
DiSES Working Papers

Università degli Studi di Salerno

Dipartimento di Scienze Economiche e Statistiche

>>>www.dises.unisa.it

A Comparison of the Forecasting Performances

of Multivariate Volatility Models

Vincenzo Candila

❲♦r❦✐♥❣ P❛♣❡r ◆♦✳ ✸✳✷✷✽

http://www.dises.unisa.it


ISSN: 1971-3029

Dipartimento di Scienze Economiche e Statistiche

Università Degli Studi di Salerno

Via Ponte Don Melillo – 84084; Fisciano (SA) – Italy

Tel +39-089-96.21.55

Fax +39-089-96.20.49

E-mail dises@unisa.it

Web www.dises.unisa.it

mailto:dises@unisa.it
http://www.dises.unisa.it


A COMPARISON OF THE FORECASTING PERFORMANCES OF

MULTIVARIATE VOLATILITY MODELS

Vincenzo Candila∗

Abstract. The consistent ranking of multivariate volatility models by means of statistical

loss function is a challenging research field, because it concerns the quality of the proxy

chosen to replace the unobserved volatility, the set of competing models to be ranked and

the kind of loss function. The existent works only consider the ranking of multivariate

GARCH (MGARCH) models, based on daily frequency of the returns. Less is known

about the behaviour of the models that directly use the realized covariance (RCOV), the

proxy that generally provides a consistent estimate of the unobserved volatility. The aim

of this paper is to evaluate which model has the best forecast volatility accuracy, from a

statistical and economic point of view. For the first point, we empirically rank a set of

MGARCH and RCOV models by means of four consistent statistical loss functions. For

the second point, we evaluate if these rankings are coherent with those resulting from the

use of an economic loss function. The evaluation of the volatility models through the

economic loss function is usually done by looking at the Value at Risk (VaR) measures

and its violations. A violation occurs every time the portfolio losses exceed the VaR. To

assess the performances of the volatility models from an economic point of view, different

tests regarding the violations have been proposed. In this work, the unconditional and

conditional tests are considered. The analysis is based on a Monte Carlo experiment that

samples from a trivariate continuous-time stochastic process a vector of observation each

five minutes per two years.

Keywords: Volatility, Multivariate GARCH, Loss function.

JEL classifications: C10, C32, C52, C53, G10.

1. Introduction

In the literature there is a substantial debate on the quantification of the risk related to

holding financial instruments, like for instance assets listed on a Stock Exchange. The

specification of the risk is a challenging task for several reasons, among which is the lack

of a commonly accepted definition. Moreover, there are many different risk measures, each

of which has to own precise characteristics. But it is undoubted that the greatest problem

relies on the latent nature of the variable “risk” that we do not observe. Even though we

had a risk measure, how could be sure that our estimate is close to the real but unobserved

latent variable? This task is arduous because it involves three aspects: first, the measure

of the risk as much as possible close to the latent variable; second, the forecast of the risk,

deriving from a model; third, a function that assesses the forecast accuracy, comparing the

former to the latter quantity. This paper fits between the last two points, considering some

specifications of multivariate models and comparing them with the proxy of the unobserved

latent variable by means of statistical and economic loss functions.

∗DISES, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy, vcandila@unisa.it



The risk of holding assets listed on a Stock Exchange is identified with the volatility, that

is the unobserved variable of interest. With respect to the previous first point, a volatility

proxy is represented by the co-variation of the assets, that indeed is not constant over time

(Mandelbrot (1963)). Therefore, the more an asset varies over time, the more it is said to be

volatile. A widely accepted volatility proxy is represented by the realized volatility, ascrib-

able to Andersen and Bollerslev (1998). Barndorff-Nielsen and Shephard (2004) provide

the theoretical foundations of this approach, while in McAleer and Medeiros (2008) can

be found a survey of the recent literature. Acting in a multivariate context, the proxy of

the volatility is the ex-post realized covariance matrix as defined in Andersen et al. (2003).

The realized volatility technique measures ex-post the variability of the assets by means

of cumulative squared intraday returns1. In this work, we use the realized covariance as

volatility proxy, as defined in the work of Andersen et al. (2003).

With respect to the second point, that is a set of forecasting models that compete each

other for the estimation of volatility, it is undoubted that a large literature has arisen during

the last two decades. Among all the approaches, we focus on the multivariate GARCH

models and some specifications that identify the volatility as a combination of the realized

covariance. The first approach, of which a review can be found in Bauwens et al. (2003), es-

timates the (expected) volatility as a function of past returns and other observable variables.

For the second family of volatility forecasts, we consider two specifications: the Rolling

Covariance model (Fleming et al. (2003); Bandi et al. (2008); de Pooter et al. (2008)) and

the Conditionally Autoregressive Wishart (CAW) model, introduced by Golosnoy et al.

(2012).

Finally, with respect to the third point cited above, in the literature there are two ap-

proaches to evaluate the forecast accuracy: by using a statistical or an economic loss func-

tion. Usually these functions are used separately, in the sense that the results of the evalu-

ation are not compared with each other. This paper aims to compare both the approaches.

Firstly, some consistent statistical loss function are used in order to assess the distance

between the volatility proxy and the forecast. A loss function is said to be consistent or

robust2 if the ranking of any two volatility forecasts is the same of the ranking that would

be obtained if the true volatility had been observable. In the univariate field, Hansen and

Lunde (2006) provide the sufficient condition for a loss function to be consistent and Patton

(2006). For the multivariate framework, Laurent et al. (2013) define necessary and suffi-

cient conditions for a loss function to be consistent. Taking as inspiration this last work, we

evaluate the forecast performances of a set of multivariate GARCH models, of the Rolling

Covariance and CAW models. The evaluation is realized by using four consistent loss

functions, two symmetric and two asymmetric. The asymmetric loss function computes

penalizes differently the over and the under predictions.

However the assessment of the forecast accuracy can be also done through a different ap-

proach, as stated above, based on an economic point of view. We are motivated to check if

the models that are closer to the volatility proxy (as resulting by a consistent statistical loss

function) are also the ones that exhibit better economic performances. This is done using

the Value at Risk method, that represents the potential losses that a portfolio exhibits over a

defined period for a given confidence interval. To (indirectly) evaluate the performances of

the set of forecasting models we look at the VaR violations, the number of days on which

the portfolio losses exceed the VaR. For a comprehensive overview of Value at Risk and

1Nelson (1990) setted the continuous-time stochastic volatility framework.
2The adjective robust has not to be confused with its usual meaning: in estimation theory, the term ‘robust’

is related to the estimators that are insensitive to the presence of outliers in the data while in this context the

term robust refers to the loss functions that are insensitive to the noise in the volatility proxy. Hence, a ‘robust’

(or consistent) loss function could be not robust to the presence of outliers in the data.
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its measures, see Duffie and Pan (1997) and Jorion (2007). Even though the VaR has been

criticized for its statistical properties (Artzner et al. (1999)), it still have an important role

in Basel III (see EBA Guidelines on Stressed Value at Risk, 2012).

The aim of this paper is to evaluate which model has the best forecast volatility accuracy,

from a statistical and economic point of view. Moreover, we are interested in investigat-

ing the forecast accuracy of the Rolling Covariance and CAW models, specifications that

directly use the realized covariance with respect to the forecast accuracy of the MGARCH

models.

A Monte Carlo experiment is carried out for the evaluation of the forecasting models.

In particular, the data generating process is a trivariate continuous-time stochastic process,

where we assume that each instantaneous variance is the GARCH(1,1) diffusion as pro-

posed by Andersen and Bollerslev (1998).

The main results of the paper are as follows: first, we do not find a clear correspondence

between the ranking produced by the statistical loss function and by the economic loss

function. For a risk manager, decisions only based on the VaR violations could lead to use

models that are far from the true (but unobserved) volatility. Second, the scalar CAW and

Rolling Covariance assure better forecast accuracy than the standard multivariate GARCH

models. Moreover, the importance of the covariances in the evaluation of the forecast accu-

racy seems to be low. The ranking given by the loss function that uses only the variances is

the same of the ranking given by the loss function that uses both variances and covariances.

The remainder of this work is organised as follows. Section 2 describes the statistical

and economic methods to compare the volatility models. Section 3 presents an overview

of the volatility models used in this work. The setting of the Monte Carlo experiment is

in Section 4 and the answers to our questions are in Section 5. The conclusions and some

suggestions for future research are in Section 6.

2. Ranking of volatility models

2.1 Statistical loss functions

A loss function L is a function that reports the distance between the actual and forecasted

value for a variable. For the univariate case, it assumes the form:

L(x, x̂), (1)

where x is the actual value of the variable of interest and x̂ is the forecasted value. If we

have several estimates of x̂ indexed by m, such that Ẋ is the set of estimates and x̂m ∈ Ẋ ,

it is possible to rank these estimates on the basis of the loss function: obviously, the smaller

the loss function is, the better that estimate is. If the loss function has the following three

features, it is said to be well defined.

Assumption 1. L(·, ·) is continuous in Ẋ and it is minimized at x̂∗ which represents the

optimal forecast.

Assumption 2. L(·, ·) is such that the optimal forecast x̂∗ equals the true value, formally:

x̂∗ = argmin
x̂∈Ẋ

L(x, x̂) ⇐⇒ x̂∗ = x. (2)

Assumption 3. The loss function gives zero loss then x̂∗ = x.
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In addiction to the previous assumptions, a loss function yields an increasing penalty if

the distance between x and x̂ increases.

Unfortunately, in the framework we are in, we do not have the true value for the volatility.

This is because the volatility is a latent variable. In an multivariate time series context, the

(univariate) loss function presented above becomes:

L(Σt, Ht), (3)

where Σt is the true but unobservable covariance matrix and Ht is its estimate. The consis-

tency of ranking between any two models m and l, whose estimated conditional covariance

matrix are Hm,t and Hl,t, respectively, with m 6= l, holds if

E(L(Σt, Hl,t)) ≥ E(L(Σt, Hm,t)) ⇐⇒ E(L(Σ̂t, Hl,t)) ≥ E(L(Σ̂t, Hm,t)), (4)

where L(·, ·) is a well defined loss function. The definition (4) has a fundamental impor-

tance: even though we do not observe the true conditional covariance matrix, we can con-

sistently order any estimate of it. The conditions, given by Laurent et al. (2013), that make a

loss function consistent are: (i) replacing Σt with any conditionally unbiased proxy; (ii) the

well defined L(·, ·) is twice continuously differentiable with respect to σ̂t and ht, indicat-

ing the element of matrices Σ̂t and Ht, respectively; (iii) the second derivative
∂2L(Σt,Ht)
∂σl,t∂σm,t

is finite and independent of Ht, ∀l,m.

However, not all the most common loss functions are consistent. Laurent et al. (2013)

define a family of consistent loss functions based on the (observed) forecast error Σ̂t −Ht,

that assumes the following quadratic form:

L(Σ̂t, Ht) = vech(Σ̂t −Ht)
′
Λvech(Σ̂t −Ht), (5)

where the vech(·) is the operator that stacks the lower triangular portion of a matrix into a

vector and Λ is a matrix that assigns the weights to each element of forecast error matrix

Σ̂t −Ht. In this work, we use four specifications of Λ, as summarized in Table 1, in order

to have two symmetric and two asymmetric loss functions.

- insert Table 1 about here -

The Euclidean distance is the matrix version of the Mean Squared Error distance. The Λ
matrix is a diagonal matrix of 1s, such that each forecast error term is first squared and then

summed, ∀t. The squared weighted Euclidean distance considers only the variances: the Λ
matrix is a diagonal matrix of 0 and 1, such that only the forecast error for the variances is

computed. The over prediction version of the Mahalanobis distance penalizes the negative

forecast errors, that are present when the forecasted value is larger than the correspondent

value of the volatility proxy. If this happens, the diagonal Λ matrix is such that the negative

terms of the forecast error Σ̂t −Ht count twice. The last loss function we use in this work

is the opposite of the Mahalanobis distance just presented: the under prediction version

penalizes the cases in which the term of the forecast error is positive, meaning that the

forecasted value has been under predicted. If this happens, the diagonal Λ matrix is such

that each positive term of the forecast error matrix counts twice, ∀t.

2.2 Economic loss functions

The economic loss function provides an indirect evaluation of the risk, because we do not

directly assess the distance between a volatility proxy and the volatility as obtained by a
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forecasting model. In fact we first compute some risk measures and then we verify if these

risk measures are coherent with our assumptions. Moreover, we move from multivariate

to univariate context, with the referring to portfolio return and variance. The indirect as-

sessment is done in two steps: first, we calculate a (daily) ex ante risk measure; second,

we evaluate this risk measure against an ex post realized portfolio loss. To assure that the

comparability of the models is only based on the Hm,t matrix, we give the same weights

to each asset, such that the resulting portfolio variance changes over the models only for

the conditional covariance matrix. Let σ2
t (p,m) = wHm,tw

′
be the portfolio variance at

time t for the model m, and w the (fixed) 1 × k vector of weights. Let rt(p) = wrt be

the portfolio return at time t. The ex ante risk measure we use is the Value at Risk (VaR),

calculated by means of the mean-variance approach. Other risk measures normally used in

this context are the Expected Shortfall and the distributional forecast, for instance. For a

survey of the Value at Risk against the other traditional risk measures, see Kaplanski and

Kroll (2002).

The V aRt, representing the Value at Risk constructed on day t−1 for the day t, for long

trading position, is obtained as:

V aRt = rt(p) + fασt(p), (6)

where fα is the left quantile at α% of the distribution f . The sense of α is that

Pr(rt(p) < V aRt) = α. (7)

In other words, α represents the probability that the portfolio loss on day t exceeds V aRt.

Observing the series of V aRt, for t = 1, · · · , T and portfolio daily returns, we can define

the sequence of hit function {It}
T
t=1 as the number of V aR violations occurring in a given

time period, where the hit function at time t is obtained as follows:

It =

{

1 if rt(p) < V aRt

0 if rt(p) > V aRt
(8)

The assessment of a model through the VaR and the hit function can be done in many

methods, among which there are the Time Until First Failure (TUFF) test, the uncondi-

tional coverage test and the independence test. The TUFF test, proposed by Kupiec (1995),

reports the first day in which a VaR violation occurs. The unconditional coverage test, al-

ways proposed by Kupiec, tests if the empirical frequency of violations is statistically equal

to the prefixed α. The independence test, due to Christoffersen (1998), checks if the VaR

violations are clustered in time or are independently distributed over time. In this work we

only consider the last two.

The null hypothesis of the unconditional coverage test is H0 : E[It] ≡ π = α, where π
stands for the unconditional probability of a violation of a model. Assuming the indepen-

dence of It for each t, the likelihood of the hit sequence will be given by the productory of

a Bernoulli random variable, that is:

L(π) =
T
∏

t=1

(1− π)1−It+1πIt+1 = (1− π)T0πT1 ,

where T0 and T1 the number of 0s and 1s, that is the number of non-violations and vi-

olations of the VaR in the sample, respectively. Let π̂ = T1/T the observed number of

violations in the sample. If we insert π̂ into the likelihood, we have:

L(π̂) = (1− T1/T )
T0(T1/T )

T1 .
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Under the null hypothesis that π = α, we have the following likelihood:

L(α) =
T
∏

t=1

(1− α)1−It+1αIt+1 = (1− α)T0αT1 .

Finally, we can check the null by using the likelihood test

LRun = −2log [L(α)/L(π̂)] ∼ χ2
1. (9)

Also the independence test is based on a likelihood ratio test. If the hit sequence is

dependent over time such that it can be defined as a first-order Markov sequence with the

following transition probability matrix:

Π1 =

[

1− π01 π01
1− π11 π11

]

,

where π01 is the probability that, given today being a non-violation, tomorrow a violation

occurs, meaning that It = 0 for today and It+1 = 1 for tomorrow. Moreover, π11 is

the probability of a violation tomorrow given today being a violation (It = It+1 = 1).

Conversely, the probability of a non-violation following a non-violation is denoted as (1−
π01) and the probability of a non-violation following a violation as (1 − π11). Let the

likelihood function of the first-order Markov process be

L(Π1) = (1− π01)
T00πT01

01 (1− π11)
T10πT11

11 ,

where Tij is the number of observations with a j following an i. Now, π01 and π11 can be

estimated by taking the first derivatives of L(Π1). It is easy to demonstrate that:

π̂01 =
T01

T00 + T01
and π̂11 =

T11

T10 + T11
.

Because the probability has to sum to one, we have π̂00 = 1− π̂01 and π̂10 = 1− π̂11. At

this point, we can formulate the null hypothesis of the independence test: π01 = π11 = π,

based on the observation that under independence a violation tomorrow should not depend

on today value of the hit function. The null hypothesis is tested using a likelihood ratio that

assumes the form:

LRind = −2log
[

L(π̂)/L(Π̂1)
]

∼ χ2
1,

where L(π̂) has already been defined for the unconditional coverage test.

In the empirical part, we will use both the unconditional and the independence test in a

jointly test as proposed by Christoffersen. In fact, this test, denoted as conditional coverage

(cc), verifies the empirical rate of failures and the independence of the violations jointly.

The conditional coverage test is given by following likelihood ratio test:

LRcc = −2log[L(p)/L(Π̂)] ∼ χ2
2,

that equals to test the hypothesis π01 = π11 = α. Morever, we have that LRcc =
LRuc + LRind.

It remains to underline that the VaR forecasts are highly sensitive to distribution of the

(portfolio) returns, as evidenced by Giot and Laurent (2002). To take into account the dis-

tribution of the portfolio returns, possibly different from the Gaussianity, the VaR forecasts

used in this work are based on two different assumptions: the assumption of Normal dis-

tribution and the assumption of skewed and leptokurtic distribution of the returns. If the
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distribution of the returns is Normal, then fα in (6) is replaced by the left α quantile of the

standard Normal distribution. But, if the returns exhibit skewness and severe kurtosis, as

it has well documented in literature (for details, see Cont (2001)), then the VaR forecasts

based on the Normal distribution assumption could be misleading. In order to explicitly

consider the skewness and kurtosis of the returns, two approaches giving different values

to fα are used: the modified VaR approach and the skewed Student’s t distribution. The

first is due to Favre and Galeano (2002) that proposed an alternative version of the VaR

quantile, through the use of a Cornish Fisher expansion. This modified version quantifies

the α quantile as follows:

zcf = zc + [(z2c − 1)S]/6 + [(z3c − 3zc)K]/24− [(2z3c − 5zc)S
2]/36, (10)

where zc is the α quantile of the Normal distribution, S and K are the skewness and the

excess kurtosis of the daily returns, respectively. Note that if S = K = 0, as in the case of

Normal distribution, than zcf = zc, and the modified VaR collapses to the standard VaR.

The other approach considers the standardized skewed Student’s t distribution (in short,

SKST). Following Bauwens and Laurent (2002), assuming that the daily return rt are such

that rt = σtzt, where zt is an i.i.d. process with E(zt) = 0 and V ar(zt) = 1 and σ2
t repre-

sent the conditional variance, the excess of kurtosis and the skewness can be accommodated

by using the (standardized) skewed-t distribution for zt, formally zt ∼ SKST (0, 1, ξ, v).
The log transformation of ξ measures the skewness: if log(ξ) > 0 the distribution is skew

to the right and vice versa. The parameter v represents the degrees of freedom. This

formalization is a generalization of the Student’s t distribution: if ξ = 1, then SKST
collapses to a standard Student’s t distribution. Assuming the conditional variance σ2

t can

be modelized as an univariate GARCH (for details on GARCH models, see below), such

that σ2
t = ω + ar2t + bσ2

t−1, in the empirical part of this work we derive the quantile at

α% of the SKST distribution, after having obtained the unknown parameters ξ and v, by

maximizing the following log likelihood:

lt(θ) = log

(

2

ξ + 1
ξ

)

+ logΓ

(

v + 1

2

)

− 0.5π(v − 2)− logΓ
(v

2

)

+

log
s

σt
− 0.5(1 + v)log

[

1 +
(szt +m)2ξ−2Jt

v − 2

]

,

(11)

where θ = (ω, a, b, ξ, v), zt = rt/σt,

m =
Γ
(

v−1
2

)

(v − 2)0.5

π0.5Γ
(

v
2

)

(

ξ −
1

ξ

)

,

s =

[(

ξ2 +
1

ξ2
− 1

)

−m2

]0.5

,

and

Jt =

{

1 if zt ≥ −m
s

−1 if zt < −m
s

.
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3. The models for the volatility

In this section we introduce the theoretical framework for the volatility proxy and the com-

peting models for the forecasting of volatility.

3.1 Volatility proxy

Let {P ∗

t , t ≥ 0} the continuous latent price process of a generic liquid asset be determined

by the stochastic differential equation

d log(Pt) = σtdWt, (12)

where Wt is a standard Brownian motion and σt is the spot volatility, that is continuous and

predictable. Moreover, for simplicity we avoid to insert a drift term, we assume that σt and

Wt are uncorrelated and the time unit interval is the day. For a survey about the stochastic

differential equation see Protter (1992). We are interested in the estimate of the integrated

volatility using the information up to day t. Thus, the one-period ahead integrated volatility

is

IVt+1 =

∫ t+1

t

σ2
τ dτ. (13)

Unfortunately, IVt+1 is not directly observable but the realized volatility, denoted as RVt+1,

represents its consistent estimate, as showed by Andersen and Bollerslev (1998), among

others. In other words, RVt+1 is the volatility proxy, in the univariate context. The re-

alized volatility is computed summing the squared intraday returns at a prefix frequency.

Formally:

RVt+1 =

D
∑

d=1

(rt,d)
2, (14)

where D stands for the intraday period and (rDt,d) for the observed intraday return, that is:

rt,d = log(Pt,d)− log(Pt,d−1). (15)

Hence, we need to sum squared intraday returns drawn at a very small intervals to cor-

rectly identify (13). Nevertheless, there are important implications in the choosing a small

or a high frequency. From one hand, if the frequency D represents a day (so we have a

very small frequency) and if the price at the end is the same of the price at the beginning

of the trading day, then the corresponding realized volatility would be zero, even though

the prices had experienced huge variations during the time interval. From the other hand,

if the frequency is very high, some problems may occur. In fact, it has been documented

that increasing to infinity the sampling frequency does not take to the real volatility but to a

noise estimation of it, due to presence of micro-structure noise (Russell and Bandi (2004)).

The extension to the multivariate is the following. Let P t be the k × 1 observed price

vector for k assets, at time t. The equation (12) is replaced by:

d log(P t) = σtdW t, (16)

where σt is the multivariate version of the spot volatility and W t is the k−dimensional

standard Brownian motion. The estimation of σt is given by the k × k realized covariance

RCovt+1, whose principal diagonal represents the realized variance for each asset and

whose i, jth extra-diagonal element represents the realized covariance between the ith and

8



jth asset, with i 6= j. Formally, the realized covariance, based on observed prices and

consequent returns, is:

RCovt+1 =
D
∑

d=1

rt,dr
′

t,d, (17)

where rt,d denotes the (k × 1) vector of the differences between the log vector price at

dth intraday period and the log vector price at (d − 1)th intraday period for the day t. For

ease of notation, hereafter the bold characterization for the multivariate processes will be

replaced by the standard notation. Thus, rt,d indicates now the (k × 1) vector of log price

differences.

3.2 Competing models for the volatility forecasting

We start with the models that belong to the multivariate GARCH family. Let rt be the

k × 1 vector of daily log returns at time t. Moreover, let It−1 be the information set at

time t − 1. We assume that E(rt|I
t−1) = 0. The volatility forecast for the model m is

indicated with Hm,t, namely the conditional covariance matrix at time t. We use a standard

parametrization, that has been extensively used in the multivariate GARCH literature, that

is:

rt = H0.5
m,tzt, (18)

where zt is the multivariate normal distributed innovation vector, such that zt ∼ NID(0, Ik).
We consider 9 specifications for Hm,t that are frequently used in practice, that are: scalar,

diagonal and full BEKK (the scalar BEKK model used in this work is the version with

covariance targeting (Engle and Mezrich (1996)). For details on the BEKK model, see

Engle and Kroner (1995)). Moreover, the DCC (Engle (2002)) and GOGARCH (van der

Weide (2002)) models are considered. The univariate GARCH specifications for the con-

ditional variance used in DCC and GOGARCH models are: GARCH (Bollerslev (1986)),

GJR (Glosten et al. (1993)) and IGARCH (Engle and Bollerslev (1986)). These models

have been chosen because most of them had been used in the work of Laurent et al. (2013).

Table 2 provides the functional form for Ht for each model. The log-likelihood used to

estimate all the parameters of the models and hence to have the estimates of Ht is:

lT (θ) = −
1

2

T
∑

t=1

log|Hm,t| −
1

2

T
∑

t=1

(rt)
′
H−1

m,t(rt) , (19)

where θ is the vector of parameters to estimate and T is the size of the estimation sample.

As highlighted before, among the set of competing models for the evaluation of the fore-

cast accuracy we consider also some specifications that combine the realized covariance.

These models are the Rolling Covariance (Fleming (2001)) and the Conditionally Autore-

gressive Wishart (CAW, Golosnoy et al. (2012)).

The Rolling Covariance derives Ht as

Ht = exp(−α)Ht−1 + αexp(−α)RCovt−1, (20)

where α is the parameter to estimate, also named decay parameter and RCovt−1 is the

realized covariance at time t − 1. The decay parameter is obtained by maximizing the log

likelihood of (19).

The CAW specification assumes that the realized covariance RCovt follows a central

Wishart distribution, given the past recorded in the information set It−1:

RCovt|I
t−1 ∼ Wk(ν, St/ν), (21)
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where ν > k − 1 is the scalar degree of freedom and St/ν is the k × k symmetric positive

definite matrix. It can be shown (see Anderson (1984)) that E(RCovt|I
t−1) = Ht, the

conditional covariance matrix. We opt for two specifications of the CAW model, based on

the BEKK updating structure. The first is the scalar CAW with covariance targeting, that

is:

Ht = (1− a2 − b2) ∗RCov + a2 ∗RCovt + b2Ht−1, (22)

where a and b are scalars to estimate and RCov is the sample average of the realized

covariances, that is: RCov =
∑T

t=1RCovt.
The second specification of the CAW model used in this work is the diagonal CAW with

covariance targeting, that is:

Ht = RCov −ARCovA
′
−BRCovB

′
+ARCovtA

′
+BHt−1B

′
, (23)

where A and B are two diagonal matrices to estimate. The estimation of (22) and (23) is

done by maximizing the following log-likelihood, provided by Golosnoy et al. (2012):

lT (θw) =

T
∑

t=2

{

−
νn

2
ln(2)−

k(k − 1)

4
ln(π)−

k
∑

i=1

lnΓ

(

ν + 1− i

2

)

−
ν

2
ln|

RCovt
ν

|+
ν − k − 1

2
ln|RCovt| −

1

2
tr(νH−1

t RCovt)

}

, (24)

where Γ(·) denotes the Gamma function, and w = 1, 2 is the suffix indicating the CAW

models presented above. Hence, the unknown parameters are: θ1 = (ν, a, b) for the scalar

CAW and θ2 = (ν,A11, · · · , Akk, B11, · · · , Bkk) for the diagonal CAW.

- insert Table 2 about here -

4. Monte Carlo experiment

In this section we illustrate the setting of the Monte Carlo experiment through which we

investigate the behaviour of the competing models with reference to the forecast accuracy,

from a statistical and economic point of view. For sake of simplicity, we consider a portfolio

only composed by three assets. Let pt denote the vector of the prices at time t. We assume

that pt is driven by the following stochastic differential equation:

dp(t) = Θ(t)dW (t), (25)

with Σ(t) = Θ(t)Θ(t)
′
, where

Σ(t) =





Σ11(t) Σ12(t) Σ13(t)
Σ21(t) Σ22(t) Σ23(t)
Σ31(t) Σ32(t) Σ33(t)



 =





σ2
1(t) σ12(t) σ13(t)

σ21(t) σ2
2(t) σ23(t)

σ31(t) σ32(t) σ2
3(t)



 ,

and σij(t) = σi(t)σj(t)ρij(t), with i, j = 1, 2, 3 and i 6= j. Moreover, W (t) is a 3 × 1
vector of standard Brownian motions. The model for σ2

i (t) is the GARCH(1,1) diffusion

studied in Andersen and Bollerslev (1998): dσ2
i (t) = (ω − θ ∗ σ2

i (t))dt+ λ ∗ σ2
i (t)dbi(t),

where bi(t) is a standard Brownian motion independent of W (t). Following Dovonon
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et al. (2010), we set ω = 0.636, θ = 0.035 and λ = 0.236 for each i, that differs

from each other for the initial point. Then, we set the instantaneous correlation ρij =
(e2x(t)−1)/(e2x(t)+1), where x follows the GARCH diffusion: dx(t) = (0.0192−0.03∗
x(t))dt+0.018∗x(t)∗db1(t), where b1 is a standard Brownian motion. To make different

the three instantaneous correlations, we divide each of them by a random number sampled

from an Uniform distribution. The solution for all the stochastic differential equations has

been obtained by an Euler discretization method, based on a equally spaced time incre-

ments. If these time increments are small, then we can approximate ti − ti−1 with dt. We

have chosen a time increments of 0.0001. For details on the stochastic differential equation

solutions and Euler discretization scheme, see Iacus (2008). In this framework, we simulate

500 times the trivariate vector pt for two years. From the continuous time process (25) we

drawn 288 observations per day, i.e. one observation each 5 minutes, for a total of 210,528

simulated observations (for each replicate). The forecasting sample, that is the period used

to evaluate the forecast accuracy of the models, is of one year.

In this context, we have simulated three high-frequency prices following a data generat-

ing process with GARCH diffusion as variances and with changing instantaneous correla-

tion. In our idea each price should approximate the behaviour of a stock. For this reason we

sample only the observations between the 9.30 and 16.00, representing the standard trading

day3. Then, we use these high-frequency data to obtain the volatility proxy (RCovt) for dif-

ferent level of price aggregation and for the estimation of the competing models presented

above. All the simulations have been carried out using R 2.15.3.

5. Results

In this section we present the answers to our research questions, that is: is the ranking of the

models the same if we use a statistical or an economic loss functions? Do the MGARCH

models have a worse forecast accuracy than that of the rolling Covariance and CAW mod-

els? The answers to the questions are given by using the simulated data presented above,

needed to have 500 replicates of the conditional covariance matrix, denoted as Hm,t for

the m − th model (summarized in Table 2, with m = 1, · · · , 14) and the 500 replicates

of the volatility proxy, that is the realized covariance, for t = 1, · · · , 730. The forecasting

sample is of one year, in a pure in-sample perspective: all conditional covariance matrices

are computed for the whole period and the last year has been used for the statistical and

economic loss evaluation.

Let us start with the rankings produced by the statistical loss functions. The evaluation

is performed with respect to the deterioration of the volatility proxy, obtained sampling the

intraday returns at lower frequencies. It is well known that, in absence of micro-structure

frictions, the higher the frequency is, the better the proxy is (Russell and Bandi (2004)).

For instance, using the data at 30 minutes will produce a realized covariance less noisy

than using the data at 300 minutes. Having simulated the data by ourselves, we do not take

in consideration the problem of the micro-structure frictions.

The results of the symmetric loss functions illustrated in Section 2 are summarized in

Table 3. Here the loss functions are the Euclidean distance and the squared weighted Eu-

clidean distance. The former considers the distance between each element of the volatility

proxy matrix and Hm,t while the latter considers only the diagonal elements, excluding the

covariance entries. We do not find any significant difference between the two loss func-

tions: the ranking of the models is almost the same. This is coherent with the literature that

states the larger importance of variances with respect to the covariances. For the Euclidean

3The trading day is the time span that a particular Stock Exchange is open.

11



distance loss function, it results that when the volatility proxy is computed with the 5 min-

utes sampling frequency, the scalar CAW ranks first about 54% of the times and the Rolling

Covariance at 5 minutes4 41%. When the quality of the proxy deteriorates, first the Rolling

Covariance at 5 minutes and then at 30 minutes emerge.

The same ranking (with different frequencies) can be observed for the squared weighted

Euclidean distance. For instance, the scalar CAW ranks first about 46% of the times, a

sensible lower percentage with respect to the previous loss function.

- insert Table 3 about here -

The frequencies at which each model is ranked first when the asymmetric loss function

are used are presented in Table 4. In the upper part of the table the results for the penalizing

over predictions Mahalanobis distance are reported, while in lower part there are those for

the penalizing under predictions loss function. For the former loss function, the Rolling

Covariance at 30 minutes ranks first when the sampling frequency drops from 10 minutes

to 390 minutes (i.e. the daily frequency). Only when the volatility proxy is computed with

5 minutes frequency, the Rolling Covariance at 15 minutes ranks first about 50% of the

times. We can state that the Rolling Covariance model seldom produces forecasts larger

than the volatility proxy. This is an important result in a portfolio management optical. Not

surprisingly, when the under prediction version of the Mahalanobis distance is used, the

ranking of the model has different patterns. For a good quality of the realized covariance,

the best model is the scalar CAW: when the realized covariance is obtained by using 5 min-

utes frequency, this model ranks first about 32% of the cases. Then, a multivariate GARCH

model, for the first time, emerges: the IGOGARCH, that is the closest to the volatility

proxy 25% of the times, for the realized covariance at 20 minutes. Finally, as seen also

for the other loss functions, the Rolling Covariance at 30 minutes, when the quality of the

proxy is low, always ranks first.

To sum up, when the statistical loss functions are used, the results award the models

that directly use the realized covariance, as expected, excluding the too-parametrized di-

agonal CAW, which rarely ranks first. We can state that the statistical loss functions re-

ward the model with less parameters to estimate, given that the Rolling Covariance and the

scalar CAW have only one unknown parameter. Moreover, the frequently used multivariate

GARCH models never rank first, except for the IGOGARCH model when used in some cir-

cumstances. After having reported the results of the statistical loss function, we can move

to the economic part of the analysis in order to check if the same ranking is obtained.

- insert Table 4 about here -

The Christoffersen test is the method used to indirectly rank the set of forecasting mod-

els. The sample period used for such evaluation is of one year, as done for the statistical

evaluation. In the spirit of Bauwens and Laurent (2002), we assign 3 different vectors of

constant weights to the daily returns and daily conditional covariance matrix Hm,t, in order

to obtain the portfolio mean and variance:

w1 = (1/3, 1/3, 1/3), w2 = (0.5, 0.2, 0.3) and w3 = (1.4,−0.2,−0.2).

4The frequency 5 minutes means here that the Rolling Covariance uses the 5 minutes sampling frequency

to compute the conditional covariance matrix.
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The Christoffersen test for all the models, with the one day ahead VaR for α = 0.05 and

the quantile for the long position obtained by means of the normal distribution, the Cornish

Fisher expansion and the skewed Student’s t distribution is reported in Table 5.

- insert Table 5 about here -

Looking at the table, the smaller the frequency is, the better that model is, because each

frequency indicates how many times the test has been rejected over the 500 replicates. First

of all, we note the differences between the frequencies when the VaR is computed with the

normal distribution or the Cornish Fisher expansion and the frequencies when the VaR is

computed with the skewed Student’s t distribution. These latter are smaller even though

we do not work with real financial data that suffer from the kurtosis excess and skewness.

Secondly, the rejections of the Christoffersen test are not only few but are also similar in

the number among the models: when using the scalar CAW, the vector weights w1 and

the normal distribution, these rejections are about 6% (smallest value) against about 10%

of the worse model, that is the DCC. Using the weights w1, the best model is the GJR-

GOGARCH, for all the specifications of the quantile. Instead, using the weights w3, the

best models are the diagonal CAW and Rolling Covariance. We can state that there is not

too much correspondence between the ranking of the statistical loss functions and that of the

economic loss function. In fact, the GJR-GOGARCH model and the diagonal CAW never

rank first when the statistical loss functions are used. Instead now these models yield to best

economic performances. The issue is worth further consideration. Our idea is to look at

the mean of the VaR violations among the models, where for mean we refer to the average

number of VaR violations for all the replicates. Intuitively, for each replicate, we should

have a value close to 0.05. The aim of taking the mean among all the replications is to

approximate the whole behaviour of the model, independently of the each single replicate.

The mean of the VaR violations for all the replicates is reported in Table 6.

- insert Table 6 about here -

The highest mean of VaR violations is of the GOGARCH model, for all the univariate

specifications. Excluding the GOGARCH model, all the means are closer to the expected

values 0.05. Combining this information with those furnished in Table 5, we can state

that when the economic loss function is used alone there is no model that clearly emerges

as the “best” model. This is because neither changing the weights nor the distributional

function for the returns, we find the same ranking of the statistical function. In this sense,

the economic function used here yields results that diverge from those of the statistical loss

function. An issue that opens new questions.

6. Conclusion

Thanks to the work of Hansen and Lunde (2006) before, and that of Patton (2006) after-

wards for the univariate framework and that of Laurent et al. (2013) for the multivariate,

a new research field is developed: the consistent ranking of volatility models. If in Eco-

nomics a prediction of a quantity, like for instance the GDP, can be evaluated ex-post once

the quantity is observed, for the measure of the risk this is not possible. In fact, the risk

is a latent variable that cannot be observed and only a proxy can be used. Normally, the
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co-variation of the assets is used to measure the risk. Generally speaking, we refer to the co-

variation with the term volatility. The cited works demonstrate that even if a proxy is used,

the ranking of the forecasting models is the same of the ranking that would be obtained if

the true volatility had been observable, under the constraint of the consistency of the loss

function and of the conditional unbiasedness of the volatility proxy. A common choice

of the volatility proxy that assures the conditional unbiasedness is the realized covariance.

After these works, some questions arise. First question is about the differences between

the ranking of a set of competing models using a statistical and economic loss function.

Second related question relies on the forecast accuracy of the multivariate GARCH models

compared to that of the models that directly use the realized covariance. This paper aims

to give empirical answer to these questions by using a Monte Carlo experiment replicating

500 times a trivariate continuous-time stochastic process, from which we sampled one ob-

servation each 5 minutes for 2 years. Hence, we rank fourteen models using a forecasting

sample of one year from a statistical and economic point of view. The forecasts are only

made from an in-sample perspective. The statistical loss functions taken in consideration in

this work are: (i) the matrix version of the Mean Squared Error function, named Euclidean

distance; (ii) the squared weighted Euclidean distance, that considers only the variances for

the computing of the distances; (iii) the Mahalanobis distance in the version that penalizes

the over predictions; (iv) the Mahalanobis distance in the version that penalizes the under

predictions. The economic loss function uses first the Value at risk methodology and then

focuses on the violation of the one day ahead VaR computed with a 95% confidence level.

In particular we look at the results of the Christoffersen test, that jointly tests if the num-

ber of violations are coherent with the expected number of violations and if the violations

are not clustered in time (i.e. independence hypothesis). Given the VaR is sensible to the

underlying assumption on the distribution of returns, we use three methods to calculate the

VaR: the standard method that considers the normal distribution of the returns, the Corner

Fisher expansion and the skewed Student’s t distribution.

Our main findings are: first, we do not find a clear correspondence between the rank-

ings resulting from the statistical and economic loss functions. A portfolio manager that

had only used economic criteria for his decision would have preferred models not exactly

closer to the volatility proxy. The statistical based ranking, when the volatility proxy is

good, in the sense that it is based on high frequency, awards the scalar CAW and the rolling

Covariance models, for the symmetric and asymmetric loss functions, respectively. When

the quality of the proxy deteriorates, meaning that the realized covariance is computed us-

ing low frequencies, up to the use of daily returns, the statistical approach always ranks

first the rolling Covariance model. Instead the economic loss function methodology used

here is sensible to the choice of the distribution and of the weights such that there is any

model that clearly emerges. Second, looking at the statistical loss function, we note that

the MGARCH models yield worse forecast accuracy than that of the realized covariance

based models, if these models have few parameters to estimate. Moreover, the impact of

the covariances for the rankings seems to be irrelevant, given the ranking based only on

variances is the same of the ranking based on both variances and covariances. Finally, if

a portfolio manager is interested in studying the models such that the over predictions are

rare, the Rolling Covariance at 30 minutes should be considered.

For future research, many questions remain open. First of all, it might be interesting

to investigate the results to our questions by using real data, considering different fore-

casting methodologies, like for instance a rolling window to compute pure out-of-sample

forecasts. Second, some other economic loss functions could be included into the analy-

sis. A natural choice could be using the Dynamic Quantile (DQ) test, proposed by Engle

and Manganelli (2004), that verifies if the probability of getting a VaR violation at time
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t+ 1 is independent of any variable observed at time t. An observed variable could be the

contemporaneous or lagged VaR estimate of the model that uses the realized covariance at

different sampling frequencies, instead of the conditional covariance matrix resulting from

a multivariate GARCH model, in order to have a direct link between the statistical loss

function and the economic loss function. Moreover, what could be further explored are the

reasons of the different ranking between statistical and loss functions.

Appendix

Table 1: Specifications of loss functions used in the work

Name form of Λ symmetry

LE Euclidean distance Λ = Ik symmetric

LSE Squared weighted λi,i > 0 and
symmetric

Euclidean distance λi,j = 0

LM−O Mahalanobis distance λi,i = λi,j = 1 + I{ov}, asymmetric

over prediction vers. where

I{ov} =

{

0 if σ̂t − ht ≥ 0
1 if σ̂t − ht < 0

LM−U Mahalanobis distance λi,i = λi,j = 1 + I{ov}, asymmetric

under prediction vers. where

I{ov} =

{

0 if σ̂t − ht ≤ 0
1 if σ̂t − ht > 0

Notes: λii indicates the element of Λ referring to the variance element ii of the forecast error

matrix; λij to the covariance element ij, with i, j = 1, · · · , k. LE equally weights the variance

and covariance elements. LSE weights only the variance elements. LM−O penalizes the over

predictions, such that if there is an over prediction at time t, the loss function counts twice that

forecast error. LM−U penalizes the under predictions, such that if there is an under prediction at

time t, the loss function counts twice that forecast error.
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Table 2: Forecasting models functional forms

Model Multivariate GARCH models Parameters

sBEKK(1,1) Ht = (1−A−B)∗H +Art−1r
′

t−1A+BHt−1B 2

dBEKK(1,1) Ht = CC
′

+Art−1r
′

t−1A+BHt−1B k(k − 1)+
2k

BEKK(1,1) Ht = CC
′

+Art−1r
′

t−1A
′

+BHt−1B
′

5(5k + 1)/2

DCC(1,1) Ht = DtRtDt 2 + k+

Rt = diag(q
−1/2
11,t , · · · , q

−1/2
kk,t )Qtdiag(q

−1/2
11,t , · · · , q

−1/2
kk,t ) univ

Dt = diag(h
1/2
11,t, · · · , h

1/2
kk,t)

ut = D−1

t ǫt

Qt = (1− α− β)Q+ αutu
′

t + βQt−1

GOG(1,1) V −1/2ǫt = Lft k(k − 1)/2+

Ht = V 1/2LZtLV
1/2 univ

Zt = diag(σ2
f1t

, · · · , σ2
fkt

)

L = PΛ1/2U , U =
∏

i<j Ri,j(δi,j), −π ≤ δi,j ≤ π

Univariate GARCH models in Dt and Zt (l = 1, · · · , k)

GARCH(1,1) hl,t = ωl + αlǫ
2
l,t−1 + βlhl,t−1 3k

GJR(1,1) hl,t = ωl + αlǫ
2
l,t−1 + γlS

−
l,t−1

ǫ2l,t−1 + βlhl,t−1 4k

S−
l,t = 1 if ǫl,t < 0; S−

l,t = 1 if ǫl,t ≥ 0

IGARCH(1,1) hl,t = ωl + αlǫ
2
l,t−1 + βlhl,t−1 3k

αl + βl = 1, ∀l

Model Realized Covariance based models Parameters

Rolling Cov. Ht = exp(−α)Ht−1 + αexp(−α)RCovt−1 1

sCAW Ht = (1− a2
− b2) ∗RCov + a2RCovt + b2Ht−1 2

dCAW Ht = RCov −ARCovA
′

−BRCovB
′

+ 2k

ARCovtA
′

+BHt−1B
′

Notes: sBEKK: scalar BEKK; dBEKK: diagonal BEKK; GOG: GOGARCH; Rolling Cov.: Rolling

Covariance; sCAW: scalar CAW; dCAW: diagonal CAW.
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Table 3: Frequencies at which each model exhibits the smallest loss. Symmetric loss functions

sBEKK dBEKK BEKK DCC gjrDCC iDCC GOG gjrGOG iGOG RC5m RC15m RC30m sCAW dCAW

Euclidean distance

5 min 0.000 0.000 0.000 0.002 0.000 0.004 0.002 0.000 0.004 0.410 0.000 0.000 0.540 0.038

10 min 0.000 0.000 0.000 0.004 0.000 0.000 0.006 0.000 0.000 0.492 0.048 0.000 0.426 0.024

15 min 0.000 0.002 0.000 0.012 0.002 0.000 0.006 0.002 0.006 0.422 0.236 0.016 0.284 0.012

20 min 0.000 0.002 0.002 0.008 0.002 0.002 0.008 0.002 0.010 0.436 0.066 0.000 0.422 0.040

30 min 0.002 0.000 0.000 0.036 0.012 0.000 0.010 0.002 0.000 0.114 0.352 0.378 0.096 0.004

40 min 0.006 0.006 0.002 0.038 0.018 0.002 0.006 0.008 0.000 0.118 0.326 0.356 0.112 0.002

50 min 0.012 0.002 0.002 0.044 0.018 0.000 0.002 0.006 0.000 0.048 0.160 0.638 0.078 0.000

60 min 0.004 0.006 0.002 0.050 0.024 0.000 0.014 0.026 0.000 0.122 0.300 0.340 0.114 0.004

120 min 0.010 0.016 0.020 0.054 0.052 0.004 0.012 0.060 0.002 0.110 0.226 0.306 0.118 0.014

180 min 0.084 0.018 0.000 0.034 0.052 0.000 0.018 0.038 0.020 0.016 0.068 0.606 0.052 0.002

240 min 0.086 0.018 0.000 0.038 0.056 0.000 0.018 0.040 0.020 0.014 0.064 0.600 0.048 0.002

300 min 0.092 0.018 0.000 0.042 0.056 0.000 0.022 0.042 0.024 0.014 0.066 0.578 0.048 0.002

360 min 0.086 0.018 0.000 0.038 0.056 0.000 0.018 0.040 0.020 0.014 0.064 0.600 0.048 0.002

Daily 0.076 0.014 0.000 0.036 0.038 0.000 0.070 0.088 0.062 0.014 0.058 0.502 0.046 0.000

Squared weighted Euclidean distance

5 min 0.000 0.000 0.000 0.016 0.002 0.002 0.010 0.000 0.012 0.448 0.008 0.004 0.460 0.046

10 min 0.000 0.004 0.002 0.016 0.000 0.000 0.012 0.000 0.006 0.552 0.054 0.004 0.322 0.032

15 min 0.000 0.006 0.000 0.014 0.006 0.004 0.012 0.002 0.014 0.444 0.242 0.028 0.218 0.014

20 min 0.000 0.006 0.002 0.016 0.006 0.008 0.016 0.000 0.018 0.468 0.070 0.008 0.346 0.040

30 min 0.010 0.002 0.000 0.056 0.012 0.002 0.012 0.002 0.000 0.088 0.312 0.430 0.078 0.002

40 min 0.014 0.004 0.000 0.044 0.016 0.004 0.014 0.010 0.000 0.102 0.310 0.394 0.092 0.002

50 min 0.024 0.006 0.002 0.046 0.026 0.002 0.004 0.008 0.000 0.030 0.134 0.654 0.068 0.000

60 min 0.008 0.008 0.008 0.048 0.028 0.002 0.008 0.018 0.004 0.106 0.308 0.376 0.084 0.000

120 min 0.016 0.022 0.020 0.050 0.048 0.006 0.006 0.050 0.006 0.106 0.236 0.330 0.100 0.012

180 min 0.070 0.012 0.000 0.034 0.038 0.002 0.028 0.072 0.032 0.016 0.060 0.596 0.042 0.002

240 min 0.066 0.014 0.002 0.034 0.052 0.002 0.034 0.060 0.030 0.016 0.066 0.586 0.040 0.002

300 min 0.078 0.014 0.000 0.034 0.044 0.002 0.034 0.076 0.034 0.016 0.062 0.570 0.038 0.002

360 min 0.066 0.014 0.002 0.034 0.052 0.002 0.034 0.060 0.030 0.016 0.066 0.586 0.040 0.002

Daily 0.066 0.012 0.002 0.036 0.036 0.002 0.070 0.100 0.076 0.016 0.050 0.506 0.032 0.000

Notes: sBEKK: scalar BEKK; dBEKK: diagonal BEKK; DCC, gjrDCC and iDCC: DCC with GARCH, GJR-GARCH and IGARCH univariate variances;

GOG, gjrGOG and iGOG: GOGARCH with GARCH, GJR-GARCH and IGARCH univariate variances; RCtm: Rolling Covariance with realized

covariance at t minutes; sCAW: scalar CAW; dCAW: diagonal CAW.
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Table 4: Frequencies at which each model exhibits the smallest loss. Asymmetric loss functions

sBEKK dBEKK BEKK DCC gjrDCC iDCC GOG gjrGOG iGOG RC5m RC15m RC30m sCAW dCAW

Mahalanobis distance, over prediction version

5 min 0.002 0.002 0.002 0.016 0.002 0.002 0.018 0.000 0.000 0.160 0.498 0.186 0.112 0.004

10 min 0.006 0.006 0.000 0.036 0.008 0.000 0.010 0.000 0.002 0.044 0.138 0.668 0.082 0.004

15 min 0.022 0.006 0.000 0.044 0.012 0.000 0.004 0.006 0.000 0.034 0.094 0.708 0.074 0.002

20 min 0.026 0.010 0.000 0.044 0.010 0.000 0.010 0.002 0.000 0.030 0.104 0.694 0.074 0.002

30 min 0.056 0.018 0.000 0.054 0.026 0.000 0.000 0.006 0.000 0.022 0.086 0.678 0.060 0.002

40 min 0.062 0.020 0.000 0.052 0.030 0.000 0.006 0.008 0.000 0.018 0.082 0.664 0.064 0.002

50 min 0.078 0.018 0.000 0.048 0.036 0.000 0.006 0.008 0.002 0.018 0.082 0.652 0.060 0.000

60 min 0.074 0.018 0.000 0.052 0.040 0.000 0.006 0.008 0.000 0.018 0.080 0.658 0.056 0.002

120 min 0.080 0.020 0.000 0.046 0.060 0.000 0.008 0.008 0.006 0.018 0.074 0.638 0.054 0.000

180 min 0.066 0.016 0.000 0.036 0.036 0.000 0.076 0.094 0.078 0.014 0.060 0.482 0.046 0.000

240 min 0.070 0.016 0.000 0.034 0.038 0.000 0.080 0.094 0.078 0.014 0.060 0.478 0.042 0.000

300 min 0.072 0.016 0.000 0.038 0.036 0.000 0.068 0.102 0.080 0.014 0.060 0.474 0.044 0.000

360 min 0.070 0.016 0.000 0.034 0.038 0.000 0.080 0.094 0.078 0.014 0.060 0.478 0.042 0.000

Daily 0.074 0.014 0.000 0.038 0.034 0.000 0.064 0.108 0.080 0.014 0.062 0.474 0.042 0.000

Mahalanobis distance, under prediction version

5 min 0.012 0.038 0.008 0.064 0.010 0.058 0.066 0.004 0.162 0.102 0.004 0.012 0.326 0.142

10 min 0.012 0.052 0.014 0.052 0.014 0.074 0.060 0.010 0.204 0.076 0.006 0.008 0.270 0.156

15 min 0.018 0.072 0.014 0.058 0.022 0.072 0.072 0.004 0.188 0.088 0.006 0.010 0.246 0.138

20 min 0.038 0.090 0.026 0.038 0.022 0.096 0.044 0.016 0.250 0.062 0.008 0.008 0.164 0.146

30 min 0.014 0.082 0.016 0.058 0.022 0.056 0.066 0.018 0.170 0.114 0.006 0.008 0.264 0.114

40 min 0.028 0.104 0.038 0.040 0.032 0.072 0.038 0.024 0.220 0.072 0.008 0.010 0.208 0.118

50 min 0.010 0.072 0.032 0.036 0.042 0.052 0.062 0.024 0.166 0.130 0.006 0.014 0.262 0.096

60 min 0.050 0.132 0.068 0.016 0.026 0.068 0.040 0.046 0.220 0.048 0.004 0.012 0.156 0.122

120 min 0.090 0.144 0.154 0.008 0.026 0.062 0.012 0.086 0.198 0.020 0.002 0.002 0.082 0.118

180 min 0.026 0.014 0.000 0.048 0.042 0.000 0.002 0.018 0.000 0.020 0.110 0.656 0.060 0.004

240 min 0.022 0.026 0.068 0.050 0.108 0.002 0.008 0.052 0.000 0.048 0.120 0.434 0.058 0.008

300 min 0.032 0.024 0.034 0.040 0.094 0.000 0.002 0.048 0.000 0.038 0.106 0.534 0.042 0.010

360 min 0.022 0.026 0.068 0.050 0.108 0.002 0.008 0.052 0.000 0.048 0.120 0.434 0.058 0.008

Daily 0.064 0.018 0.002 0.044 0.048 0.000 0.010 0.024 0.006 0.016 0.076 0.642 0.054 0.000

Notes: sBEKK: scalar BEKK; dBEKK: diagonal BEKK; DCC, gjrDCC and iDCC: DCC with GARCH, GJR-GARCH and IGARCH univariate variances;

GOG, gjrGOG and iGOG: GOGARCH with GARCH, GJR-GARCH and IGARCH univariate variances; RCtm: Rolling Covariance with realized

covariance at t minutes; sCAW: scalar CAW; dCAW: diagonal CAW.
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Table 5: Frequencies at which the Christoffersen Test is rejected

Weights/
(1/3, 1/3, 1/3) (.5, .2, .3) (.1.4,−.2,−.2)

Model

VaR Mod. VaR Skew VaR VaR Mod. VaR Skew VaR VaR Mod.VaR Skew VaR

sBEKK 0.082 0.090 0.058 0.082 0.092 0.048 0.072 0.090 0.050

dBEKK 0.096 0.086 0.048 0.094 0.088 0.048 0.094 0.104 0.058

BEKK 0.084 0.096 0.056 0.070 0.100 0.052 0.104 0.098 0.066

DCC 0.108 0.102 0.066 0.088 0.100 0.064 0.072 0.086 0.070

gjrDCC 0.100 0.112 0.066 0.090 0.100 0.046 0.070 0.082 0.068

iDCC 0.090 0.096 0.058 0.088 0.096 0.060 0.078 0.086 0.086

GOG 0.072 0.076 0.042 0.070 0.068 0.042 0.056 0.078 0.078

gjrGOG 0.074 0.084 0.042 0.062 0.062 0.032 0.070 0.092 0.056

iGOG 0.068 0.070 0.040 0.074 0.070 0.042 0.060 0.072 0.037

RC5m 0.082 0.096 0.064 0.090 0.068 0.050 0.062 0.082 0.036

RC15m 0.086 0.090 0.048 0.088 0.090 0.048 0.074 0.088 0.046

RC30m 0.076 0.078 0.044 0.092 0.080 0.046 0.062 0.074 0.034

sCAW 0.084 0.092 0.062 0.082 0.076 0.046 0.072 0.084 0.044

dCAW 0.062 0.080 0.062 0.088 0.070 0.058 0.050 0.056 0.042

Notes: sBEKK: scalar BEKK; dBEKK: diagonal BEKK; DCC, gjrDCC and iDCC: DCC with GARCH, GJR-GARCH

and IGARCH univariate variances; GOG, gjrGOG and iGOG: GOGARCH with GARCH, GJR-GARCH and IGARCH

univariate variances; RCtm: Rolling Covariance with realized covariance at t minutes; sCAW: scalar CAW; dCAW:

diagonal CAW. Columns VaR indicate the frequency at which the null hypothesis of the Christoffersen test is rejected,

considering the 500 replicates, when the Normal quantile at 5% is used, Columns Mod. VaR when the Cornish Fisher

expansion is used and Column Skew VaR when the skewed Student’s t quantile is used.
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Table 6: VaR violations mean for α = 0.05
Weights/

(1/3, 1/3, 1/3) (.5, .2, .3) (.1.4,−.2,−.2)
Model

VaR Mod. VaR Skew VaR VaR Mod. VaR Skew VaR VaR Mod.VaR Skew VaR

sBEKK 0.050 0.051 0.047 0.051 0.051 0.047 0.050 0.050 0.046

dBEKK 0.049 0.049 0.046 0.049 0.049 0.046 0.049 0.049 0.046

BEKK 0.048 0.048 0.048 0.049 0.049 0.046 0.048 0.049 0.045

DCC 0.051 0.051 0.048 0.051 0.051 0.047 0.051 0.051 0.047

GJR_DCC 0.050 0.050 0.047 0.050 0.050 0.047 0.051 0.051 0.047

iDCC 0.049 0.049 0.046 0.049 0.049 0.046 0.049 0.049 0.045

GOG 0.079 0.079 0.076 0.077 0.077 0.074 0.072 0.072 0.068

gjrGOG 0.079 0.079 0.076 0.076 0.076 0.073 0.070 0.070 0.067

iGOG 0.079 0.079 0.076 0.075 0.076 0.073 0.068 0.068 0.064

RC5min 0.052 0.052 0.048 0.052 0.052 0.048 0.052 0.052 0.048

RC15min 0.053 0.053 0.050 0.053 0.053 0.050 0.053 0.053 0.049

RC30min 0.055 0.055 0.052 0.055 0.055 0.052 0.055 0.055 0.051

sCAW 0.051 0.051 0.048 0.051 0.051 0.048 0.051 0.051 0.047

dCAW 0.048 0.048 0.048 0.048 0.048 0.045 0.043 0.044 0.040

Notes: sBEKK: scalar BEKK; dBEKK: diagonal BEKK; DCC, gjrDCC and iDCC: DCC with GARCH, GJR-GARCH

and IGARCH univariate variances; GOG, gjrGOG and iGOG: GOGARCH with GARCH, GJR-GARCH and IGARCH

univariate variances; RCtm: Rolling Covariance with realized covariance at t minutes; sCAW: scalar CAW; dCAW:

diagonal CAW. All the columns indicate the mean of all the replications of the VaR violations, for different portfolios

and different quantile fα specifications.
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