
Finnish 0.400 0.739
Kemerer 0.132 0.016
Maxwell 0.217 0.274
Miyazaki <0.0001 0.003
Telecom 0.728 0.338

3.4 Validity Evaluation
It is widely recognized that several factors can bias the validity of empirical studies. In this section

we discuss the validity of the empirical study based on four types of threats, namely construct,

internal, conclusion, and external validity. As highlighted by Kitchenham et al. [77], to satisfy

construct validity a study has “to establish correct operational measures for the concepts being

studied'”. This means that the study should represent to what extent the predictor and response

variables precisely measure the concepts they claim to measure [98]. Thus, the choice of the features

and how to collect them represents the crucial aspects. We evaluated the employed estimation

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

46

methods on seven publicly available datasets included in the PROMISE repository [109] previously

used in many other empirical studies carried out to evaluate effort estimation methods, e.g.,

[16][25][45][122]. As for internal validity, biases can be introduced by the intrinsic randomness of

the search-based techniques. We mitigate such a threat by executing HC, TS, and GP 30 times and

using average results. Concerning the conclusion validity we carefully applied the statistical tests,

verifying all the required assumptions. Moreover, we used small/medium/large size datasets to

mitigate the threats related to the number of observations composing the dataset. Finally, we tried to

mitigate threats to the external validity employing both single- and cross-company datasets

containing data about of industrial software projects that differ for size, application domains, and

project characteristics.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

47

CHAPTER 4: How the Objective Function Choice Affects the Effort

Estimation Accuracy of Search-Based Approaches

As discussed in Chapter 2 the investigations carried out so far on the use of search-based approaches

for effort estimation have focused on the use of Genetic Programming (GP) and have provided

promising results [16][38][39][82][118]. Nevertheless, the design of these techniques deserves to be

further explored and empirically analyzed also employing the more recent recommendations

suggested in the effort estimation context [77][72] and in the search-based software engineering [4].

In particular, a crucial design choice is the definition of the objective function that indicates how a

solution is suitable for the problem under investigation driving the search towards optimal solutions.

For the effort estimation problem the fitness function should be able to assess the accuracy of

estimation models. It is worth noting that several different accuracy measures have been proposed

for assessing the effectiveness/accuracy of effort prediction models. Among them the Mean

Magnitude of Relative Error (MMRE) and the Prediction at level 25 (Pred(25)) represent the most

widely used measures [22]. Each measure focuses the attention on a specific aspect, as a matter of

fact “Pred(25) measures how well an effort model performs, while MMRE measures poor

performance” [100]. Thus, the choice of the criterion for assessing predictions and establishing the

best model can be a managerial issue: a project manager could prefer to use MMRE as the criterion

for judging the quality of a model, while another might prefer to use another criterion, just for

example Pred(25). From this point of view, search-based methods represent an opportunity since

they allow a project manager to identify his/her preferred accuracy measure and explicitly use it as

fitness function so that the search for the model is driven by such a criterion. Indeed, according to

Harman and Clark view point, each measure that has been proposed as a means of evaluating some

properties of interest can be used as fitness function [53]. It is worth noting that this is not possible

for several other estimation techniques, such as Ordinary Least Squares Regression (OLSR), that

have an embedded criterion (e.g., OLSR minimizes the sum of squared residuals). In the literature

the studies that have reported on the use of GP for software development effort estimation were

based on the use of MMRE [16][82] or Mean Square Error (MSE) [38] [118] as fitness function.

Thus, we have carried out an empirical analysis to investigate how the use of different measures as

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

48

fitness function affects the overall accuracy of the estimation models built by GP. To do this, we

evaluated the overall estimation accuracy by using the tools suggested in [72] to allow for a more

reliable accuracy evaluation and a better comparison among different empirical analysis. These

include the joint use of some different evaluation measures (e.g., MMRE, Pred(25), MdMRE),

together with statistical tests [98][128].

The analysis has been carried out experimenting different objective functions based on some

measures (and some combinations of these measures) proposed in the literature to evaluate the

accuracy of the estimates. Preliminary empirical results based on the use of GP on the Desharnais

dataset [33] were provided in [45]. The present chapter is an extension of [45] since we report and

discuss the results obtained using also another technique (i.e., TS) and other publicly available

datasets, namely Finnish [121], Miyazaki [102], Maxwell [87], Telecom [122], China [109], and

Kemerer [68]. Moreover, we have analysed also the use of other fitness functions (i.e., SSR, a

combination of MMRE and MEMRE, MEMRE and Pred(25) and a combination of MdEMRE and

Pred(25)) not employed in [45].

The rest of the chapter is organized as follows. Section 4.1 describes the employed experimental

method while the results are reported in Section 4.2 and empirical study validity is discussed in

Section 4.3.

4.1 Empirical Study Planning
This section presents the design of the empirical study we carried out to analyze the impact of

different objective functions on the accuracy of the estimation models built with GP and TS. In

particular, in our analysis we defined the following research question:

• RQ6a: Does the employed objective function impact on the accuracy of the estimation

models built with GP.

• RQ6b: Does the employed objective function impact on the accuracy of the estimation

models built with TS.

To address them we employed the same techniques and datasets described in Section 3.1 and 3.2

respectively. Moreover, we experimented several objective functions that are described in Section

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

49

4.1.3. In the following we summarize the GP and TS settings, the validation method, and the

evaluation criteria employed in the empirical analysis.

4.1.1 Setting of Genetic Programming and Tabu Search

To address research question RQ6a and RQ6b we experimented six of the accuracy measures

described in Chapter 2 (i.e., SSR, MMRE, MdMRE, MEMRE, MdEMRE, Pred(25)) as objective

function and analyzed the impact on the estimation accuracy of the models built with GP and TS.

Moreover, the observation that different accuracy measures take into account different aspects of

predictions accuracy [72][100] suggested us to investigate also the effectiveness of some

combinations of those accuracy measures. In particular, we also experimented with Avg(MMRE,

MEMRE), Pred(25)/MMRE, Pred(25)/MdMRE , Pred(25)/MEMRE, and Pred(25)/MdEMRE as

objective functions. Table 18 summarizes the employed objective functions.

Table 18. The experimented objective functions

Employed Summary Measures Objective function

Sum of Squared Residuals (SSR) min SSR

Mean of Relative Magnitude (MMRE) min MMRE

Median of Magnitude Relative Error (MdMRE) min MdMRE

Prediction at Level 25 (Pred(25)) max Pred(25)/MMRE

Mean of Magnitude of Relative Error relative to Estimate (MEMRE) min MdEMRE

Median of Magnitude of Relative Error relative to the Estimate (MdEMRE) min MdEMRE

MMRE and MEMRE min Avg(MMRE, MEMRE)

MMRE and Pred(25) max Pred(25)/MdMRE

MdMRE and Pred(25) max Pred(25)/MdMRE

MEMRE and Pred(25) max Pred(25)/MEMRE

MdEMRE and Pred(25) max Pred(25)/MdEMRE

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

50

The GP and TS parameters were set using the heuristics presented in the previous chapter; the

employed settings for each dataset are summarized in Table 19 and Table 20. Since these techniques

do not give the same solution each time they are executed, we performed 30 runs and presented the

average results obtained in 30 runs on the test sets.

Table 19. The employed GP settings

Dataset Population Size Generation Number Crossover Rate Mutation Rate

China 50 <=5000 0.5 0.1

Desharnais 50 <=5000 0.5 0.1

Finnish 40 <=4000 0.5 0.1

Kemerer 10 <=1000 0.5 0.1

Miyazaki 30 <=3000 0.5 0.1

Maxwell 170 <=17000 0.5 0.1

Telecom 20 <=2000 0.5 0.1

Table 20. The employed TS setting

Dataset Number of Moves Number of Iterations Tabu List Size

China 50 <=5000 5

Desharnais 50 <=5000 7

Finnish 40 <=4000 4

Kemerer 10 <=1000 1

Miyazaki 30 <=3000 3

Maxwell 170 <=17000 17

Telecom 20 <=2000 2

4.1.2 Validation Method and Evaluation Criteria

In order to verify whether or not a method gives useful estimations of the actual development effort

we employed the same validation method described in Section 3.2.2 thus using the fold reported in

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

51

Table 5. Concerning the evaluation of the estimates obtained with the analyzed estimation methods,

we used several summary measures, namely SSR, MMRE, MdMRE, Pred(25), MEMRE and

MdEMRE [22][72]. Moreover, to establish if one of the prediction methods provides significant

better estimates than the others, we tested the statistical significance of squared residuals achieved

with the built models [72][98][128]. Since (i) the squared residuals for all the analysed estimation

methods were not normally distributed (as confirmed by the Shapiro test [110] for non-normality),

and (ii) the data were naturally paired, we used the Wilcoxon test [20] setting the confidence limit at

α= 0.05 and applying Bonferroni correction in cases it is needed.

4.2 Analysis and Interpretation of the Results
Table 21 and Table 22 report on the results obtained on the test sets in terms of summary measures

related to the accuracy achieved by the models constructed by GP and TS, respectively. First of all

we analyzed whether the use of a specific criterion allowed us to effectively derive models with the

best value for the selected criterion. Moreover, we analyzed the impact on the overall estimation

accuracy based on some different summary measures (e.g., MMRE, MdMRE, Pred(25)) as well as

on the use of statistical tests on squared residuals.

We can observe that on almost all dataset all the objective functions provided the best value for the

accuracy statistics for which they were specifically designed (e.g., TS optimizing SSR provided the

best SSR values on all the employed datasets). However, if we consider the overall accuracy of the

estimation models (i.e., considering also the other accuracy measures) we can observe that the

improvements to the objective value often occur at the expense of the other measures. This is

particularly evident when we used MMRE and MEMRE as objective function. Indeed, as we can

observe from Figures 3 and 4 when MMRE is used as objective function, MMRE is the best and

MEMRE the worst, and vice versa. This behavior seems to be mitigated employing

Avg(MMRE,MEMRE) as objective function. Moreover, it appears clear that objective functions

based on SSR, Pred(25), MdMRE or their combinations perform better across a wide range of

accuracy statistics, indeed when used as objective function these measures are able to guide towards

estimation models with better accuracy in terms of the selected criterion without degrading so much

the other summary measures.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

52

Figure 3. Comparing MMRE and MEMRE values achieved by TS using MMRE and MEMRE as
objective functions.

Figure 4. Comparing the MMRE and MEMRE values achieved by GP using MMRE and MEMRE
as objective functions.

Table 23 and 24 report the results of the Wilcoxon Test on the square residuals obtained by TS and

GP, respectively, using different objective functions. It is worth noting that we applied a Bonferroni

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

53

correction, i.e., 0.05/3=0.016, since we performed three tests (one for each baseline benchmark) to

address research questions RQ6a and RQ6b. In the following we report for each dataset the

objective functions that allowed us to obtain estimates better than those achieved by all the

employed baseline benchmarks:

• China

- TS_SSR, TS_MdMRE, TS_Avg(MMRE, MEMRE)

- GP_SSR, GP_MdMRE, GP_Avg(MMRE, MEMRE), GP_Pred(25)/MdMRE

• Desharnais

- TS_SSR, TS_MdMRE, TS_MdEMRE, TS_Pred(25), TS_Avg(MMRE,

MEMRE), TS_Pred(25)/MMRE, TS_Pred(25)/MEMRE,

TS_Pred(25)/MdMRE, TS_Pred(25)/MdEMRE

- GP_SSR, GP_MdMRE, GP_MdEMRE, GP_Pred(25), GP_Avg(MMRE,

MEMRE), GP_Pred(25)/MMRE, GP_Pred(25)/MdMRE,

GP_Pred(25)/MdEMRE

• Finnish

- TS_SSR, TS_MMRE, TS_MdMRE, TS_MdEMRE, TS_Pred(25),

TS_Avg(MMRE, MEMRE), TS_Pred(25)/MdMRE,TS_Pred(25)/MdEMRE

- GP_SSR, GP_Avg(MMRE, MEMRE), GP_Pred(25)/MMRE

• Maxwell

- TS_SSR, TS_MdMRE, TS_MdEMRE, TS_ Pred(25), TS_Avg(MMRE,

MEMRE), TS_ Pred(25)/MEMRE, TS_Pred(25)/MdMRE, TS_ Pred

(25)/MdEMRE

- GP_SSR, GP_Avg(MMRE, MEMRE)

• Miyazaki

- TS_SSR, TS_MMRE, TS_MEMRE, TS_MdMRE, TS_MdEMRE,

TS_Pred(25), TS_Avg(MMRE, MEMRE), TS_Pred(25)/MMRE,

TS_Pred(25)/MEMRE, TS_Pred(25)/MdMRE, TS_Pred (25)/MdEMRE

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

54

- GP_SSR, GP_MMRE, GP_MEMRE, GP_MdMRE, GP_MdEMRE,

GP_Pred(25), GP_Avg(MMRE, MEMRE), GP_Pred(25)/MMRE,

GP_Pred(25)/MEMRE, GP_Pred(25)/MdMRE, GP_Pred(25)/MdEMRE

• Telecom

- TS_SSR, TS_MMRE, TS_MdMRE,TS_MdEMRE,

TS_Pred(25),TS_Avg(MMRE, MEMRE), TS_Pred(25)/MMRE

- GP_SSR, GP_Avg(MMRE, MEMRE)

We can observe that only using TS with SSR, MdMRE, MdEMRE, Avg(MMRE,MEMRE) and GP

with SSR and Avg(MMRE, MEMRE) as objective functions we obtained significantly superior

results with respect to all the baseline benchmarks on all the employed datasets except for Kemerer

where no significant difference was found. This is probably due to the fact dataset probably due the

fact that this dataset is very small – both in terms of number of features (i.e., 1) and projects (i.e.,

15) - and as pointed out in the literature the Wilcoxon Test might be not powerful enough to confirm

a statistical difference in case of few observations, even when the data seem to suggest such a

difference [4]. Thus, we can positively answer to research questions RQ6a and RQ6b (i.e., the

employed objective function impact on the accuracy of the estimation models built with TS and

GP).

Table 21 Accuracy measures achieved on test sets using TS with the employed fitness functions

Dataset Technique MMRE MdMRE Pred(25) MEMRE MdEMRE SSR

China TS_SSR 1.13 0.62 0.16 1.22 0.62 1.04E+10

 TS_MMRE 0.65 0.68 0.16 3.15 1.77 1.80E+10

 TS_MdMRE 1.13 0.55 0.12 1.20 0.65 1.25E+10

 TS_Pred(25) 1.82 0.68 0.09 1.04 0.65 3.44E+10

 TS_MEMRE 3.15 1.35 0.15 0.61 0.63 1.35E+11

 TS_MdEMRE 1.60 0.64 0.17 0.87 0.54 1.75E+10

 TS_AVG(MMRE.MEMRE) 1.07 0.59 0.14 1.02 0.61 1.31E+10

 TS_Pred(25)/MMRE 0.70 0.63 0.15 2.40 1.23 1.57E+10

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

55

 TS_Pred(25)/MdMRE 1.26 0.55 0.18 1.06 0.60 1.36E+10

 TS_Pred(25)/MEMRE 2.60 0.94 0.17 0.65 0.59 9.89E+10

 TS_Pred(25)/MdEMRE 1.62 0.63 0.15 0.94 0.58 2.06E+10

Desharnais TS_SSR 0.76 0.36 0.34 0.40 0.35 5.41E+08

 TS_MMRE 0.64 0.34 0.40 0.42 0.31 6.05E+08

 TS_MdMRE 0.64 0.29 0.46 0.49 0.30 8.07E+08

 TS_Pred(25) 0.71 0.33 0.38 0.44 0.33 8.28E+08

 TS_MEMRE 0.88 0.35 0.40 0.36 0.34 8.21E+08

 TS_MdEMRE 0.71 0.32 0.44 0.44 0.30 7.76E+08

 TS_AVG(MMRE.MEMRE) 0.60 0.33 0.43 0.44 0.35 6.40E+08

 TS_Pred(25)/MMRE 0.57 0.32 0.44 0.49 0.33 7.24E+08

 TS_Pred(25)/MdMRE 0.66 0.33 0.44 0.46 0.30 7.75E+08

 TS_Pred(25)/MEMRE 0.90 0.34 0.42 0.37 0.35 9.25E+08

 TS_Pred(25)/MdEMRE 0.69 0.34 0.42 0.44 0.29 7.42E+08

Finnish TS_SSR 0.97 0.53 0.23 0.63 0.44 7.48E+08

 TS_MMRE 0.58 0.56 0.22 1.75 1.18 2.07E+09

 TS_MdMRE 0.89 0.37 0.26 0.76 0.51 9.62E+08

 TS_Pred(25) 1.00 0.56 0.32 0.71 0.47 9.20E+08

 TS_MEMRE 1.70 1.08 0.28 0.49 0.50 1.72E+09

 TS_MdEMRE 1.12 0.52 0.23 0.62 0.37 1.34E+09

 TS_AVG(MMRE.MEMRE) 0.74 0.51 0.31 0.68 0.52 1.03E+09

 TS_Pred(25)/MMRE 0.61 0.54 0.19 1.89 1.25 2.16E+09

 TS_Pred(25)/MdMRE 0.83 0.38 0.37 0.78 0.54 9.41E+08

 TS_Pred(25)/MEMRE 1.13 0.59 0.35 0.56 0.45 9.73E+08

 TS_Pred(25)/MdEMRE 1.02 0.60 0.40 0.64 0.45 8.80E+08

Kemerer TS_SSR 0.63 0.42 0.33 1.45 0.70 1.19E+06

 TS_MMRE 0.46 0.45 0.40 3.78 3.34 1.35E+06

 TS_MdMRE 0.58 0.31 0.47 1.71 0.63 1.24E+06

 TS_Pred(25) 0.53 0.38 0.33 2.89 2.17 1.30E+06

 TS_MEMRE 3.85 2.69 0.20 0.70 0.64 1.00E+07

 TS_MdEMRE 2.21 1.62 0.40 1.54 0.41 7.54E+06

 TS_AVG(MMRE.MEMRE) 0.63 0.43 0.33 1.45 0.70 1.19E+06

 TS_Pred(25)/MMRE 0.46 0.43 0.40 3.81 3.35 1.35E+06

 TS_Pred(25)/MdMRE 0.58 0.32 0.47 1.73 0.66 1.24E+06

 TS_Pred(25)/MEMRE 0.59 0.36 0.47 1.59 0.67 1.22E+06

 TS_Pred(25)/MdEMRE 0.58 0.32 0.47 1.71 0.64 1.24E+06

Maxwell TS_SSR 0.75 0.52 0.26 0.48 0.47 1.80E+09

 TS_MMRE 0.43 0.46 0.32 0.94 0.45 4.15E+09

 TS_MdMRE 0.55 0.34 0.29 0.64 0.44 3.37E+09

 TS_Pred(25) 0.67 0.49 0.34 0.68 0.49 3.21E+09

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

56

 TS_MEMRE 1.03 0.71 0.21 0.45 0.48 2.48E+09

 TS_MdEMRE 0.53 0.47 0.29 0.64 0.35 2.76E+09

 TS_AVG(MMRE.MEMRE) 0.52 0.45 0.32 0.55 0.41 2.25E+09

 TS_Pred(25)/MMRE 0.44 0.50 0.39 0.83 0.43 3.96E+09

 TS_Pred(25)/MdMRE 0.53 0.37 0.40 0.70 0.46 3.73E+09

 TS_Pred(25)/MEMRE 0.87 0.56 0.39 0.46 0.47 2.15E+09

 TS_Pred(25)/MdEMRE 0.53 0.41 0.34 0.75 0.48 3.85E+09

Miyazaki TS_SSR 0.52 0.37 0.33 0.54 0.40 3.72E+10

 TS_MMRE 0.41 0.35 0.35 0.84 0.52 4.21E+10

 TS_MdMRE 0.46 0.36 0.27 0.68 0.40 3.95E+10

 TS_Pred(25) 0.45 0.36 0.33 0.79 0.47 4.05E+10

 TS_MEMRE 0.52 0.37 0.35 0.56 0.42 3.86E+10

 TS_MdEMRE 0.51 0.50 0.21 1.46 0.84 5.26E+10

 TS_AVG(MMRE.MEMRE) 0.49 0.34 0.35 0.59 0.41 3.89E+10

 TS_Pred(25)/MMRE 0.42 0.36 0.40 0.82 0.50 4.00E+10

 TS_Pred(25)/MdMRE 0.47 0.34 0.35 0.61 0.36 3.82E+10

 TS_Pred(25)/MEMRE 0.48 0.34 0.40 0.59 0.38 3.89E+10

 TS_Pred(25)/MdEMRE 0.48 0.35 0.42 0.59 0.36 3.78E+10

Telecom TS_SSR 0.67 0.27 0.50 0.35 0.26 4.93E+05

 TS_MMRE 0.37 0.23 0.56 0.49 0.23 6.39E+05

 TS_MdMRE 0.70 0.22 0.56 0.39 0.30 5.71E+05

 TS_Pred(25) 0.78 0.22 0.61 0.40 0.28 5.52E+05

 TS_MEMRE 0.66 0.35 0.33 0.33 0.26 7.36E+05

 TS_MdEMRE 0.89 0.27 0.50 0.43 0.26 7.71E+05

 TS_AVG(MMRE.MEMRE) 0.40 0.22 0.56 0.41 0.21 6.43E+05

 TS_Pred(25)/MMRE 0.38 0.20 0.61 0.49 0.21 6.25E+05

 TS_Pred(25)/MdMRE 0.75 0.24 0.50 0.39 0.30 5.94E+05

 TS_Pred(25)/MEMRE 0.87 0.25 0.50 0.41 0.27 8.31E+05

 TS_Pred(25)/MdEMRE 0.80 0.23 0.56 0.38 0.25 6.45E+05

Table 22 Accuracy measures achieved on test sets using GP with the employed fitness functions

Dataset Technique MMRE MdMRE Pred(25) MEMRE MdEMRE SSR

China GP_SSR 1.37 0.57 0.18 0.88 0.60 1.52E+10

 GP_MMRE 0.72 0.69 0.12 3.16 1.64 2.00E+10

 GP_MdMRE 1.18 0.57 0.16 1.06 0.61 1.40E+10

 GP_Pred(25) 1.43 0.59 0.16 1.04 0.62 1.53E+10

 GP_MEMRE 2.84 1.20 0.14 0.64 0.63 5.47E+10

 GP_MdEMRE 1.81 0.62 0.16 0.77 0.59 2.16E+10

 GP_AVG(MMRE.MEMRE) 1.10 0.56 0.18 1.00 0.61 1.37E+10

 GP_Pred(25)/MMRE 0.80 0.63 0.10 2.23 1.07 1.77E+10

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

57

 GP_Pred(25)/MdMRE 1.37 0.57 0.17 1.02 0.61 1.43E+10

 GP_Pred(25)/MEMRE 2.27 0.88 0.16 0.66 0.58 3.39E+10

 GP_Pred(25)/MdEMRE 1.56 0.60 0.21 0.83 0.55 1.49E+10

Desharnais GP_SSR 0.79 0.36 0.43 0.42 0.35 9.51E+08

 GP_MMRE 0.57 0.50 0.18 1.02 0.71 1.35E+09

 GP_MdMRE 0.75 0.34 0.43 0.44 0.35 7.87E+08

 GP_Pred(25) 0.73 0.35 0.39 0.44 0.35 7.57E+08

 GP_MEMRE 0.86 0.39 0.39 0.39 0.35 7.44E+08

 GP_MdEMRE 0.80 0.34 0.39 0.42 0.34 8.02E+08

 GP_AVG(MMRE.MEMRE) 0.67 0.35 0.39 0.46 0.40 8.29E+08

 GP_Pred(25)/MMRE 0.64 0.38 0.34 0.54 0.41 9.21E+08

 GP_Pred(25)/MdMRE 0.74 0.34 0.40 0.44 0.36 7.87E+08

 GP_Pred(25)/MEMRE 0.82 0.37 0.40 0.40 0.33 7.56E+08

 GP_Pred(25)/MdEMRE 0.79 0.35 0.38 0.42 0.35 7.81E+08

Finnish GP_SSR 1.31 0.83 0.26 0.65 0.61 1.53E+09

 GP_MMRE 0.64 0.65 0.19 1.94 1.38 2.37E+09

 GP_MdMRE 1.73 0.87 0.23 0.56 0.52 1.53E+09

 GP_Pred(25) 1.85 0.94 0.03 0.89 0.72 2.99E+09

 GP_MEMRE 2.64 1.17 0.19 0.55 0.51 2.53E+09

 GP_MdEMRE 1.73 0.87 0.23 0.56 0.52 2.06E+09

 GP_AVG(MMRE.MEMRE) 0.97 0.67 0.25 0.78 0.58 1.43E+09

 GP_Pred(25)/MMRE 0.65 0.65 0.14 1.79 1.31 2.22E+09

 GP_Pred(25)/MdMRE 2.04 1.00 0.13 0.67 0.61 2.17E+09

 GP_Pred(25)/MEMRE 2.40 0.90 0.12 0.57 0.58 2.39E+09

 GP_Pred(25)/MdEMRE 1.97 1.04 0.18 0.63 0.54 2.55E+09

Kemerer GP_SSR 1.08 0.90 0.00 1.08 0.90 1.02E+06

 GP_MMRE 0.55 0.44 0.27 0.90 0.80 8.03E+05

 GP_MdMRE 0.60 0.36 0.27 0.58 0.52 5.68E+05

 GP_Pred(25) 0.69 0.56 0.13 0.86 0.85 7.44E+05

 GP_MEMRE 0.66 0.36 0.33 0.41 0.28 6.10E+05

 GP_MdEMRE 0.60 0.36 0.27 0.58 0.52 5.68E+05

 GP_AVG(MMRE.MEMRE) 0.47 0.32 0.33 0.43 0.34 5.99E+05

 GP_Pred(25)/MMRE 0.54 0.39 0.27 0.71 0.65 7.13E+05

 GP_Pred(25)/MdMRE 0.62 0.42 0.20 0.88 0.91 6.77E+05

 GP_Pred(25)/MEMRE 0.59 0.33 0.33 0.41 0.33 5.61E+05

 GP_Pred(25)/MdEMRE 0.60 0.35 0.33 0.59 0.54 5.71E+05

Maxwell GP_SSR 0.74 0.48 0.16 0.47 0.45 2.02E+09

 GP_MMRE 0.42 0.43 0.32 0.96 0.47 3.92E+09

 GP_MdMRE 0.70 0.54 0.15 0.81 0.50 4.29E+09

 GP_Pred(25) 0.92 0.53 0.16 0.63 0.52 3.96E+09

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

58

 GP_MEMRE 1.11 0.91 0.21 0.50 0.51 3.78E+09

 GP_MdEMRE 0.64 0.49 0.18 0.73 0.47 3.36E+09

 GP_AVG(MMRE.MEMRE) 0.56 0.47 0.14 0.64 0.44 2.88E+09

 GP_Pred(25)/MMRE 0.46 0.48 0.26 1.00 0.50 4.17E+09

 GP_Pred(25)/MdMRE 0.832174424 0.56 0.08 0.74 0.52 4.24E+09

 GP_Pred(25)/MEMRE 1.132274858 0.62 0.11 0.59 0.53 4.40E+09

 GP_Pred(25)/MdEMRE 0.86 0.66 0.11 0.74 0.56 4.29E+09

Miyazaki GP_SSR 0.52 0.42 0.25 1.08 0.76 3.56E+10

 GP_MMRE 0.55 0.42 0.27 0.80 0.66 4.29E+10

 GP_MdMRE 0.51 0.33 0.40 0.51 0.36 3.61E+10

 GP_Pred(25) 0.52 0.36 0.27 0.58 0.40 3.77E+10

 GP_MEMRE 0.54 0.33 0.40 0.46 0.35 3.46E+10

 GP_MdEMRE 0.51 0.33 0.40 0.51 0.36 3.61E+10

 GP_AVG(MMRE.MEMRE) 0.54 0.33 0.40 0.48 0.35 3.63E+10

 GP_Pred(25)/MMRE 0.55 0.40 0.29 0.71 0.57 3.94E+10

 GP_Pred(25)/MdMRE 0.51 0.34 0.33 0.56 0.37 3.82E+10

 GP_Pred(25)/MEMRE 0.53 0.32 0.40 0.48 0.36 3.51E+10

 GP_Pred(25)/MdEMRE 0.51 0.33 0.40 0.51 0.36 3.62E+10

Telecom GP_SSR 0.52 0.36 0.33 0.51 0.43 8.37E+05

 GP_MMRE 0.67 0.49 0.22 0.74 0.64 8.23E+05

 GP_MdMRE 0.81 0.51 0.22 0.49 0.47 8.03E+05

 GP_Pred(25) 0.74 0.54 0.17 0.55 0.48 7.93E+05

 GP_MEMRE 0.73 0.54 0.33 0.40 0.35 8.06E+05

 GP_MdEMRE 0.81 0.51 0.22 0.49 0.47 8.03E+05

 GP_AVG(MMRE.MEMRE) 0.66 0.46 0.39 0.45 0.33 6.39E+05

 GP_Pred(25)/MMRE 0.72 0.55 0.33 0.47 0.38 7.79E+05

 GP_Pred(25)/MdMRE 0.74 0.53 0.17 0.51 0.50 7.54E+05

 GP_Pred(25)/MEMRE 0.72 0.55 0.33 0.47 0.38 7.79E+05

 GP_Pred(25)/MdEMRE 0.79 0.52 0.22 0.50 0.44 7.66E+05

Table 23 Results of the Wilcoxon tests comparing TS objective functions on test sets

Dataset < Random Mean Median

China TS_SSR 0 0 0.005

 TS_MMRE 0 0 0.968

 TS_MEMRE 1 0.991 1

 TS_MdMRE 0 0 0.011

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

59

 TS_MdEMRE 0 0 0.480

 TS_Pred(25) 0.542 0 1

 TS_Avg(MMRE, MEMRE) 0 0 0

 TS_Pred(25)/MMRE 0 0 0.281

 TS_Pred(25)/MEMRE 0.999 0.211 1

 TS_Pred(25)/MdMRE 0 0 0.108

 TS_Pred(25)/MdEMRE 0.031 0 0.934

Desharnais < Random Mean Median

 TS_SSR 0.003 0 0.012

 TS_MMRE 0 0 0

 TS_MEMRE 0.087 0.001 0.062

 TS_MdMRE 0 0 0.001

 TS_MdEMRE 0.001 0 0.003

 TS_Pred(25) 0.008 0 0.007

 TS_Avg(MMRE, MEMRE) 0 0 0

 TS_Pred(25)/MMRE 0 0 0

 TS_Pred(25)/MEMRE 0.001 0.001 0.001

 TS_Pred(25)/MdMRE 0.001 0.001 0.001

 TS_Pred(25)/MdEMRE 0.001 0 0.002

Finnish < Random Mean Median

 TS_SSR 0.003 0 0.001

 TS_MMRE 0 0.042 0.023

 TS_MEMRE 0.262 0.055 0.104

 TS_MdMRE 0.006 0 0

 TS_MdEMRE 0.011 0.003 0.005

 TS_Pred(25) 0.04 0.002 0.01

 TS_Avg(MMRE, MEMRE) 0 0 0

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

60

 TS_Pred(25)/MMRE 0 0.112 0.076

 TS_Pred(25)/MEMRE 0.07 0.005 0.021

 TS_Pred(25)/MdMRE 0.002 0 0

 TS_Pred(25)/MdEMRE 0.036 0.002 0.012

Kemerer < Random Mean Median

 TS_SSR 0.001 0.556 0.623

 TS_MMRE 0.189 0.725 0.918

 TS_MEMRE 0.992 0.986 0.998

 TS_MdMRE 0.001 0.579 0.623

 TS_MdEMRE 0.511 0.853 0.941

 TS_Pred(25) 0.008 0.685 0.878

 TS_Avg(MMRE, MEMRE) 0.001 0.556 0.623

 TS_Pred(25)/MMRE 0.147 0.725 0.909

 TS_Pred(25)/MEMRE 0.001 0.556 0.623

 TS_Pred(25)/MdMRE 0.001 0.579 0.685

 TS_Pred(25)/MdEMRE 0.001 0.579 0.623

Maxwell < Random Mean Median

 TS_SSR 0 0.002 0.003

 TS_MMRE 0 0.004 0.05

 TS_MEMRE 0 0.014 0.189

 TS_MdMRE 0 0 0.001

 TS_MdEMRE 0 0 0.003

 TS_Pred(25) 0 0.004 0.014

 TS_Avg(MMRE, MEMRE) 0 0 0.001

 TS_Pred(25)/MMRE 0 0.002 0.018

 TS_Pred(25)/MEMRE 0 0.001 0.002

 TS_Pred(25)/MdMRE 0 0 0.004

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

61

 TS_Pred(25)/MdEMRE 0 0.001 0.012

Miyazaki < Random Mean Median

 TS_SSR 0 0 0

 TS_MMRE 0 0 0.001

 TS_MEMRE 0 0 0

 TS_MdMRE 0 0 0

 TS_MdEMRE 0.003 0 0.011

 TS_Pred(25) 0 0 0

 TS_Avg(MMRE, MEMRE) 0 0 0

 TS_Pred(25)/MMRE 0 0 0

 TS_Pred(25)/MEMRE 0 0 0

 TS_Pred(25)/MdMRE 0 0 0

 TS_Pred(25)/MdEMRE 0 0 0

Telecom < Random Mean Median

 TS_SSR 0.003 0.008 0.004

 TS_MMRE 0.004 0.006 0.002

 TS_MEMRE 0.069 0.058 0.045

 TS_MdMRE 0.004 0.007 0.003

 TS_MdEMRE 0.003 0.008 0.004

 TS_Pred(25) 0.007 0.009 0.006

 TS_Avg(MMRE, MEMRE) 0.015 0.013 0.01

 TS_Pred(25)/MMRE 0.004 0.008 0.002

 TS_Pred(25)/MEMRE 0.007 0.023 0.003

 TS_Pred(25)/MdMRE 0.003 0.020 0.003

 TS_Pred(25)/MdEMRE 0.003 0.020 0.003

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

62

Table 24 Results of the Wilcoxon tests comparing GP objective functions on test sets
Dataset < Random Mean Median

China GP_SSR 0 0 0.001

 GP_MMRE 0 0.001 0.997

 GP_MEMRE 1 0.43 1

 GP_MdMRE 0 0 0.005

 GP_MdEMRE 0.027 0 0.769

 GP_Pred(25) 0 0 0.123

GP_Avg(MMRE,

MEMRE)
0 0 0

 GP_Pred(25)/MMRE 0 0 0.281

 GP_Pred(25)/MEMRE 0.972 0.005 1

 GP_Pred(25)/MdMRE 0 0 0.024

 GP_Pred(25)/MdEMRE 0 0 0.061

Desharnais < Random Mean Median

 GP_SSR 0.008 0.003 0.006

 GP_MMRE 0 0.182 0.62

 GP_MEMRE 0.066 0.003 0.039

 GP_MdMRE 0.001 0 0.002

 GP_MdEMRE 0.003 0.001 0.006

 GP_Pred(25) 0.001 0.001 0.002

GP_Avg(MMRE,

MEMRE)
0 0.001 0.001

 GP_Pred(25)/MMRE 0 0.004 0.009

 GP_Pred(25)/MEMRE 0.023 0.002 0.022

 GP_Pred(25)/MdMRE 0.001 0 0.001

 GP_Pred(25)/MdEMRE 0.003 0.001 0.006

Finnish < Random Mean Median

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

63

 GP_SSR 0.019 0.001 0.003

 GP_MMRE 0 0.166 0.213

 GP_MEMRE 0.437 0.321 0.414

 GP_MdMRE 0.123 0.024 0.045

 GP_MdEMRE 0.123 0.024 0.045

 GP_Pred(25) 0.23 0.46 0.483

GP_Avg(MMRE,

MEMRE)
0.001 0 0.001

 GP_Pred(25)/MMRE 0 0.048 0.038

 GP_Pred(25)/MEMRE 0.221 0.123 0.145

 GP_Pred(25)/MdMRE 0.138 0.070 0.158

 GP_Pred(25)/MdEMRE 0 0 0

Kemerer < Random Mean Median

 GP_SSR 0.644 0.601 0.811

 GP_MMRE 0.002 0.147 0.025

 GP_MEMRE 0.066 0.091 0.147

 GP_MdMRE 0.011 0.101 0.022

 GP_MdEMRE 0.011 0.101 0.022

 GP_Pred(25) 0.082 0.239 0.705

GP_Avg(MMRE,

MEMRE)
0.014 0.019 0.037

 GP_Pred(25)/MMRE 0.004 0.101 0.014

 GP_Pred(25)/MEMRE 0.029 0.053 0.066

 GP_Pred(25)/MdMRE 0.012 0.111 0.335

 GP_Pred(25)/MdEMRE 0.011 0.091 0.019

Maxwell < Random Mean Median

 GP_SSR 0 0.006 0.014

 GP_MMRE 0 0.004 0.046

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

64

 GP_MEMRE 0.001 0.097 0.581

 GP_MdMRE 0 0 0

 GP_MdEMRE 0 0.015 0.145

 GP_Pred(25) 0 0.002 0.031

GP_Avg(MMRE,

MEMRE)
0 0.002 0.013

 GP_Pred(25)/MMRE 0 0.006 0.085

 GP_Pred(25)/MEMRE 0.001 0.143 0.713

 GP_Pred(25)/MdMRE 0 0.021 0.287

 GP_Pred(25)/MdEMRE 0.003 0.127 0.594

Miyazaki < Random Mean Median

 GP_SSR 0.001 0 0.002

 GP_MMRE 0 0 0.001

 GP_MEMRE 0 0 0

 GP_MdMRE 0 0 0

 GP_MdEMRE 0 0 0

 GP_Pred(25) 0 0 0

GP_Avg(MMRE,

MEMRE)
0 0 0

 GP_Pred(25)/MMRE 0 0 0

 GP_Pred(25)/MEMRE 0 0 0

 GP_Pred(25)/MdMRE 0 0 0

 GP_Pred(25)/MdEMRE 0 0 0

Telecom < Random Mean Median

 GP_SSR 0.015 0.011 0.016

 GP_MMRE 0.01 0.148 0.015

 GP_MEMRE 0.082 0.058 0.037

 GP_MdMRE 0.138 0.082 0.069

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

65

 GP_MdEMRE 0.138 0.082 0.069

 GP_Pred(25) 0.034 0.082 0.023

GP_Avg(MMRE,

MEMRE)
0.013 0.014 0.013

 GP_Pred(25)/MMRE 0.009 0.054 0.01

 GP_Pred(25)/MEMRE 0.037 0.082 0.031

 GP_Pred(25)/MdMRE 0.088 0.069 0.037

 GP_Pred(25)/MdEMRE 0.088 0.054 0.028

4.3 Validity Evaluation
The construct, conclusion, and external validity threats described in Section 3.4 hold also for the

empirical study presented in this chapter.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

66

CHAPTER 5: Using Tabu Search to Configure Support Vector

Regression for Effort Estimation

Several studies have addressed the problem of obtaining early accurate effort estimates, (e.g.,

[13][14][15][88][98][120][121]), many of which focusing on the proposal and evaluation of

techniques to construct predictive models able to estimate the effort of a new project exploiting

information (actual effort and cost-drivers) related to past projects. In particular, recent studies

[24][25][26] have investigated the effectiveness of Support Vector Regression (SVR) for software

effort estimation. SVR is a technique based on Support Vector Machines, a family of Machine

Learning algorithms that have been successfully applied for addressing several predictive data

modeling problems [31][126]. The studies reported in [24][25] showed that SVR has potential use

also for software development effort estimation; indeed it outperformed the most commonly adopted

prediction techniques using the Tukutuku database [94], a cross-company dataset of Web projects

widely adopted in Web effort estimation studies. It was argued that the main reason for that lies in

the flexibility of the method. Indeed, SVR enables the use of kernels and parameter settings

allowing the learning mechanism to better suit the characteristics of different chunks of data, which

is a typical characteristic of cross-company datasets. However, the setting of parameters needs to be

done carefully, since an inappropriate choice can lead to over- or under-fitting, heavily worsening

the performance of the method [17][69]. Nevertheless, there are no guidelines on how to best select

these parameters [116][130][132] since the appropriate setting depends on the characteristics of the

employed dataset. Moreover, an examination of all possible values for parameters is not

computationally affordable, as the search space is too large, also due to the interaction among

parameters, which cannot be separately optimized.

The issues abovementioned have motivated us to investigate the use of Tabu Search (TS) to

automatically select SVR parameters [26]. TS is a meta-heuristics search technique used to address

several optimization problems [50]. The TS-based approach was first investigated in [26] employing

SVR in combination with different kernels and variables’ preprocessing strategies, using as dataset

the Tukutuku database [94]. In particular, we compared SVR configured with TS (SVR+TS) with

other effort estimation techniques, namely Manual StepWise Regression (MSWR), Case-Based

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

67

Reasoning (CBR), Bayesian Networks [92], and the Mean and Median effort of the training sets.

SVR+TS gave us the best results ever achieved with the Tukutuku database. However, these results

were based on two random splits of only one cross-company dataset and it is widely recognized that

several empirical analysis are needed to generalize empirical findings. Thus, the aim of this paper is

to further investigate the combination of TS and SVR using data from several single- and cross-

company datasets. Let us recall that the former represents a dataset containing data on projects from

a single software company while the latter includes project data gathered from several software

companies. In our analysis, we employed 13 different datasets from the PROMISE repository and

also other 8 datasets obtained by splitting the Tukutuku database according to the values of its four

categorical variables (see Appendix A). The choice to use datasets from the PROMISE repository is

motivated due to the following points:

- Availability of datasets on industrial software projects, representing a diversity of application

domains and projects´ characteristics. This is also in line with recommendation made by

Kitchenham and Mendes [71].

- Availability of projects that are not Web-based, thus enabling the assessment of the effectiveness

of the estimation technique employed herein when applied to different types of applications –

Web, using the Tukutuku, and non-Web, using the PROMISE datasets. We would also like to

point out that, in our view, Web and software development differ in a number of areas, such as:

application characteristics, primary technologies used, approach to quality delivered,

development process drivers, availability of the application, customers (stakeholders), update

rate (maintenance cycles), people involved in development, architecture and network, disciplines

involved, legal, social, and ethical issues, and information structuring and design. A detailed

discussion on this issue is provided in [99].

- Availability of single- and cross-company datasets, thus enabling the assessment of the

estimation technique employed herein when applied to single- and cross-company datasets. We

would also like to point out that the use of a cross-company dataset is particularly useful for

companies that do not have their own data on past projects from which to obtain their estimates,

or that have data on projects developed in different application domains and/or technologies. To

date, several studies have investigated if estimates obtained using cross-company datasets can be

as accurate as the ones obtained using single-company datasets (e.g.,

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

68

[14][65][75][88][95][82][97][133]) achieving different findings (see [74] for a systematic

review).

In relation to the choice of SVR kernels and pre-processing strategies, we focused our analysis on

the RBF kernel and a logarithmic transformation of the variables since they provided the best results

in our previous study [26].

In order to verify whether the proposed TS technique is able to make a suitable choice of SVR

parameters we also compared the estimates obtained with SVR+TS with those obtained applying

SVR using different strategies for parameters selection, namely:

- random SVR configurations. This means that the same number of solutions investigated for

SVR+TS was generated in a totally random fashion and the best one among them was selected

according to the same criteria employed for SVR+TS. This is a natural benchmark when using

meta-heuristics search techniques;

- default parameters employed by the Weka tool [52];

- the Grid-search algorithm provided by LibSVM [9].

In addition, we also assessed whether the estimates provided by the proposed approach were better

than those obtained using the Mean and Median effort (popular and simple benchmarks for effort

estimation techniques) and those achieved with MSWR and CBR. These techniques were chosen

because they are the two techniques widely used in the literature and also in industry, and the mostly

employed estimation techniques [84].

Consequently, the research questions addressed in this paper are:

RQ7: Is Tabu Search able to effectively set Support Vector Regression parameters?

RQ8: Are the effort predictions obtained by using Support Vector Regression configured

with Tabu Search significantly superior to the ones obtained by other techniques?

The remainder of the chapter is organized as follows. Section 5.1 first reports on the main aspects

of SVR and TS and then describes the proposed approach based on TS to set-up SVR parameters.

Section 5.2 presents the design of our empirical study, i.e., the datasets, the null hypotheses, the

validation method, and the evaluation criteria employed to assess the prediction accuracy. Results

are presented in Section 5.3, followed by a discussion on the empirical study validity in Section 5.4.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

69

5.1 Using Support Vector Regression in combination with Tabu Search for effort

estimation
In this section, we describe Support Vector Regression, Tabu Search, and how we have combined

them for effort estimation.

5.1.1 Support Vector Regression

Support Vector Regression is a regression technique based on Support Vector (SV) machines, a

learning approach originally introduced for linear binary classification. Linear classifiers construct a

hyperplane separating the training set points belonging to the two classes. In the SV machine

classifier [131][132], the hyperplane maximizes the classification margin, that is the minimum

distance of the hyperplane from the training points [131], as shown in Figure 5. Choosing such

optimal hyperplane requires the solution of a quadratic optimization problem subject to linear

constraints, corresponding to the fact that each point of the training set must be correctly labeled.

The hyperplane resulting from this optimization only depends on a subset of the training points,

called support vectors. As an example, in Figure 5 the three points closest to the classification

hyperplane are highlighted, as they represent the support vectors.

Thus, the system admits a solution only if there is a hyperplane separating the two classes in the

training set (as in Figure 5), i.e., when the training set is linearly separable. Nevertheless, this can be

considered too restrictive to be of any practical interest. Thus, in 1995, Cortes and Vapnik [28]

defined a modified version of the approach, by introducing a parameter C to allow (but penalize)

misclassifications in the training set, thus obtaining soft margin SVM’s. The choice of the best value

for C is crucial to performance, as it decides the trade-off between classification errors in the

training set and model complexity [58][106].

When the SV approach is applied to a regression problem, a function has to be derived, which

minimizes the deviation between observed and predicted values. To solve this problem we apply an

SV approach that, rather than minimizing a function of the errors on the training set, aims at

minimizing a bound on a generalized error, which also takes into account a regularization term in

addition to the training error. Thus, the goal is to find a linear function that obtains an error lower

than a constant ε on the training data and that at the same time is as flat as possible.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

70

Figure 5. Hyperplane, margin and support vectors in linearly separable set

This formulation of the problem can be softened, as discussed above, by using parameter C, so that

an error larger than the bound can be allowed on some of the points in the training set. Therefore,

the parameter C determines the trade-off between the occurrences of errors larger than ε in the

training set and the flatness of the function. On the other hand, ε controls the wideness of a tube

such that points occurring inside are considered correct and only points outside the tube are

evaluated as errors (see Figure 6). The two parameters are therefore strictly correlated, even if their

suitable values depend on the dataset [18], so no rule of thumb exists.

ε

ε

Support'Vectors
Non'Support'Vectors
Regression Line
Limits'of'the'tube

Figure 6. ε-tube in SVR

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

71

The non-linear case and the kernel choice

The SV approaches described above are conceived for the linear case. Thus, they could be not

suitable for development effort estimation where the dependent variable (i.e., effort) does not

necessarily linearly depend on the independent variables (i.e., cost drivers). To deal with the

nonlinear case we can map the input vectors into a feature space before the linear SV approach is

applied.

Mathematically, such mapping requires the substitution of dot products between the input vector x

and each support vector s, with a function describing their similarity in the feature space: such

function k(x, s) with two variables (x and s) is called kernel function.

A wide variety of kernel functions has been proposed in the literature: a good overview can be found

in [58]. An important kernel family is given by Radial Basis Function (RBF) where the output value

only depends on the distance of the two points in the input space. In particular, the most popular

kernel belonging to the RBF family is the Gaussian one, which is defined as follows:

k(x,s) = exp(-γ |x - s|2), with γ>0 . (1)

The Gaussian RBF kernel has been successfully applied in a variety of contexts, both alone (e.g.,

[106][124]) and in combination with SV approaches (e.g., [24][25][117]). Furthermore, Gaussian

RBF kernel is usually suggested as the first choice in many practical guides (e.g., [60]) and is

implemented in LibSVM, a popular library for SV approaches [17]. All the above considerations

motivated our choice to use this kernel in the study reported in the present paper.

Using the Gaussian RBF kernel, a value for the kernel parameter γ needs to be selected in addition

to the values for C and ε parameters. The main issue is how to set these parameters ensuring good

generalization performance for a given dataset. In the following we report some existing approaches

to address the problem and then describe our proposal.

SVR parameter setting

Many alternative strategies have been defined in the literature to select suitable values for SVR

parameters. As pointed out in [18], many studies related to the use of SVR are based on the opinion

of experts that select parameter values on the basis of their knowledge of both the approach and the

application domain. Of course the reliance upon experts severely bounds the applicability of this

approach. Another possibility is the use of heuristics based on noise characteristics [81]. However,

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

72

in addition to some technical limitations of these approaches, they require either an expert with a

deep understanding of the problem or a statistical model for the noise. Parameters choice based on

more direct information, such as the range of output values, are prone to other problems, including

outliers [86].

In Grid-search approaches a certain number of parameter values are explored to identify the best

option. Nevertheless, the points are chosen a-priori and do not depend on the specific case. For

instance, the software library LibSVM provides a mechanism that explores a combination of 8

values for each of the parameters C, ε, and γ (in the ranges [1.0E-3, 32000], [1.0E-6, 1], and [1.0E-6,

8]) using a five-fold cross-validation on the training set [17]. Thus, a total of 512 fixed points are

assessed and the one with the best cross-validation accuracy is returned. Even if Grid-searches are

easy to apply, they have a main drawback: the search is performed always on the same (coarse

grained) points, without taking into account the dataset to guide the search.

In [24][25] the problem was addressed in the context of effort estimation, adopting an automatic

approach to explore a large number of parameter values (employing various nested cycles with

small incremental steps). For each run, depending on the kernel, the number of executions ranged

from some dozens to more than 4000 executions. An inner leave-one-out cross validation was

performed on the training set (each cycle of execution required a number of iterations corresponding

to the cardinality of the training set) and for each iteration the goodness of the solution was

evaluated using a combination of effort accuracy estimation measures 1. Thus, the setting providing

the best estimation (according to the selected criterion) on the training set was chosen.

Although such optimization strategy included a quite large combination of parameter values, it

proceeded by brute force, by predefined steps, and did not use any information related to the prior

steps trying to improve the search. Moreover, it was computationally too expensive. Smarter

optimization strategies, on the contrary, use all possible clues to focus the search in the most

promising areas of parameter values for a given dataset. Among such strategies, in [26] we proposed

the use of the meta-heuristics Tabu Search to search for the best parameter settings. This approach is

further investigated in this paper and will be described in the next section. One of the strengths of

1 The same combination of effort estimation measures is used as objective function in the present paper, so it will be detailed in

Section 2.3.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

73

the Tabu Search strategy is that it uses information both in a positive way, to focus the search, and in

a negative way, to avoid already explored areas and loops.

5.1.2 Using Tabu Search to configure SVR

In this section we describe how we designed TS (see Chapter 1) for setting SVR parameters. Let us

formulate our goal: starting from a dataset of past projects we have to identify a good solution S,

represented by values for variables C, ε, and γ (see step 1 in Figure 7), so that SVR configured with

those parameter values can accurately predict the unknown effort for new incoming projects (see

step 2 in Figure 7). Thus, in this section we will detail step 1, whose process is illustrated in Figure

8.

An initial solution is generated by randomly choosing the values for each variable in a defined

range. In particular, since the values for C, ε, and γ can vary from zero to infinity, an upper bound

has usually to be chosen. To this end, we employ the same ranges of the Grid-search algorithm [60]

for C, ε, and γ, respectively, and, as it is usual, we perform the search for parameter values in the

logarithmic space of these ranges [60][70].

Figure 7. The two steps of applying SVR+TS: parameters identification and use

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

74

Starting from the random initial solution, at each iteration 25 moves are performed, each one

according to the pseudocode provided in Figure 9 and explained herein. A parameter to be changed

is selected among C, ε, and γ (with equal probability). The current value of the chosen parameter in

the 80% of the cases is incremented up to its 20% adding (or subtracting, with the same probability)

a random value, while in the remaining 20% of the cases the new parameter value is chosen in a

totally random fashion within the specified range. The rationale for the percentage of 80% is to

investigate as much as possible an actual promising solution. Indeed, once a “better” region on the

space has been identified, a finer search on that region is conducted performing small changes

around a potentially interesting solution (Figure 9 line 6). On the other hand, we defined also a

mechanism to allow for a diversification in the search space (obtained using total random move) to

escape from local optima (Figure 9 line 8).

Once all moves are performed, a set of 25 new neighboring solutions is created and the neighboring

solution with the best objective function value and which is not tabu or matches an aspiration

criterion is selected as current best solution and then as starting point to explore a new neighborhood

in the next iteration. It is worth noting that a move is marked as tabu if it leads to a solution whose

parameter values are very similar (i.e., the difference between parameter values is less than 10%) to

those of a solution stored in the Tabu List. In order to allow one to revoke tabu moves, we employ

the most commonly used aspiration criterion, namely we permit a tabu move if it results in a

solution with an objective function value better than the one of the best solution reached so far.

Moreover, if the current best solution’s objective value is better than the one achieved by the best

solution found so far, the latter is replaced. Finally, to avoid retracing the moves previously used,

the current solution is stored in the Tabu List. Note that since only a fairly limited quantity of

information is usually recorded in the Tabu List [50], we decided to employ a short-term memory of

fixed length with 7 elements. The search is stopped after a fixed number of iterations is performed

(i.e., 100). It is worth noting that we adopted the same choices for number of moves, Tabu List size,

and iterations employed in our previous study [26]. Those numbers were empirically determined as

it is usual when no guidelines are available. In particular, they were chosen for the work presented

herein because our previous research showed that increasing them did not allow us to improve the

estimation accuracy while wasting computation time.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

75

Figure 8. The proposed TS-based approach for SVR parameters selection

Figure 9. The TS move

1 function applyMove(currentSolution):newSolution

2 newSolution=currentSolution

3 paramToChange= rand(C, ε, γ)

4 p = rand(0,1)

5 if (p < 0.8) then

6 newValue = paramToChange ± rand(0, paramToChange*0.2)

7 else

8 newValue= rand(paramToChange.lowerBound, paramToChange.upperBound)

9 newSolution.paramToChange = newValue

10 return newSolution

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

76

As for the objective function, a number of accuracy measures can be used to compare effort

estimates, usually based on the residuals, i.e., the differences between predicted and actual efforts.

Among them, two widely summary measures are the Mean Magnitude of Relative Error (MMRE)

and the Mean Magnitude of Relative Error relative to the Estimate (MEMRE) [22][72]. Let us recall

that MMRE is the Mean of MRE and MEMRE is the Mean of EMRE, where:

 e
ee

MRE
ˆ−

= (2)

 e
ee

EMRE
ˆ
ˆ−

= (3)

where e represents actual effort and ê estimated effort. We can observe that EMRE has the same

form of MRE, but the denominator is the estimate, giving thus a stronger penalty to under-estimates.

In [24][26] [25] we employed as objective function, the mean of them:

 Objective Function = (MMRE+MEMRE) / 2 (4)

The rationale was that, since MRE is more sensitive to overestimates and EMRE to underestimates,

an objective function minimizing them should find better solutions. Since the present paper provides

a further assessment of the technique proposed in [26], we exploited the same objective function.

It is worth noting that the solution we are proposing attempts to capture the necessary domain

knowledge by using performance indicators as the objective function. On the other hand, it requires

a meta-heuristics as robust as possible with respect to the target function characteristics, which are

completely unexplored. We think that the TS strategy has these characteristics because of its

capability to adapt to the input function both by concentrating search efforts on promising areas and

keeping away from already visited regions by means of the Tabu List.

Finally, in order to cope with the non-deterministic nature of TS, we performed 10 executions of

SVR+TS and, among the obtained configurations, we retained as final the one which provided

objective value closest to the mean of the objective values obtained in the 10 executions.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

77

5.2 Empirical Study Design
In this section, we present the design of the empirical study carried out to assess the effectiveness of

the proposed approach. In particular, we present the employed datasets, the null hypotheses, the

adopted validation method, and evaluation criteria. The results of the empirical analysis are

discussed in Section 5.4.

5.2.1 Datasets

To carry out the empirical evaluation of the proposed technique we employed a total of 21 industry

software project datasets selected both from the PROMISE repository [109] and the Tukutuku

database [94]. PROMISE contains publicly available single and cross-company datasets, while the

Tukutuku database contains data about Web projects (i.e., Web hypermedia systems and Web

applications) developed in different companies and gathered by the Tukutuku project, which aimed

to develop Web cost estimation models and to benchmark productivity across and within Web

Companies.

Concerning the PROMISE repository, it is worth noting that we did not employ all the datasets that

it contains, since we were interested only on the ones that can be employed for early effort

estimation (i.e., datasets containing information that would be available at the early stages of a

software development process), which is the managerial goal of our investigation. To this end, we

avoided the use of datasets like NASA and COCOMO containing as size measures only features

available once a project is completed, such as the Lines of Code (LOCs). Moreover, we pruned the

remaining datasets from this kind of features, since their use could bias the results [120]. As for the

categorical variables contained in some datasets, we used them as done in [79][120] to obtain

different more homogenous splits from the original datasets or we excluded them from our analysis

in case splitting was not possible (e.g., the resulting sub datasets were too small). As an example, we

used the categorical variable “Languages” in the Desharnais dataset to split the original data into

three different datasets corresponding to Languages 1, 2, and 3, respectively. After applying the

above criteria, 13 PROMISE datasets were kept for our empirical analysis, namely Albrecht, China,

Desharnais1, Desharnais2, Desharnais3, Finnish, Kemerer, MaxwellA2, MaxwellA3, MaxwellS2,

MaxwellT1, Miyazaki, and Telecom. We applied the same procedure on the Tukutuku database

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

78

obtaining 8 splits since all the categorical variables (i.e., TypeProj, DocPro, ProImpr, and Metrics)

were binary.

Table 8 summarizes the main characteristics of the considered datasets while further details together

with the descriptive statistics of the involved features are provided in Appendix A. They represent

an interesting sample of software projects, since they contain data about projects that are Web-based

(i.e. the ones from Tukututku) and not Web-based (i.e., the ones from PROMISE) and include

datasets that were collected from a single software company or several companies. Moreover, all the

datasets contain data about industrial projects, representing a diversity of application domains and

projects´ characteristics. In particular, they all differ in relation to:

- geographical locations: software projects coming from Canada, China, Finland, Japan, New

Zealand, Italy, United States, etc.;

- number of involved companies;

- observation number: from 10 to 499 observations;

- number and type of features: from 1 to 27 features, including a variety of features describing

the software and Web projects, such as number of entities in the data model, number of

basic, logical transactions, number of developers involved in the project and their

experience, number of Web page or image;

- technical characteristics: software projects developed in different programming languages

and for different application domains, ranging from telecommunications to commercial

information systems.

Nevertheless, note that none of these datasets are random samples of software and Web projects.

Therefore the information provided in Appendix A can be useful for readers to assess whether the

results we gathered can scale up to their own contexts.

In order to avoid that large differences in the ranges of the features’ values can have the unwanted

effect of giving greater importance to some characteristics than to others, a data preprocessing step

should be applied when using SVR [17][126]. In our previous studies [24][25], we experimented

different preprocessing strategies, such as normalization and logarithmic. The latter is a typical

approach in the field of effort estimation [30][15][37][75], since it reduces ranges and at the same

time it limits the linearity issue. It provided the best results in [24][25], thus, we adopted it in [26]

and in the present paper. Moreover, we removed from the employed datasets the observations which

have missing values (see Appendix A).

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

79

Table 25. Summary of the employed datasets

Dataset Description Observations

Employed

Features

Si
ng

le
-C

om
pa

ny

Albrecht [3]
Applications developed by the IBM DP Services

organization
24 4

Desharnais [33]
Software projects derived from a Canadian software

house

77

-

 Desharnais1 Projects developed with Language1 44 6

 Desharnais2 Projects developed with Language2 23 6

 Desharnais3 Projects developed with Language3 10 6

Maxwell [87]
Software projects coming from one of the biggest

commercial bank in Finland
62 -

 MaxwellA2
Projects developed for Application2 (i.e., transaction

control, logistics, and order processing applications)
29 17

 MaxwellA3
Projects developed for Application3 (i.e., customer

service applications)
18 17

 MaxwellS2 Projects developed in outsourcing 54 17

 MaxwellT1 Projects developed using the Telon CASE tool 47 17

Telecom [120]

Data about enhancement projects for a U.K.

telecommunication product.
18 2

C
ro

ss
-C

om
pa

ny

China [109] Projects developed by Chinese software companies 499 5

Finnish [121]
Data collected by the TIEKE organizations on projects

from different Finnish software companies
38 4

Kemerer [68]

Data on large business applications collected by a

national computer consulting and services firm,

specialized in the design and development of data-

processing software

15 1

Miyazaki [102]

Data on projects developed in 20 companies by Fujitsu

Large Systems Users Group.
48 3

Tukutuku [94]

Data about Web hypermedia systems and Web

applications coming from several software companies

across ten different countries.

195 -

 DocProNo
Projects that did not follow a defined and documented

process.
90 15

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

80

 DocProYes
Projects that followed a defined and documented

process.
105 15

Enhancement

Projects
Projects that are enhancement projects 67 15

 NewProjects Projects that are new projects 128 15

 MetricYes
Projects whose team was part of a software metrics

programme
65 15

 MetricNo
Projects whose team was not part of a software metrics

programme
130 15

 ProImprYes
Projects whose team was involved in a process

improvement programme
91 15

 ProImprNo
Projects whose team was not involved in a process

improvement programme
104 15

5.2.2 Null Hypotheses

To address the first research question (i.e., assessing the effectiveness of TS for configuring SVR)

we first verified the benefits of using a search-based approach like TS to configure SVR against a

simpler approach considering random configurations (SVRrand, in the following). In this case, to be

fair the same number of solutions has to be generated and compared with those achieved with the

meta-heuristics search approach. Thus, we randomly generated 25100 SVR configurations ten times

(within the same ranges defined for TS in Section 5.2) and the best one of these was selected based

on the same criteria employed for SVR+TS but without guiding the search in any way. Moreover,

we also considered the use of the default configuration (i.e., C = 1, ε = 0.001, γ = 0) provided by the

Weka tool [52] (SVRweka in the following) and the Grid-search algorithm provided by LibSVM

[17] (SVRgrid in the following).

As a consequence, the following null hypotheses were formulated:

Hn0: SVR+TS does not provide significant better estimates than SVRrand;

Hn1: SVR+TS does not provide significant better estimates than SVRweka;

Hn2: SVR+TS does not provide significant better estimates than SVRgrid;

which contrast with the following alternative hypotheses:

Hn0: SVR+TS provides significant better estimates than SVRrand;

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

81

Hn1: SVR+TS provides significant better estimates than SVRweka;

Hn2: SVR+TS provides significant better estimates than SVRgrid.

With regard to the second research question, we assessed whether the estimates obtained with

SVR+TS were better than those obtained using the Manual StepWise Regression (MSWR) [75][97]

and the Case-Based Reasoning (CBR) [119] that are two techniques widely used in the literature and

also in industry (probably the most employed estimation methods).

MSWR is a statistical technique whereby a prediction model (Equation) is built and represents the

relationship between independent (e.g., number of Web pages) and dependent variables (e.g., total

Effort). This technique builds the model by adding, at each stage, the independent variable with the

highest association to the dependent variable, taking into account all variables currently in the

model. It aims to find the set of independent variables (predictors) that best explain the variation in

the dependent variable (response).

Within the context of our investigation, the idea behind the use of CBR is to predict the effort of a

new project by considering similar projects previously developed. In particular, the completed

projects are characterized in terms of a set of p features (i.e., variables) and form the case base

[119]. The new project is also characterized in terms of the same p features and it is referred as the

target case. Then, the similarity between the target case and the other cases in the p-dimensional

feature space is measured, and the most similar cases are used, possibly with adaptations, to obtain a

prediction for the target case. In our empirical study we employed CBR in two ways:

i) by considering only the independent variables that are statistically correlated to the

dependent variable (CBRfss in the following), and

ii) without applying any kind of selection of the variables (CBR in the following).

The key aspects of MSWR and CBR are detailed in Appendix B and C, respectively.

In addition, we also assessed whether the estimates obtained with SVR+TS were significantly

better than those obtained using the mean of effort (MeanEffort in the following) and the median of

effort (MedianEffort in the following). This was done because, as suggested by Mendes and

Kitchenham in [97], if an estimation technique does not outperform the results achieved by using

MeanEffort and MedianEffort, it cannot be transferred to industry since there would be no value in

dealing with complex computations of estimation methods to predict development effort compared

to simply using as estimate the mean or the median effort of its own past projects.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

82

Thus, we formulated the following null hypotheses:

Hn3: SVR+TS does not provide significant better estimates than MSWR;

Hn4: SVR+TS does not provide significant better estimates than CBRfss;

Hn5: SVR+TS does not provide significant better estimates than CBR;

Hn6: SVR+TS does not provide significant better estimates than MeanEffort;

Hn7: SVR+TS does not provide significant better estimates than MedianEffort;

which contrast with the following alternative hypotheses:

Ha3: SVR+TS provides significant better estimates than MSWR;

Ha4: SVR+TS provides significantly better estimations than CBRfss;

Ha5: SVR+TS provides significantly better estimations than CBR;

Ha6: SVR+TS provides significantly better estimations than Mean Effort;

Ha7: SVR+TS provides significantly better estimations than Median Effort.

5.2.3 Validation Method

To assess the effectiveness of the effort predictions obtained using the techniques employed herein

we exploited a multiple-fold cross validation, partitioning each original dataset into training sets, for

model building, and test sets, for model evaluation. This is done to avoid optimistic predictions [13].

Indeed, cross validation is widely used in the literature to validate effort estimation models when

dealing with medium/small datasets (e.g., [15]). When applying the multiple-fold cross validation,

we decided to use the leave-one-out cross validation on the datasets that have less than 60

observations (i.e., Albrecht, Desharnais1, Desharnais2, Desharnais3, Finnish, Kemerer, Miyazaki,

and Telecom). In those cases the original datasets of N observations were divided into N different

subsets of training and validation sets, where each validation set had one project. On the other hand,

we decided to partition the datasets having more than 60 observations (i.e., China and the 8 splits

obtained from the Tukutuku database) into k=10 randomly test sets, and then for each test set to

consider the remaining observations as training set to build the estimation model. This choice was

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

83

made trying to find a trade-off between computational costs and effectiveness of the validation. The

10 folds for the China datasets are given in Appendix A (Table 33) 2.

5.2.4 Evaluation Criteria

Several accuracy measures have been proposed in the literature to assess and compare the estimates

achieved with effort estimation methods [22][72], e.g., Mean of MRE, Median of MRE; Mean of

EMRE, Median of EMRE, and Pred(25) (i.e., Prediction at level 25%). Considering that all the

above measures are based on the absolute residuals (i.e., the absolute values of differences between

predicted and actual efforts) in our empirical analysis we decided to compare the employed

estimation techniques in terms of the Median of Absolute Residuals (MdAR), which is a cumulative

measure widely employed as the Mean of Absolute Residuals (MAR). We chose to employ MdAR

since it is less sensitive to extreme values with respect to MAR [98]. The use of a single summary

measure was motivated by the aim to improve the readability of the discussion on the comparison of

the analyzed effort estimation methods (that is not confused by the fact that some measures have to

be minimized and other maximized). Moreover, to make the comparison more reliable we used,

behind this summary measure, also a statistical test. Indeed, to verify if the differences observed

using the above measure were legitimate or due to chance, we checked if the absolute residuals

obtained with the application of the various estimation techniques come from the same population.

If they do, it means that there are no significant differences between the data values being compared.

We accomplished the statistical significance test using a nonparametric statistical significance test

[72], namely Wilcoxon Signed Rank test, with α = 0.05. We decided to use the Wilcoxon test since

it is resilient to strong departures from the t-test assumptions [21].

5.3 Results and Discussion
Table 26 reports the Median of the Absolute Residuals (MdAR) obtained with each technique for all

the employed datasets. Let us recall that the results of TS+SVR reported herein were obtained

2 We cannot report the 10 folds used for the Tukutuku datasets since the information included in the Tukutuku database are not public available, for

confidence reasons.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

84

applying on test set the final configuration provided by TS, namely the one having objective value

closest to the mean of the objective values obtained in the 10 executions performed on training set.

Notice that for CBR we used 1, 2, and 3 analogies and due to space constraints, only the best results

are reported herein. The number of analogies used to obtain each of these best results is specified in

Table 26. The details about the application of MSWR and CBR are reported in Appendix B and C,

respectively.

In order to provide better readability, all the best results (i.e., the minimum MdAR values) obtained

for each dataset across the employed techniques are reported in bold (see Table 26). Table 26 shows

that SVR+TS provided the best MdAR values for all the datasets, except for NewProjects, where

CBR provided a slightly better result. To quantify how much SVR+TS provided better results than

the other employed techniques, for each dataset we calculated the ratio BestSVR/SVR+TS

(AvgSVR/SVR+TS, and WorstSVR/SVR+TS, respectively) between the best (the mean, and the

worst, respectively) MdAR provided by the other SVR based approaches with the MdAR of

SVR+TS. Similarly, we also provided the same ratios (named BestBench/SVR+TS,

AvgBench/SVR+TS, and WorstBench/SVR+TS) with respect to the other estimation techniques

used as benchmarks. These results are reported in Table 27, together with the median values of these

ratios obtained on all the datasets. Thus, we can observe that with respect to the other SVR

techniques:

- the error (i.e., MdAR) made using the other SVR technique providing the best estimates is

on median about one half (i.e., 1.48) the error made employing SVR+TS;

- the mean of the errors made using the other SVR techniques is on median about twice (i.e.,

1.75) the error made employing SVR+TS;

- the error made using the other SVR technique providing the worst result is on median about

twice (i.e., 2.06) the error made employing SVR+TS.

As for the comparison with the other estimation techniques used as benchmarks (i.e., MSWR, CBR,

MeanEffort, and MedianEffort), the results in Table 27 suggest that:

- the error made using the technique providing the best estimates is on median about twice

(i.e., 1.65) the error made employing SVR+TS;

- the mean of the errors made using the other techniques is on median about four (i.e., 3.99)

times the error made employing SVR+TS;

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

85

- the error made using the technique providing the worst result is on median about nine times

(i.e., 8.93) the error made employing SVR+TS.

In order to verify whether the differences observed using MdAR values were legitimate or due to

chance, we employed the Wilcoxon test (α= 0.05) to assess if the absolute residuals from all the

techniques used came from the same population. The results are reported in Table 28 where “Yes”

in a cell means that SVR+TS is significantly superior to the technique indicated on the column (i.e.,

it means that the absolute residuals achieved with SVR+TS are significantly less than the ones

obtained with the technique indicated on the column).

These results allowed us to state that the predictions obtained with SVR+TS were significantly

superior than those obtained with SVRrand, SVRweka, SVRgrid, MSWR, CBR (with and without

feature selection), MedianEffort, and MeanEffort for all PROMISE and Tukutuku datasets, except

for a few cases (i.e., the China, EnhancementProjects, MetricNo, ProImprYes, and ProImprNo

datasets with respect to SVRgrid, SVRweka, SVRgrid, CBR, and SVRweka approaches,

respectively) where no significant difference was found.

According to these results we can reject all the null hypotheses presented in Section 5.4 (with a

confidence of 95%), highlighting that SVR+TS provided significant better estimates than:

- SVRrand for all the datasets;

- SVRweka for 19 out of 21 datasets;

- SVRgrid for 19 out of 21 datasets;

- MSWR for all the datasets;

- CBR for 20 out of 21 datasets;

- CBRss for all the datasets;

- Mean Effort for all the datasets;

- Median Effort for all the datasets.

Thus, we conclude that we can positively answer our research questions RQ7 and RQ8, i.e., Tabu

Search was able to effectively set Support Vector Regression parameters and the effort predictions

obtained by using the combination of Tabu Search and Support Vector Regression were

significantly superior to the ones obtained by other techniques. Note that these results confirm and

extend those previously obtained and detailed in [26], thus supporting the usefulness of TS for

configuring SVR. Indeed, TS has allowed us to improve the accuracy of the obtained estimates with

respect to the use of random configurations, the use of a default configuration, and the use of Grid-

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

86

Table 26. Accuracy in terms of MdAR

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

87

-search algorithm for parameter selection provided by LibSVM. Moreover, we want to stress that

the analysis showed that SVR outperformed the two techniques that are to date the most widely and

successfully employed prediction techniques in Software Engineering (e.g.,

[30][13][15][75][95][97][119]), namely MSWR and CBR. In addition, note that SVR+TS

outperformed all the other techniques both for single- and cross- company datasets and for both

Web-based and not Web-based applications datasets.

Table 27. A comparison between SVR+TS and the other techniques

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

88

Table 28. Comparison of the absolute residuals using Wilcoxon test (p-values are reported between

brackets) for PROMISE and Tukutuku datasets

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

89

5.4 Validity Assessment
We mitigated the construct validity threats arising from the choice of the features and their

collection by evaluating the employed estimation methods on publicly available datasets from the

PROMISE repository. These datasets have been previously used in many other empirical studies

carried out to evaluate effort estimation methods [109]. With respect to the Tukutuku datasets, the

size measures and cost drivers used in the Tukutuku database, and therefore in our study, have been

obtained from the results of a survey investigation [96], using data from 133 on-line Web forms

aimed at giving quotes on Web development projects. In addition, these measures and cost drivers

have also been confirmed by an established Web company and a second survey involving 33 Web

companies in New Zealand. Consequently, it is our belief that the variables identified are measures

that are meaningful to Web companies and are constructed from information their customers can

provide at a very early stage in the project development. As for data quality, to identify effort

guesstimates from more accurate effort data, companies were asked on how their effort data was

collected (see Table 29). At least for 93.8% of Web projects in the Tukutuku database, effort values

were based on more than just guesstimates.

Table 29. How effort data was collected

Data Collection Method # Projects % Projects

Hours worked per project task per day 81 41.5

Hours worked per project per day/week 40 20.5

Total hours worked each day or week 62 31.8

No timesheets (guesstimates) 12 6.2

In relation to the conclusion validity we carefully applied the statistical tests, verifying all the

required assumptions. Moreover, we used medium size datasets to mitigate the threats related to the

number of observations composing the dataset.

As for the external validity, let us observe that both PROMISE and Tukutuku datasets comprise data

on projects volunteered by individual companies, and therefore they do not represent random

samples of projects from a defined population. This means that we cannot conclude that the results

of this study promptly apply to other companies different from the ones that volunteered the data

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

90

used here. However, we believe that companies that develop projects with similar characteristics to

those included in the Tukutuku and PROMISE database may be able to apply our results to their

software projects. However, the adoption of this technique by industry may require to build and

calibrate the initial model, prior to its use for effort estimation. This also applies to most effort

estimation techniques investigated to date in the literature, and some examples of how to bridge the

gap between research and practice are given in [93].

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

91

CONCLUSIONS
The main aim of this PhD dissertation was to provide an insight on the use of the search-based (SB)

techniques for the effort estimation trying to highlight strengths and weaknesses of these approaches

for building effort estimation models and enhancing existing effort estimation techniques.

In particular, the research has been carried out aiming at answer the following questions:

• How the design choices characterizing the use of SB approaches impact on the performance

of these techniques?

• Are there any differences in the use of different SB techniques?

• Are SB techniques as effective as widely used effort estimation methods?

• Are SB techniques effective to improve the accuracy of other data-driven effort estimation

techniques?

To this end we defined and employed three search-based approaches, namely Hill Climbing (HC),

Tabu Search (TS), and Genetic Programming (GP) for software development effort estimation and

analyzed their effectiveness with respect to both baseline benchmarks (i.e., Random, Mean Effort,

and Median Effort) and widely used estimation methods (i.e., MSWR). The experimentation was

performed by considering different settings and objective functions, exploiting seven publicly

available datasets (i.e., China, Desharnais, Finnish, Miyazaki, Maxwell, Kemerer, Telecom) and

using a 3-fold cross-validation.

The results, evaluated in terms of Sum of Squared Residuals (SSR) and statistical tests, have

highlighted that HC is the worst of the three techniques, while TS and GP provided significantly

better results than all the baseline benchmarks and can offer estimation models more accurate than

those obtained by applying MSWR on almost all the datasets. However, apart from the accuracy,

other factors can be relevant for practitioners and crucial for the adoption of a predictive technique

in industry, namely transparency of solutions, ease of use, and required resources [16]. As for

transparency of solutions, all the proposed search-based approaches and MSWR build an estimation

model (i.e., an equation) that makes clear the weight and the contribution of each employed feature,

allowing for making easy the solution interpretation. Differently, other techniques (e.g., CBR) give

no indication on the contribution of specific features, thus limiting the understating by the user [16].

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

92

As for the ease of use, let us observe that to properly apply MSWR a practitioner should have a

good statistical background. As a matter of fact, a recent study by Kitchenham et al. [71] pointed out

that in the literature often invalid regression models have been reported because Linear Regression

was applied without taking care of good statistical practices. On the contrary, the use of search-

based approaches do not require specific knowledge to be applied since there are no assumptions to

be verified on the employed data and also because they are supported by automated tools. However,

for using search-based approaches some design choices have to be made and generally different

choices may lead to different results. As an example for TS many parameters should be settled (e.g.,

tabu list size, number of moves and iterations) and such setting in the literature has been generally

obtained after a trial-and-error process depending on the problem under investigation. However, in

this thesis we have employed an heuristics to set TS and GP which revealed to be effective on all the

considered datasets. These findings can allow a practitioner to employ TS or GP overcoming the

difficulties related to the set up of these techniques [16].

Concerning the resources required to apply the considered estimation techniques, we can observe

that a practitioner has to apply MSWR manually executing the selection process at most n times (n

is the number of dataset features), making its use especially time consuming and more error-prone in

case of datasets containing a lot of features. On the other hand, the automated tools provided for

search-based approaches require in general a longer time to be executed with respect to MSWR,

since their execution time depends on both dataset size and the explored search space (i.e., number

of moves and iterations).

Finally, we can say that a search-based approach can represent a flexible technique for project

managers giving them the possibility to choose the preferred criterion to drive the search for the

estimation model. We have empirically analyzed the impact of several existing evaluation criteria as

objective function and observed that some of them have the effect to degrade a lot of other criteria.

Thus, project managers should be informed on this effect and should take care to select the

evaluation criterion as objective function. On the other hand, the research community working in the

area of effort estimation is still searching for a suitable and reliable accuracy criterion to assess and

compare estimation models (e.g. see [123]). When it will be identified it can be easily exploited as

objective function with a search-based technique thanks to the flexibility of these approaches and in

case more than one criterion will be identified it could be interesting to investigate multi-objective

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

93

optimization approaches (e.g., the ones based on Pareto optimality) [55] to simultaneously optimize

several criteria. Moreover, multi-objective optimization has proved to be able to provide decision

support for other early-stage software project management activities (see e.g., [47][112]), so its use

deserves to be further investigated also in the effort estimation context.

As for the use of search-based approaches to improve other existing estimation techniques, we have

assessed whether Support Vector Regression configured by using the proposed Tabu Search

approach can be effective to estimate software development effort exploiting 21 datasets (both

single- and cross- company datasets related to both Web-based and not Web-based applications).

The results of the empirical analysis have highlighted the goodness of TS for configuring SVR.

Indeed, SVR+TS provided significant better estimates than SVR configured with simpler

approaches, such as random configuration, default configuration provided by the Weka tool, and the

Grid-search algorithm provided by LibSVM. Moreover, SVR+TS allowed us to obtain significantly

better effort estimates than the ones obtained using MSWR and CBR, two techniques widely

employed both in academic and industrial contexts. Many studies reported in the literature show the

ability of SVR to construct accurate predictive models in different contexts [18]. Nevertheless, those

studies are usually based on the opinion of experts that select SVR parameter values on the basis of

their knowledge of both the approach and the application domain [18]. Of course the reliance upon

experts severely bounds the practical applicability of this approach in the software industries. The

approach investigated in the present paper does not only address the problem to find a suitable SVR

setting for effort estimation but it also allows practitioners of software industries to effectively use it

without requiring to be an expert in the field of those techniques. These observations together with

the results presented in this paper suggest SVR+TS among the techniques that are suitable for

software development effort estimation in industrial world.

The good results herein reported concerning the ability of TS to configure SVR motivated us to add

to our agenda of future work the use of a TS to improve other estimation techniques, such as

Extreme Learning Machine [63], and the use of the proposed approach in other field of Software

Engineering, such as fault prediction where some preliminary studies provided encouraging results

[36][115].

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

94

REFERENCES
[1] Abran, A., Robillard, P.N., Function points analysis: an empirical study of its measurement, 22

(12): 895-910, (1996).

[2] Wasif Afzal, Richard Torkar: On the application of genetic programming for software

engineering predictive modeling: A systematic review. Expert Syst. Appl. 38(9): 11984-11997

(2011).

[3] Albrecht AJ, Gaffney JE, Software function, source lines of code, and development effort

prediction: A software science validation. IEEE Transactions on Software Engineering 9 (6):

639-648, (1983).

[4] Arcuri, A., Briand, L., A Practical Guide for Using Statistical Tests to Assess Randomized

Algorithms in Software Engineering, in Procs of International Conference on Software

Engineering, (2011).

[5] Bailey, J.W., Basili, V.R., A Meta Model for Software Development Resource Expenditure, in

Procs of Conference on Software Engineering, pp. 107-115, (1981).

[6] Basili, V.R., The Role of Experimentation in Software Engineering: Past, Current and Future, in

Procs of International Conference on Software Engineering, (1996).

[7] Basili, V.R., Shull, F., Lanubile, F., Building knowledge through families of experiments, IEEE

Transactions on Software Engineering 25(4) (1999), pp. 435–437.

[8] Bernroider, E., Koch, S., ERP selection process in midsize and large organizations, Business

Process Management Journal 7(3) (2001), pp. 251–257.

[9] Boehm, B. W., “Software Engineering Economics”, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[10] Braga, P.L., Oliveira, A.L.I., Meira, S.R.L, Software Effort Estimation Using Machine Learning

Techniques with Robust Confidence Intervals, In Proceedings of the 19th IEEE International

Conference on Tools with Artificial Intelligence 1(29-31) (ICTAI 2007), pp.181-185.

[11] Braga, P.L., Oliveira, A.L.I., Meira, S.R.L., A GA-based Feature Selection and Parameters

Optimization for Support Vector Regression Applied to Software Effort Estimation, in Procs of

the ACM Symposium on Applied computing, pp. 1788-1792, (2008).

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

95

[12] Braga, P.L., Oliveira, A.L.I., Ribeiro, G.H.T., and Meira, S.R.L, Bagging predictors for

estimation of software project effort, IEEE International Joint Conference on Neural Networks,

pp. 1595-1600, (2007).

[13] Briand, L., Wieczorek, I., Software Resource Estimation, Encyclopedia of Software

Engineering, pp. 1160–1196, (2002).

[14] Briand, L., Emam, K. El., Surmann, D., Wiekzorek, I., Maxwell, K., An assessment and

comparison of common software cost estimation modeling techniques, in Proceedings of

International Conference on Software Engineering, IEEE press, 1999, pp. 313–322.

[15] Briand, L., Langley, T., Wiekzorek, I., A replicated assessment and comparison of common

software cost modeling techniques, in Proceedings of International Conference on Software

Engineering, IEEE press, 2000, pp. 377–386.

[16] Burgess C. J., Lefley M., Can genetic programming improve software effort estimation? A

comparative evaluation, Information and Software Technology, pp.863–873, 43, (2001).

[17] Chang, C.-C., Lin, C.-J., LIBSVM: a library for support vector machines. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm, (2001).

[18] Cherkassky V, Ma Y, Practical selection of SVM parameters and noise estimation for SVM

Regression. Neural Networks, 17(1): 113-126, (2004).

[19] Chiu, N.H., Huang, S., The adjusted analogy-based software effort estimation based on

similarity distances, Journal of Systems and Software, pp. 628–640, 80(4) (2007).

[20] Cohen, J., Statistical power analysis for the behavioral sciences, 2nd edition edn. Lawrence

Earlbaum Associates, (1988).

[21] Conover, W.J., Practical nonparametric statistics, 3rd ed. Wiley, New York, (1998).

[22] Conte, D., Dunsmore, H., Shen, V., Software engineering metrics and models, The

Benjamin/Cummings Publishing Company, Inc., (1986).

[23] Cook, R.D., Detection of influential observations in linear regression, Technometrics, 19: 15-18,

(1977).

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

96

[24] Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Mendes, E.. Applying support vector

regression for web effort estimation using a cross-company dataset. Procs. Empirical Software

Engineering and Measurement, pp. 191-202, (2009).

[25] Corazza A., Di Martino S., Ferrucci F., Gravino C., Mendes E., Investigating the use of Support

Vector Regression for web effort estimation, Empirical Software Engineering, pp. 211-

243,16(2), (2011).

[26] Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E., How Effective is

Tabu Search to Configure Support Vector Regression for Effort Estimation? in Procs of

PROMISE 2010: 4.

[27] Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E., Using Tabu Search

to Configure Support Vector Regression for Effort Estimation, Journal of Empirical Software

Engineering, http://dx.doi.org/10.1007/s10664-011-9187-3.

[28] Cortes, C., Vapnik, V., Support-vector networks, Machine Learning, 20(3) (1995), pp.273–297.

[29] COSMIC. 2007. Web site, http://www.cosmicon.com

[30] Costagliola, G, Di Martino, S., Ferrucci, F., Gravino, C., Tortora, G., Effort estimation modeling

techniques: a case study for web applications. Procs. International Conference on Web

Engineering, pp. 9-16, (2006).

[31] Cristianini N, Shawe-Taylor J, An Introduction to Support Vector Machines and other kernel-

based learning methods. Cambridge University Press, (2000).

[32] Deng, J., Introduction to grey system theory, The Journal of Grey System 1 (1989), pp. 1–24.

[33] Desharnais, J.M., Analyse statistique de la productivitie des projets informatique a partie de la

technique des point des function, Unpublished Masters Thesis, University of Montreal, 1989.

[34] Di Geronimo, L., Ferrucci, F., Murolo, A., Sarro, F., A Parallel Genetic Algorithm Based on

Hadoop MapReduce for the Automatic Generation of JUnit Test Suites, in Proceedings of the

5th Conference on Software Testing, Verification and Validation, Workshop on SBST, pp. 785-

793, (2012).

[35] Di Martino, S., Ferrucci, F., Maggio, V., Sarro, F., Towards Migrating Genetic Algorithms for

Test Data Generation to the Cloud, in Software Testing in the Cloud: Perspectives on an

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

97

Emerging Discipline, Scott Tilley and Tauhida Parveen (Editors), IGI Global, DOI:

10.4018/978-1-4666-2536-5, ISBN13: 9781466625365, (2012).

[36] Di Martino S., Ferrucci F., Gravino C., Sarro F., A Genetic Algorithm to configure Support

Vector Machines for Predicting Fault-Prone Components, in Proceedings of the 12th

International Conference on Product-Focused Software Development and Process Improvement

(PROFES 2011), LNCS Springer vol. 6759, pp. 247-261, ISBN: 978-3-642-21842-2.

[37] Di Martino, S., Ferrucci, F., Gravino, C., Mendes, E., Comparing Size Measures for Predicting

Web Application Development Effort: A Case Study. Procs. Empirical Software Engineering

and Measurement, pp. 324–333, (2007).

[38] Dolado, J. J. , A validation of the component-based method for software size estimation, IEEE

TSE, pp. 1006–1021, 26(10), (2000).

[39] Dolado, J.J., On the problem of the software cost function. Information and Software

Technology 43(1), 61-72, (2001).

[40] Doval, D., Mancordis, S., B. Mitchell, S., Automatic clustering of software system using a

genetic algorithm. In: Proceedings of the 9th International Workshop Software Technology and

Engineering Practice, p. 73, (1998).

[41] Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F., Using Evolutionary Based Approaches to

Estimate Software Development Effort, in Evolutionary Computation and Optimization

Algorithms in Software Engineering: Applications and Techniques, M. Chis, IGI Global,

ISBN13: 9781615208098, (2010).

[42] Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F., Using Tabu Search to Estimate Software

Development Effort, in Procs of IWSM/MENSURA 2009. LNCS, Springer, vol. 5891, pp. 307-

320, (2009).

[43] Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F., Estimating Software Development Effort Using

Tabu Search,, in Procs of the 12th International Conference on Enterprise Information Systems,

pp. 236-241, 1, (2010).

[44] Ferrucci, F., Gravino, C., Oliveto, R., Mendes, E., Sarro, Investigating Tabu Search for Web

Effort Estimation, in Procs of the 36th EUROMICRO Conference on Software Engineering and

Advanced Applications, IEEE Computer Society, pp.350-357, (2010).

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

98

[45] Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F., Genetic Programming for Effort Estimation: an

Analysis of the Impact of Different Fitness Functions, in Procs of the 2nd International

Symposium on SBSE, IEEE Computer Society, pp. 89-98, (2010).

[46] Ferrucci, F., Gravino, C., Sarro, F., How Multi-Objective Genetic Programming is Effective for

Software Development Effort Estimation?, 3rd International Symposium on Search Based

Software Engineering (SSBSE 2011), Lecture Notes in Computer Science vol. 6956, pp. 274-

275.

[47] Ferrucci, F., Harman, M., Ren, J., Sarro, F., Not Going to Take this Anymore: Multi-Objective

Overtime Planning for Software Engineering Projects. ICSE 2013, to appear.

[48] Finnie, G. R., Wittig, G. E., Desharnais, J.-M., A comparison of software effort estimation

techniques: using function points with neural networks, case-based reasoning and regression

models, Journal of Systems and Software 39(3): pp. 281–289, (1997).

[49] Foss, T., Stensrud, E., Kitchenham, B., Myrtveit, I., A simulation study of the model evaluation

criterion MMRE, IEEE TSE, 29(11): 985-995, (2003).

[50] Glover, F., Laguna, M., Tabu Search, Kluwer Academic Publishers, Boston, (1997).

[51] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-

Wesley, 1989.

[52] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Wit-ten, I.H., The WEKA Data

Mining Software: An Update; SIGKDD Explorations, 11(1), (2009).

[53] Harman, M., Clark, J.A., Metrics Are Fitness Functions Too, IEEE METRICS, pp. 58-69, 2004.

[54] Harman, M., Jones, B.F., Search-based software engineering, Information and Software

Technology, 43(14): 833–839, (2001).

[55] Harman, M., The Current State and Future of Search-based Software Engineering, in Procs of

Future of Software Engineering, pp. 342-357, (2007).

[56] Harman, M., The relationship between search based software engineering and predictive

modeling. PROMISE 2010: 1

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

99

[57] Harman, M., Hierons, R., Proctor, M., A new representation and crossover operator for search-

based optimization of software modularization, in Proceedings of the Genetic and Evolutionary

Computation Conference, pp. 1351–1358, Morgan Kaufmann Publishers.

[58] Hofmann, T., Schölkopf, B., Smola, A.J., Kernel Methods in Machine Learning, Annals of

Statistics, 36: 1171-1220, (2008).

[59] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann

Arbor, 1975.

[60] Hsu, C-W, Chang, C-C, Lin, C-J, A Practical Guide to Support Vector Classification, available

at http://www.csie.ntu.edu.tw/\~{}cjlin/papers/guide/guide.pdf, (2010).

[61] Huang, S.J., Chiu, N.H., Chen, L.W., Integration of the grey relational analysis with genetic

algorithm for software effort estimation, European Journal of Operational Research, pp. 898-

909, 188(3), (2008).

[62] Huang C.-L., Wang, C.-J., A GA-based feature selection and parameters optimization for

support vector machines, Expert Systems with Applications 31(2) (2006), pp. 231–240.

[63] Huang, G.B., Zhou, H., Ding, X., Zhang, R., Extreme learning machine for regression and multi-

class classification, IEEE Transactions on Systems, Man, and Cybernetics—Part b: Cybernetics,

42 (2012) 513-529.

[64] ISBSG: www.isbsg.org

[65] Jeffery, R., Ruhe, M., Wieczorek, I., A Comparative Study of Two Software Development Cost

Modeling Techniques using Multi-organizational and Company-specific Data. Information and

Software Technology, 42: 1009-1016, (2000).

[66] Jørgensen, M., A review of studies on expert estimation of software development effort, Journal

of Systems and Software, pp. 37-60, 70(1-2), (2004).

[67] Kampenes, V., Dybå, T., Hannay, J.E., Sjøberg, D.I.K., A Systematic Review of Effect Size in

Software Engineering Experiments, Information and Software Technology, pp.1073-1086,

4(11-12), (2007).

[68] Kemerer, C. F., An empirical validation of software cost estimation models, Communications of

ACM, 30(5): 416–429, (1987).

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

100

[69] Keerthi, S., Efficient tuning of SVM hyper-parameters using radius/margin bound and iterative

algorithms. IEEE Transactions on Neural Networks, 13(5): 1225–1229, (2002).

[70] Keerthi, S., Lin, C.-J., Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel,

Neural Computation 15: 1667–1689, (2003).

[71] Kitchenham, B., Mendes, M., Why comparative effort prediction studies may be invalid, in

Procs of PROMISE 2009: 4.

[72] Kitchenham, B., Pickard, L. M., MacDonell, S. G., Shepperd, M. J., What accuracy statistics

really measure, IEE Procs Software, pp. 81-85, 148 (3), (2001).

[73] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C, El Emam,

K., Rosenberg, J., Preliminary Guidelines for Empirical Research in Software Engineering,

IEEE TSE, pp. 721-734, 8 (2002).

[74] Kitchenham, B.A., Mendes, E., Travassos, G.H., Cross versus Within-Company Cost Estimation

Studies: A Systematic Review. IEEE Transactions on Software Engineering 33(5): 316-329,

(2007).

[75] Kitchenham, B.A., Mendes, E., A Comparison of Cross-company and Single-company Effort

Estimation Models for Web Applications. Procs. Evaluation & Assessment in Software

Engineering, pp. 47-55, (2004).

[76] Kitchenham, B.A., A Procedure for Analyzing Unbalanced Datasets. IEEE Transactions on

Software Engineering 24(4): 278-301, (1998).

[77] Kitchenham, B.A., Pickard, L., Peeger, S., Case studies for method and tool evaluation. IEEE

Software 12(4): 52-62, (1995).

[78] Koch, S., Mitlöhner, J., Software project effort estimation with voting rules, Decision Support

Systems, pp. 895- 901, 46(4), (2009).

[79] Kocaguneli E, Gay G, Menzies T, Yang Y, Keung JW, When to use data from other projects for

effort estimation. Procs. IEEE/ACM international conference on Automated Software

Engineering, pp. 321-324, (2010).

[80] Koza, J.R., Genetic Programming. MIT Press (1992)

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

101

[81] Kwok, J.T., Tsang, I.W., Linear dependency between ε and the input noise in ε-support vector

regression. IEEE Transactions on Neural Networks 14(3): 544-553, (2003).

[82] Lefley, M., Shepperd, M.J., Using genetic programming to improve software effort estimation

based on general data sets, in Procs of GECCO, pp. 2477–2487, (2003).

[83] Li, Y.F., Xie, M., Goh, T.N., A study of project selection and feature weighting for analogy

based software cost estimation, Journal of Systems and Software, pp.241-252, 82(2), (2009).

[84] Mair, C., Shepperd, M., The consistency of empirical comparisons of regression and analogy-

based software project cost estimation. Procs ISESE, pp. 509-518, (2005).

[85] Matson, J.E., Barrett, B.E., Mellichamp, J.M., Software development cost estimation using

function points, IEEE Transactions on Software Engineering 20 (4) (1994), pp. 275–287.

[86] Mattera, D., Haykin S., Support vector machines for dynamic reconstruction of a chaotic system.

In B. Scholkopf, J. Burges, & A. Smola (Eds.), Advances in kernel methods: Support vector

machine. Cambridge, MA, 1999, MIT Press.

[87] Maxwell, Applied Statistics for Software Managers. Software Quality Institute Series, Prentice

Hall, 2002.

[88] Maxwell K., Wassenhove, L.S., Dutta, S., Performance Evaluation of General and Company

Specific Models in Software Development Effort Estimation. Management Science, 45(6): 787-

803, (1999).

[89] Mendes, E., Web Cost Estimation and Productivity Benchmarking, ISSSE, pp. 194-222, (2008).

[90] Mendes, E., Kitchenham, B., Further comparison of cross-company and within-company effort

estimation models for web applications, in: Procs of International Software Metrics Symposium,

IEEE press, pp. 348-357, 10 (47), (2004).

[91] Mendes, E., Mosley, N., Counsell, S., Investigating Web Size Metrics for Early Web Cost

Estimation, Journal of Systems and Software, pp. 157-172, 77 (2), (2005).

[92] Mendes, E., The Use of Bayesian Networks for Web Effort Estimation: Further Investigation.

Procs. International Conference on Web Engineering, pp. 203 – 216, 2008.

[93] Mendes, E., Pollino C., Mosley N., Building an Expert-based Web Effort Estimation Model

using Bayesian Networks Procs EASE Conference, pp. 1-10, 2009.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

102

[94] Mendes, E., Mosley, N., Counsell, S., Investigating Web Size Metrics for Early Web Cost

Estimation. Journal of Systems and Software, 77 (2): 157-172, (2005a).

[95] Mendes, E., Di Martino, S., Ferrucci, F., Gravino, C., Cross-company vs. single-company web

effort models using the Tukutuku database: An extended study. Journal of System & Software

81 (5): 673-690, (2008).

[96] Mendes, E., Mosley, N., Counsell S., Investigating early web size measures for web cost

estimation Procs. Evaluation and Assessment in Software Engineering, pp. 1–22, (2003a).

[97] Mendes, E., Kitchenham, B.A., Further Comparison of Cross-company and Within-company

Effort Estimation Models for Web Applications. Procs. IEEE International Software Metrics

Symposium, pp. 348-357, (2004).

[98] Mendes, E., Counsell, S., Mosley, N., Triggs, C., Watson, I., A Comparative Study of Cost

Estimation Models for. Web Hypermedia Applications. Empirical Software Engineering 8 (23):

163-196, (2003b).

[99] Mendes, E., Mosley, N., Counsell, S., The Need for Web Engineering: An Introduction, Web

Engineering. Springer-Verlag, Mendes, E. and Mosley, N. (Eds.), 1-28, (2005b).

[100] Menzies T., Chen Z., Hihn J., Lum K., Selecting best practices for effort estimation, IEEE

Transactions on Software Engineering 32 (11) (2006), 883-894.

[101] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E., Equation of state

calculations by fast computing machines, Journal of Chemical Physics 2, pp. 1087–1092, (1953).

[102] Miyazaki Y, Terakado M, Ozaki K, Nozaki H (1994) Robust regression for developing

software estimation models, Journal of Systems and Software 27 (1): 3-16.

[103] Mitchell, B.S., Mancoridis, S., Using heuristic search techniques to extract design

abstractions from source code, in Proceedings of the Genetic and Evolutionary Computation

Conference, pp. 1375–1382, Morgan Kaufmann Publishers.

[104] Miller, J., Applying meta-analytical procedures to software engineering experiments, Journal

of Systems and Software 54 (2000), pp. 29–39.

[105] Montgomery, D. , Peck, E., Vining, G., Introduction to Linear Regression Analysis, John

Wiley and Sons, Inc., 1986.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

103

[106] Moser, R., Pedrycz, W., Succi, G., Incremental Effort Prediction Models in Agile

Development using Radial Basis Functions, Procs. International Conference on Software

Engineering and Knowledge Engineering, pp. 519-522, 2007.

[107] Oliveira, A.L.I., Estimation of software project effort with support vector regression,

Neurocomputing, 69 (13-15), 2006, pp. 1749–1753.

[108] Parlos, A.G., Fernandez, B., Atyla, A., Muthusami, J., Tsai, W., An accelerated algorithm for

multilayer perceptron networks, IEEE Transactions on Neural Networks 5(3) (1994), pp. 493-

497.

[109] PROMISE Repository of empirical software engineering data,

http://promisedata.org/repository.

[110] Royston, P. An extension of Shapiro and Wilk's W test for normality to large samples.

Applied Statistics 31(2):115-124, (1982).

[111] Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning internal representations by

backpropagation, Parallel Distributed Processing: Explorations in the Microstructers of

Cognition 1 pp. 318–362, (1986),.

[112] Saliu, M.O., Ruhe, G., Bi-objective release planning for evolving software systems, in

Proceedings of the 6th joint meeting of the European Software Engineering Conference and the

ACM SIGSOFT International Symposium on Foundations of Software Engineering

(ESEC/FSE), pp. 105–114, 2007.

[113] Sarro, F., Search-based approaches for software development effort estimation. In:

Proceedings of the PROFES Doctoral Symposium, 2011, pp. 38-43.

[114] Sarro, F., Ferrucci, F., Gravino, C. Single and multi objective genetic programming for

software development effort estimation. In: Proceedings of the ACM Symposium on Applied

Computing, pp. 1221-1226, 2012.

[115] Sarro, F., Di Martino, S., Ferrucci, F., Gravino, C. A further analysis on the use of genetic

algorithm to configure support vector machines for inter-release fault prediction, in Proceedings

of the 27th Symposium On Applied Computing - SE track (ACM SAC), pp.1215-1220, 2012.

[116] Scholkopf, B., Smola A., Learning with Kernels. MIT Press, 2002.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

104

[117] Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.,

Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function

Classifiers, IEEE Transactions on Signal Processing 45 (11): 2758-2765, (1997).

[118] Shan, Y., Mckay, R. I., Lokan, C. J., Essam, D. L., Software project effort estimation using

genetic programming, in Procs of International Conference on Communications Circuits and

Systems, IEEE press, pp. 1108–1112, (2002).

[119] Shepperd, M.J., Kadoda, G., Using Simulation to Evaluate Prediction Techniques, Procs.

IEEE International Software Metrics Symposium, 2001, pp. 349-358.

[120] Shepperd, M., Schofield, C., Estimating software project effort using analogies. IEEE

Transactions on Software Engineering 23 (11) :736-743, (1997).

[121] Shepperd, M., Schofield, C., Kitchenham, B.A., Effort estimation using analogy. Procs.

International Conference on Software Engineering, pp. 170-178, (1996).

[122] Shepperd, M., Schofield, C., Estimating software project effort using analogies, IEEE TSE,

pp. 736-743, 23(11), (2000).

[123] Shepperd, M.J., MacDonell, S.J., Evaluating prediction systems in software project

estimation. Information & Software Technology 54(8): 820-827, (2012)

[124] Shin, M., Goel, A. L., Empirical data modeling in software engineering using radical basis

functions, IEEE Transactions Software Engineering, 26(6): 567–576, (2000).

[125] Shukla, K. K., Neuro-genetic prediction of software development effort, Information and

Software Technology, pp. 701–713, 42 (10), (2000).

[126] Smola, A.J., Schölkopf, B., A tutorial on support vector regression. Statistics and

Computing, 14 (3): 199-222, (2004).

[127] Srinivasan, K., Fisher, D., Machine learning approaches to estimating software development

effort, IEEE Transactions on Software Engineering 21 (2) (1995), pp. 126–137.

[128] Stensrud, E., Myrtveit, I., Human performance estimating with analogy and regression

models: an empirical validation. In: Proceedings of International Software Metrics Symposium,

pp. 205-213. IEEE press, 1996.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

105

[129] Uysal, M., Estimation of the Effort Component of the Software Projects Using Simulated

Annealing Algorithm, in Proceedings of World Academy of Science, Engineering and

Technology 31 (2008), ISSN 1307-6884, pp. 258-261.

[130] Vapnik, V., Chervonenkis, A., A note on one class of perceptrons, Automatics and Remote

Control 25, (1964).

[131] Vapnik, V., Chervonenkis, A., Theory of Pattern Recognition (in Russian), Nauka, Moscow,

(1974).

[132] Vapnik, V., The nature of Statistical Learning Theory, Springer-Verlag, (1995).

[133] Wieczorek I., Ruhe M., How Valuable is Company-Specific Data Compared to Multi-

Company Data for Software Cost Estimation? Procs. International Software Metrics

Symposium, pp. 237-246, (2002).

[134] Yoo, S., Harman, M., Ur, S., Highly scalable multi objective test suite minimisation using

graphics cards. In: Proceedings of the Third international conference on Search-based software

engineering, pp. 219-236. Springer-Verlag, Berlin, Heidelberg, 2001.

[135] Wohlin, C., Runeson, P., Host, M., Regnell, B., Wesslen, A., Experimentation in Software

Engineering-An Introduction, Kluwer Academic Publishers Norwell, MA, USA, (2000).

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

106

Appendix

A. Datasets descriptions

In this appendix we provided further information on the employed datasets from the PROMISE

repository and the Tukutuku database. In particular, summary statistics for the employed variables

are shown Tables 6, 7, and 8, and each dataset is detailed in the following.

Table 30. Summary statistics for the variables of the datasets extracted from the PROMISE

repository

Dataset Variable Min Max Mean St Dev

Albrecht Input 7 193 40.25 36.91
 Output 12 150 47.25 35.17
 Inquiry 0 75 16.88 19.34
 File 3 60 17.38 15.41
 Effort 0.50 105.20 21.88 28.42
China Input 0 9404 167.1 486.34
 Output 0 2455 113.6 221.27
 Inquiry 0 952 61.6 105.42
 File 0 2955 91.23 210.27
 Interface 0 1572 24.23 85.04
 Effort 26 54620 3921 6481
Desharnais TeamExp 0 4 2.3 1.33
 ManagerExp 0 4 2.65 1.52
 Entities 7 386 121.54 86.11
 Transactions 9 661 162.94 146.08
 AdjustedFPs 73 1127 284.48 182.26
 Envergure 5 52 27.24 8.6
 Effort 546 2349 4903.95 4188.19
Desharnais1 TeamExp 0 4 2.43 1.39
 ManagerExp 0 7 2.30 1.59
 Entities 7 332 118.30 77.43
 Transactions 33 886 169.52 143.43
 AdjustedFPs 83 1116 277.91 179.73
 Envergure 6 51 29.75 277.91
 Effort 805 23940 5413 4366
Desharnais2 TeamExp 1 4 2.17 1.11
 ManagerExp 1 7 3.09 1.38
 Entities 31 387 137.96 109.95
 Transactions 9 482 166.30 135.46
 AdjustedFPs 62 688 279.91 194.24
 Envergure 5 52 23.30 11.27
 Effort 1155 14973 5095.391 4123.559
Desharnais3 TeamExp 0 4 2 1.56
 ManagerExp 1 4 3.20 1.14
 Entities 38 176 90.40 51.08
 Transactions 97 661 256.10 177.60
 AdjustedFPs 99 698 325.70 216.57
 Envergure 6 43 26.90 13.73
 Effort 546 5880 1685 1631
Finnish HW 1 3 1.26 0.64
 AR 1 5 2.24 1.5
 FP 65 1814 763.58 510.83
 CO 2 10 6.26 2.73
 Effort 460 25670 7678.29 7135.28
Kemerer AdjFP 99.3 2306.8 999.14 589.59
 Effort 23.2 1107.31 219.25 263.06
Maxwell Nlan 1 4 2.55 1.02
 T01 1 5 3.05 1

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

107

 T02 1 5 3.05 0.71
 T03 2 5 3.03 0.89
 T04 2 5 3.19 0.70
 T05 1 5 3.05 0.71
 T06 1 4 2.90 0.69
 T07 1 5 3.24 0.90
 T08 2 5 3.81 0.96
 T09 2 5 4.06 0.74
 T10 2 5 3.61 0.89
 T11 2 5 3.42 0.98
 T12 2 5 3.82 0.69
 T13 1 5 3.06 0.96
 T14 1 5 3.26 1.01
 T15 1 5 3.34 0.75
 SizeFP 48 3643 673.31 784.08
 Effort 583 63694 8223.21 10499.90
MaxwellA2 Nlan 1 4 2.41 1.12
 T01 2 5 3.34 0.90
 T02 1 4 3.03 0.68
 T03 2 5 3.10 0.86
 T04 2 5 3.28 0.75
 T05 1 5 3.10 0.82
 T06 1 4 2.86 0.64
 T07 2 5 3.41 0.98
 T08 2 5 3.69 0.97
 T09 3 5 4.17 0.66
 T10 2 5 3.83 0.97
 T11 2 5 3.17 0.89
 T12 2 5 3.79 0.82
 T13 1 5 3.07 0.92
 T14 1 5 3.07 1.03
 T15 2 5 3.45 0.78
 SizeFP 59 3368 687.86 769.84
 Effort 845 63694 9628.86 12946.97
MaxwellA3 Nlan 1 4 2.67 0.97
 T01 2 5 2.89 0.96
 T02 2 5 3.11 0.83
 T03 2 5 3.17 0.92
 T04 2 4 3.17 0.71
 T05 2 4 2.89 0.58
 T06 1 4 2.72 0.75
 T07 1 4 3.17 0.86
 T08 2 5 3.83 0.99
 T09 3 5 4.22 0.55
 T10 2 5 3.50 0.71
 T11 2 5 4.00 0.97
 T12 3 5 3.89 0.58
 T13 1 4 3.00 1.03
 T14 2 5 3.28 1.02
 T15 1 4 3.28 0.83
 SizeFP 48 3643 874.17 1006.22
 Effort 583 39479 9824.44 9555.48
MaxwellS2 Nlan 1 4 2.54 1.00
 T01 1 5 2.89 0.96
 T02 1 5 3.11 0.69
 T03 2 5 2.96 0.89
 T04 2 4 3.22 0.66
 T05 2 4 2.98 0.49
 T06 1 4 2.93 0.67
 T07 1 5 3.15 0.83
 T08 2 5 3.83 0.97
 T09 2 5 4.04 0.73
 T10 2 5 3.61 0.86
 T11 2 5 3.50 0.99
 T12 3 5 3.83 0.50
 T13 1 5 3.11 0.96
 T14 1 5 3.22 1.00
 T15 1 5 3.28 0.63
 SizeFP 48 3643 636.96 821.61
 Effort 583 63694 8347.222 11211.18
MaxwellT1 Nlan 1 4 2.30 0.95
 T01 1 5 3.09 1.00
 T02 2 5 3.13 0.71
 T03 2 5 3.06 0.92

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

108

 T04 2 5 3.15 0.75
 T05 1 5 2.98 0.77
 T06 1 4 2.74 0.64
 T07 1 5 3.23 0.91
 T08 2 5 3.87 0.92
 T09 2 5 4.04 0.75
 T10 2 5 3.62 0.92
 T11 2 5 3.21 0.88
 T12 2 5 3.77 0.70
 T13 1 5 3.13 0.95
 T14 1 5 3.34 0.96
 T15 1 5 3.28 0.80
 SizeFP 48 3643 606.77 791.48
 Effort 583 63694 7806.72 10781.81
Miyazaki SCRN 0 281 33.69 47.24
 FORM 0 91 22.38 20.55
 FILE 2 370 20.55 53.56
 Effort 896 253760 13996 36601.56
Telecom Changes 3 377 138.06 119.95
 Files 3 284 110.33 91.33
 Effort 23.54 1115.54 284.34 264.71

Table 31. Summary statistics for the variables of the Tukutuku database

Variable Min Max Mean Std. Dev

Nlang 1 8 3.9 1.4
DevTeam 1 23 2.6 2.4
TeamExp 1 10 3.8 2.0
TotWP 1 2,000 69.5 185.7
NewWP 0 1,980 49.5 179.1
TotImg 0 1,820 98.6 218.4
NewImg 0 1,000 38.3 125.5
Fots 0 63 3.2 6.2
HFotsA 0 611 12.0 59.9
Hnew 0 27 2.1 4.7
totHigh 611 611 1 0.0
FotsA 0 38 2.2 4.5
New 0 99 4.2 9.7
totNHigh 0 137 6.5 13.2
TotEff 1.1 5,000 468.1 938.5

Table 32. Summary statistics for variables of the Tukutuku split

Dataset Variable Min Max Mean St Dev

DocProNo Nlang 1 8 4.17 1.21
 DevTeam 1 6 1.63 0.97
 TeamExp 1 10 5.02 1.77
 TotWP 3 1390 49.07 147.96
 NewWP 0 1333 28.03 140.10
 TotImg 0 780 59.97 107.38
 NewImg 0 583 22.01 66.49
 Fots 0 63 3.58 7.53
 HFotsA 0 611 25.67 86.35
 Hnew 0 8 0.72 1.84
 totHigh 0 611 26.39 86.16
 FotsA 0 38 3.06 6.04
 New 0 99 6.36 13.34
 totNHigh 0 137 9.41 18.60
 TotEff 4 5000 350.90 851.41
DocProYes Nlang 1 8 3.65 1.59
 DevTeam 1 23 3.39 2.88
 TeamExp 1 10 2.80 1.65
 TotWP 1 2000 86.97 211.94
 NewWP 0 1980 67.99 205.72
 TotImg 0 1820 131.69 276.92
 NewImg 0 1000 52.21 158.61
 Fots 0 21 2.86 4.90
 HFotsA 0 4 0.21 0.57

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

109

 Hnew 0 27 3.24 5.95
 totHigh 0 27 3.45 5.93
 FotsA 0 16 1.54 2.47
 New 0 19 2.43 3.78
 totNHigh 0 19 3.97 4.04
 TotEff 1.1 3712 568.58 1000.30
EnhancementProjects Nlang 1 6 3.15 1.17
 DevTeam 1 15 2.46 1.94
 TeamExp 1 8 2.87 1.60
 TotWP 1 2000 97.51 299.33
 NewWP 0 1980 65.03 289.61
 TotImg 0 1238 100.73 219.81
 NewImg 0 1000 48.46 150.17
 Fots 0 19 1.84 4.17
 HFotsA 0 4 0.37 0.85
 Hnew 0 10 1.19 2.43
 totHigh 0 12 1.57 2.67
 FotsA 0 16 2.72 3.10
 New 0 19 1.58 3.39
 totNHigh 0 19 4.30 4.07
 TotEff 1.1 5000 203.65 634.19
NewProjects Nlang 1 8 4.27 1.43
 DevTeam 1 23 2.64 2.58
 TeamExp 1 10 4.33 2.05
 TotWP 1 440 54.80 74.02
 NewWP 0 440 41.45 72.40
 TotImg 0 1820 97.46 218.46
 NewImg 0 800 32.94 110.66
 Fots 0 63 3.90 7.00
 HFotsA 0 611 18.02 73.24
 Hnew 0 27 2.54 5.48
 totHigh 0 611 20.56 72.82
 FotsA 0 38 1.99 5.12
 New 0 99 5.63 11.43
 totNHigh 0 137 7.63 15.96
 TotEff 4 3712 606.54 1039.35
MetricsYes Nlang 1 7 3.18 1.32
 DevTeam 1 23 3.12 3.27
 TeamExp 1 10 2.84 1.79
 TotWP 1 600 55.08 99.97
 NewWP 0 440 31.12 71.85
 TotImg 0 1064 84.14 160.88
 NewImg 0 500 34.69 91.44
 Fots 0 15 1.11 2.79
 HFotsA 0 4 0.22 0.62
 Hnew 0 12 1.23 2.69
 totHigh 0 12 1.45 2.72
 FotsA 0 16 1.89 2.79
 New 0 13 1.66 2.95
 totNHigh 0 16 3.55 3.50
 TotEff 1.1 2768 197.41 461.20
MetricsNo Nlang 1 8 4.24 1.39
 DevTeam 1 7 2.31 1.72
 TeamExp 1 10 4.32 1.97
 TotWP 3 2000 76.68 216.20
 NewWP 0 1980 58.76 213.17
 TotImg 0 1820 105.81 242.31
 NewImg 0 1000 40.06 139.70
 Fots 0 63 4.23 7.18
 HFotsA 0 611 17.83 72.69
 Hnew 0 27 2.50 5.39
 totHigh 0 611 20.33 72.28
 FotsA 0 38 2.42 5.19
 New 0 99 5.53 11.43
 totNHigh 0 137 7.95 15.82
 TotEff 4 5000 603.46 1078.75
ProImprYes Nlang 1 7 3.45 1.17
 DevTeam 1 23 2.79 2.93
 TeamExp 1 10 3.23 1.75
 TotWP 1 600 55.89 95.09
 NewWP 0 440 36.52 76.21
 TotImg 0 1238 102.38 199.66
 NewImg 0 800 37.48 111.45
 Fots 0 63 2.43 7.56

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

110

 HFotsA 0 4 0.19 0.61
 Hnew 0 12 1.10 2.37
 totHigh 0 12 1.29 2.40
 FotsA 0 38 2.97 5.69
 New 0 99 5.60 13.31
 totNHigh 0 137 8.57 18.23
 TotEff 1.1 2768 192.36 399.99
ProImprNo Nlang 1 8 4.27 1.57
 DevTeam 1 7 2.39 1.74
 TeamExp 1 10 4.35 2.12
 TotWP 3 2000 81.37 238.20
 NewWP 0 1980 60.95 234.70
 TotImg 0 1820 95.26 234.43
 NewImg 0 1000 38.96 137.10
 Fots 0 21 3.86 4.74
 HFotsA 0 611 22.26 80.73
 Hnew 0 27 2.93 5.93
 totHigh 0 611 25.19 80.14
 FotsA 0 20 1.61 3.09
 New 0 15 3.05 4.17
 totNHigh 0 35 4.65 5.64
 TotEff 4 5000 709.39 1180.34

Albrecht

The Albrecht dataset contains data on 24 applications developed by the IBM DP Services

organization with different programming language (i.e., COBOL, PL/I or DMS). We employed as

independent variables the four types of external input/output elements (i.e., Input, Output, Inquiry,

File) used to compute Function Points [3] and as dependent variable the Effort quantified in person-

hours and representing the time employed to design, develop, and test each application. We

excluded from the analysis the number of SLOC.

China

The China dataset contains data on 499 projects developed in China by various software companies

in multiple business domains. We employed as independent variables the external input/output

elements used to calculate Function Points (i.e., Input, Output, Inquiry, File, Interface) and Effort as

dependent variable [109].

Desharnais

Desharnais [33] has been widely used to evaluate estimation methods, e.g.,[16][42][120][121]. It

contains data about 81, but we excluded four projects that have some missing values, as done in

other studies (e.g., [120][121]).

As independent variables we employed: TeamExp (i.e., the team experience measured in years),

ManagerExp (i.e., the manager experience measured in years) Entities (i.e., the number of the

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

111

entities in the system data model), Transactions (i.e., the number of basic logical transactions in the

system), AdjustedFPs (i.e., the adjusted Function Points), and Envergure (i.e., a complex measure

derived from other factors defining the environment). We considered as dependent variable the total

effort while we excluded the length of the code. The categorical variable YearEnd was also

excluded from the analysis as done in other works (e.g., [79][119]) since this not an information that

could influence the effort prediction of new applications. The other categorical variable, namely

Languages, was used (as done in [79][120]) to split the original dataset into three different datasets

Desharnais1 (having 44 observations), Desharnais2 (having 23 observations), and Desharnais3

(having 10 observations) corresponding to Languages 1, 2, and 3, respectively.

Finnish

Finnish contains data on 38 projects from different Finnish companies [121]. In particular, the

dataset consists of a dependent variable, the Effort expressed in person-hours, and five independent

variables. We decided to do not consider the PROD variable because it represents the productivity

expressed in terms of Effort and size (FP).

Kemerer

This dataset contains 15 large business applications, 12 of which were written entirely in Cobol. In

particular, for each application the number of both adjusted and raw function points is reported (only

AdjFP has been exploited in our study). The Effort is the total number of actual hours expended by

staff members (i.e., not including secretarial labor) on the project through implementation, divided

by 152.We excluded from our analysis the KSLOC variable which counts the thousands of delivered

source instructions, the variable Duration, which represents the project durations in calendar months,

and two categorical variables, Software and Hardware, that indicate the software (i.e., Bliss, Cobol,

Natural) and the hardware (e.g., IBM 308X, IBM 43XX, DEC Vax) employed in each project,

respectively. Note that differently from Desharnais dataset these categorical variables could not be

used to create subsets since the resulting sets were too small.

Maxwell

The Maxwell dataset [87] contains data of 62 projects in terms of 17 features: Function Points and

16 ordinal variables, i.e., number of different development languages used (Nlan), customer

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

112

participation (T01), development environment adequacy (T02), staff availability (T03), standards

used (T04), methods used (T05), tools used (T06), software's logical complexity (T07),

requirements volatility (T08), quality requirements (T09), efficiency requirements (T10), installation

requirements (T11), staff analysis skills (T12), staff application knowledge (T13), staff tool skills

(T14), staff team skills (T15). As done for the Desharnais dataset, we used the categorical variables

to split the original dataset. In particular, using the three variables, App, Source, and TelonUse (the

former indicates the application type, the second indicates in-house or outsourcing development, and

the last indicates whether the Telon CASE tool was employed) we obtained 9 datasets, however

only those datasets having a number of observations greater than the feature number were used in

our experimentation. In particular, we employed the set of 29 observations having App equals to 2,

the set of 18 observations having App equals to 3, the set of 54 observation having Source equals to

2, and the set of 47 observations having TelonUse equals to 1. In the following we refer to these

datasets as MaxwellA2, MaxwellA3, MaxwellS2, and MaxwellT1, respectively.

Miyazaki

The Miyazaki dataset is composed by projects data collected from 48 systems in 20 Japanese

companies by Fujitsu Large Systems Users Group [102]. We considered the independent variables

SCRN (i.e., the number of different input or output screen formats), and FORM (i.e., the number of

different form) as done in [102]. The dependent variable is the Effort defined as the number of

person-hours needed from system design to system test, including indirect effort such as project

management.

Telecom

It includes information on two independent variables, i.e., Changes and Files, and the dependent

variable Effort [120]. Changes represents the number of changes made as recorded by the

configuration management system and Files is the number of files changed by the particular

enhancement project.

Tukutuku

It contains Web hypermedia systems and Web applications. The former are characterized by the

authoring of information using nodes (chunks of information), links (relations between nodes),

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

113

anchors, access structures (for navigation) and its delivery over the Web. Conversely, the latter

represent software applications that depend on the Web or use the Web's infrastructure for execution

and are characterized by functionality affecting the state of the underlying business logic. Web

applications usually include tools suited to handle persistent data, such as local file system, (remote)

databases, or Web Services.

The Tukutuku database has data on 195 projects, where:

- projects came mostly from 10 different countries, mainly New Zealand (47%), Italy (17%),

Spain (16%), Brazil (10%), United States (4%), England (2%), and Canada (2%);

- project types are new developments (65.6%) or enhancement projects (34.4%);

- about dynamic technologies, PHP is used in 42.6% of the projects, ASP (VBScript or .Net) in

13.8%, Perl in 11.8%, J2EE in 9.2%, while 9.2% of the projects used other solutions;

- the remaining projects used only HTML and/or Javascript,

- each Web project in the database is characterized by process and product variables [94].

The features characterizing the web projects have the following meaning:

- nlang: Number of programming languages adopted in the project.

- DevTeam: Number of Developers involved in the project.

- TeamExp: Mean number of years of experience for the team members.

- TotWP: Total number of Web pages (new and reused).

- NewWP: Total number of new Web pages.

- TotImg: Total number of images (new and reused).

- NewImg: Total number of new images.

- Fots: Number of features/functions reused without any adaptation.

- HFotsA: Number of reused high-effort features/ functions adapted.

- Hnew: Number of new high-effort features/ functions.

- totHigh: Total number of high-effort features/ functions.

- FotsA: Number of reused low-effort features adapted.

- New: Number of new low-effort features/functions.

- totNHigh: Total number of low-effort features/ functions.

- TotEff: Effort in person-hours (dependent variable).

The Tukutuku database contains also the following categorical variables:

- TypeProj: Type of project (new or enhancement).

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

114

- DocProc: If project followed defined and documented process.

- ProImpr: If project team was involved in a process improvement programme.

- Metrics: If project team was part of a software metrics programme.

Table 33. The 10 fold for China dataset

B. Manual Stepwise Regression
We applied MSWR using the technique proposed by Kitchenham [76]. Basically the idea is to use

this technique to select the important independent variables according to the R2 values and the

significance of the model obtained employing those variable, and then to use linear regression to

obtain the final model.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

115

In our study we employed the variables shown in Tables 6, 7, and 8 during cross validation and we

selected the variables for the training set of each split by using the MSWR procedure. In particular,

at the first step we identified the numerical variable that had a statistically significant effect on the

variable denoting the effort and gave the highest R2. This was obtained by applying simple

regression analysis using each numerical variable in turn. Then, we constructed the single variable

regression equation with effort as the dependent variable using the most highly (and significantly)

correlated input variable and calculated the residuals. In the subsequent step we correlated the

residuals with all the other input variables. We continued in this way until there were no more input

variables available for inclusion in the model or none of the remaining variables were significantly

correlated with the current residuals [76]. At the end of the procedure, the obtained variables were

used to build the estimation model for the considered training set, which was then used to obtain the

estimates for the observations in the corresponding validation set.

It is worth mentioning that whenever variables were highly skewed they were transformed before

being used in the MSWR procedure. This was done to comply with the assumptions underlying

stepwise regression [87] (i.e. residuals should be independent and normally distributed; relationship

between dependent and independent variables should be linear). The transformation employed was

to take the natural log(Ln), which makes larger values smaller and brings the data values closer to

each other [71]. A new variable containing the transformed values was created for each original

variable that needed to be transformed. In addition, whenever a variable needed to be transformed

but had zero values, the Ln transformation was applied to the variable’s value after adding 1.

To verify the stability of each effort estimation model built using MSWR, the following steps were

employed [71][75]:

- Use of a residual plot showing residuals vs. fitted values to investigate if the residuals are

randomly and normally distributed.

- Calculate Cook’s distance values [23] for all projects to identify influential data points. Any

projects with distances higher than 3 × (4/n), where n represents the total number of projects, are

immediately removed from the data analysis [75]. Those with distances higher than 4/n but

smaller than 3 × (4/n) are removed to test the model stability by observing the effect of their

removal on the model. If the model coefficients remain stable and the adjusted R2 (goodness of

fit) improves, the highly influential projects are retained in the data analysis.

F. Sarro
Search-Based Approaches for Software Development Effort Estimation

116

C. Case-Based Reasoning
To apply CBR we have to choose the similarity function, the number of analogies to pick the similar

projects to consider for estimation, and the analogy adaptation strategy for generating the estimation.

Moreover, also relevant project features could be selected.

In our case study, we applied CBR by employing the tool ANGEL [120] that implements the

Euclidean distance which is the measure used in the literature with the best results [98]. As for the

number of analogies, we used 1, 2, and 3 analogies, as suggested in other similar works [15][97].

Moreover, to select similar projects for the estimation, we employed as adaptation strategies the

mean of k analogies. Regarding the feature selections, we considered the independent variables that

are statistically correlated to the effort (at level 0.05), obtained by carrying out a Pearson correlation

test [92] on the training set of each split. We did not use feature subset selection of ANGEL since it

might be inefficient, as reported in [14][120]. In addition, all the project attributes considered by the

similarity function had equal influence upon the selection of the most similar project(s). We also

decided to apply CBR employing all the variables of Table 1 as set of features, as done for the

application of SVR+TS, considering all relevant factors for designers and developers. In the paper

we distinguish between the two different applications of CBR, using CBRfss for denoting the use of

the method with feature selection.

