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Abstract

In this thesis, we investigate the use of the most fundamental elements; ca-

bles for tension and bars for compression, in the search for the most efficient

bridges. Stable arrangements of these elements are called tensegrity struc-

tures. We show herein the minimal mass arrangement of these basic elements

to satisfy both yielding and buckling constraints. We show that the minimal

mass solution for a simply-supported bridge subject to buckling constraints

matches Michell’s 1904 paper which treats the case of only yield constraints,

even though our boundary conditions differ. The necessary and sufficient con-

dition is given for the minimal mass bridge to lie totally above (or below)

deck. Furthermore this condition depends only on material properties. If

one ignores joint mass, and considers only bridges above deck level, the op-

timal complexity (number of elements in the bridge) tends toward infinity

(producing a material continuum). If joint mass is considered then the opti-

mal complexity is finite. The optimal (minimal mass) bridge below deck has

the smallest possible complexity (and therefore cheaper to build), and under

reasonable material choices, yields the smallest mass bridge.

We also study a design for a minimal mass, deployable support structure

for a solar panel covering of water canals. The results are based upon the

minimal mass properties of tensegrity structures. The efficient structure is a

tensegrity system which has an optimal complexity for minimal mass. This

optimal complexity is derived in this thesis, along with deployable schemes

which are useful for construction, repairs, for sun following, and for servicing.

It is shown that the minimal structure naturally has deployable features so that

extra mass is not needed to add the multifunctional features. The design of

bridge structures with tensegrity architecture will show an optimal complexity

depending only on material choices and external loads. The minimization

problem considers a distributed load (from weight of solar panels and wind

loads), subject to buckling and yield constraints. The result is shown to be a

Class 1 Tensegrity substructure (support structure only below the deck).
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These structures, composed of axially-loaded members (tension and com-

pressive elements), can be easily deployable and have many portable appli-

cations for small spans, or they can be easily assembled for prefabricated

component parts for large spans. The focus of this work is an application of

these minimal mass tensegrity concepts to design shading devices to prevent

or reduce evaporation loss, while generating electric power with solar panels

as the cover.

While the economics of the proposed designs are far from finalized, this

document shows a technical solution that uses the smallest material resources,

and shows the technical feasibility of the concept.

Moreover, we formulate and discuss the relationship between polyhedral

stress functions and tensegrity structures in 2D, and a two-mesh technique for

the prediction of the stress field associated with such systems. We generalize

classical results concerned with smooth Airy stress functions to polyhedral

functions associated with arbitrary triangulations of a simply-connected do-

main. We also formulate a regularization technique that smoothly projects the

stress function corresponding to an unstructured force network over a struc-

tured triangulation. The thesis includes numerical examples dealing with a

benchmark problem of plane elasticity, and the stress fields associated with

tensegrity models of a cantilever beam and an arch bridge.
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1. MOTIVATION AND BACKGROUND

1.1 On the Historical Evolution of Bridges

Bridge structures have attracted the interest of Engineers throughout the his-

tory because they represents the attempt of men to overcome obstacles . These

structures are used wherever there is a river, a canyon or any road. Bridges

allow easier connections between two different points and faster displacements

of goods and people. In this thesis, we have studied the different typologies

and analysis methods of bridge structures that were developed in the history.

We also present and compare several ancient and modern exemplars of bridges

and we study the most important problems regarding their structures. Then,

we develop a new design method that minimizes the total cost of the structure

using ”tensegrity” structures.

Figure 1.1: Some examples of ancient roman bridges: (a) Tiberius bridge,
Rimini, Italy; (b) Alcántara bridge, Spain; (c) Fabricio bridge on Tiver river,
Rome, Italy; (d) Roman bridge in Chaves, Portugal. Source: (www.wikipedia.it).

The first bridge structures were made during Greek and Roman periods.
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1. MOTIVATION AND BACKGROUND

Figure 1.2: Examples of arch bridges with above deck road: (a) viaduct on Mer-
izzano river, Autostrada del Sole, Italy; (b) bridge on Fiumarella river, Catan-
zaro, Italy; (c) Paderno bridge, Italy; (d) Blera bridge, Italy. Source: [8].

In particular, Romans made wide use of masonry arches. Nowadays, some

ancient Roman arch bridges are still in service. Typically those structures

serve as roads for goods and people, or as aqueducts for drinking water (see

Fig. 1.1). After Roman period there was an improvement of the structural

capacity of bridges due to the introduction of fast and heavy vehicles such

as trains and cars. Then, the performance of bridges were increased both in

terms of load capacity and span and there was a smaller allowable maximum

slope of the roads (required by new vehicles). Prestressed concrete, in place of

steel, was widely used for bridges in Italy during 20th century because the idea

that concrete is a very durable material also without great maintenance (Fig.

1.2). These choices led to build several prestressed concrete bridges which

nowadays are often collapsed or seriously damaged [9]. However, prestressed

concrete is still widespread in Italy and its technology has been improved a

lot. Cable-stayed and suspended bridges are largely used in other countries,

such as United States, and they are usually made of steel and allow very

big spans (Fig. 1.3). Moreover, suspended bridges required new theories to

study the dynamics of such structures. In particular, they can be affected

3



1. MOTIVATION AND BACKGROUND

Figure 1.3: Examples of suspended bridges (a-b) and cable-stayed bridges (c-
d): (a) Golden Gate, San Francisco, United States; (b) Akashi Kaikyo bridge,
Kobe, Japan; (c) Rion Antirion bridge, Greece; (d) Polcevera viaduct, Geneve,
Italy. Source: (www.wikipedia.it).

by dynamic instabilities because of their low stiffness, as shown eg. in the

famous structural collapse of Takoma bridge (Fig. 1.4). Engineers employed

several kinds of bridge structures suited to span obstacles and they are now

available powerful computational tools that make possible detailed analysis

of such structures, both in statics and dynamics, also investigating possible

instabilities (eg. flutter).

The modern design approaches are the result of the experience accrued

from the numerous failures of the past (eg. the Takoma bridge, Fig. 1.4).

Several theories were developed for different type of bridge structures, from

the classic Roman arch bridges to the modern suspended bridges. In partic-

ular, from the structural point of view, the following types of bridges can be

identified [9, 10]:

• arch bridges: they consist of one or more arch structures, pushing each

horizontally at both side; they can allow an above or below deck level

(respectively substructure or superstructure) (Fig. 1, Fig. 1.2);

4



1. MOTIVATION AND BACKGROUND

Figure 1.4: Collapse of the Takoma bridge, USA, 1940 (total span 1810.2 m):
(a-c) views of the suspended deck under big deformations due to the resonance
under wind load; (d) failure of the bridge. Source: (www.wikipedia.it).

• suspended bridges: they typically consist of two compressive towers and

a net of tensile cables in the longitudinal and vertical directions, that

directly support the deck (Fig. 1.3a,b);

• cable-stayed bridges: they work similarly to suspended bridges but in

this case there is a system of inclined secondary cables that prestress the

deck in compression (Fig. 1.3c,d ).

• beam bridges: the main structure is made of one or more beams in bend-

ing, typically each beam is simply supported to allow rigid deformations

(eg. in case of earthquake) without stresses (Fig. 1.5a,b);

• truss bridges: they are made of members in compression (struts) and in

tension (tie) connected with ball joints, so each member is not in bending

(Fig. 1.5c,d).

5
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Figure 1.5: Examples of beam bridges (a-b) and truss bridges (c-d): (a) Pis-
tolesa viaduct, Mosso, Italy; (b) Costanzo bridge on the Irminio river, Italy;
(c) truss bridge in Ivrea, Italy; (d) truss bridge on Po river, Italy. Source:
(www.wikipedia.it).

The type of bridges described above are still used nowadays. Usually beam

bridges, working in bending, are often made of prestressed or reinforced con-

crete and they are very massive and stiff. Efficient materials in compression

like masonry are used to build arch bridges (Fig. 1.2). Indeed, metallic materi-

als are typically used for truss bridges (Fig. 1.5) or suspended and cable-stayed

bridges (Fig. 1.3) because of their high performance in both compression and

tension.

1.2 Basic Notions of Tensegrity Structures

Tensegrity structures are prestressable truss structures, which are obtained by

connecting compressive members (bars or struts) through pre-stretched tensile

elements (cables or strings). Motivated by nature, where tensegrity concepts

appear in every cell, in the molecular structure of the spider fiber, and in the
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arrangement of bones and tendons for control of locomotion in animals and

humans, engineers have only recently developed efficient analytical methods

to exploit tensegrity concepts in engineering design. Previous attempts to

judge the suitability of tensegrity for engineering purposes have often evaluated

the tensegrity produced as art-forms, and then judged them according to a

different (engineering) criteria. The development of ”tensegrity engineering”

methods is one of the main goal of the present thesis.

Designing tensegrity for engineering objectives has produced minimal mass

solutions for five fundamental problems in engineering mechanics (Fig. 1.6).

Minimal mass for tensile structures, (subject to stiffness constraints) was mo-

tivated by the molecular structure of spider fiber, and may be found in Fig.

1.6b. Minimal mass structures for compressive loads (Fig. 1.6c,d), cantilevered

bending loads (Fig. 1.6e), torsional loads (Fig. 1.6f), and distributed loads on

simply-supported span (Fig. 1.6g) have also been recently designed.

Figure 1.6: Illustration of some basic building blocks of tensegrity structures:
(a): minimal tensegrity prism; (b): tensile unit, (c) T-bar unit; (d) D-bar unit;
(e): Michell truss; (f) cylindrical unit; (g) bridge unit. Source: ([141, 136, 137]).

The subject of form-finding of tensegrity structures has attracted the at-

tention of several researchers in recent years, due to the special ability of such

structures to serve as controllable systems (geometry, size, topology and pre-

stress control), and also because it has been recognized that the tensegrity
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architecture provides minimum mass structures for a variety of loading condi-

tions, including structures subject to cantilevered bending load; compressive

load; tensile load (under given stiffness constraints); torsion load; and simply

supported boundary conditions (e.g. a bridge), without yielding and buckling

(refer, e.g., to [25, 26, 27, 28], and references therein). Other additional ad-

vantages of tensegrity structures over more conventional control systems are

related to the possibility to integrate control functions within the design of the

structure: in controlled tensegrity systems the mechanics of the controller and

the structure can naturally cooperate, through the change of the configura-

tional equilibrium of the structure, as opposed to traditional control systems,

where often the control pushes against the equilibrium of the structure. It is

also worth noting that it is possible to look at a tensegrity structure as a mul-

tiscale sensor/actuator, which features highly nonlinear dynamical behavior

(geometrical and/or mechanical nonlinearities), and can be controlled in real

time [27, 18].

Particularly interesting is the use of fractal geometry as a form-finding

method for tensegrity structures, which is well described in [25, 26, 27]. Such

an optimization strategy exploits the use of fractal geometry to design tenseg-

rity structures, through a finite or infinite number of self-similar subdivisions

of basic modules. It looks for the optimal values of suitable complexity pa-

rameters, according to given mechanical performance criteria, and generates

admirable tensegrity fractals. The self-similar tensegrity design presented in

[25, 26, 27] is primarily focused on the generation of minimum mass struc-

tures, which are of great technical relevance when dealing, e.g., with tenseg-

rity bridge structures (refer, e.g., to [13]). The ‘fractal’ approach to tensegrity

form-finding paves the way to an effective implementation of the tensegrity

paradigm in parametric architectural design [23, 22, 21].

8
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Figure 1.7: Presentation of a concept for tensegrity bridge in London. Source:
(Boeck, 2013, p. 19, [1]).

1.3 Tensegrity Bridges

Several examples of realized and proposed tensegrity bridges are considered

in this section. They were collected from an investigation on the state of the

art and available literature on this field. First of all, Jan De Boeck (2013) [1]

shownw that tensegrity appeared for the first time in 1996. Then Mott Mac-

Donald submitted a conceptual project (Fig. 1.7) for the London’s Millennium

Bridge. A step towards a tensegrity bridge was taken in 1998 in Purmerend,

Netherlands as noted by Boeck (2013) [1]. Architect Jord den Hollander de-

signed a pedestrian bridge comprises 18 spans of 4 m to cross a river (Fig.

1.8).

Andrea Micheletti (2012) [2] designed in 2005 the Tor Vergata footbridge

(Fig. 1.9). The project was built close to the Faculty of Engineering of the

University of Tor Vergata in Rome. This is a pedestrians bridge over one

of the main road of the campus. The footbridge is nontrivial example of a

modular tensegrity structure and is composed of five equal modules. The

whole structure spans a distance 32 m without intermediate supports and its

main axis has a banana shape with a maximum slope at the end modules of 5

%.

9
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Figure 1.8: Bridge in Purmerend. Source: (Boeck, 2013, p. 19, [1]).

Figure 1.9: Tor Vergata footbridge: a), b) Two views of the footbridge module,
c) Side view of the footbridge structure. Source: (Micheletti, 2012, p. 5, 10, [2])

.

The Kurilpa Bridge in Brisbane, Australia (Fig. 1.10) is the largest tenseg-

rity - inspired bridge in the World. It exhibits some tensegrity members, but

clearly it isn’t a pure tensegrity structure as noted by Beck and Cooper (2012)

[3]. The bridge was designed by Cox Rayner Architects and Arup and opened

in 2009. The structure connects Kurilpa Point in South Brisbane to Tank

Street in the Brisbane. The tensegrity bridge comprises three spans: a central

span of 128 m and two side spans of 57 m and 45 m respectively, as reported by

ARUP (2010) [4]. Barbarigos et al. (2010) [11] proposed a tensegrity ”hollow

rope” structure for a pedestrian bridge (Fig. 1.11) to be built in Switzerland.

10
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Figure 1.10: Kurilpa bridge. Source: (http://tensegrity.wikispaces.com/
Kurilpa + Bridge)

.

Figure 1.11: Tensegrity ”hollow rope” pedestrian bridge. Source: (Barbarigos
et al., 2010, p. 1159, [11])

.

It spans 20 m over a river and is composed of four identical tensegrity modules.

Briseghella et al. (2010) [5] designed a tensegrity footbridge of 30 m span

with an arch deck (Fig. 1.12). Jan De Boeck (2013) [1] created a bridge like

structure comprising a set of 3 struts tensegrity modules with a span of 12 m,

juxtaposed next to each other (Fig. 1.13). The ”Suspended Tensegrity Bridge”

(Fig. 1.14) was designed by Stefano Paradiso and Marco Mucedola (2010) [6].

They designed a footbridge over the Sesia river, close to city of Greggio, Italy.

Moreover, Fig. 1.15 shown a Tim Tyler’s [7] conceptual project for a twisting

hexagonal bridge.

11
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Figure 1.12: Tensegrity footbridge with an arch deck. Source: (Briseghella et
al., 2010, p. 288, [5])

.

Figure 1.13: Jan De Boeck’s tensegrity bridge: a) Front view of a rotated model
of a 3 strut tensegrity module, b) Sketch illustrating how a 3 strut tensegrity
module is multiplied and connected to a bridge like structure. Source: (Jan De
Boeck, 2013, p. 65, 67, [1])

.

1.4 Research Goals

The present thesis deals with the parametric design of tensegrity bridges,

through self-similar repetitions, at different scales of complexity. Michell [20]

derived the minimal mass topology when superstructures is only allowed above

the roadbed. Deck design requires structure below the roadbed. Here we

integrate the two to minimize mass of the total bridge. The design variables

consist of several complexity parameters and aspect angles, which rule the

geometry of the superstructure and the substructure. The iterative procedure

proposed in [145] is employed to generate minimum mass shapes under yielding

12
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Figure 1.14: Suspended Tensegrity Bridge: a) Vertical cross section, b) Model
of two tensegrity modules, c) Sketch illustrating the whole tensegrity bridge.
Source: (http://tensegrity.wikispaces.com/ Suspended + Bridge + by + Par-
adiso)

.

Figure 1.15: Tim Tyler’s conceptual project for a twisting hexagonal bridge:
a), b) Different views of the model. Source: (http: //hexdome.com/bridges)

.

and buckling constraints, for varying values of the design variables.

Tensegrity structures are well suited for building bridges, being particularly

light-weight and therefore able to cover long spans. In addition, they can be

designed to have tunable stiffness, still remaining lightweight, by playing with

the prestress of cable members (stiff or compliant structure). Finally, they

can easily reproduce funicular structures, such as, e.g. the suspended bridges

represented in Fig. 1.3 and the arch bridges illustrated in Fig. 1.2.

The tensegrity paradigm used for bridges allows the marriage of composite

structures within the design. We indeed show in this dissertation that the

tensegrity approach may lead to create a network of tension and compressive
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members distributed throughout the system at many different scales.

We develop a new method for bridge design which compares different solu-

tions with the aim to minimize the total cost required to build the structure.

Such optimization can be performed on different type of bridges with paramet-

ric geometries and then the optimal parameters can be detected. For example,

given the span and the loads, we can compare superstructure and substructure

bridges (see [141][137][145] for some numerical example). We will show that

tensile elements have typically smaller masses then the compressive members

because of the buckling. For this reason the optimal topology tends to maxi-

mize the number of tensile members and to reduce the length of compressive

members (see the results in [141][137][145]). One should bear in mind, for

instance, the two cases of arch bridges and suspended bridges.

In the first case there are one or more arches in compression with very

high masses, which typically support an above deck. In the second case there

is a very light stretched inverted arch with vertical cables that carry a below

deck. Usually, the arch bridges appear to be more mass (so more expensive)

then the suspended bridges and this could be analytically investigated with

the method proposed in this thesis.
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2. ANALYTIC RESULTS ON THE OPTIMAL DESIGN OF TENSEGRITY
BRIDGES

2.1 Introduction

This Chapter focuses on a form-find approach to tensegrity bridges based

on mass minimization and fractal geometry. The subject of form-finding of

tensegrity structures continues to be an active research area [19, 22, 23, 29,

30, 31], due to the special ability of such structures to serve as controllable

systems (geometry, size, topology and prestress control), and also because

the tensegrity architecture provides minimum mass structures for a variety

of loading conditions, [25, 26, 27, 145]. Particularly interesting is the use of

fractal geometry as a form-finding method for tensegrity structures, which

is well described in [25, 26, 27, 17]. Such an optimization strategy exploits

the use of fractal geometry to design tensegrity structures, through a finite

or infinite number of self-similar subdivisions of basic modules. The strategy

looks for the optimal number of self-similar iterations to achieve minimal mass

or other design criteria. This number is called the optimal complexity, since

this number fixes the total number of parts in the structure.

The self-similar tensegrity design presented in [25, 26, 27] is primarily

focused on the generation of minimum mass structures, which are of great

technical relevance when dealing with tensegrity bridge structures (refer, e.g.,

to [13]). The ‘fractal’ approach to tensegrity form-finding paves the way to an

effective implementation of the tensegrity paradigm in parametric architectural

design [23, 22, 21, 12].

The present Chapter deals with a parametric approach to the minimum

mass design of tensegrity structures carrying simply supported and distributed

bending loads. In [141] numerical solutions where found for a specified topol-

ogy, without any theoretical guarantees that those topologies produced mini-

mal mass. This Chapter provides more fundamental proofs that provide nec-

essary and sufficient conditions for minimal mass. A different parametric ap-

proach to tensegrity bridges is presented in Chap. 3.

The remainder of the Chapter is organized as follows. Section 2.2 pro-

vides some basic knowledges on the mode of failure of tensile and compressive
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members. Section 2.3 describes the topology of the tensegrity bridge under

examination. For a simply-supported structure of the simplest complexity,

Section 2.4 describes the minimal mass bridge when the admissible topology

allows substructure and superstructure (that is, respectively, structure below

and above the roadbed). Section 2.5 provides closed-form solutions to the

minimal mass bridge designs (of complexity n = 1) when only sub- or super-

structure is allowed. Section 2.6 provides closed-form solutions to the minimal

mass bridge designs (of complexity n, p = q = 1) when only sub- or super-

structure is allowed. This finalizes the proof that the minimal mass bridge is

indeed the substructure bridge. Section 2.7 also defines deck mass and adds

joint mass and shows that the optimal complexity is finite. Dscussion of the

results are offered at the end of this Chapter.

2.2 Properties of Tensile and Compressive Compo-

nents of the Tensegrity Structure

The tensegrity structures in this paper will be composed of rigid compressive

members called bars, and elastic tensile members called cables. We will assume

that a tensile member obeys Hooke’s law,

ts = k(s− s0), (2.1)

where k is cable stiffness, ts is tension in the cable, s is the length of the

cable, and s0 < s is the rest length of the cable. The tension members cannot

support compressive loads. For our purposes, a compressive member is a solid

cylinder, called a bar. All results herein are trivially modified to accommodate

pipes, tubes of any material, but the concepts are more easily demonstrated

and the presentation is simplified by using the solid bar in our derivations.

The minimal mass of a cable with loaded length s, yield strength σs, mass
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density %s, and maximal tension ts is

ms =
%s
σs
tss. (2.2)

To avoid yielding, a bar of length b, yield strength σb, mass density %b with

compression force fb, has the minimal mass

mb,Y =
%b
σb
fbb. (2.3)

To avoid buckling, the minimal mass of a round bar of length b, modulus

of elasticity Eb, and maximal force fb is

mb,B = 2%bb
2

√
fb
πEb

. (2.4)

The actual mode of failure (buckling or yielding) of a compressive member

can be identified by using the following well-know facts that give the basis to

a correct design of the bar radius rb. Define rY , the bar radius that satisfies

yielding constraints, and rB, the radius that satisfies buckling constraints, by

rY =

√
fb
πσb

, rB = 4

√
4b2fb
π3Eb

. (2.5)

The following are well known facts:

Lemma 2.2.1. Designs subject to only yield constraints (hence rb = rY ) fail

to identify the actual mode of failure (buckling) if rY < rB, or equivalently if,

fb
b2
<

4σ2
b

πEb
. (2.6)

Lemma 2.2.2. Designs subject to only yield constraints (rb = rY ) automati-
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cally also satisfy buckling constraints if rY > rB, or equivalently if,

fb
b2
>

4σ2
b

πEb
. (2.7)

Lemma 2.2.3. Designs subject to only buckling constraints (rb = rB) fail to

identify the actual mode of failure (yielding) if rB < rY , or equivalently if,

fb
b2
>

4σ2
b

πEb
. (2.8)

Lemma 2.2.4. Designs subject to only buckling constraints (rb = rB) auto-

matically also satisfy yielding constraints if rB > rY , or equivalently if,

fb
b2
<

4σ2
b

πEb
. (2.9)

2.3 Planar Topologies of the Tensegrity Bridges Un-

der Study

The planar bridge topology is considered here to elucidate the fundamental

properties that are important in the vertical plane. We use the following

nomenclature, referring to Fig. 2.2:

• A superstructure bridge has no structure below the deck level.

• A substructure bridge has no structure above the deck level.

• A nominal bridge contains both substructure and superstructure.

• Y means the design was constrained against yielding for both cables and

bars.

• B means the design was constrained against yielding for cables and buck-

ling for bars.

• n means the number of self-similar iterations involved in the design (n =

1 in Fig 2.2, and n ≥ 1 in Fig. 2.3).
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• p means the complexity of each iteration in the substructure (p = 1 in

Fig 2.2c, and p ≥ 1 in Fig 2.3).

• q means the complexity of each iteration in the superstructure (q = 1 in

Fig 2.2b, and q ≥ 1 in Fig 2.3).

• α is the aspect angle of the superstructure measured from the horizontal.

• β is the aspect angle of the substructure measured from the horizontal.

For a tensegrity bridge with generic complexities n, p and q (see Fig. 2.3), the

total number of nodes nn of each topology is given by:

nn = (p+ q) (2n − 1) + 2n + 1. (2.10)

For the substructure bridge (that is q = 0), the number of bars nb and the

number of cables ns are:

nb = p (2n − 1) , ns = (p+ 1) (2n − 1) + 2n. (2.11)

For the superstructure bridge (that is p = 0), the number of bars nb and the

number of cables ns are:

nb = (q + 1) (2n − 1) , ns = q (2n − 1) + 2n. (2.12)

For the nominal bridge, the number of bars nb and the number of cables ns

are:

nb = (p+ q + 1) (2n − 1) , ns = (p+ q + 1) (2n − 1) + 2n. (2.13)
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We define the superstructure bridge of complexity (n, p = 0, q) by Fig. 2.3

where the substructure below is deleted. We define the substructure bridge of

complexity (n, p, q = 0) by Fig. 2.3 where the superstructure above is deleted.

cable
tsts

s

bar

fbfb

b

Figure 2.1: Adopted notation for bars and cables of a tensegrity system.

2.4 Analysis of the Basic Modules (n = 1, p = 1 or

0, q = 1 or 0)

We first will examine the simplest of bridge concepts, as in Fig 2.2. Con-

sider, first, the nominal bridge, subject to yield constraints, with complexity

(n, p, q) = (1, 1, 1). This configuration, described by Fig 2.2a, is composed of

5 cables and 3 bars. Let the bottom end of each compressive member above

the deck be constrained by a hinge boundary condition, so as to allow rotation

but not translation. Define F as the total applied load, and L as the span.

All cables use the same material, and all bars use the same material. It will

be convenient to define the following constants:

% =
%b/σb
%s/σs

, (2.14)
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a) nominal bridge

L/2 L/2

F/2
F/4F/4

F/2F/2

α α1©
2©3©

4©

5©

β β

s3s3

b1b1 s2

b2

s1s1
wx wx

b) superstructure

F/2

F/4F/4

F/2F/2

1©
2©3©

4©

α α

s2

s1s1

b1b1

wx wx

c) substructure

F/2
F/4F/4

F/2F/2

1© 2©3©

5©

β β

s3s3

s1s1

b2

wx wx

Figure 2.2: Basic modules of the tensegrity bridge with: a) nominal bridge:
n = q = p = 1; b) superstructure: n = q = 1; c) substructure: n = p = 1.

η =
%bL

(%s/σs)
√
πEbF

. (2.15)

Define a normalization of the system mass m by the dimensionless quantity µ:

µ =
m

(%s/σs)FL
, (2.16)
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Figure 2.3: Exemplary geometries of the nominal bridges for different values of
the complexity parameters n (increasing downward) and q (increasing leftward).

where the mass m at the yield condition is:

m =
%b
σb

∑
fibi +

%s
σs

∑
tisi, (2.17)

where (bi,si) is respectively the length of the ith bar or ith cable, and respec-

tively (fi,ti) is the force in the ith bar or cable.

The mass of the nominal bridge will be minimized over the choice of angles α
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Figure 2.4: Exemplary geometries of the substructures for different values of
the complexity parameters n (increasing downward) and p (increasing leftward).

and β. The lengths of the members are:

s1 =
L

2
, s2 =

L

2
tanα, s3 =

L

2 cosβ
=
L

2

√
1 + tan2 β,

b1 =
L

2 cosα
=
L

2

√
1 + tan2 α, b2 =

L

2
tanβ. (2.18)

The equilibrium equations at each node are:
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Figure 2.5: Exemplary geometries of the superstructures for different values of
the complexity parameters n (increasing downward) and q (increasing leftward).

t1 + t3 cosβ = wx + f1 cosα,
F

4
= f1 sinα+ t3 sinβ,

t2 = 2f1 sinα,

f2 = 2t3 sinβ,
F

2
= t2 + f2. (2.19)

This system of equations can be solved, choosing t1 and t3 are free independent

parameters:
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f1

F
=

√
1 + tan2 α

4 tanα
(1− t3

F

4 tanβ√
1 + tan2 β

),

f2

F
=
t3
F

2 tanβ√
1 + tan2 β

,

t2
F

=
1

2
− t3
F

2 tanβ√
1 + tan2β

,

wx
F

=
t1
F

+
t3
F

tanα+ tanβ

tanα
√

1 + tan2 β
− 1

4 tanα
. (2.20)

2.4.1 Nominal Bridges under Yielding Constraints

Theorem 2.4.1. Given the nominal bridge with complexity (n, p, q) = (1, 1, 1)

(described in Fig. 2.2a), with attendant data (2.18), the minimal mass can be

expressed in terms of independent variables t1 and t3:

µY (t1, t3) =
t1
F

+
t3
F
c3 (α, β, %) +

bα
4
, (2.21)

where:

c3(α, β, %) =
(1 + %) tan2 β − bα tanβ + 1√

1 + tan2 β
, bα =

%+ (1 + %) tan2 α

tanα
.(2.22)

An alternate expression for the mass can be written by substituting the relation

between t2 and t3 from (27), to get an equivalent expression µY (t1, t2) =

µY (t1, t3), where:
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t3
F

=

√
1 + tan2 β(1− 2t2/F )

4 tanβ
, (2.23)

µY (t1, t2) =
t1
F

+
t2
F
c2(α, β, %) +

(1 + %) tan2 β + 1

4 tanβ
, (2.24)

c2(α, β, %) = −c3

√
1 + tan2β

2 tanβ
= −(1 + %)tan2β − bα tanβ + 1

2 tanβ
. (2.25)

Hence it follows that the minimal mass solution requires t3 > 0 if and only if

c3 < 0 (equivalently c2 > 0). Note also that c3 < 0 if and only if:

1 + (1 + %) tan2 β

tanβ
<
%+ (1 + %) tan2 α

tanα
. (2.26)

Conversely, minimal mass requires t3 = 0 if c3 > 0 (equivalently c2 < 0). This

event occurs if and only if:

1 + (1 + %) tan2 β

tanβ
>
%+ (1 + %) tan2 α

tanα
. (2.27)

Finally, c3 = 0 (and also c2 = 0) if and only if:

1 + (1 + %) tan2 β

tanβ
=
%+ (1 + %) tan2 α

tanα
. (2.28)

Note also that the requirement that t2 and t3 both be non-negative values

limits the feasible range of t3 such that:

0 ≤ t3 ≤
F
√

1 + tan2 β

4 tanβ
. (2.29)

Given the relation between t2 and t3 in (2.23) we have the corresponding
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feasible range for t2:

0 ≤ t2 ≤
F

2
. (2.30)

The proof of the theorem follows the mass calculation in (4.9), (4.19) after

substituting the equilibrium forces given by (2.20).

Corollary 2.4.1. Consider a superstructure bridge with complexity (n, p, q) =

(1, 0, 1) (topology is defined by Fig. 2.2b). The minimal mass µY requires the

following aspect angle:

α∗Y = arctan

(√
%

1 + %

)
, (2.31)

which corresponds to the following dimensionless minimal mass:

µ∗Y =
1

2

√
% (1 + %). (2.32)

Proof. The mass of the superstructure can be obtained from Theorem (2.4.1)

by setting t1 = 0 since its coefficient is positive, and t3 = 0 since the cable s3

is absent. Thus,

µY =
tanα

4
+ %

(
1 + tan2 α

)
4 tanα

. (2.33)

This function has a unique minimum satisfying,

∂µY
∂ tanα

=
tan2 α+ %

(
tan2 α− 1

)
4 tan2 α

= 0, (2.34)
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producing the unique optimal angle (2.31). Substituting this angle into (2.33)

concludes the proof.
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Α, Β @°D0
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2.5
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Figure 2.6: Dimensionless masses of the substructure (continuous curves) and
superstructure (dashed curves) for different values of the aspect angles (respec-
tively β or α) and for values of the coefficient % > 1 (left) and % < 1 (right) under
yielding constraints.

Fig 2.6 plots the mass versus the angle β and α, yielding the minimum at

the values given by (2.35) and (2.31). All designs in this section assume failure

by yielding. One must check that yielding is indeed the mode of failure.

Corollary 2.4.2. Consider a substructure bridge, with complexity (n, p, q) =

(1, 1, 0) (topology is defined by Fig. 2.2c). The minimal mass design under

only yield constraints is given by the following aspect angle:

β∗Y = arctan

(
1√

1 + %

)
, (2.35)

which corresponds to the following dimensionless minimal mass:

µ∗Y =

√
1 + %

2
. (2.36)

Proof. The mass of the substructure can be obtained from Theorem (2.4.1)

with t1 = t2 = 0 to obtain,
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µY =

(
1 + tan2 β

)
4 tanβ

+
%

4
tanβ. (2.37)

The the unique minimum satisfies,

∂µY
∂ tanβ

= −1 + tan2 β

4 tan2 β
+

1

2
+
%

4
= 0, (2.38)

producing the optimal optimal angle of (2.35). Substituting this angle into

(2.37) concludes the proof.

Corollary 2.4.3. For the designs in this section, yielding is indeed the mode

of failure if the following inequalities hold:

F

L2
>

1

2 (1 + %)

(
4σ2

b

πEb

)
, if : 0 < % ≤ 1

4

(√
3− 1

)
, (2.39)

F

L2
>

√
% (1 + 2%)

1 + %

(
4σ2

b

πEb

)
, if : % >

1

4

(√
3− 1

)
. (2.40)

In addition, if 0 < % ≤ 1
4

(√
3− 1

)
and (2.39) holds or if 1

4

(√
3− 1

)
< % < 1

and (2.40) holds, then the minimal mass of a superstructure bridge is less

than the minimal mass of a substructure bridge. (In this event, the minimal

mass bridge is superstructure only). If % = 1 and (2.40) also holds, then the

minimal mass of the substructure bridge is equal to the minimal mass of the

superstructure bridge. If % > 1 and (2.40) also hold, then the minimal mass

of the substructure bridge is less than the minimal mass of the superstructure

bridge. (The minimal mass bridge is substructure only).

Proof. Under yield constraints, if the design has the property

fb,i/b
2
i > 4σ2

b/(πEb), then this guarantees that yielding is the mode of

failure in bar bi, and the buckling constraints are also satisfied (see lemma
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2.2.2). For the superstructure, assuming the optimal angle (2.31), the minimal

mass (2.32), the force f1 (2.20) and the length b1 (2.18), the lemma 2.2.2

reduces to:

F

L2
>

√
% (1 + 2%)

1 + %

(
4σ2

b

πEb

)
. (2.41)

Similarly, for the substructure, assuming the optimal angle (2.35), the minimal

mass (2.36), the force f2 (2.20) and the length b2 (2.18), the Lemma 2.2.2

reduces to:

F

L2
>

1

2 (1 + %)

(
4σ2

b

πEb

)
. (2.42)

Yielding is the mode of failure of superstructure and substructure desgns if

both (2.41) and (2.42) hold or, equivalently, if the following holds:

F

L2
> max

[√
% (1 + 2%)

1 + %
,

1

2 (1 + %)

](
4σ2

b

πEb

)
. (2.43)

From the inequality

√
%(1+2%)

1+% / 1
2(1+%) > 1 we obtain the following conclusions:

√
% (1 + 2%)

1 + %
<

1

2 (1 + %)
, if : 0 < % ≤ 1

4

(√
3− 1

)
, (2.44)√

% (1 + 2%)

1 + %
>

1

2 (1 + %)
, if : % >

1

4

(√
3− 1

)
. (2.45)

Equations (2.44) and (2.45) combined with (2.43) give the conditions (2.39)

and (2.40). The mass of the substructure is shown to be less that the mass of

the superstructure if % > 1, a result that follows by taking the ratio between

the optimal mass of the superstructure (2.32) and the optimal mass of the
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substructure (2.36).

As a practical matter, % is almost always greater than 1, since compressive

members tend to have higher mass density than tension members (%b/%s >

1), and the yield strength of tensile material tends to be greater than for

compressive members (σs/σb > 1).

Thus far the conclusion is that if % > 1
4

(√
3− 1

)
then the bridge in Fig.

2.2a at its minimal mass configuration becomes the configuration of substruc-

ture in Fig. 2.2c, if the bridge design is constrained against yielding. Further-

more, such a design will not buckle. Note that this design produced a topology

constrained against yielding, and a design constrained against buckling might

produce a different topology. Now lets consider this possibility.

2.4.2 Nominal Bridges under Buckling Constraints

This section repeats all the designs of the previous section (for the three struc-

tures of Fig. 2.2) with the added constraint that the bars cannot buckle.

Theorem 2.4.2. Consider a nominal bridge of complexity (n, p, q) = (1, 1, 1).

The minimal mass (the cable mass required at the yield conditions plus the bar

mass required at the bar buckling conditions), is, in terms of t1 and t3:

µB(t1, t3) =
t1
F

+
t3
F

tan2 β − tanα tanβ + 1√
1 + tan2 β

+
tanα

4

+η

(1 + tan2 α
)5/4

2
√

tanα

(
1− t3

F

4 tanβ√
1 + tan2 β

)1/2

+
tan2 β√

2

√
t3
F

tanβ

(1 + tan2 β)
1/2

]
, (2.46)

or, equivalently, in terms of t1 and t2:
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µB(t1, t2) =
t1
F

+
t2
F

[
tanα

2
−
(
1 + tan2 β

)
2 tanβ

]
+

(
1 + tan2 β

)
4 tanβ

+η

[(
1 + tan2 α

)(5/4)

√
t2

2F tanα
+

tan2 β

2

√
1

2
− t2
F

]
. (2.47)

Proof. Given the solution (2.20), the total mass of bars is:

mb,B =
%bL

2
√
F√

πEb

(1 + tan2 α
)5/4

2
√

tanα

(
1− t3

F

4 tanβ√
1 + tan2 β

)1/2

+
tan2 β√

2

√
t3
F

tanβ

(1 + tan2 β)
1/2

]
.

(2.48)

Adding to (2.48) the total mass of cables and using the (2.20), we obtain the

total mass of (2.46) given in the theorem. It is also possible to write this mass

in terms of free parameters tt and t2.

mb,B =
%bL

2
√
F√

πEb

[(
1 + tan2 α

)5/4√ t2
2F tanα

+
tan2 β

2

√
1

2
− t2
F

]
. (2.49)

Adding to (2.49) the total mass of cables and using the (2.20), we obtain the

total mass of (2.47).

The value of β = 4.25 deg minimizes the mass (2.47) if the material choice

is steel (% = 7862 kg/m3; σ = 6.9x108 N/m2; E = 2.06x1011 N/m2). It

will become clear that the minimal mass solution of the minimal bridge µB,

constrained against buckling, will reduce to only a substructure (Fig 3c). It

is straightforward to show that the mass of the bars is much greater than the
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mass of the cables under the usual condition:

η � tan2 α

2(1 + tan2 α)5/4
. (2.50)

To prepare for those insights, now consider the individual solutions for

designs constrained to be only superstructure or only substructure in configu-

ration.

5 10 15
Β @°D0

5

10

15

Μ

Figure 2.7: Mass µB(t1, t2) (Eq. 2.47) for different values of the aspect angles
β assuming steel bars and cables, F = 1 N , L = 1 m (η = 857.71), t1 = 0 and
t2 = 0. The minimum value is µ∗

B = 5.0574 at β∗
B = 4.25 deg.

Corollary 2.4.4. Consider a superstructure bridge of complexity (n, p, q) =

(1, 0, 1), (Fig. 2.2b). Suppose (2.50) holds. The minimal mass design under

yielding and buckling constraints is given by the following aspect angle:

ᾱ∗B = arctan

(
1

2

)
, (2.51)

which corresponds to the following dimensionless minimal mass:

µ̄∗B =
1

8

(
1 + 5(5/4)η

)
. (2.52)
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Proof. The mass of the superstructure only case can be obtained from (2.46)

assuming t1 = t3 = 0:

µB =
tanα

4
+ η

(
1 + tan2 α

)(5/4)

2
√

tanα
. (2.53)

Assuming that the mass of the cables, which is the first term at the rhs of

the (2.53) is neglectable if compared with the mass of the bars, which is the

second term at the rhs of (2.53). Then the dimensionless mass becomes

µ̄B = η

(
1 + tan2 α

)(5/4)

2
√

tanα
. (2.54)

The solution for minimal mass can be achieved from the local minimum con-

dition,

∂µ̄B
∂ tanα

=
5

4
η
(
1 + tan2 α

)1/4√
tanα− η

(
1 + tan2 α

)5/4
4 tan3/2 α

= 0, (2.55)

to obtain the optimal angle (2.51). Substituting it into (2.53) yields (2.52).

It is straightforward to show that the second variation of µB(α) with re-

spect to α is always positive, indicating that there is only one minimum de-

scribed by (2.51).

Corollary 2.4.5. Consider a substructure bridge, with complexity (n, p, q) =

(1, 1, 0) (Fig. 2.2c). The minimal mass design under yielding constraints and

buckling constraints is given by the following aspect angle:

β∗B = arctan

[
1

6η

(
1

2(1/3)ε
+

ε

2(2/3)
− 1√

2

)]
, (2.56)
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which corresponds to the following dimensionless minimal mass:

µ∗B =
1 + tan2 β∗B

4 tanβ∗B
+

η

2
√

2
tan2 β∗B, (2.57)

where:

ε =
[
108
√

2η2 +
√

23328η4 − 432η2 −
√

2
]1/3

. (2.58)

Proof. The mass of the substructure bridge can be obtained from (2.47) as-

suming t1 = t2 = 0:

µB =
1 + tan2 β

4 tanβ
+

η

2
√

2
tan2 β. (2.59)

The above function has its minimum value µ∗B for an optimal angle β∗B that

can be computed from the equation

∂µB
∂ tanβ

=
1

2
− 1 + tan2 β

4 tan2 β
+

η√
2

tanβ = 0. (2.60)

After rearranging (2.60), the optimal angle β can be computed solving the

following equation:

4η tan3 β +
√

2 tan2 β −
√

2 = 0. (2.61)

It is straightforward to show that the second variation of µB(β) with re-

spect to β is always positive, indicating a unique global optimal value of (2.56).

Fig 2.8 plots the mass versus the angle β and α, yielding the minimum at the
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values given by (2.51) and (2.56). We must verify if buckling is indeed the

mode of failure in the designs of this section.
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Figure 2.8: Dimensionless masses of the substructure (left) and superstruc-
ture (right) under buckling constraints for different values of the aspect angles
(respectively β or α) and different values of the parameter η.

Corollary 2.4.6. Suppose buckling constraints are considered in both the su-

perstructure and substructure bridge designs. Then buckling is indeed the

mode of failure if the following inequalities hold:

F

L2
< tanα

√
1 + tan2 α

(
4σ2

b

πEb

)
, if : η̄αβ < 1, (2.62)

F

L2
<

tan2 β

2

(
4σ2

b

πEb

)
, if : η̄αβ > 1, (2.63)

where:

η̄αβ =
2 tanα

√
1 + tan2 α

tan2 β
. (2.64)

In addition, if the following inequality holds:
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η > ηαβ =
− (tanα)(3/2) tanβ +

(
1 + tan2 β

)√
tanα

2 (1 + tan2 β)
(5/4)

tanβ −
√

2 tan3 β
√

tanα
, (2.65)

then the minimal mass of the substructure bridge is less than the minimal mass

of the superstructure bridge. (The minimal mass of the nominal bridge reduces

to substructure only. If η = ηαβ, (2.62) or (2.63) hold, then the minimal

mass of the substructure is equal to the minimal mass of the superstructure.

(The minimal mass of the nominal bridge reduces to either superstructure or

substructure only). If η < ηαβ, and (2.62) or (2.63) hold, then the minimal

mass of the superstructure is less than the minimal mass of the substructure.

(The minimal mass bridge is superstructure only).

Proof. Under buckling constraints, if the design has the property fb,i/b
2
i <

4σ2
b/(πEb), then this guarantees that buckling is the mode of failure in bar

bi, and the yielding constraints are also satisfied (see Lemma 4.2.1). For the

superstructure, assuming the force f1 (2.20) and the length b1 (2.18), then

Lemma 4.2.1 reduces to (2.62). Similarly, for the substructure, assuming the

force f2 (2.20) and the length b2 (2.18), then Lemma (4.2.1) reduces to (2.63).

Buckling is the mode of failure of superstructure and substructure designs if

both (2.62) and (2.63) hold or, equivalently, if the following holds:

F

L2
< min

[
tanα

√
1 + tan2 α,

tan2 β

2

](
4σ2

b

πEb

)
. (2.66)

From the inequality η̄αβ > 1 we obtain conditions (2.62) and (2.63).

The mass of the substructure is shown to be less then the mass of the

superstructure if η > ηαβ, a result that follows by taking the ratio between the

mass of the superstructure (2.53) and the mass of the substructure (2.61).

The left contour plot in Fig. 2.9 shows values of the function η̄αβ for any
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angles α and β, indicating the range of α and β for which η̄αβ > 1, which

in turn chooses the appropriate condition (2.62) or (2.63). The trend of the

function ηαβ is shown in the right contour plot of Fig. 2.9. The physical

parameter η is a positive number and Fig. 2.9 show the region for which

the quantity ηαβ is a negative number. We have shown earlier (2.51) that

the approximated α = 26.56 degrees. Furthermore Fig 2.8 illustrates that

α = 26.56 degrees is very close to the actual minimum over a very large range

of the physical parameter η. Therefore, from the right plot in Fig 2.9 any α

in the range of the optimal value ( 26 degrees) yields η > η(α, β). Hence, the

substructure bridge has the minimal mass.
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Figure 2.9: Contour plots of the functions η̄αβ , (left, Eq. 2.64) and ηαβ , (right,
Eq. 2.65) for different values of the aspect angles α and β

2.5 Mass of Bridges of Complexity (n, p, q) = (1, p, q),

Under Yielding and Buckling Constraints

Now we consider more complex structures by increasing p, q. This section finds

the minimal mass of substructure, and superstructure bridges with complexity

(n, p, q) = (1, p, q), for any p and q greater then 1.
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2.5.1 Superstructure Bridge with Complexity (n, p, q) = (1, 0, q >

1)

Refer to Fig. 2.10 for the notation. The angle between the bars is:

γ =
2α

q − 1
. (2.67)

The lengths of the bars and cables are:

s0 =
L

2
, s1 = s2 =

L

2
sinα, b1 =

L

2
cosα, b2 = L sinα sin

(
α

q − 1

)
.

(2.68)

From the equilibrium equations, we obtain the following relations for the

forces:

t2 =
F

2
[
cosα+ sin

(
α(q−2)
q−1

)
/ sin

(
α
q−1

)] , t1 =
t2
2
, (2.69)

f2 =
t2

2 sin
(

α
q−1

) , f1 = f2cos

(
α

q − 1

)
. (2.70)

Theorem 2.5.1. Consider a superstructure bridge, of total span L, topology

L

F
2

F
4

F
4

F
2

F
2

wxwx αα π
2 − α

π
2 − α

γγγ γ

t0, s0 t0, s0

f1, b1 f1, b1

f2, b2 f2, b2

t1, s1 t1, s1

t2, s2 t2, s2

Figure 2.10: Notations for forces and lengths of bars and cables for a super-
structure with complexity n = 1 and q > 1.
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Figure 2.11: Optimal topologies of superstructure bridges with complexity
(n, p, q) = (1, 0, q →∞) under yielding constraints (left) and buckling constraints
(right) for different q, (steel for bars and cables, F = 1 N , L = 1 m).

defined by (2.68), with complexity (n = 1, q > 1), Fig. 2.10. At the yield

condition under a vertical load F the dimensionless total mass is:

µY (α, q) =
t0
F

+
(q − 1) sinα

4
[
cosα+ sin

(
α(q−2)
q−1

)
/ sin

(
α
q−1

)] +

%

4

(q − 1) sinα sin
(

α
q−1

)
+ cosα cos

(
α
q−1

)
sin
(

α
q−1

)
cosα+ sin

(
α(q−2)
q−1

) . (2.71)
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Proof. The total mass of the cables is:

ms =
%s
σs

ns∑
i=1

tisi =
%s
σs

(2t0s0 + 2t1s1 + (p− 2) t2s2) . (2.72)

Substituting (2.68) and (2.70) into ms we get:

ms =
%s
σs

t0L+
FL

4

(q − 1) sinα(
cosα+ sin

(
α(q−2)
q−1

)
/ sin

(
α
q−1

))
 . (2.73)

The total mass of bars is:

mb =
%b
σb

nb∑
i=1

fibi =
%b
σb

(2f1b1 + (p− 1) f2b2) . (2.74)

Substituting (2.68) and (2.70) into mb we get:
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Figure 2.12: Mass curves under yielding constraints of substructures (left) and
superstructures (right) vs. aspect angle β (left) and α (right) for different com-
plexity p (left) and q (right), (F = 1 N , L = 1 m).
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mb =
%bFL

4σb

(q − 1) sinα sin
(

α
q−1

)
+ cosα cos

(
α
q−1

)
sin
(

α
q−1

)
cosα+ sin

(
α(q−2)
q−1

) . (2.75)

Normalizing ms and mb and summing we get (2.71).

Corollary 2.5.1. The minimal mass in (2.71) is achieved at infinite complex-

ity q →∞ and t0 = 0. Then the minimal mass at yielding for a superstructure

bridge is:

µ∗Y (α∗Y , q
∗) =

1

4
[(1 + %) arctan

√
%+
√
%] , (2.76)

where q∗ →∞ and the optimal angle α∗Y is:

α∗Y = arctan
√
%. (2.77)

The left side of Fig. 2.11 illustrates superstructure bridges as q → ∞,

where masses are given for any q by (2.71).
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Figure 2.13: Mass curves under buckling constraints of substructures (left)
and superstructures (right) vs. aspect angle β (left) and α (right) for different
complexity p (left) and q (right), (steel bars and cables, F = 1 N , L = 1 m).
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Proof. Substitute q →∞ into Eq. (2.71) to obtain:

µ∗Y (α, q∗ →∞) =
α

4
(1 + %) +

%

4 tanα
. (2.78)

The value of α that minimizes (2.78) is (2.77). See Fig. 2.12 to see how

mass (2.71) varies with q and α. The optimal q∗ is deduced from the plot of

Fig. 2.12 and the optimal angle is computed analytically in Eq. (2.77).

Theorem 2.5.2. Consider a superstructure bridge with topology (2.68), and

complexity (n, p, q) = (1, 0, q > 1), see Fig. 2.10. At the buckling condition

the dimensionless total mass is:

µB (α, q) =
t0
F

+
(q − 1) sinα

4
[
cosα+ sin

(
α(q−2)
q−1

)
/ sin

(
α
q−1

)] +

η

cos2 α

√
cos
(

α
q−1

)
+ 2 (q − 1) sin2 α sin2

(
α
q−1

)
2

√
sin
(

α
p−1

)
cosα+ sin

(
α(q−2)
q−1

)
 . (2.79)

Proof. The total mass of the cables has been already computed in the proof

of Theorem 2.5.1.

L

F
2

F
4

F
4

F
2

F
2

wxwx

ββ π
2 − β

π
2 − β

γγγ γ

t0, s0 t0, s0

t1, s1 t1, s1

t2, s2 t2, s2

f1, b1 f1, b1

f2, b2 f2, b2

Figure 2.14: Notations for forces and lengths of bars and cables for a substruc-
ture with complexity n = 1 and p > 1.
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The total mass of bars is:

mb =

nb∑
i=1

2%bb
2
i

√
fi
πEb

= 4%bb
2
1

√
f1

πEb
+ 2 (p− 1) %bb

2
2

√
f2

πEb
. (2.80)

Substituting (2.68) and (2.70) into mb we get:

mb =
%bL

2
√
F√

πEb

cos2 α

√
cos
(

α
q−1

)
+ 2 (q − 1) sin2 α sin2

(
α
q−1

)
2

√
sin
(

α
p−1

)
cosα+ sin

(
α(q−2)
q−1

)
 . (2.81)

Normalizing ms and mb and summing we get (2.79).

Corollary 2.5.2. The minimal mass superstructure is achieved for q → ∞
and t0 = 0, leading to the following mass:

µB (α, q →∞) =
α

4
+
η cos2 α

2
√

sinα
. (2.82)

Proof. The plot in Fig. 2.13 vs. α for different q shows that (2.79) has a global

minimum value at q →∞.

It is important to consider that, for the solution q → ∞, buckling is not

the mode of failure since the lengths of the bars approaches zero. Also note

that at α = 90 deg, µB = π/8.

The left side of Fig. 2.11 shows a sequence of superstructures under yielding

constraints, as q increases. From (2.71) the mass is minimized at q →∞ and

α∗Y = 45 deg (% = 1). The right side of Fig. 2.11 shows a sequence of

superstructures under buckling constraints, as q increases. From plot in Fig.
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Figure 2.15: Optimal topologies of substructure bridges with n = 1 under
yielding constraints (left) and buckling constraints (right) for different p, (steel
for bars and cables, F = 1 N , L = 1 m).

2.13 the mass is minimized at α = 90 deg for q = ∞ (η = 857.71, same

steel/steel material as above).

2.5.2 Substructure Bridge with Complexity (n, p, q) = (1, p >

1, 0)

Refer to Fig. 2.14 for the notation. The angle between the bars is:

γ =
2β

p− 1
. (2.83)
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The lengths of the bars and cables are:

s0 =
L

2
, s1 =

L

2
cosβ, s2 = L sinβ sin

(
β

p− 1

)
, b1 = b2 =

L

2
sinβ.

(2.84)

From the equilibrium equations, we obtain the following relations for the

forces:

f1 =
F

4
[
cosβ + sin

(
β(p−2)
p−1

)
/ sin

(
β
p−1

)] , f2 = 2f1, (2.85)

t2 =
f2

2 sin
(

β
p−1

) , t1 = t2cos

(
β

p− 1

)
. (2.86)

Theorem 2.5.3. Consider a substructure bridge with topology described by

(2.84), with complexity (n, p, q) = (1, p, 0) (Fig. 2.14). At the yield condition

the dimensionless total mass is:

µY (β, p) =
t0
F

+
1

4

(p− 1) sinβ sin
(

β
p−1

)
+ cosβ cos

(
β
p−1

)
cosβ sin

(
β
p−1

)
+ sin

(
β(p−2)
p−1

)
+

%
(p− 1) sinβ

4
[
cosβ + sin

(
β(p−2)
p−1

)
/ sin

(
β
p−1

)] . (2.87)

Proof. Observing that the substructure bridge of the present theorem is the

dual structure of the superstructure bridge of Theorem 2.5.1, we can easily

obtain the proof of this theorem.

Corollary 2.5.3. The minimal mass in (2.87) is achieved at infinite com-

plexity p → ∞ and t0 = 0. The minimal mass at yielding for a substructure

bridge is:
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µ∗Y (β∗Y , p
∗) =

1

4

[
√
%+ (1 + %) arctan

1
√
%

]
, (2.88)

where p∗ →∞ and the optimal angle β∗Y is:

β∗Y = arctan

(
1
√
%

)
. (2.89)

Proof. Substitute p→∞ into Eq. (2.87) to obtain:

µ∗Y (β, p∗ →∞) =
β

4
(1 + %) +

1

4 tanβ
. (2.90)

The value of β that minimizes (2.90) is (2.89). Fig. 2.12 shows how mass

(2.87) varies with p and β. The optimal p∗ is deduced from the plot of Fig.

2.12 and the optimal angle is computed analytically in Eq. (2.89).

Theorem 2.5.4. Consider a substructure bridge with topology defined by

(2.84), with complexity (n, p, q) = (1, p, 0), See Fig. 2.14. At the buckling

condition the dimensionless total mass is minimized at p = 2 and t0 = 0,

where:

µB (β, p = 2) =
1 + tan2 β

4 tanβ
+
η

2

tan2 β

(1 + tan2 β)
3/4

. (2.91)

Corollary 2.5.4. The minimal mass substructure is achieved for p = 1.

Proof. The mass of a substructure with topology of n = 1 defined by (2.84),

for a general p > 1 is:
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µB (β, p) =
t0
F

+
1

4

(p− 1) sinβ sin
(

β
p−1

)
+ cosβ cos

(
β
p−1

)
cosβ sin

(
β
p−1

)
+ sin

(
β(p−2)
p−1

)
+

η

2
√

2

(
p− 2 +

√
2
)

sin2 β√
cosβ + sin

(
β(p−2)
p−1

)
/ sin

(
β
p−1

) . (2.92)

The plot of (2.92) in Fig. 2.13 vs. β for different p shows that (2.92) has

a minimum value at p = 2. However, the mass at p = 2, (2.91), is larger then

the mass (2.57) at p = 1 from Corollary 2.4.5.

The left side of Fig. 2.15 shows a sequence of substructures under yielding

constraints, as p increases. From (2.87) the mass is minimized at p → ∞
and β∗Y = 45 deg (% = 1). The right side of Fig. 2.15 shows a sequence of

substructures under buckling constraints, as p increases. From plot in Fig. 2.13

the mass is minimized at β = 90 deg for p = 1 (η = 857.71, same steel/steel

material as above).

Theorem 2.5.5. A minimal mass superstructure constrained against yielding

with hinge/roller boundary conditions, has the same optimal topology as a

minimal mass superstructure constrained against buckling and hinge/hinge

boundary conditions.

Proof. [20] proved that the minimal mass structure constrained against yield-

ing with hinge/roller boundary conditions has the topology of the right side

of Fig. 2.11 as q → ∞ and α → 90 deg. Theorem 2.5.2 provides the same

topology for hinge/hinge constraints.

Theorem 2.5.6. The minimal mass nominal bridge constrained against yield-

ing is obtained combining the optimal superstructure topology (Fig. 2.11, left
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side as q →∞) with the optimal substructure topology (Fig. 2.11, left side as

p→∞).

Proof. [20] obtained these same results by starting with a continuum and

optimizing the shape.

(a) (b)

(c)

Figure 2.16: Minimal mass bridges under (a) yielding constrained nominal
bridges, (b) buckling constrained superstructure bridge and (c) buckling con-
strained substructure bridge.

Fig. 2.16(a) illustrates the minimal mass nominal bridge under yield-

ing constraints (Theorem 2.5.5), leading to complexity (n, p, q) = (1,∞,∞).

Fig. 2.16(b) illustrates the minimal mass superstructure bridge under buck-

ling constraints, leading to complexity (n, p, q) = (1, 0, q → ∞). Fig. 2.16(c)

illustrates the minimal mass substructure bridge under buckling constraints,

leading to complexity (n, p, q) = (1, 1, 0).

2.6 Mass of Bridges of Complexity (n, p, q)=

(n, 1 or 0, 1 or 0)

This section finds the minimal mass of a tensegrity bridge of any complexity

n. As in previous sections, no deck mass is yet added til the next section.
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The total external load is a given constant force F . Dividing the span into 2n

equal sections, creates nodes at each section that carries load f , given by,

f =
F

2n
. (2.93)

Distributing the total external load equally among the number of spans

(2n) of the subsections requires internal nodes to carry load f = F/2n, and

the external nodes of the deck to carry load f/2.
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F
2
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L/2nL/2nL/2nL/2nL/2nL/2nL/2nL/2n
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Figure 2.17: Adopted notations for forces and lengths of bars and cables for a
substructure with generic complexity n and p = 1.
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Figure 2.18: Adopted notations for forces and lengths of bars and cables for a
superstructure with complexity (n, p) = (n, 1)

2.6.1 Substructure Bridge with Complexity (n, p, q) = (n, 1, 0)

In this case, we make use of the notation illustrated in Fig. 4.2 in which

complexity p is fixed to be one. Since n is the number of self-similar iteration
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of the basic module of Fig. 2.2c at different scales, it can be defined n orders

of bars and cables. The length of the generic ith bar and the length of the

generic ith cables are,

bi =
L

2i
tanβ, i = 1− n, (2.94)

si =
L

2i cosβ
, i = 1− n. (2.95)

From the equilibrium conditions, the axial force in each bar and the axial force

in each cable are given by,

fbi =
F

2i
, (2.96)

tsi =
F

2(1+i) sinβ
. (2.97)

Theorem 2.6.1. Consider a substructure bridge with topology defined by

(4.5), (4.6), (4.15) and (4.16), with complexity (n, p, q) = (n, 1, 0), see Fig.

4.2. The minimal mass design under only yielding constraints is given by the

following aspect angle:

β∗Y = arctan

(
1√

1 + %

)
, (2.98)

which corresponds to the following dimensionless minimal mass
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µ∗Y =

(
1− 1

2n

)√
1 + %. (2.99)

Proof. Observing the multiscale structure of Fig. 4.2 it’s clear that the number

of bars and the number of cables of ith order are

nsi = 2i, nbi = 2i−1. (2.100)

The total mass of the structure is:

mY =
%s
σs

n∑
i=1

nsitsisi +
%b
σb

n∑
i=1

nbifbibi. (2.101)

Substituting (4.15), (4.16), (2.96), (2.97) and (4.17) into (2.101) yields,

mY =
FL

2

(
n∑
i=1

1

2i

)(
%s
σs

1

sinβ cosβ
+
%b
σb

tanβ

)
. (2.102)

Using the following identities in (2.102),

n∑
i=1

1

2i
=

(
1− 1

2n

)
,

1

sinβ cosβ
=

1 + tan2 β

tanβ
, (2.103)

we obtain:

mY =
FL

2

(
1− 1

2n

)[
%s
%b

(
1 + tan2 β

)
tanβ

+
%b
σb

tanβ

]
. (2.104)

Switching to the dimensionless mass defined in (4.9) we have:
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µY =
1

2

(
1− 1

2n

)[(
1 + tan2 β

)
tanβ

+ % tanβ

]
. (2.105)

The solution for minimal mass can be achieved from,

∂µY
∂ tanβ

=
1

2

(
1− 1

2n

)[
−
(
tan2 β + 1

)
tan2 β

+ 2 + %

]
= 0, (2.106)

yielding the optimal angle of (2.98). Substituting it into (2.105) concludes the

proof.

Note from (2.35) and (2.98) that the optimal angle β does not depend

upon the choice of n. The minimal mass solution under yielding constraints

depends only on the material choice % (2.14), and the complexity parameter n.

Note that, since the total external force F is a specified constant, the optimum

complexity is n = 1. However if the total vertical force depends upon n as

it will in the next section dealing with massive decks, or with massive joints,

then the optimal complexity will be shown to be n > 1.

Theorem 2.6.2. Consider a substructure bridge with topology defined by

(4.5), (4.6), (4.15) and (4.16), with complexity (n, p, q) = (n, 1, 0), see Fig.

4.2. The minimal mass design under yielding and buckling constraints, is given

by the following aspect angle:

β∗B = arctan

{
1

12α2η

[
α3 + α1

(
α1

α3
− 1

)]}
. (2.107)

which corresponds to the following dimensionless minimal mass:
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µ∗B = α1
1 + tan2 β∗B

2 tanβ∗B
+ ηα2 tan2 β∗B, (2.108)

where:

α1 =

(
1− 1

2n

)
, (2.109)

α2 =

(
1 + 2

√
2

7

)(
1− 1

23n/2

)
, (2.110)

α3 =

(
216α1α

2
2η

2 − α3
1 + 12

√
324α2

1α
4
2η

4 − 3α4
1α

2
2η

2

)1/3

. (2.111)

Proof. The total mass of cables is given by,

ms =
n∑
i=1

%s
σs
nsitsisi. (2.112)

Substituting (4.16), (2.97), (4.17) into (2.112) and making use of identities

(2.103),

ms =
FL

2

%s
σs

(
1 + tan2 β

tanβ

)(
1− 1

2n

)
. (2.113)

This corresponds to the following normalized mass
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µs =

(
1 + tan2 β

2 tanβ

)(
1− 1

2n

)
. (2.114)

The total mass of bars, making use of (4.2), is

mb =
n∑
i=1

nbimbi =
n∑
i=1

nbi
2%b√
πEb

b2i
√
fi. (2.115)

Substituting (4.15), (4.17) and (2.96) into (2.115) yields

mb =
%bL

2
√
F√

πEb
tan2 β

n∑
i=1

1

23i/2
. (2.116)

Since

n∑
i=1

1

23i/2
=

(
1 + 2

√
2

7

)(
1− 1

23n/2

)
, (2.117)

normalizing we get the following dimensionless mass of bars,

µb = η tan2 β

(
1 + 2

√
2

7

)(
1− 1

23n/2

)
. (2.118)

The total mass is then the sum of (4.25) and (4.26) and introducing constants

α1 and α2 given in (2.109) and (2.110):

µB = µs + µb = α1
1 + tan2 β

2 tanβ
+ ηα2 tan2 β. (2.119)
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The solution for minimal mass can be achieved from,

∂µB
∂ tanβ

= α1

(
1− 1− tan2 β

2 tan2 β

)
+ 2ηα2 tanβ = 0, (2.120)

yielding the optimal angle (2.107) by solving the following cubic equation:

4
α2

α1
η tan3 β + tan2 β − 1 = 0. (2.121)

Note that the optimal angle given in (2.107) reduces to the optimal angle

given in (2.56) for the particular case n = 1. Then, substituting (2.107) into

(2.119) concludes the proof.

2.6.2 Superstructure Bridge with Complexity (n, p, q) = (n, 0, 1)

In this case, we make use of the notation illustrated in Fig. 2.18 in which

complexity q is fixed to be one. Since n is the number of self-similar iteration

of the basic module of Fig. 2.2b at different scales, it can be defined n orders

of bars and cables. The length of the generic ith bar and the length of the

generic ith cable, for i ranging from 1 to n, are:

bi =
L

2i cosα
, si =

L

2i
tanα. (2.122)

Moreover, looking at the equilibrium of each node of the structure, we

found that the axial force in each bar and the axial force in each cable are

given by:

fbi =
F

2(1+i) sinα
, tsi =

F

2i
. (2.123)
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Observing the multiscale structure of Fig. 2.18 it’s clear that the number of

bars and the number of cables of ith order are:

nsi = 2i−1, nbi = 2i. (2.124)

Theorem 2.6.3. Consider a superstructure bridge with topology defined by

(4.5), (2.12), (2.173), with complexity (n, p, q) = (n, 0, 1), see Fig. 2.18. The

minimal mass design under yielding constraints is given by the following aspect

angle:

α∗Y = arctan

(√
%

1 + %

)
, (2.125)

which corresponds to the following dimensionless minimal mass:

µ∗Y =

(
1− 1

2n

)√
% (1 + %). (2.126)

Proof. The total mass of the structure is:

mY =
%s
σs

n∑
i=1

nsitsisi +
%b
σb

n∑
i=1

nbifbibi. (2.127)

Substituting (2.173), (2.123), and (2.174) into (2.127) and considering posi-

tions (2.103) we get:

mY =
FL

2

(
1− 1

2n

)[
%s
σs

tanα+
%b
σb

(
1 + tan2 α

)
tanα

]
. (2.128)

Switching to the dimensionless mass defined in (4.9) we have:
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µY =
1

2

(
1− 1

2n

)[
tanα+ %

(
1 + tan2 α

)
tanα

]
. (2.129)

The solution for minimal mass can be achieved from,

∂µY
∂ tanα

=
1

2

(
1− 1

2n

)[
1 + %

(
2− 1 + tan2 α

tan2 α

)]
= 0, (2.130)

yielding the optimal angle of (2.125). Substituting it into (2.129) concludes

the proof.

Theorem 2.6.4. Consider a superstructure bridge with topology defined by

(4.5), (2.12), (2.173), with complexity (n, p, q) = (n, 0, 1), see Fig. 2.18. The

minimal mass design under yielding and buckling constraints is given by the

following aspect angle:

α∗B = arctan
1

2
, (2.131)

which corresponds to the following dimensionless minimal mass:

µ∗B =
γ1

2
+ ηγ2

55/4

4
, (2.132)

where:

γ1 =
1

2

(
1− 1

2n

)
, (2.133)
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γ2 =
√

2

(
1 + 2

√
2

7

)(
1− 1

23n/2

)
. (2.134)

Proof. The total mass of cables is given by:

ms =

n∑
i=1

%s
σs
nsitsisi. (2.135)

Substituting (2.173), (2.123) and (2.174) into (2.135) and making use of posi-

tion (2.103):

ms =
FL

2

%s
σs

(
1− 1

2n

)
tanα. (2.136)

That corresponds to the following normalized mass:

µs =
1

2

(
1− 1

2n

)
tanα. (2.137)

The total mass of bars, making use of (4.2), is:

mb =
n∑
i=1

nbimbi =
n∑
i=1

nbi
2%b√
πEb

b2i
√
fi. (2.138)

Substituting (2.173), (2.123) and (2.174) into (2.138):

mb =

√
2%bL

2
√
F√

πEb

1

cos2 α
√

sinα

n∑
i=1

1

23i/2
. (2.139)

Since:
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n∑
i=1

1

23i/2
=

(
1 + 2

√
2

7

)(
1− 1

23n/2

)
,

1

cos2 α
= 1 + tan2 α,

1√
sinα

=

(
1 + tan2 α

)1/4
√

tanα
, (2.140)

and normalizing we get the following dimensionless mass of bars:

µb =
√

2η

(
1 + 2

√
2

7

)(
1− 1

23n/2

) (
1 + tan2 α

)5/4
√

tanα
. (2.141)

The total mass is then the sum of (2.137) and (2.141) and introducing con-

stants γ1 and γ2 given in (2.133) and (2.134):

µB = µs + µb = γ1 tanα+ ηγ2

(
1 + tan2 α

)5/4
√

tanα
. (2.142)

The solution for minimal mass can be achieved assuming that:

γ1 tanα� ηγ2

(
1 + tan2 α

)5/4
√

tanα
. (2.143)

So that the (2.142) becomes:

µ̄B = ηγ2

(
1 + tan2 α

)5/4
√

tanα
. (2.144)

The optimal angle can be obtained from:
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∂µ̄B
∂ tanα

=
η

2
γ2

(
1 + tan2 α

)(1/4)
(

4 tan2 α− 1

tanα
√

tanα

)
= 0, (2.145)

yielding the optimal angle of (2.131). Substituting it into (2.142) concludes

the proof.

2.7 Introducing Deck and Joint Masses

In previous sections, complexity n was restricted to 1. This is appropriate only

when the external loads are all applied at the midspan. Real bridges cannot

tolerate such an assumption. So in this section we consider a distributed load.

Part of the load is the mass of the deck that must span the distance between

adjacent support structures (complexity n will add 2n − 1 supports). In the

section 2.7.4 we will consider adding mass to make the joints, where high

precision joints have less mass then rudely constructed joints.

2.7.1 Including Deck Mass

The total load that the structure must support includes the mass of the deck,

which increases with the distance that must be spanned between support

points of the structure design (which is determined by the choice of complexity

n). We therefore consider bridges with increasing complexity n. We will show

that the smallest n = 1 yields smallest structural mass and the largest deck

mass. The required deck mass obviously approaches zero as the required deck

span approaches zero, which occurs as n → ∞. We will show that the mass

of the deck plus the mass of the structure is minimized at a finite value of n.

The deck, as illustrated in Fig. 2.19, is composed by 2n simply supported

beams connecting the nodes on the deck. Let the deck parameters be labeled

as: mass md, mass density %d, yielding strength σd, width wd, thickness td and

length equal to:
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`d =
L

2n
. (2.146)

The cross sectional of the deck beam has a moment of inertia equal to:

Id = wdt
3
d/12. Each beam is assumed to be loaded by a uniformly distributed

vertical load summing to the total value F and the total self weight of the

deck (F) (g = 9.81ms−2):

fd =
F

L
+

F

L
=
F

L
+
md g 2n

L
. (2.147)

a)

b)

fd

td

`d `d `d `d

`d

td

wd

md, %d

Figure 2.19: a) schematic deck system for a substructure with complexity n = 3
and p = 1. b) detail of a single deck module.

Assuming that the beam of a single deck section is simply supported between

two consecutive nodes of the bridge, the maximum bending moment is equal

to fd`
2
d/8 and the maximum stress is given by Navier’s equation [144]:

σd =
3

4

fd `
2
d

wd t
2
d

. (2.148)
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The thickness of the deck beam is:

td =
md

%d wd `d
. (2.149)

Substituting (2.146), (2.147) and (2.149) into (2.148) we get the following

equation for the mass of one deck section:

md =
c1

23n
+

c1

22n

√
c2 +

1

22n
, (2.150)

where:

c1 =
3 wd g %

2
d L

3

8 σd
, c2 =

16 σd F

3 wd g2 L3 %2
d

. (2.151)

Then, the normalized total mass of the deck structure is:

µ∗d =
2n md

(%s/σs)FL
. (2.152)

The total force acting on each internal node on the deck is then the sum of

the force due to the external loads and the force due to the deck:

Ftot = F + 2n md g. (2.153)

2.7.2 Adding Deck Mass for A Substructure Bridge with Com-

plexity (n, p, q) = (n, 1, 0)

In this case, we make use of the notation illustrated in Fig. 4.2 in which

complexity p is fixed to be one. Complexity n is defined to be the number

of self-similar iterations of the basic module of Fig. 2.2c. Each iteration
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n = 1, 2, ... generates different lengths of bars and cables. The lengths at the

ith iteration are:

bi =
L

2i
tanβ, i = 1− n, (2.154)

si =
L

2i cosβ
, i = 1− n. (2.155)

Observing the multiscale structure of Fig. 4.2 it’s clear that the number of

bars and the number of cables at the ith self-similar iteration are

nsi = 2i, nbi = 2i−1. (2.156)

In this case the total force applied to the bridge structure is given by (4.14)

and then the forces in each member become:

fbi =
F + 2nmdg

2i
, tsi =

F + 2nmdg

2(1+i) sinβ
. (2.157)

Theorem 2.7.1. Consider a substructure bridge with deck mass md and

topology defined by (4.5), (4.6), (4.15) and (4.16), with complexity (n, p, q) =

(n, 1, 0), see Fig. 4.2. The minimal mass design under yielding constraints is

given by:

µ∗Y =

(
1− 1

2n

)(
1 + 2ng

md

F

)√
1 + %, (2.158)

using the optimal angle:
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β∗Y = arctan

(
1√

1 + %

)
. (2.159)

Proof. Assuming (4.15) and (4.16) for the length of each member, (4.18) for

the forces of each member, and (4.17) for the number of members, the dimen-

sionless minimal mass becomes:

µY =
1

2

(
1 + 2ng

md

F

)[ 1

sinβ cosβ
+ % tanβ

]( n∑
i=1

1

2i

)
. (2.160)

yielding,

µY =
1

2

(
1− 1

2n

)(
1 + 2ng

md

F

)[(1 + tan2 β
)

tanβ
+ % tanβ

]
. (2.161)

The solution for minimal mass can be achieved from,

∂µY
∂ tanβ

=
1

2

(
1− 1

2n

)(
1 + 2ng

md

F

)[
−
(
tan2 β + 1

)
tan2 β

+ 2 + %

]
= 0, (2.162)

yielding the optimal angle of (2.98). Substituting it into (2.160) concludes the

proof.

Observe that (2.158) yields mass
√

1 + %/2 for complexity n = 1 and mass
√

1 + % for complexity n =∞. Note from (2.98), which is the same as (2.35),

that the optimal angle β∗Y does not depend upon the choice of n. Indeed,

the minimal mass solution under yielding constraints (2.158) depends on the

material choice % (2.14), the complexity parameter n and the deck properties.

Note that, since the total external force F is a specified constant, the mass
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is minimized by the complexity n = 1 if md = 0. However since md depends

upon n, the total vertical force including deck mass depends upon n, and the

optimal complexity will be shown to be n > 1 in that case.

Theorem 2.7.2. Consider a substructure bridge with topology defined by

(4.5), (4.6), (4.15) and (4.16), with complexity (n, p, q) = (n, 1, 0). The min-

imal mass design under yielding and buckling constraints is given by:

µ∗B = β1

(
1 + tan2 β∗B

)
2 tanβ∗B

+ ηβ2 tan2 β∗B, (2.163)

using the aspect angle:

β∗B = arctan

{
1

12β2η

[
β3 + β1

(
β1

β3
− 1

)]}
, (2.164)

where:

β1 =

(
1− 1

2n

)(
1 + 2ng

md

F

)
, (2.165)

β2 =

(
1 + 2

√
2

7

)(
1− 1

23n/2

)√
1 + 2ng

md

F
, (2.166)

β3 =

(
216β1β

2
2η

2 − β3
1 + 12

√
324β2

1β
4
2η

4 − 3β4
1β

2
2η

2

)1/3

. (2.167)

Proof. The total mass of the cables, using (4.16), (4.18) and (4.17), is given

by:
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µs =

(
1 + tan2 β

2 tanβ

)(
1− 1

2n

)(
1 + 2ng

md

F

)
. (2.168)

Similarly, making use of (4.2), the total mass of bars is:

µb = η tan2 β

(
1 + 2

√
2

7

)(
1− 1

23n/2

)√
1 + 2ng

md

F
. (2.169)

Introducing constants β1 and β2 given in (4.22) and (4.23), the total mass is:

µB = µs + µb = β1

(
1 + tan2 β

)
2 tanβ

+ ηβ2 tan2 β. (2.170)

The solution for minimal mass can be achieved from,

∂µB
∂ tanβ

= β1

(
1− 1− tan2 β

2 tan2 β

)
+ 2ηβ2 tanβ = 0, (2.171)

yielding the optimal angle of (4.21) by solving the following cubic equation:

4
β2

β1
η tan3 β + tan2 β − 1 = 0. (2.172)

Substituting (4.21) into (4.27) concludes the proof.
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2.7.3 Adding Deck Mass for A Superstructure Bridge with

Complexity (n, p, q) = (n, 0, 1)

In this case, we make use of the notation illustrated in Fig. 2.18 in which

complexity q is fixed to be one. Complexity n is the number of self-similar

iterations of the basic module of Fig. 2.2b at different scales. After the ith

self-similar iterations, the length of the bars and cables for i ranging from 1

to n, are:

bi =
L

2i cosα
, si =

L

2i
tanα. (2.173)

Observing the multiscale structure of Fig. 2.18 it’s clear that the number of

bars and the number of cables after the ith self-similar iterations are:

nsi = 2i−1, nbi = 2i. (2.174)

In this case the total force applied to the bridge structure is given by (4.14)

and then the forces in each member become:
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Figure 2.20: Optimal masses under yielding of the substructures (left) and
superstructure (right) without deck (solid curves) and with deck (dashed curves)
for different values of the complexity n and for different values of %, (F = 1 N ,
wd = 1 m, steel deck).
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fbi =
F + 2nmdg

2(i+1) sinα
, tsi =

F + 2nmdg

2i
. (2.175)

Theorem 2.7.3. Consider a superstructure bridge with topology defined by

(4.5), (2.12), (2.173), with complexity (n, p, q) = (n, 0, 1), Fig. 2.18. Under

a given total vertical force (4.14), the minimal mass design under yielding

constraints is given by:

µ∗Y =

(
1− 1

2n

)(
1 + 2ng

md

F

)√
% (1 + %), (2.176)

using the aspect angle:

α∗Y = arctan

(√
%

1 + %

)
. (2.177)

Proof. Substituting (2.173), (2.175), and (2.174) into (2.127) and considering

positions (2.103) we get:
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Figure 2.21: Optimal masses under buckling of the substructures (left) and
superstructure (right) without deck (solid curves) and with deck (dashed curves)
for different values of the complexity n and for different values of η, (F = 1 N ,
L = wd = 1 m, steel deck).
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mY =
(F + 2nmdg)L

2

(
1− 1

2n

)[
%s
σs

tanα+
%b
σb

(
1 + tan2 α

)
tanα

]
. (2.178)

Switching to the dimensionless mass defined in (4.9) we have:

µY =
1

2

(
1 + 2ng

md

F

)(
1− 1

2n

)[
tanα+ %

(
1 + tan2 α

)
tanα

]
. (2.179)

The solution for minimal mass can be achieved from,

∂µY
∂ tanα

=
1

2

(
1 + 2ng

md

F

)(
1− 1

2n

)[
1 + %

(
2− 1 + tan2 α

tan2 α

)]
= 0,(2.180)

yielding the optimal angle of (2.177). Substituting it into (2.179) concludes

the proof.

Theorem 2.7.4. Consider a superstructure bridge with topology defined by

(4.5), (2.12), (2.173), and complexity (n, p, q) = (n, 0, 1), see Fig. 2.18. The

structure is loaded with a given total vertical force (4.14) and the minimal bar

mass, subject to yield constraints is given by:

µ∗B =
δ1

2
+ ηδ2

55/4

4
, (2.181)

using the aspect angle:

α∗B = arctan
1

2
, (2.182)

where:
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δ1 =
1

2

(
1 + 2ng

md

F

)(
1− 1

2n

)
, (2.183)

δ2 =
√

2

(
1 + 2

√
2

7

)√
1 + 2ng

md

F

(
1− 1

23n/2

)
. (2.184)

Proof. Substituting (2.173), (2.175) and (2.174) into (2.135) and making use

of position (2.103):

ms =
(F + 2nmdg)L

2

%s
σs

(
1− 1

2n

)
tanα. (2.185)

That corresponds to the following normalized mass:

µs =
1

2

(
1 + 2ng

md

F

)(
1− 1

2n

)
tanα. (2.186)

Substituting (2.173), (2.175) and (2.174) into (2.138):

mb =

√
2%bL

2

√
πEb

√
F + 2nmdg

cos2 α
√

sinα

n∑
i=1

1

23i/2
. (2.187)

Using positions (2.140) into (2.187) and normalizing we get the following di-

mensionless mass of bars:

µb =
√

2η

√
1 + 2ng

md

F

(
1 + 2

√
2

7

)(
1− 1

23n/2

) (
1 + tan2 α

)5/4
√

tanα
. (2.188)

The total mass is then the sum of (2.186) and (2.188) and introducing con-
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stants δ1 and δ2 given in (2.183) and (2.184):

µB = µs + µb = δ1 tanα+ ηδ2

(
1 + tan2 α

)5/4
√

tanα
. (2.189)

The solution for minimal mass can be achieved assuming that:

δ1 tanα� ηδ2

(
1 + tan2 α

)5/4
√

tanα
. (2.190)

So that the (2.189) becomes:

µ̄B = ηδ2

(
1 + tan2 α

)5/4
√

tanα
. (2.191)

The optimal angle can be obtained from:

∂µ̄B
∂ tanα

=
η

2
δ2

(
1 + tan2 α

)(1/4)
(

4 tan2 α− 1

tanα
√

tanα

)
= 0, (2.192)

yielding the optimal angle of (2.182). Substituting it into (2.189) concludes

the proof.

Fig. 2.20 for yielding and Fig. 2.21 for buckling show as the theorems

obtained in this section can be applied to compute the optimal mass of sub-

structure or superstructure for any choice of the parameter % (for yielding) or

η (for buckling) . We obtained that, with the addition of deck mass to the

design, the optimal complexity n becomes greater then 1. In the next section

we will show the effect of the addition of joint mass.

73



2. ANALYTIC RESULTS ON THE OPTIMAL DESIGN OF TENSEGRITY
BRIDGES

2.7.4 Penalizing Complexity with cost considerations: Adding

Joint Mass

Theorem 2.7.1, for md = 0, leads to an optimal complexity n = 1 which

corresponds to a minimal mass equal to
√

1 + %/2. As complexity n approaches

infinity, instead, the mass given in (2.158), for md = 0, go to a limit equal to
√

1 + %. However, the addition of the deck mass in Theorem 2.7.1 switches the

optimal complexity from n = 1 to n =∞, so small complexities n are penalized

by massive decks. Also in this latter case, the resulting optimal minimal mass

is then
√

1 + %, as can be verified looking the (2.158) or considering that as n

goes to infinity the deck mass given in (2.150) approaches zero. As a matter

of fact, neither n = 1 or n = ∞ are believable solutions due to practical

reasons: the first solution leads only to a single force at the middle of the

span, the second solution leads to an infinite number of joints and connections.

The minimal masses obtained from (2.158) with or without deck correspond

to perfect massless joints. The addition of the joint masses to a tensegrity

structure with nn nodes, as illustrated in [27], leads to the following total

normalized mass:

µ∗Y,tot = µ∗Y + µ∗d + Ωnn, (2.193)
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Figure 2.22: Optimal masses under yielding of the substructures (left) and
superstructure (right) (red curve) and total optimal mass with deck and different
joint factors (dashed and dottled curves) for different values of the complexity n
(steel for bars, cables, deck, F = 1 N , L = wd = 1 m).
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Let $j be the cost per kg of making joints and let $b be the cost per kg of

making bars. Then define Ω = $b/$j . For perfect joints Ω = 0, for rudely made

low cost joints $j is small and Ω is larger. Hence Ω is also approximatively the

ratio of material cost per joint divided by material cost per structural member

being joined.

Consider the minimal masses of the substructure bridge (µ∗Y ) constrained

against yielding, for the cases with or without deck, see Eq. (2.158). Assume

steel material for cables, bars and deck beams and set F = 1 N , L = wd =

1 m. Without deck the optimal aspect angle β∗Y (2.98) is 35.26 deg. For the

case with neither deck nor joint mass, the optimum complexity n is 1, which

corresponds to an optimal mass µ∗Y =
√

2/2. As n approaches infinity the

mass tends to a limit equal to
√

2, which is also the optimal mass for the

case with deck mass and perfectly manufactured joints, since µ∗d approaches

zero for n → ∞. Note that with the addition of joint masses as illustrated

in (2.193), the optimal complexity n∗ can become a finite value. The above

procedure can be also used for the design under buckling constraints.

Figs. 2.22 (for yielding) and Fig. 2.23 (for buckling) show the total minimal

masses obtained by using (2.193). In both Figs. 2.22 and 2.23 we also show

with red curves the minimal mass of substructures or superstructures only. In

either case, the total mass of the structure with deck (but no joint mass), is

shown by black continuous lines in Figs. 2.22 and 2.23, reaching minimum for
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Figure 2.23: Optimal masses under buckling of the substructures (left) and su-
perstructure (right) (red curves) and total optimal masses with deck and different
joint factors (dashed and dotted curves) for different values of the complexity n
(steel for bars, cables, deck, F = 1 N , L = wd = 1 m).
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an infinite complexity n. It is worth nothing that, for infinite n, the mass of

the deck is zero and the total minimum mass is just the mass of the bridge

structure. Then, with the dotted and dashed lines, we show that a finite

optimal complexity can be achieved if the joint’s masses are considered.

From Fig. 2.22 note that the minimal mass (µ ∼= 21) bridge has complexity

n = 11 for Ω = 0.002, and has minimal mass µ ∼= 15 with complexity n = 12

for Ω = 0.001. Economic costs would decide if saving 25 % structural mass is

worth the extra cost of improving the joint precision by a factor of 2.

2.8 Discussion of the results

We designed bridges from the elementary consideration of i) yielding con-

straints, ii) buckling constraints, iii) without deck mass, iv) with deck mass,

v) superstructure only, vi) substructure only, vii) without joint mass, viii) with

joint mass.

We optimize the complexity of the structure, where structural complexity

as the number of members in the design. This can be related to 3 parameters

(n, p, q), where 2n is the number of deck sections along the span; p is the

number of compressive members (bars) reaching from the span center to the

substructure; and q is the number of cables reaching from the span center to

the superstructure. Hence we refer to (n, p, q) as the three different kinds of

complexities of the structure. We used a tensegrity structural paradigm which

allowed these several kinds of complexities. The complexity n is determined by

a self-similar law to fill the space of the bridge. As the number of self-similar

iterations go to infinity we get a tensegrity fractal topology. However, the

number of self-similar iterations n and the complexities p and q required to

minimize mass, under different circumstances within the set of 8 possibilities

i),...,viii) listed above, go to an optimal number between 1 and infinity, where

an infinite complexity fills the define space with a continuum.

First we optimized structures under yielding constraints for the simply-

supported case (n = 1) with no deck. The number of self-similar iterations
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n of the given tensegrity module goes to infinity as the mass approaches the

minimum. Our result produces the same topology as [20], where there is a

compressive member at 45 deg attached at each boundary, connecting to a 1/4

pie shaped continuum material piece at the center. The bottom half of the

bridge (the substructure) is the dual of the superstructure (dual meaning flip

the structure about the horizontal axis and replace all tension members with

compression members and all tension members with compressive members).

We showed that the top half of this structure is the optimal topology for

bridge designs which do not allow any substructure, and conversely that the

bottom half of this structure is the optimal topology for bridges allowing no

superstructure.

Secondly, we optimized the simply supported bridge (n = 1) under buck-

ling constraints with no deck. For the superstructure design we proved that

the minimal mass is achieved at high values of q, approaching a continuum

(where the shape of the structure is a half disk). It is interesting that this

shape (designed under buckling constraints) is the same as the result of [20],

which was derived under yielding constraints and different boundary condi-

tions (our conditions were hinge/hinge and his were hinge/roller). We also

optimized the substructure bridge (without deck) to find an optimal com-

plexity (n, p, q) = (1, 1, 0). This substructure bridge has less mass than the

superstructure bridge except for extremely high complexity (q > 400). At

q = 3000, the superstructure has one fifth the mass of the substructure design.

Thirdly, we consider adding a deck to the bridge, since this is the only practi-

cal possibility to carry distributed loads. Under yield constraints the minimal

mass bridge requires infinite complexity n (infinite self-similar iterations of the

tensegrity module). The bridge has superstructure and substructure that are

duals of each other. The angle of departure from the boundaries is 35.26 deg

(as opposed to 45 deg for the no deck mass discussed above). Under buckling

constraints the structure (n, p, q) = (n, 1, 1) has minimal mass at n =∞. The

superstructure has a departure angle (from the boundary) of approximatively

26.56 deg as opposed to larger angles for yielding designs and no-deck designs.
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The substructure under buckling constraints has an even more streamlined

profile with departure angle approximatively of 5.18 deg. Furthermore the

mass of a substructure design is much smaller that the mass of a superstruc-

ture design.

In all of the design cases studied, we conclude that the infinite complexity

substructure bridge is the solution which minimizes the sum of deck mass and

structural mass.

Finally, we consider the impact of assigning a mass penalty to the number

of required joints. We suppose that the cost per kg of compressive members is

$b, and that the cost per kg of fabricated joints is $j . The ratio Ω = $b/$j is

used as a weighting factor to add joint mass to member mass and this sum is

minimized. The total minimal mass is always at a finite complexity n <∞ and

p = q = 1. Again, buckling is always the mode of failure in our study, leading

to the conclusion that with deck mass and joint mass, this paper describes the

optimal complexity to obtain a minimal mass bridge, and this bridge is not

a continuum (as Michell produced under yield assumptions), but, has finite

complexity n. The optimal complexity n is given in terms of fabrication costs

and material properties.
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3.1 Introduction

The present Chapter deals with a numerical approach to the parametric design

of tensegrity bridges, which complements the analytic one presented in Chap.

2. The minimal mass topology derived from A.G.M. Michell derived in [20]

for a simply supported bridge structures examines only superstructures above

the roadbed. Nevertheless, a tensegrity deck design requires a structure also

below the roadbed. The bridge model analyzed here and in Chap. 2 integrates

superstructures and substructures to minimize the overall mass of the bridge.

We hereafter examine different versions of the general bridge model pre-

sented in Chap. 2, with or without considering the mass of the deck. A key

result that we observe is that the minimum mass topology of the tensegrity

bridge features two different (discrete-continuous) structural scales, which are

related to the different complexity parameters taken into account. We end by

presenting the main conclusions of the present study in Sect. 4.6.

3.2 First bridge model without deck

In a famous work dated 1904, A.G.M. Michell examines the problem of finding

the minimum volume network of fully stressed truss elements, which transmit

a vertical force applied at the middle point C of a given segment AB to two

fixed hinge supports applied at A and B [20]. On pages 594-597 of this work,

Michell deals with a truss network spanning a 2D continuous domain includ-

ing the points A, B and C along its boundary (centrally loaded beam), and

assumes that the material of such a domain is homogenous. Without entering

the mathematical aspects of Michell’s problem (refer, e.g., to [14]), we notice

that the Michell topology under consideration includes a portion DE of a cir-

cumference centered in C, the segments DA and EB lying on the tangents in

D and F to the arch DE, and all the radii of the circular sector CDE (cf. Fig.

3.1, where the compressive elements (or bars) of the Michell frame are rep-

resented through thick black lines, while the tensile elements (or strings) are

80



3. NUMERICAL RESULTS ON THE OPTIMAL DESIGN OF TENSEGRITY
BRIDGES

represented through thin red lines). Such a topology can be applied to both

the regions placed above and below the applied force F , with the difference

that the arch ADEB (hereafter also called Michell arch) works in compression

and the radii pointing to C work in tension in the first case (Fig. 3.1, top),

while, on the contrary, the arch ADEB works in tension and the radii pointing

to C work in compression in the second case (Fig. 3.1, bottom). It is worth

noting that the central angle of the circular sector CDE gets larger and larger,

as the angle α (or β) gets closer and closer to 90 deg (Fig. 3.1).

We here introduce a parametric model of a tensegrity bridge obtained

through n self-similar subdivisions of a basic module. This module is formed

by a single Michell arch showing p radii, placed above the deck of the bridge,

and two arches, each of them showing q = p radii, placed below the deck. Such

a bridge is constrained by a fixed hinge support at one end of the deck, and a

rolling hinge support at the other end. We show the basic module correspond-

ing to n = p = 1 in Fig. 3.2, while more complex shapes corresponding to

higher values of n and p are shown in Fig. 5.4.3. Notice how each arch above

the deck features p radii, and each arch below the deck features q radii, with

p = q. The angles α and β can assume arbitrary values, and the horizontal

elements at the level of the deck (represented through blue lines in Fig. 3.2)

can work either in tension or in compression (bidirectional elements, cf. [145]).

Such elements provide the horizontal components of the lateral (supporting)

forces of the Michell arch (Fig. 3.1). The basic module shown in Fig. 3.2

exhibits a single compressed arch above the deck, two tensile chords below the

deck and a subdivision of the deck into four elements of equal length. Here-

after, we let f denote the total force transferred from the deck to the bridge

structure. For n > 1, we assume that the elements of the nested arches placed

above the deck can overlap each other. Moreover, to consider a common re-

quirement for bridges over navigable water, we discard the outer arches placed

below the deck (indicated by dotted lines in Fig. 5.4.3), in order to reduce

the size of the substructure below the deck, for clearance above the water.

In a real bridge structure, the elements placed above the deck would have a
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3D geometry that prevents member overlapping. It is worth noting that the

geometry corresponding to an arbitrary number n of self-similar subdivisions

of the basic module features 2n+1 elements at the level of the deck, and show

nodal forces equal to f/(2n+1) in correspondence with the intermediate nodes

placed at the level of the deck. The following variables completely define the

geometry of the bridge structure: the total span L, the ‘top aspect angle’ α,

the ‘bottom aspect angle’ β, and the complexity parameters n, p and q. The

total numbers of top arches, nta, bottom arches, nba, strings, ns, bars, nb, and

nodes, nn, are given by:

nta = 2n − 1, nba = 2n, (3.1)

ns = qnta + (p+ 1)nba + 2n+1, nb = (q + 1)nta + pnba + 2n+1, (3.2)

nn = q nta + p nba + 2n+1 + 1. (3.3)

As to the node coordinates, we observe that the nodes belonging to the ‘su-

perstructure’ (i.e., the portion of the bridge placed above the deck) lie on n

nested circumferences with radii Rti (i = 1, ..., n), while the nodes of the ‘sub-

structure’ instead lie on sequential circumferences with radius Rb. Such radii

are computed as follows

Rti =
L

2i
sinα, (i = 1, ..., n); Rb =

L

2n
sinβ. (3.4)

We look for the optimal values of the complexity parameters n, p and q

and the aspect angles α and β, which minimize the mass of the bridge under

yielding and buckling constraints. As anticipated, we prescribe q = p and we

assume that all bars and strings are made up of the same material, for the

sake of simplicity. The removal of such constraints is not a big issue from the

theoretical point of view, but might lead to a significant increase in the number
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Figure 3.1: Michell frames for a centrally loaded beam.

Figure 3.2: Basic module of the tensegrity bridge (n = 1, p = 1).

of optimization variables. We close the present section with some remarks

on prestress design, a typical feature of tensegrity systems. The procedure

by [145] returns the minimal mass structure, for a given loading condition,

together with a certain prestress state. By changing such a prestress, while

increasing the mass, one can improve the ability of a structure to tolerate

larger uncertainties in the external loading, and avoid slackening problems

in cables. We leave the prestress calibration to a second step of the current

design strategy, to be carried out after the minimal mass topology has been

determined.

3.2.1 Mass minimization algorithm

We deal with the minimum mass design of the fractal bridge presented in Sect.

3.2 through the iterative linear programming procedure extensively presented
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in [145] that we briefly summarize hereafter. Let σ̄Y denote the yield stress of

the material. We enforce the following yield constraint in the generic string

σsi = σ̄Y , i = 1, ..., ns, (3.5)

where σsi denotes the maximum admissible stress in such an element. Con-

cerning the bars, we assume that the maximum admissible compressive stress

σbi in each of such elements, defined as a positive quantity, is given by

n = 3 n = 4
p = 4 p = 4

n = 3 n = 3
p = 2 p = 3

n = 2 n = 1
p = 1 p = 2

Figure 3.3: Exemplary geometries of the tensegrity bridge for different values
of the complexity parameters n and p = q.

σbi = min (σ̄Y , σ̄Bi), i = 1, ..., nb, (3.6)

where σ̄Bi denotes the local buckling stress [145]. Denoting the i-th bar length

by bi, and assuming that such a bar has circular cross-section with radius rbi ,
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we compute σ̄Bi through Euler’s formula

σ̄Bi =
π2E

4

(
rbi
bi

)2

=
πE

4

Abi
b2i
, i = 1, ..., nb, (3.7)

where E is the Young moduli of the material, and Abi = πr2
bi

is the area of

the cross-section.

Now, let λbi denote the compressive force per unit length in the i-th bar,

and let γsi denote the tensile force per unit length in the i-th string, both

defined to be positive quantities. Assuming that all the bars and strings are

fully stressed (i.e., the normal stress is equal to the maximum admissible stress

in each of such elements), we compute the overall mass of the bridge structure

through

m = cTx, (3.8)

with

x = [λ1 · · · λnb
| γ1 · · · γns ]

T , (3.9)

c =
[
cb1 ... cnb

| cs1 ... cns

]T
, (3.10)

and we set

cbi =
%b2i
σbi
, csi =

%s2i
σsi
, (3.11)

% being the mass density per unit volume of the material, and si being the

length of the i-th string. The force density vector x must satisfy the equilib-

rium equations of all the nodes of the bridge structure, which we write into

the following matrix form

Ax = w. (3.12)
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Here, A is a static matrix depending on the geometry and the connectivity

of bars and strings, and w is the nodal force vector obtained by stacking-up

the single external force vectors of each node (refer to [145] for the detailed

expressions of such arrays). We neglect the contributions to w due to the self-

weight of the bridge structure, assuming that the overall weight of the bridge

structure is much less than the weight of the deck. If needed, the inclusion

of gravity forces into Eq. (3.12) can be easily carried out following [145] (cf.

Sect. 3.3).

Given the bridge span, L, the total weight of the deck, f , and arbitrary

values of the design variables, α, β, n and p, we determine the minimum bridge

mass and the optimal values of the force densities by iteratively solving the

linear programming problem

minimize
x

m = cTx,

subject to

{
Ax = w,

x ≥ 0.
(3.13)

Initally, we set σbi = σ̄Y in all the bars. Let us denote the current solution of

problem (3.13) by x
′
, and the corresponding minimum mass of the bridge by

m
′

(step 1). The current values of the axial forces in all the bars and strings

are given by

t
′
bi

= λ
′
bi
bi, t

′
si = γ

′
sisi, (3.14)

where λ
′
bi

is the entry of x
′

corresponding to the i-th bar, and γ
′
si is the entry

of the same vector corresponding to the i-th string. By post-processing the

current solution, and enforcing combined yielding and buckling constraints in

all the bars, we compute updated bar cross-section areas through
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A
′′
bi

=


√
t
′
bi
/(πE/4b2i ) (t

′
bi
≤ t∗bi)

t
′
bi
/σ̄Y (t

′
bi
> t∗bi)

, (3.15)

where t∗bi = (σ̄Y )2/(πE/4b2i ) (cf. [145], Appendix A). Accordingly, we define

an updated mass of the bridge structure, via the equation

m
′′

=

nb∑
i=1

% A
′′
bi
bi +

ns∑
i=1

%s2
i

σsi
x
′
si . (3.16)

If the ratio |(m′′ − m′)/m′ | is lower than a given tolerance we stop the op-

timization procedure at the current iteration, otherwise we set σbi = t
′
bi
/A
′′
bi

and go back to step 1. The rest of the document makes use of the following

dimensionless mass factor,

µ =
m σ̄Y
% L f

. (3.17)

A pure yielding design of the bridge, which corresponds to the approach

followed by Michell in his 1904 study of a centrally loaded beam, is obtained

by arresting the above procedure at the first iteration (σbi = σ̄Y in all the

bars). Hereafter, we use the index Y to denote the mass and the design vari-

ables corresponding to such a design strategy. It is worth noting that the

solution of the optimization problem (3.13) leads us to resolve the indetermi-

nacy associated with the bidirectional elements placed at the level of the deck

[145].
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3.2.2 Numerical results

In this section we present a collection of numerical results, which aim to il-

lustrate the potential of the minimum mass design under consideration. We

use the symbols µ∗, α∗ and β∗ to denote the minimum mass and the optimal

aspect angles of the tensegrity bridge under combined yielding and buckling

constraints, respectively, and the symbols µ∗Y , α∗Y and β∗Y to denote the opti-

mal values of the same quantities under simple yielding constraints. In all the

examples, we search for a global minimum mass configuration of the bridge,

by recursively running the optimization procedure presented in Sect. 3.2.1, so

that the design variables n, p, α and β may range within prescribed search

domains. We set the step increments of n and p to 1, the step increments

of α and β to 0.01 deg. In addition, we set L, f and % to unity, in ab-

stract units, and make use of the following assumptions: σ̄Y = 6.9× 108L2/f ;

E = 2.1 × 1011L2/f . It is worth observing that the basic module shown in

Fig. 3.2 can be in equilibrium either in presence of the elements placed at the

level of the deck, or in absence of such elements (blue elements in Fig. 3.2),

due to the double arch mechanism played by the two portions of the bridge

placed above and below the deck. In order to highlight the relative ‘weight’ of

the elements placed at the level of the deck, we introduce the following ratios,

µ∗db
µ∗b

,
µ∗ds
µ∗s

. (3.18)

where µ∗db, µ
∗
sb, µ

∗
b , µ

∗
s denote the total mass of the bars placed at the level

of the deck, the total mass of the strings placed at the level of the deck, the

overall mass of the bars and the overall mass of the strings, respectively, in cor-

respondence with any arbitrary minimum mass configuration under combined

yielding and buckling constraints. We remind the reader that the elements

placed at the level of the deck are bidirectional, in the sense that they can

contemporarily serve as bars or strings [145].
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3.2.3 Minimum mass design for n = 1, and variable p, α, and

β

We begin by conducting a minimum mass design that keeps n constant and

equal to 1, and lets α, β and p range in the following intervals,

p ∈ [1, 60], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.19)

Figure 3.4 and Tab. 3.1 show the optimization results obtained in the

present case. Under simple yielding constraints, the results shown in Tab. 3.1

indicate that the mass of the bridge might converge to a global minimum when

p → ∞ (µ∗Y → 0.985, cf. Tab. 3.1). Conversely, the aspect angles α and β

converge to the following limiting values: α∗Y → 54.73 deg, and β∗Y → 35.26

deg. The inclusion of self-weight [145] does not cause a significant change of

the optimal topology: by adding gravity forces we indeed obtain µ∗Y = 0.9853,

α∗Y = 55.31 deg, β∗Y = 35.84, when p = 60. Under combined buckling and

yielding constraints, the mass of the bridge approaches a global minimum for

a finite value of the complexity p (µ∗ → 337.69 for p = 11, cf. Tab.3.1). As p

approaches such an optimal value, the aspect angles converge to the following

limiting values: α∗ → 53.42 deg, and β∗ → 33.97 deg. It is worth noting

that the minimum mass configuration under combined buckling and yielding

constraints shows similar aspect ratios and a much greater mass, as compared

to that corresponding to simple yielding constraints. For p < 25, the mass

ratio µ∗ds/µ
∗
s assumes values ranging in the interval [1× 10−7, 6× 10−5], while

the mass ratio µ∗db/µ
∗
b ranges in the interval [2× 10−11, 6× 10−7]. Such results

show that the elements placed at the level of the deck can be ignored for

p < 25. On the contrary, for p ≥ 25 we again observe µ∗ds/µ
∗
s � 1, but this

time the ratio µ∗db/µ
∗
b becomes relevant and progressively increasing with p,

being equal to 0.56 for p = 25, and 0.68 for p = 60. The latter results highlight

that the elements placed at the level of the deck act as compressed members

(bars) of relevant structural importance for p ≥ 25. Fig. 3.4 illustrates the

geometries of the (relative) minimum mass configurations corresponding to
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p α∗Y β∗Y µ∗Y α∗ β∗ µ∗

1 41.83 24.11 1.1180 26.11 13.77 808.84

3 50.29 31.05 1.0235 42.78 24.83 446.26

5 53.42 33.97 0.9952 50.29 31.05 375.84

7 54.33 34.86 0.9896 51.97 32.59 349.79

9 54.42 34.95 0.9876 53.13 33.69 340.13

10 54.42 34.96 0.9871 53.42 33.97 338.30

11 54.44 34.97 0.9867 53.42 33.97 337.69

12 54.49 35.02 0.9864 53.42 33.97 337.92

13 54.53 35.06 0.9862 53.42 33.97 338.76

15 54.58 35.11 0.9859 53.13 33.69 341.67

20 54.65 35.18 0.9855 51.98 32.60 352.24

25 54.68 35.21 0.9854 74.39 22.29 375.03

30 54.70 35.23 0.9853 76.17 21.15 372.02

40 54.72 35.25 0.9852 78.37 19.60 369.85

50 54.72 35.25 0.9852 79.69 18.54 370.17

60 54.73 35.26 0.9851 80.57 17.75 371.58

Table 3.1: Selected results for the example in Sect. 3.2.3.

several selected values of p, in presence of combined yielding and buckling

constraints.

3.2.3.1 Minimum mass design for variable n, p, α, and β

The second minimum mass design that we examine assumes that all the design

variables n, p, α, and β may simultaneously vary within the following bounds,

n ∈ [2, 5], p ∈ [1, 7], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.20)

The most relevant results corresponding to the present case are illustrated

in Tab. 3.2 and Figs. 3.5, 3.6. The results in Tab. 3.2 highlight that the

global minimum mass configuration under combined yielding and buckling

constraints is reached for n = 2, p = 7 (µ∗ = 333.17, α∗ = 62.52 deg, β∗ =

17.77 deg), within the search domain (3.23). In particular, the mass of such
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n p α∗Y β∗Y µ∗Y α∗ β∗ µ∗

2 1 44.62 9.34 1.5207 26.58 4.77 1086.23

2 3 57.81 14.83 1.3329 45.20 9.53 558.02

2 5 63.73 18.66 1.2674 56.10 13.93 413.11

2 7 66.42 20.90 1.2534 62.52 17.77 333.17

3 1 44.96 4.08 1.7545 26.58 2.05 1186.33

3 3 59.52 6.92 1.5232 45.31 4.13 607.67

3 5 69.56 10.85 1.4341 56.63 6.19 446.20

3 7 72.52 12.78 1.4137 63.71 8.23 354.03

4 1 44.96 1.91 1.8761 26.58 1.03 1221.82

4 3 59.73 3.27 1.6256 45.31 1.93 625.75

4 5 71.41 5.66 1.5262 56.65 2.90 459.24

4 7 75.51 7.35 1.5021 63.82 3.88 363.95

5 1 45.01 0.93 1.9378 26.58 0.75 1234.39

5 3 59.92 1.60 1.6784 45.32 1.44 632.19

5 5 71.84 2.83 1.5747 56.65 1.71 463.95

5 7 76.80 3.96 1.5489 63.83 1.88 367.65

Table 3.2: Selected results for the example in Sect. 3.2.3.1.

a configuration is slightly lower than the global minimum mass obtained for

n = 1, p = 11 in Sect. 3.2.3 (µ∗ = 333.17 vs µ∗ = 337.69, respectively). Re-

ferring to the case with n = 2, in order to detect if the global minimum mass

configuration is obtained for finite complexity p or not, we let this parame-

ter grow up to p = 13, and determine the corresponding relative minimum

mass configurations of the bridge. We find out that the mass of the bridge

monotonically decreases when p grows from 1 to 13, and n remains equal to

2. In particular, the relative minimum mass configuration for n = 2 and

p = 13 is the following: µ∗ = 225.98, α∗ = 69.45 deg, β∗ = 23.97 deg. Such

results, together with those presented in Tab. 3.2, indicate that the global

minimum mass configuration of the bridge might be achieved either for rather

large values of p, or in the limit p → ∞, when n ≥ 2. By adding gravity
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p µ∗Y µ∗

1 2.0261 1419.43

5 1.8545 569.55

10 1.8486 524.96

15 1.8478 512.81

20 1.8475 507.41

30 1.8473 502.79

40 1.8473 501.03

50 1.8472 500.33

60 1.8472 500.12

Table 3.3: Selected results for the example in Sect. 3.2.3.2.

forces [145], and referring to the case with n = 2 and p = 13, we obtain

µ∗ = 227.49, α∗ = 69.48 deg, and β∗ = 23.52 deg. Such results show that

the inclusion of self-weight does not cause a significant change of the minimum

mass configuration at hand, as we already observed in presence of simple yield-

ing constraints (cf. Sect. 3.2.3). As to the elements placed at the level of

the deck, we observe the following results: µ∗db/µ
∗
b � 1, and µ∗ds/µ

∗
s � 1, for

n ≤ 3. The ratio µ∗ds/µ
∗
s becomes relevant for n > 3, being equal to 0.06 for

n = 4 and p = 1, and 0.3 for n = 5 and p = 1. Nevertheless, the same ratio

decreases with p for fixed n, being equal to ≈ 10−4 for n = 4 and p = 7, and

≈ 10−5 for n = 5 and p = 7. We can therefore conclude that such elements

serve as tensile members (strings) for n > 1, and that their structural relevance

increases with n and decreases with p. Regarding the global minimum mass

configuration corresponding to the search domain (3.23) and simple yielding

constraints, we observe that such a configuration is reached for n = 2 and

p = 7 (µ∗Y = 1.2534, α∗Y = 66.42 deg, β∗Y = 20.90 deg, cf. Tab. 3.2) and that

the corresponding mass is greater than the global minimum obtained in Sect.

3.2.3 for n = 1 and p→∞ (µ∗Y → 0.9851). It is also seen from Tab. 3.2 that,

in each of the examined cases, the optimal values of α very slowly increase

with n, and rather markedly increase with p. The optimal values of β instead
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markedly decrease with n, and significantly increase with p. It is worth noting

that the two examined design strategies (simple yielding constraints and com-

bined yielding and buckling constraints) lead to rather different aspect ratios

of the bridge for p = 1 (cf. Fig. 3.5), and, on the contrary, to more similar

geometries as p gets larger, for any given n (cf. Tab. 3.2, and Sect. 3.2.3). The

results shown in Fig. 3.6 emphasize that the current minimum mass design of

the bridge leads to rather large values of α and considerably small values of β,

as the complexity parameters n and p progressively increase. In particular, the

bottom height of the bridge dramatical shrinks for n ≥ 3 (Fig. 3.6 ). This is

explained by observing that the lower chords of the bridge carry tensile forces

tba = fn
2Sin(β) (cf. Fig. 3.1), with fn = f/(2n+1). As n goes to infinity and β

goes to zero, it can be verified that tba approaches a finite limit. The solution

with β → 0 becomes convenient in terms of mass savings as n → ∞, since

it reduces the lengths of the tensile chords and compressed rays placed below

the deck. We wish to remark, however, that the global minimum mass con-

figuration is achieved for n = 1 under simple yielding constraints, and n = 2

under combined yielding and buckling constraints
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3.2.3.2 Minimum mass design for n = 5, α = 40 deg, β = 60 deg,

and variable p

The results shown in Fig. 3.6 highlight that a rigorous minimum mass design

of a tensegrity bridge might lead to rather disordered shapes and member over-

lapping. Moreover, bridge designers usually prefer to orient their conceptual

designs, by requiring that the bridge features given aspect ratios, and/or given

topologies or shapes. Therefore, it makes sense to consider a minimum mass

design that keeps fixed most of the design variables, and lets just one of them

to vary within prescribed bounds. Tab. 3.3 and Fig. 3.7 show the results of

a minimum mass design that keeps n = 5, α = 40 deg, and β = 60 deg fixed,

and lets the complexity p to range in the search interval [1, 60]. The results in

Tab. 3.3 highlight that the mass of the bridge monotonically decrease with p

within such a search domain, either under simple yielding constraints, and in

presence of combined yielding and buckling constraints. The current results

confirm those presented in the previous section, highlighting that the global

minimum mass configuration is achieved either for very large values of p, or in

the limit p → ∞. Concerning the elements placed at the deck level, we now

observe µ∗db/µ
∗
b � 1, and µ∗ds/µ

∗
s ≈ 0.6, which implies that such elements serve

as strings with relevant structural importance in the present case. Some of

the relative minimum mass geometries corresponding to different choices of p

are illustrated in Fig. 3.7.
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µ∗ = 369.9 µ∗ = 370.2
n = 1 n = 1
p = 40 p = 50

µ∗ = 372.0 µ∗ = 370.5
n = 1 n = 1
p = 30 p = 35

µ∗ = 352.2 µ∗ = 375.0
n = 1 n = 1
p = 20 p = 25

µ∗ = 337.7 µ∗ = 341.7
n = 1 n = 1
p = 11 p = 15

µ∗ = 808.8 µ∗ = 375.8
n = 1 n = 1
p = 1 p = 5

Figure 3.4: Optimal bridge topologies under combined yielding and buckling
constraints, for n = 1, α ∈ (0, 90) deg, β ∈ (0, 90) deg, and p ∈ [1, 50].

3.3 Second bridge model without deck

In the present and next Section 3.4 we show the minimal masses and the

optimal angles of tensegrity bridges defined in Chap. 2 with several complex-

ities n, p and q. The numerical results are presented in terms of µ∗B, α∗B and

β∗B denoting respectively the minimal masses and the optimal aspect angles

under combined yielding and buckling constraints for each bar and yielding

constraints for each cable; and in terms of µ∗Y , α∗Y and β∗Y denoting respec-
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µ∗Y = 1.94 µ∗ = 1234.4
n = 5 n = 5
p = 1 p = 1

µ∗Y = 1.88 µ∗ = 1221.8
n = 4 n = 4
p = 1 p = 1

µ∗Y = 1.75 µ∗ = 1186.3
n = 3 n = 3
p = 1 p = 1

µ∗Y = 1.52 µ∗ = 1086.2
n = 2 n = 2
p = 1 p = 1

µ∗Y = 1.12 µ∗ = 808.8
n = 1 n = 1
p = 1 p = 1

Figure 3.5: Optimal topologies under yielding constraints (left) and combined
yielding and buckling constraints (right) for different values of n and p = 1.

tively the minimal masses and the optimal aspect angles under yielding con-

straints only for each member. The results are obtained numerically through

a MatLab R© program written employing the algorithm illustrated in Sect. 3

of [141]. The optimization problems presented in Tables 3.5, 3.6, 3.7, 3.8, 3.9,

3.10, are solved assuming L = 1 m, F = 1 N , no deck mass, and steel for

both cables and bars (refer to Table 4.1 for the material properties; % = 1;

η = 857.71). The examined topologies are distinguished in three categories:

1) nominal bridges with both structure above and below the roadway (Sect.
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µ∗ = 632.2 µ∗ = 367.6
n = 5 n = 5
p = 3 p = 7

µ∗ = 625.8 µ∗ = 364.0
n = 4 n = 4
p = 3 p = 7

µ∗ = 607.7 µ∗ = 354.0
n = 3 n = 3
p = 3 p = 7

µ∗ = 558.0 µ∗ = 333.2
n = 2 n = 2
p = 3 p = 7

µ∗ = 446.3 µ∗ = 349.8
n = 1 n = 1
p = 3 p = 7

Figure 3.6: Optimal topologies under combined yielding and buckling con-
straints for different values of n, p = 3 (left), and p = 7 (right).

3.3.1; Fig 2.3); 2) substructure only bridges (Sect. 3.3.2; Fig. 2.5) and 3)

superstructure only bridges (Sect. 3.4.2; Fig. 4.4). In all the optimized cases,

we set step increments of complexities n, p and q to 1 and step increments

of 0.01 deg for the aspect angles α and β. It is worth noting that, as showed

for the basic module (Fig. 2.2) analyzed in Sect. 2.4.1, the cables placed on

the deck have zero mass at the solution for minimal mass basically thanks to

the adopted constraints (HH: double fixed hinges). We also show in Section

3.5 some numerical results for rolling hinge at one end of the bridge and fixed
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µ∗ = 501.0 µ∗ = 500.3
n = 5 n = 5
p = 40 p = 50

µ∗ = 504.5 µ∗ = 502.8
n = 5 n = 5
p = 25 p = 30

µ∗ = 512.8 µ∗ = 507.4
n = 5 n = 5
p = 15 p = 20

µ∗ = 542.6 µ∗ = 525.0
n = 5 n = 5
p = 7 p = 10

µ∗ = 1419.4 µ∗ = 650.4
n = 5 n = 5
p = 1 p = 3

Figure 3.7: Optimal topologies under buckling constraints for n = 5, fixed
angles α = 40 deg and β = 60 deg, and different values of p.

hinge at the other end (HR). We also report, for each optimized structure,

the masses of cables under buckling constraints (µ∗B,s) to show, as will be more

clear in the following, as their order of magnitude with respect to the mass

total mass of the structure (µ∗B) increase towards the global optimum. In

other words, the principal source of mass savings of a tensegrity structure for

buckling is placed in the mass of bars.
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steel

% [kg/m3] 7862

σ [N/m2] 6.9 x 108

E [N/m2] 2.06 x 1011

Spectra R©- UHMWPE

% [kg/m3] 970

σ [N/m2] 2.7x109

E [N/m2] 120x109

Table 3.4: Material properties.

3.3.1 Nominal Bridges

We have performed several numerical results for the nominal bridges, illus-

trated in Fig. 2.3, in which both structure above and below the roadway are

allowed. Starting from the basic unit in Fig. 2.2a, we have considered different

complexities n, p and q and different aspect angles α and β, in order to get

the combination of such parameters that ensures the minimal mass solution.

First of all, we start fixing parameter n to unity and let parameters p, α and

β ranging in the following intervals:

(p, q) ∈ [1, 100], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.21)

The results of this first design are presented in Table 3.5. For what concern

the design under only yielding constraints for all members, the global minimum

is achieved for a complexity q∗Y = p∗Y →∞ and for aspect angles α∗Y = β∗Y →
45 deg, which corresponds to a minimal mass µ∗Y → 0.6427 (Table 3.5). Such

a result confirms the minimal mass solution for a centrally loaded loaded beam

reported in Fig. 2 by [20]. In particular, for a beam of total span 2aM loaded

in the middle with a force FM and made of tensile and compressive members

with allowable yielding stresses equal respectively to P and Q; [20] predicted
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a limit volume equal to:

vM = FMaM

(
1

2
+
π

4

)(
1

P
+

1

Q

)
. (3.22)

Substituting in the (3.22), as in the present case, FM = F/2, aM = L/2 m,

P = Q = 6.9x108 N/m2, we obtain a volume vM = 9.31448x10−10 m3. On

the other hand, the minimal mass µ∗Y → 0.6427 corresponds to a volume

v∗Y = 0.6427FL/σs = 9.31449x10−10m3. We will show in the next Sects.

3.3.2 and 3.4.2 that the same minimal mass can be achieved also starting from

superstructure only bridges showed in Fig. 4.4 and superstructure bridges

showed in Fig. 2.5. The equivalence between substructure and superstructure

under yielding constraints can be justified by the assumption of bars and

cables made of the same materials (% = 1). An example of this equivalence

can be obtained assuming, eg., % = 1 in the Eq. (2.99) of Theorem 2.6.1

for substructures with complexity (n, p) = (n, 1) and in the Eq. (2.126) of

Theorem 2.6.3 for superstructures with complexity (n, q) = (n, 1).

Under buckling constraints, the global optimum in the domain (3.21) is

achieved for a finite complexity p∗B = 1, which corresponds to a minimal mass

of µ∗B = 5.0574 and an aspect angle of the substructure equal to β∗B = 4.25 deg.

In all the combined cases under buckling, we have obtained that the optimal

solutions keep only the substructure and the total mass of the superstructure is

negligible if compared with the total mass. In fact, for the global optimum with

q∗B = p∗B = 1 and β∗B = 4.25 deg, we have obtained a mass of the superstructure

equal to 4.3983x10−10. For the other cases, we have obtained similar negligible

values of the mass of superstructures ranging from a minimum of 1.9019x10−12

for the case with q = p = 45 and a maximum of 3.1483x10−6 for the case

with p = q = 10. The analyzed cases of domain (3.21), then, reduce to

the substructure only cases for buckling. As a matter of fact, the angles β∗B
decrease from 4.25 deg to 1.98 deg as the complexities q = p increase from 1

to 100. The reduction of β∗B corresponds to an increase of the tensile forces

of the cables constituting the substructure and, consequently, also the total

100



3. NUMERICAL RESULTS ON THE OPTIMAL DESIGN OF TENSEGRITY
BRIDGES

n p α∗Y [deg] β∗Y [deg] µ∗Y α∗B [deg] β∗B [deg] µ∗B µ∗B,s
1 1 35.26 35.26 0.7071 - 4.25 5.0574 3.3827

1 2 35.26 35.26 0.7071 - 3.80 5.6662 3.7805

1 3 41.41 41.41 0.6614 - 3.57 6.0309 4.0227

1 4 43.23 43.23 0.6514 - 3.40 6.3260 4.2228

1 5 43.96 43.96 0.6476 - 3.27 6.5683 4.3899

1 10 44.78 44.78 0.6437 - 2.91 7.3839 4.9308

1 15 44.91 44.91 0.6431 - 2.72 7.9054 5.2741

1 20 44.95 44.95 0.6429 - 2.59 8.2960 5.5380

1 25 44.97 44.97 0.6428 - 2.50 8.6127 5.7369

1 30 44.98 44.98 0.6428 - 2.42 8.8796 5.9260

1 35 44.98 44.98 0.6428 - 2.36 9.1115 6.0763

1 40 44.99 44.99 0.6428 - 2.31 9.3173 6.2076

1 45 44.99 44.99 0.6427 - 2.26 9.5025 6.3446

1 50 44.99 44.99 0.6427 - 2.22 9.6712 6.4587

1 100 45.00 45.00 0.6427 - 1.98 10.8574 7.2401

Table 3.5: Numerical results of nominal bridge with complexities n = 1 and
different p = q under yielding (Y ) and combined yielding and buckling constraints
(B), (F = 1 N ; L = 1 m; steel bars and steel strings).

mass of cables (indicated with µ∗B,s in Table 3.5) increases. In other words,

for the combined bridges under buckling or, equivalently, for the substructures

bridges under buckling, the total mass of the cables is the big part of the total

mass of the structure.

The second optimization domain let the parameters n, p, α and β ranging

in the following intervals:

n ∈ [1, 5], p ∈ [1, 3], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.23)

The results of this second design are presented in Table 3.6. For what con-

cern the yielding case, we can observe that, for fixed values of the complexity p,

the global optimum in the domain (3.23) is achieved for n∗Y = 1 and p∗Y = 3.

Moreover, the optimal aspect angles α∗Y and β∗Y appear not depending on
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the complexity n. Merging the optimization carried out in both the domains

(3.21) and (3.23), we can conclude that the global optimum for yielding is for

n∗Y = 1 and q∗Y = p∗Y → ∞ and for aspect angles α∗Y = β∗Y → 45 deg, which

corresponds to a minimal mass µ∗Y → 0.6427 (Table 3.5). It is worth noting

that such a solution brings to a mass reduction, from the case with n = 1

and (p, q) = (1, 1) (µ∗Y = 0.7071), of only 9.1%. Moreover the above minimum

doesn’t take care of manufacture processes that becomes relevant for struc-

tures with numerous joints and members. Then, a finite optimal complexity

p = q could be achieved a posteriori by adding, eg., joint masses as illustrated

in Sect. 2.7.4.

The optimizations under buckling constraints reported in Table 3.6 show

that the global optimum in the domain (3.23) is the same obtained in the

domain (3.21), i.e. for p∗B = 1, β∗B = 4.25 deg and µ∗B = 5.0574. Also in

each complexities ranging in the intervals (3.23) we obtain, for buckling, local

minimal masses solutions that keeps only the substructures. In fact, also in

domain (3.23), we have obtained negligible values of the mass of superstruc-

tures under buckling ranging from a minimum of 3.7436x10−13 for the case

with n = 5, q = p = 1 and a maximum of 2.3257x10−6 for the case with

n = 1, p = q = 3. Such a results for buckling are also confirmed in the next

Sect. 3.3.2. In Table 3.6, we observe that the optimal aspect angles for buck-

ling β∗B increase as complexity n increase and decrease as complexity q = p

increase.

3.3.2 Substructures

In this Section, we show the results obtained for the optimizations of the

substructure bridges showed in Fig. 4.4 in which only structure below the

roadway is allowed. Starting from the basic module illustrated in Fig. 2.2c,

we have considered different complexities n, p and different aspect angles α

and β ranging in two domains with the aims to get the global minimum mass

design both under yielding constraints and under buckling constraints.

First of all, we start fixing parameter n to unity and let parameters p, α
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n p α∗Y [deg] β∗Y [deg] µ∗Y α∗B [deg] β∗B [deg] µ∗B µ∗B,s
1 1 35.26 35.26 0.7071 - 4.25 5.0574 3.3827

1 2 35.26 35.26 0.7071 - 3.80 5.6662 3.7805

1 3 41.41 41.41 0.6614 - 3.57 6.0309 4.0227

2 1 35.26 35.26 1.0607 - 4.40 7.3326 4.9024

2 2 35.26 35.26 1.0607 - 3.93 8.2143 5.4843

2 3 41.41 41.41 0.9922 - 3.69 8.7426 5.8388

3 1 35.26 35.26 1.2374 - 4.49 8.3705 5.6058

3 2 35.26 35.26 1.2374 - 4.02 9.3762 6.2561

3 3 41.41 41.41 1.1575 - 3.77 9.9791 6.6682

4 1 35.26 35.26 1.3258 - 4.55 8.8520 5.9276

4 2 35.26 35.26 1.3258 - 4.07 9.9149 6.6211

4 3 41.41 41.41 1.2402 - 3.82 10.5523 7.0516

5 1 35.26 35.26 1.3700 - 4.59 9.0790 6.0723

5 2 35.26 35.26 1.3701 - 4.10 10.1689 6.7921

5 3 41.41 41.41 1.2816 - 3.85 10.8226 7.2302

Table 3.6: Numerical results of nominal bridges with different complexities n
and p under yielding (Y ) and combined yielding and buckling constraints (B),
(F = 1 N ; L = 1 m; steel bars and steel strings).

and β ranging in the following intervals:

p ∈ [1, 500], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.24)

The results of this first design are presented in Table 3.7. For what concern

the design under only yielding constraints the global minimum is achieved for a

complexity p∗Y →∞ and for an aspect angle β∗Y → 45 deg, which corresponds

to a minimal mass µ∗Y → 0.6427 (Table 3.7). The optimizations for buckling

constraints, instead, allow to identify a global minimum for complexity p∗B = 1

and for an aspect angle β∗B = 4.25 deg, which corresponds to a minimal mass

µ∗B = 5.0574 (Table 3.7).
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n p β∗Y [deg] µ∗Y β∗B [deg] µ∗B µ∗B,s
1 1 35.26 0.7071 4.25 5.0574 3.3827

1 2 35.26 0.7071 3.80 5.6666 3.7805

1 3 41.41 0.6614 3.57 6.0312 4.0227

1 4 43.23 0.6514 3.40 6.3265 4.2228

1 5 43.96 0.6476 3.27 6.5687 4.3899

1 10 44.78 0.6437 2.91 7.3843 4.9308

1 15 44.91 0.6431 2.72 7.9058 5.2741

1 20 44.95 0.6429 2.59 8.2969 5.5380

1 25 44.97 0.6428 2.50 8.6131 5.7368

1 30 44.98 0.6428 2.42 8.8800 5.9260

1 35 44.98 0.6428 2.36 9.1120 6.0763

1 40 44.99 0.6428 2.31 9.3177 6.2076

1 45 44.99 0.6427 2.26 9.5029 6.3446

1 50 44.99 0.6427 2.22 9.6716 6.4587

1 100 45.00 0.6427 1.98 10.8578 7.2401

1 200 45.00 0.6427 1.76 12.1881 8.1437

1 300 45.00 0.6427 1.65 13.0402 8.6860

1 400 45.00 0.6427 1.57 13.6806 9.1281

1 500 45.00 0.6427 1.51 14.1994 9.4904

Table 3.7: Numerical results of substructures with complexities n = 1 and
different p under yielding (Y ) and combined yielding and buckling constraints
(B), (F = 1 N ; L = 1 m; steel bars and steel cables).

Then, we let parameters n, p, α and β ranging in the following intervals:

n ∈ [1, 5], p ∈ [1, 3], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.25)

The results of this second design are presented in Table 3.8. For what

concern the design under only yielding constraints, the global minimum in

domain (3.25), is achieved for complexities n∗Y = 1, p∗Y = 3 and for an aspect

angle β∗Y → 41.41 deg, which corresponds to a minimal mass µ∗Y = 0.6614
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n p β∗Y [deg] µ∗Y β∗B [deg] µ∗B µ∗B,s
1 1 35.26 0.7071 4.25 5.0574 3.3827

1 2 35.26 0.7071 3.80 5.6662 3.7805

1 3 41.41 0.6614 3.57 6.0308 4.0227

2 1 35.26 1.0607 4.40 7.3326 4.9024

2 2 35.26 1.0607 3.93 8.2143 5.4843

2 3 41.41 0.9922 3.69 8.7426 5.8388

3 1 35.26 1.2374 4.49 8.3705 5.6058

3 2 35.26 1.2374 4.02 9.3763 6.2562

3 3 41.41 1.1575 3.77 9.9791 6.6682

4 1 35.26 1.3258 4.55 8.8531 5.9929

4 2 35.26 1.3258 4.07 9.9149 6.6212

4 3 41.41 1.2402 3.82 10.5523 7.0517

5 1 35.26 1.3700 4.59 9.0790 6.0723

5 2 35.26 1.3701 4.10 10.1690 6.7921

5 3 41.41 1.2816 3.85 10.8226 7.2302

Table 3.8: Numerical results of substructures with different complexities n
and p under yielding (Y ) and combined yielding and buckling constraints (B),
(F = 1 N ; L = 1 m; steel bars and steel cables).

(Table 3.8). For the optimizations under buckling constraints, instead, we

have obtained a global minimum for complexities n∗B = p∗B = 1 and for an

aspect angle β∗B = 4.25 deg, which corresponds to a minimal mass µ∗B = 5.0574

(Table 3.8).

Such a results retrace the results in Table 3.5 already obtained for the

nominal bridges. This can be explained considering the assumption % = 1 and

the symmetry of the constraints of the bridge (double fixed hinges, HH). It

is shown, eg., in the numerical results of Tables 3.14, 3.15, 3.16 in Section 3.5

that changing constraints from double fixed hinges (HH) to fixed hinge and

rolling hinge (HR), the equivalence between nominal bridge, substructure and

superstructure bridge never subsists.
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3.3.3 Superstructures

We end the numerical results without deck showing the optimizations of the

superstructure bridges showed in Fig. 2.5 in which only structure above the

roadway is allowed. Starting from the basic module illustrated in Fig. 2.2b,

we have considered different complexities n, q and different aspect angles α

and β ranging in two domains with the aims to get the global minimum mass

design both under only yielding constraints and under buckling constraints.

First of all, we start fixing parameter n to unity and let parameters q, α

and β ranging in the following intervals:

q ∈ [1, 500], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.26)

Table 3.9 shows the results obtained considering parameters ranging in the

domain (3.26). For what concern the design under only yielding constraints,

the numerical results in Table 3.9 show that the global minimum is achieved

for a complexity q∗Y → ∞ and for an aspect angle α∗Y → 45 deg, which

corresponds to a minimal mass µ∗Y → 0.6427 (Table 3.9). The optimizations

for buckling constraints identify a global minimum for complexity q∗B → ∞
and for an aspect angle α∗B → 90 deg, which corresponds to a minimal mass

µ∗B → 4.6151 (Table 3.9).

Then, we let parameters n, q, α and β ranging in the following intervals:

n ∈ [1, 5], q ∈ [1, 3], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.27)

Refer to Table 3.10 for the results of the optimizations over the domain

(3.27). For yielding constraints, the global minimum is obtained for com-

plexities n∗Y = 1, q∗Y = 3 and for an aspect angle α∗Y = 41.41 deg, which

corresponds to a minimal mass µ∗Y = 0.6614 (Table 3.10). For the optimiza-

tions under buckling constraints, instead, we have obtained a global minimum

for complexities n∗B = 1, p∗B = 3 and for an aspect angle α∗B = 45.31 deg,
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n q α∗Y [deg] µ∗Y α∗B [deg] µ∗B µ∗B,s
1 1 35.26 0.7071 26.56 801.7357 0.1250

1 2 35.26 0.7071 36.22 514.7336 0.1231

1 3 41.41 0.6614 45.31 410.5778 0.2087

1 4 43.23 0.6514 51.70 346.8507 0.2326

1 5 43.96 0.6476 56.64 301.3080 0.2523

1 10 44.78 0.6437 70.63 181.3748 0.3101

1 15 44.91 0.6431 76.86 128.6606 0.3364

1 20 44.95 0.6429 80.19 99.3742 0.3505

1 25 44.97 0.6428 82.25 80.8126 0.3593

1 30 44.98 0.6428 83.56 68.0759 0.3649

1 35 44.98 0.6428 84.51 58.8000 0.3690

1 40 44.99 0.6428 85.23 51.7491 0.3721

1 45 44.99 0.6427 85.78 46.2113 0.3744

1 50 44.99 0.6427 86.21 41.7482 0.3763

1 100 45.00 0.6427 88.14 21.3224 0.3846

1 200 45.00 0.6427 89.07 10.9156 0.3886

1 300 45.00 0.6427 89.38 7.4204 0.3900

1 400 45.00 0.6427 89.53 5.6680 0.3907

1 500 45.00 0.6427 89.62 4.6151 0.3910

Table 3.9: Numerical results of superstructures with complexities n = 1 and
different q under yielding (Y ) and combined yielding and buckling constraints
(B), (F = 1 N ; L = 1 m; steel bars and steel cables).

which corresponds to a minimal mass µ∗B = 410.5778 (Table 3.10).

The optimizations for yielding conducted for the superstructure only bridges

over the domains (3.26) and (3.27) allow to find a global minimum (q∗Y →
∞, α∗Y → 45 deg, µ∗Y → 0.6427) that matches the minimum founded start-

ing from nominal bridges and substructure only bridges. As validation of the

adopted numerical solution, the here found global minimum corresponds to

the result illustrated in Fig. 2 by [20]. It’s interesting to note that the results

under buckling constraints (q∗B → ∞, α∗B → 90 deg, µ∗B → 4.6151) show

that, differently for what obtained from the combined or the substructure
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n q α∗Y [deg] µ∗Y α∗B [deg] µ∗B µ∗B,s
1 1 35.26 0.7071 26.56 801.7349 0.1250

1 2 35.26 0.7071 36.22 514.7336 0.1231

1 3 41.41 0.6614 45.31 410.5778 0.2087

2 1 35.26 1.0607 26.56 1085.2 0.1875

2 2 35.26 1.0607 36.22 696.7464 0.2747

2 3 41.41 0.9922 45.31 555.7697 0.3130

3 1 35.26 1.2374 26.56 1185.4 0.2187

3 2 35.26 1.2374 36.22 761.1108 0.3204

3 3 41.41 1.1575 45.31 607.1179 0.3652

4 1 35.26 1.3258 26.56 1220.9 0.2343

4 2 35.26 1.3258 36.22 783.8740 0.3433

4 3 41.41 1.2402 45.31 625.2800 0.3913

5 1 35.26 1.3700 26.56 1233.4 0.2421

5 2 35.26 1.3701 36.22 791.9251 0.3548

5 3 41.41 1.2816 45.31 631.7049 0.4043

Table 3.10: Numerical results of superstructures with different complexities n
and p under yielding (Y ) and combined yielding and buckling constraints (B),
(F = 1 N ; L = 1 m; steel bars and steel cables).

bridges (p∗B = 1, β∗B = 4.25 deg, µ∗B = 5.0574), the optimal complexity q is

at infinite. Moreover, it is worth noting that increasing complexity q allows a

strong reduction of the mass, that is reducing from µ∗B = 801.7357 for q = 1

to µ∗B = 4.6151 for q = 500. Then, with the optimizations carried out in

Sects. 3.3.1, 3.3.2 and 3.4.2, the case of a centrally loaded beam illustrated in

Fig. 2 of [20] has been extended to accomplish the buckling case. Tables 3.7,

3.8 for substructure bridges and Tables 3.9, 3.10 for superstructure bridges

also show the total masses of cables (µ∗B,s) obtained under buckling for each

optimized case. We show that, for the substructures, the total mass of the

cables (µ∗B,s) is the most part of the total mass of the structure under buckling

(µ∗B). For the case n = q = p = 1, eg., µ∗B,s/µ
∗
B = 0.67 for the substructure

(see Table 3.7) while µ∗B,s/µ
∗
B = 1.56x10−4 for the superstructure (see Ta-
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ble 3.9). This makes clear that the substructure bridges under buckling work

mainly with cables and the length and the forces (and then the mass) of the

bars can be extremely reduced playing with the aspect angle β. Moreover,

Table 3.9 shows that the global minimum for buckling for the superstructure

(q∗B → ∞, α∗B → 90 deg, µ∗B → 4.6151) corresponds to a maximum of the

ratio µ∗B,s/µ
∗
B = 0.085 over the domain (3.26).

3.4 Bridge model with deck

In the present Section, we report numerical results of the tensegrity bridges

defined in Chap. 2 including deck mass and joints mass. Taking into account

the results obtained in the case without deck, we performed the numerical

simulation only for buckling constraints, since it has been shown that this

is the mode of failure in all cases. Moreover, the optimizations will be per-

formed only for substructure bridges (Sect. 3.4.1) and superstructure bridges

(Sect. 3.4.2) and not for nominal bridges, since these optimizations bring to

solutions keeping only substructure. The numerical results are presented in

terms of µ∗d, µ
∗
B,S , µ∗B,tot, α

∗
B and β∗B denoting respectively the mass of deck

(2n md σs/(%s F L)), the mass of the bridge structure, the total minimal mass

including bridge structure, deck and joints (µ∗B,S + µ∗d + µ∗J) and the optimal

aspect angles. The total mass of joints µ∗J is computed as the product between

the number of joints (nn) and a fixed joint factor (Ω). The results are obtained

numerically through the MatLab R© program written employing the algorithm

illustrated in Sect. 3 of [141]. The optimization problems presented in Tables

3.11, 3.12 are solved assuming L = 30 m, F = 450 kN , deck mass computed

as defined in (2.150), steel for bars and deck beams, Spectra R© for cables (refer

to Table 4.1 for the material properties; % = 31.72; η = 1216.55). In all the

optimized cases, we set step increments of complexities n, p and q to 1 and

step increments of 0.01 deg for the aspect angles α and β.
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3.4.1 Substructures

In this Section, we show the results obtained for the optimizations of the

substructure bridges showed in Fig. 4.4 including deck and joints masses.

First of all, we let parameters n, p, α and β ranging in the following intervals:

n ∈ [1, 5], p ∈ [1, 3], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.28)

A first set of results are presented in Table 3.11 in which we didn’t consider

jet joint masses. The global minimum in the domain (3.28) is obtained for

complexities n∗B = 5, p∗B = 1 and for an aspect angle β∗B = 4.11 deg, which

corresponds to a total minimal mass µ∗B,tot = 334.7613 (Table 3.11).

The results in Table 3.11 identify an optimal complexity n lying on the

boundary of the domain (3.28). Then we have performed another optimiza-

tion keeping p = 1 and increasing only complexity n. In this case, since the

number of nodes given in (4.5) is exponentially increasing with n, the numer-

ical simulation of such structure would be computationally heavy. For that

reason, we made use of the analytical solution given in Theorem 4.4.1. In this

case, we have also added the mass of joints considering increasing values of the

joint factor Ω and the results are showed in Fig. 3.8. The red curve reports

the masses of substructure bridge only (µ∗B,S), the solid curve is the total mass

without joints and the dashed and dotted curves include the joint masses. We

obtained a finite complexity n ranging between 11 and 12 considering joint

masses.

3.4.2 Superstructures

In this Section, we show the results obtained for the optimizations of the

superstructure bridges showed in Fig. 2.5 including deck and joints masses.
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n p µ∗d β∗B [deg] µ∗B,S µ∗B,tot
1 1 6659.9 4.13 8.8585 6668.8

1 2 6659.9 3.69 9.9260 6669.9

1 3 6659.9 3.47 10.5649 6670.5

2 1 2917.9 4.09 10.3025 2928.2

2 2 2917.9 3.66 11.5443 2929.5

2 3 2917.9 3.44 12.2875 2930.2

3 1 1364.3 4.09 10.5151 1347.8

3 2 1364.3 3.66 11.7826 1376.1

3 3 1364.3 3.43 12.5411 1376.9

4 1 659.5 4.10 10.5120 670.0878

4 2 659.5 3.66 11.7791 671.3548

4 3 659.5 3.44 12.5373 672.1131

5 1 324.28 4.11 10.4841 334.7613

5 2 324.28 3.67 11.7459 336.0232

5 3 324.28 3.45 12.5021 336.7793

Table 3.11: Numerical results of substructures with deck for different complex-
ities n and p under buckling constraints (B), (F = 450 kN ; L = 30 m; wd = 3 m,
steel bars and deck, Spectra R©- UHMWPE cables).

First of all, we let parameters n, q, α and β ranging in the following intervals:

n ∈ [1, 5], q ∈ [1, 3], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.29)

A first set of results are presented in Table 3.12 in which we didn’t consider

jet joint masses. The global minimum in the domain (3.29) is obtained for

complexities n∗B = 5, p∗B = 3 and for an aspect angle α∗B = 45.31 deg, which

corresponds to a total minimal mass µ∗B,tot = 1235.3 (Table 3.12).

We then fix parameter n = 5, and let q, α and β ranging in the following
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intervals:

q ∈ [1, 50], α ∈ (0, 90) deg, β ∈ (0, 90) deg. (3.30)

Results of such optimizations are reported in Table 3.13, in which we didn’t

consider jet joint masses. The global minimum in the domain (3.30) is obtained

for complexities n∗B = 5, p∗B = 50 and for an aspect angle α∗B = 86.21 deg,

which corresponds to a total minimal mass µ∗B,tot = 416.8388 (Table 3.13).

The results in Table 3.13 identify an optimal complexity q lying on the

boundary of the domain (3.30). It is worth noting that the above solution is

without joint masses. Then, we have performed another optimization over the

same domain (3.30) but considering joint masses with increasing joint factor Ω

and their results are showed in Fig. 3.9. The red curve reports the masses of

superstructure bridge (µ∗B,S), the solid curve is the total mass without joints

and the dashed and dotted curves include the joint masses. We obtained a

finite complexity q ranging between 10 and 20 considering joint masses. It must

be noticed that, however, the minimum mass obtained with superstructure is

bigger then the minimum mass obtained with the substructure, that has been

confirmed as the most convenient bridge.
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Figure 3.8: Total masses (µ∗
B,tot, black curves) for different values of the joint

factor Ω and structural masses (µ∗
B,S , red curves) under buckling constraints for

p = q = 1 and different n.
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n q µ∗d α∗B [deg] µ∗B,S µ∗B,tot
1 1 6659.9 26.56 1484.5 8144.4

1 2 6659.9 36.22 953.0505 7613.0

1 3 6659.9 45.31 760.1925 7420.1

2 1 2917.9 26.56 1760.7 4678.6

2 2 2917.9 36.22 1130.4 4048.3

2 3 2917.9 45.31 901.6280 3819.6

3 1 1364.3 26.56 1798.5 3162.8

3 2 1364.3 36.22 1154.7 2519.0

3 3 1364.3 45.31 921.0011 2285.3

4 1 659.5 26.56 1790.9 2450.5

4 2 659.5 36.22 1149.8 1809.4

4 3 659.5 45.31 917.1257 1576.7

5 1 324.25 26.56 1779.1 2103.4

5 2 324.25 36.22 1142.2 1466.5

5 3 324.25 45.31 911.0597 1235.3

Table 3.12: Numerical results of superstructures with deck for different com-
plexities n and q under buckling constraints (B), (F = 450 kN ; L = 30 m;
wd = 3 m, steel bars and deck, Spectra R©- UHMWPE cables).

3.5 Bridge constrained with a fixed hinge and rolling

hinge (HR)

This Section reports some numerical results for the cases of nominal, substruc-

ture and superstructure bridges illustrated in Chap. 2 and constrained with

a fixed hinge at one end and a rolling hinge at the other end. Both the opti-

mization under yielding and under buckling constraints are illustrated. Table

3.14 shows the results obtained for the nominal bridges, Table 3.15 shows the

results obtained for the substructure and Table 3.16 shows the results obtained

for the superstructure. For the HR case, the deck elements play an important

rule stabilizing the structure. For HR constraints, the so-called bi-directional

elements must me used since deck elements can be contemporary cables or
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n q µ∗d α∗B [deg] µ∗B,S µ∗B,tot
5 1 324.28 26.56 1779.1 2103.4

5 2 324.28 36.22 1142.2 1466.5

5 3 324.28 45.31 911.0597 1235.3

5 4 324.28 51.71 769.6990 1093.9

5 5 324.28 56.64 668.5721 992.8493

5 10 324.28 70.64 402.4183 726.6955

5 15 324.28 76.86 285.4356 609.7128

5 20 324.28 80.19 220.3840 544.6612

5 25 324.28 82.21 179.2518 503.5291

5 30 324.28 83.56 150.9876 475.2646

5 35 324.28 84.52 130.4024 454.6796

5 40 324.28 85.23 114.7554 439.0326

5 45 324.28 85.78 102.4660 426.7433

5 50 324.28 86.21 92.5615 416.8388

Table 3.13: Numerical results of superstructures with deck for n = 5 and
different complexities q under buckling constraints (B), (F = 450 kN ; L = 30 m;
wd = 3 m, steel bars and deck, Spectra R©- UHMWPE cables).

bars (see [145], [141]).
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Figure 3.9: Total masses (µ∗
B,tot, black curves) for different values of the joint

factor Ω and structural masses (µ∗
B,s, red curve) under buckling constraints for

n = 5 vs q for superstructure.

3.6 Discussion

We have presented a numerical design methodology for tensegrity bridges,

which is aimed to the generation of minimum mass shapes through parametric

self-similar iterations. It makes use of basic units consisting of Michell trusses

carrying a central point load [20, 12, 29]; compressed arches above the deck

level; and tensile cords below the deck. The proposed design procedure is

ruled by two complexity parameters (n and p), two aspect angles (α and β),

and admits either combined buckling and yielding constraints, or, as a special

case, simple yielding constraints. The results presented in Sect. 3.3 point out

that the global minimum mass configuration of the examined bridge model

shows finite complexity n, and markedly large or infinite complexity p.
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n p = q α∗Y [deg] β∗Y [deg] µ∗Y α∗B [deg] β∗B [deg] µ∗B
1 1 35.26 35.26 0.707 16.31 29.37 592.154

1 2 35.26 35.26 0.707 33.46 21.25 447.577

1 3 41.41 41.41 0.661 43.42 15.75 380.153

1 4 43.23 43.23 0.651 50.35 12.14 330.506

1 5 43.96 43.96 0.648 55.61 9.78 291.635

1 6 44.32 44.32 0.646 59.79 8.09 260.365

1 7 44.52 44.52 0.645 63.18 6.86 234.711

1 8 44.65 44.65 0.644 65.98 5.93 213.346

1 9 44.73 44.73 0.644 68.32 5.17 195.321

1 10 44.79 44.78 0.644 70.29 4.57 179.943

1 15 44.91 44.91 0.643 76.71 2.70 128.319

1 20 44.96 44.98 0.643 80.12 1.82 99.240

1 25 44.96 44.98 0.643 82.18 1.37 80.763

1 30 44.97 44.99 0.643 83.54 1.01 68.061

1 35 44.97 44.99 0.643 84.51 0.90 58.799

1 40 44.98 45.00 0.643 85.22 0.73 51.754

1 45 44.98 45.00 0.643 85.78 0.61 46.219

1 50 44.98 45.00 0.643 86.22 0.55 41.758

Table 3.14: Numerical results of nominal bridges constrained with a fixed hinge
and a rolling hinge (HR) and with complexities n = 1 and different p = q under
yielding (Y ) and combined yielding and buckling constraints (B), (F = 1 N ;
L = 1 m; steel bars and steel cables).

We can therefore conclude that such a bridge shows a multiscale, discrete-

continuum complexity. In all the examined cases, we have observed that the

minimum mass of the bridge under simple yielding constraints is about two or-

ders of magnitude smaller than the minimum mass corresponding to combined

buckling and yielding constraints. This implies that buckling failure cannot be

ignored in practical applications of the present design methodology. Concern-

ing the aspect ratios of the bridge, we have observed that, as the complexity

n increases, the height of the portion of the bridge placed above the deck

increases, while the height of the structure placed below the deck decreases

dramatically. We wish to highlight that the present minimum mass designs

cannot be understood as universal optima, under the given constraints. They

indeed represent mass minimizers within the examined sets of bridge topolo-
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n = 1 n = 2

p β∗Y [deg] µ∗Y β∗B [deg] µ∗B β∗Y [deg] µ∗Y β∗B [deg] µ∗B
1 45.00 1.000 33.42 660.522 45.00 1.500 25.69 474.588

2 45.00 1.000 36.56 668.307 45.00 1.500 25.25 494.442

3 45.25 0.912 35.28 691.574 60.00 1.299 23.73 513.060

4 67.50 0.828 32.88 716.173 67.50 1.243 22.30 529.458

5 72.00 0.812 31.02 736.332 72.00 1.218 21.21 542.791

6 75.00 0.804 29.59 753.097 75.00 1.206 20.36 553.928

7 77.14 0.799 28.45 767.398 77.14 1.198 19.67 563.481

8 78.75 0.796 27.51 779.861 78.75 1.193 19.09 571.847

9 80.00 0.793 26.72 790.909 80.00 1.190 18.60 579.295

10 81.00 0.792 26.04 800.834 81.00 1.188 18.17 586.010

15 84.00 0.788 23.63 839.445 84.00 1.182 16.63 612.330

20 85.50 0.787 22.11 867.300 85.50 1.181 15.64 631.487

25 86.40 0.786 21.01 889.214 86.40 1.180 14.91 646.642

30 87.00 0.786 20.17 907.341 87.00 1.179 14.34 659.224

35 87.43 0.786 19.49 922.833 87.43 1.179 13.88 670.010

40 87.75 0.786 18.92 936.383 87.75 1.179 13.50 679.464

45 88.00 0.786 18.44 948.441 88.00 1.179 13.17 687.893

50 88.18 0.786 18.02 959.313 88.20 1.178 12.88 695.504

Table 3.15: Numerical results of substructures constrained with a fixed hinge
and a rolling hinge (HR) with different complexities n and p under yielding (Y )
and combined yielding and buckling constraints (B), (F = 1 N ; L = 1 m; steel
bars and steel cables).

gies, against which other bridge designs could be usefully compared to.
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n = 1 n = 2

q α∗Y [deg] µ∗Y α∗B [deg] µ∗B α∗Y [deg] µ∗Y α∗B [deg] µ∗B
1 45.00 1.000 26.58 802.235 45.00 1.500 26.58 1085.960

2 45.00 1.000 36.24 515.075 45.00 1.500 36.24 697.258

3 60.00 0.866 45.32 410.825 60.00 1.299 45.32 556.141

4 67.50 0.828 51.72 347.048 67.50 1.243 51.72 469.811

5 72.00 0.812 56.65 301.473 72.00 1.218 56.65 408.120

6 75.00 0.804 60.60 266.610 75.00 1.206 60.60 360.931

7 77.14 0.799 63.82 238.878 77.14 1.198 63.83 323.393

8 78.75 0.796 66.50 216.235 78.75 1.193 66.50 292.744

9 80.00 0.794 68.75 197.388 80.00 1.190 68.75 267.234

10 81.00 0.792 70.65 181.463 81.00 1.188 70.65 245.678

15 84.00 0.788 76.88 128.719 84.00 1.182 76.88 174.286

20 85.50 0.787 80.21 99.391 85.50 1.181 80.21 134.588

25 86.40 0.786 82.23 80.847 86.40 1.180 82.23 109.488

30 87.00 0.786 83.58 68.104 87.00 1.179 83.58 92.240

35 87.43 0.786 84.53 58.824 87.43 1.179 84.53 79.679

40 87.75 0.786 85.24 51.770 87.75 1.179 85.24 70.131

45 88.00 0.786 85.79 46.223 88.00 1.179 85.79 62.632

50 88.18 0.786 86.23 41.765 88.20 1.178 86.23 56.588

Table 3.16: Numerical results of superstructures constrained with a fixed hinge
and a rolling hinge (HR) with different complexities n and q under yielding (Y )
and combined yielding and buckling constraints (B), (F = 1 N ; L = 1 m; steel
bars and steel cables).

The present study opens the way for a variety of further applications of

tensegrity structures in civil engineering and parametric architecture, where

the tensegrity ‘philosophy’ has only been partially exploited at present (cf.

also [13, 22]). Particularly challenging is the use of parametric tensegrity

design for the next generation long span or pedestrian bridges, which might

require smart structures based on lightweight materials, active or passive con-

trol strategies, and/or real-time structural health monitoring [24]. Tensegrity

applications also calls for a robust design to take care of errors on members’

manufactured lengths. These errors may lead to members’ over-stressing and

to a construction not replicating the exact theoretical structure, and could

even produce instabilities. Developments in this direction constitute a ripe
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subject for future studies. We also address to future work the realization of

real-scale or reduced-scale physical models of tensegrity bridges, as well as the

3D generalization of the proposed design approach. Further generalizations of

the present study might regard the adoption of different objective functions

(minimum compliance, fabrication and assembly cost, integrated mechanical,

functional, and architectural performance criteria, etc.), the adoption of opti-

mization strategies based on evolutionary form-finding methods [17, 31, 19], or

the lumped stress method [15, 16], and an enlargement of the present numeri-

cal analysis to more complex search domains and real case studies. Regarding

the adoption of a different objective function, we are currently refining compu-

tations by using a global cost function, where different contributions, such as

the cost of material, fabrication, and assembly, are customarily weighted and

summed together. An interesting challenge is the modeling of a trade-off be-

tween these different costs, since lightweight and easy-to-assemble components

would also be more expensive to design and manufacture.
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4.1 Introduction

To stop the evaporation losses, reports have shown [142] the economic benefits

of covering the aqueducts that bring water to California from the Colorado

River. It is also logical that the chosen cover could be solar panels to generate

energy without requiring new land, (contrary to the requirements of wind

turbines or large solar farms). The Narmanda Canal in Gujarat India already

has a solar panel covered aqueduct since 2012, but the design of the truss

support structure is massive and costly, see Fig 1. To determine the true

achievable benefits of such a concept one must engineer the support system to

use the smallest amount of material possible, and then reconsider the economic

projections. This Chapter provides the minimal mass solution to the solar

panel support structure.

Tensegrity structures are very efficient, and tend to provide minimal mass

solutions to structure design under certain conditions. We propose a tensegrity

bridge design that has minimal mass among all possible tensegrity topologies

(configurations of members). Some tensegrity papers have shown minimal

mass for tensile structures, subject to a stiffness constraint [28]. Some have

shown minimal mass for: compressive loads [25], cantilevered bending loads

[26], torsional loads [27], simply-supported bending loads [135], and distributed

loads on simply-supported spans, where significant structure is not allowed

below the roadway, [141]. Of course, minimal mass bridges are not new ideas.

Michell in 1904 derived the minimal mass simply-supported structure, subject

to yield constraints. His result is a continuum in which the lines of tensile

stress and the lines of compressive stress are perpendicular. This bridge rises

very high above the water (for a span = L, the height above water = 0.35L).

This height would invite large loads from desert winds. Furthermore, yielding

is not the mode of failure when the number of structural members is finite,

rather than infinite (infinite members constitutes a continuum), and practical

construction always creates joint mass that further reduces the complexity of

the minimal mass realization of the bridge. Bridge designs that are subject to
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buckling constraints are required, and will be used to produce minimal mass

designs under practical conditions. The great advantage of these optimizations

for the aqueduct cover os that these minimal mass solutions have flat roofs

(no superstructure, only structure below the horizontal), and very streamlined

cross sections, that tolerate high winds. They are also light-weight and easily

deployable.

The present study deals with the minimum mass design of 3D networks of

deployable tensegrity structures carrying vertical loads (PV panels) distributed

over the surface of the solar array. The examined structures are designed

to generate power and work as horizontal shading devices for water canals,

reducing or eliminating water evaporation. A deck made of solar panels is

supported by a special truss support system with tensegrity architecture, and

these are connected through a stabilizing network of cables. The deck of solar

panels serves as a deployable solar roof.

The present structures combine the shading effects of an horizontal shad-

ing device with the energy harvesting capabilities of solar thermal collectors

and/or photo-voltaic panels, which ensure at the same time solar energy har-

vesting (conversion of solar energy into heat and/or electricity).

A shading device is realized through a 3D network of horizontal tensegrity

modules supporting a roof of solar (thermal and/or photo-voltaic) panels. The

network is foldable and deployable and is controlled by stretching or relaxing

the transverse cables. A minimum mass design leads to lightweight structures

easily deployed and maneuverable to aid construction, assembly, servicing, and

repair.

The application of interest in this study is in any canal which brings water

to cities that are long distances from a river. As an example, we compute the

design for a 400 mile canal bringing water to San Diego from the Colorado

River. The technical goal is two-fold: i) to stop or reduce the evaporative losses

in such canals, and ii) to use the space above the canal to generate power using

solar panels. This is not a new idea. The 2014 UCLA study [142] discusses

some of the economic issues. The website [143] describes the efforts in India,
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where they have actually built such systems and have data since 2012. The

UCLA report suggests environmental improvements and challenges. The India

report demonstrates feasibility with systems that have been operational since

2012. However this report uses very substantial bridge structures to support

the solar panels. These structures are costly to build, erect, and repair. We

seek a system using minimal material resources, and a deployment strategy

that erects the light-weight structure. Our motivation is to reduce engineering

and construction costs, in hopes that the most efficient system would alter the

political and economic equations enough to justify such projects. We propose

to design a support structure for a solar array that covers long canals. The

panels will not be exactly flat to allow water runoff. Neither the panels nor

the support structure will touch the water.

4.2 Description of the Model

The minimal mass of a cable with loaded length s, yield strength σs, mass

density %s, and maximal tension ts is:

ms =
%s
σs
tss. (4.1)

To avoid buckling, the minimal mass of a round bar of length b, modulus

of elasticity Eb, and maximal force fb is:

mb,B = 2%bb
2

√
fb
πEb

. (4.2)

In the designs, we will assume buckling as a mode of failure of compressive

members since it has been shown in [135] that buckling is the mode of failure

in most of the practical cases, and indeed, in our design.

Lemma 4.2.1. Minimal mass designs subject to only buckling constraints
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automatically also satisfy yielding constraints if,

fb
b2
<

4σ2
b

πEb
. (4.3)

The paper [135] finds the tensegrity bridge (planar) that minimizes the

sum of deck mass, structural mass, and joint mass. The solution is a Class 1

tensegrity structure (compressive members do not make contact )with an op-

timal complexity (optimal number of structural members) that is finite. That

is, the optimal structure is not a continuum (in contrast to the Michell truss)

but a discrete structure with an optimal number of elements. This optimal

number depends on material choice, the span, and the external load. This

optimal bridge has no structure above the horizontal line (we call this a sub-

structure bridge). This study assures that the most efficient structure does not

extend above horizontal, making it ideal for our proposed solar array surface,

since the surface is horizontal, and does not generate any shadows on the solar

panels.

For a water canal application, Fig. 4.1 shows a 3D deployable flat roof

made of repetitive 2D substructure bridges with multiscale topology defined

in Fig. 4.2. Each planar substructure bridge is constrained with two fixed

hinges at both ends (in practice these hinges might be pulleys that allow roll-

up during construction or repair). As illustrated in Fig. 4.1, this module can

be replicated (along the longitudinal direction) to build a deployable three-

dimensional structure able to carry vertical loads distributed on the horizontal

plane of the solar array. Fig. 4.3 shows a possible application of this module

to water canals.

4.3 Description of the Deployment Scheme

Two different deployment features are incorporated into this design; one for

construction, and one for maintenance (Fig 1). We will call the motion for

construction, transverse deployment, described as follows. Since the network
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is a class 1 tensegrity (no bars in contact) one can roll up the cables. Imagine

the truss system (before the solar panels are installed) rolled up on a large reel

of inner radius R0 and radius after rollup R. To compute the required radius

of the reel, let L be the cable length required to cross the canal, let r be the

cable radius, let v be the number of revolutions required to rollup a cable of

length L. The radius of the reel after rollup is R = R0 +2vr, and the length of

the cable rollup up is L. Hence, L = 2π
∑

v(R0 + 2ir) = 2π(vR0 + rv(v+ 1)).

Then one can show that the required radius of the reel is:

R = R0 + 2vr

= 3R0 + 2r[−1 +

√
1 +

2L

πr(1 + R0
r )2

]. (4.4)

The width of the reel is equal to the length of the longest bar in the bridge

truss network (about 1 meter for a 20 meter span). One end of the reeled

bridge network is secured to the bank foundation (at the reel location) and

the other end attached to a cable across the water on the opposite bank. By

pulling this cable across the canal the truss network unreels across the canal.

In succession, as the truss is pulled across (while maintaining sufficient tension

to remain above water level), the solar panels can be installed (attached to

the cables) at the canal bank as the cable pulls the network across the canal.

The second type of deployment is perpendicular to the first one, and is

called the longitudinal deployment, see Fig 4.1. This deployment is along

the centerline direction of the canal. After a disconnection at the edge of a

damaged section, this deployment can create an opening of the array to allow

access to the water for any reason, such as cleaning, servicing, removing debris

from the water, or repairing solar panels.

This longitudinal deployability is assured by controlling the actual aspect

angle α. This angle is controlled by a motor that turns a tire on a level

concrete track, to roll the bridge sections closer to each other (for servicing or
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repair), or further apart (for deployment to operational configuration). The

angle α = αd, where αd is a small angle (about 2 degrees), determined by the

tension selected for the diagonal cables supporting the panels. Hence,the solar

panels face vertical within 2 deg.

(a) (b)

(c)

Figure 4.1: Different configurations of a deployable solar roof for water canals:
(a) open onfiguration, (b) transition between open/closed configurations, (c)
closed configuration.
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Figure 4.2: Adopted notations for forces and lengths of bars and cables for a
substructure with generic complexity (n, p, q) = (n, 1, 0).

The planar bridge topology is considered here to elucidate the fundamental

properties that are important in the vertical plane. We use the following

nomenclature, referring to Figs. 4.2 and 4.3:
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Top view
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Figure 4.3: Schematic of a deployable tensegrity system with solar panel.

• A substructure bridge has no structure above the deck level.

• n means the number of self-similar iterations involved in the design (n ≥
1 in Fig. 4.4).

• p means the complexity of each iteration in the substructure (p ≥ 1 in

Fig 4.4).

• β is the aspect angle of the substructure measured from the horizontal.

For a tensegrity bridge with generic complexities n and p (see Fig. 4.2), the

total number of nodes nn of each topology is given by:
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n = 3, p = 1 n = 3, p = 2 n = 3, p = 3

n = 2, p = 1 n = 2, p = 2 n = 2, p = 3

n = 1, p = 1 n = 1, p = 2 n = 1, p = 3

Figure 4.4: Exemplary geometries of the substructures for different values of
the complexity parameters n (increasing downward) and p (increasing leftward).

nn = p (2n − 1) + 2n + 1. (4.5)

For the substructure bridge, the number of bars nb and the number of cables

ns are:

nb = p (2n − 1) , ns = (p+ 1) (2n − 1) + 2n. (4.6)

The bridge structures must be stabilized out of the plane with a set of

longitudinal cables as illustrated in Fig. 4.3. In particular diagonal verti-

cal cables and horizontal longitudinal cables (the magenta element showed in

Section B-B of Fig. 4.3) are used to prevent out of plane vertical movement.

The deck is composed of different orders of cables (refer to Figs. 4.3, 4.5):

• longitudinal cables: the elements connecting each tensegrity bridge unit

along the length of the canal;

• transversal cables: the elements of each tensegrity bridge lying on the

transversal direction;

• cross cables: the elements that directly carry the solar panel loads and
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transfer their weight to the bridge structures.

Let F be the total external vertical load for the solar panels to be carried by

one planar bridge structure. Each deck section will be loaded by:

fp =
F

2n
. (4.7)

It will be convenient to define the following constant:

η =
%bL

(%s/σs)
√
πEbF

, (4.8)

and define a normalization of the system mass m by the dimensionless quantity

µ:

µ =
m

(%s/σs)FL
. (4.9)

The total vertical force Ftot can be computed designing the deck diagonal ca-

bles represented in Fig. 4.5. These cables directly support two different solar

panel modules of sizes ` by wd/2 (see Fig. 4.5). We design these cables assum-

ing that, at the fully-deployed configuration of the structure, the deck diagonal

cables are inclined at a fixed angle αd with the respect to the horizontal (Fig.

4.5). At this configuration the tensile force in each deck diagonal cable is:

td =
fp

4 sinαd
, (4.10)

and the length of each cable is:

sd =

√
w2
d + `2

2 cosαd
. (4.11)

By using the Eq. 4.1 we can compute the total mass of the deck diagonal
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cables as:

md = 4
%d
σd
tdsd =

%dfp
σd

√
w2
d + `2

2 sinαd cosαd
. (4.12)

Then, the normalized total mass of the deck structure is:

µ∗d =
2n md

(%s/σs)FL
. (4.13)

The total force acting on each internal node on the deck is then the sum of

the forces due to the external loads and the force due to the deck load.

Ftot = F + 2n md g. (4.14)

cables

bridge structures

solar panels

cross cables

wd

`

αd αd

1
2

√
w2
d + `2 1

2

√
w2
d + `2

fp/2

tdtd

sdsd

(a) (b)

Figure 4.5: Details of the canal structure: (a) deck system, (b) deformed shape
of the deck cross cables subjected to the solar panel force.
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4.4 Analytical Results

In this section we study the minimal mass of bridges with complexity n. We

make use of the notation illustrated in Fig. 4.2 in which complexity p is fixed

to be one. Each iteration n = 1, 2, ... generates different lengths of bars and

cables. We need not consider p > 1 because the Corollary 4.5 in [135] shows

that p = 1 is the minimal mass solution of a simply-supported substructure

bridge under buckling constraints. The lengths at the ith iteration are:

bi =
L

2i
tanβ, i = 1− n, (4.15)

si =
L

2i cosβ
, i = 1− n. (4.16)

Observing the multi-scale structure of Fig. 4.2 it’s clear that the number of

bars and the number of cables at the ith self-similar iteration are

nsi = 2i, nbi = 2i−1. (4.17)

In this case the total force applied to the bridge structure is given by (4.14)

and then the forces in each member become:

fbi =
F + 2nmdg

2i
, tsi =

F + 2nmdg

2(1+i) sinβ
. (4.18)

Finally we can compute the total mass mB at the buckling condition as:

mB =
2%b√
πEb

nb∑
i=1

b2i
√
fb,i +

%s
σs

ns∑
i=1

tisi, (4.19)
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where (bi,si) is respectively the length of the ith bar or cable, and (fb,i,ti) is

respectively the force in the ith bar or cable.

Theorem 4.4.1. Consider a substructure bridge with topology defined by

(4.5), (4.6), (4.15) and (4.16), with complexity n. The minimal mass design

under yielding and buckling constraints is given by:

µ∗B = β1

(
1 + tan2 β∗B

)
2 tanβ∗B

+ ηβ2 tan2 β∗B, (4.20)

where the aspect angle is

β∗B = arctan

{
1

12β2η

[
β3 + β1

(
β1

β3
− 1

)]}
, (4.21)

and the coefficients βi are

β1 =

(
1− 1

2n

)(
1 + 2ng

md

F

)
, (4.22)

β2 =

(
1 + 2

√
2

7

)(
1− 1

23n/2

)√
1 + 2ng

md

F
, (4.23)

β3 =

(
216β1β

2
2η

2 − β3
1 + 12

√
324β2

1β
4
2η

4 − 3β4
1β

2
2η

2

)1/3

. (4.24)

Proof. The total mass of the cables, using (4.16), (4.18) and (4.17), is given

by:
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µs =

(
1 + tan2 β

2 tanβ

)(
1− 1

2n

)(
1 + 2ng

md

F

)
. (4.25)

Similarly, making use of (4.2), the total mass of bars is:

µb = η tan2 β

(
1 + 2

√
2

7

)(
1− 1

23n/2

)√
1 + 2ng

md

F
. (4.26)

Introducing constants β1 and β2 given in (4.22) and (4.23), the total mass is:

µB = µs + µb = β1

(
1 + tan2 β

)
2 tanβ

+ ηβ2 tan2 β. (4.27)

The angle β for minimal mass can be achieved from,

∂µB
∂ tanβ

= β1

(
1− 1− tan2 β

2 tan2 β

)
+ 2ηβ2 tanβ = 0, (4.28)

yielding the optimal angle of (4.21) by solving the following cubic equation:

4
β2

β1
η tan3 β + tan2 β − 1 = 0. (4.29)

Substituting (4.21) into (4.27) concludes the proof.

The minimal mass solution under buckling constraints depends on the

material choice for the structural component (bars, cables and deck), on the

external force F and span L. If the deck mass md is zero then the minimal

mass is for complexity n = 1. Instead, if Ftot is variable with the complexity

n through the deck mass md (as defined in Eq. 4.14), the global optimum can
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steel

% [kg/m3] 7862

σ [N/m2] 6.9 x 108

E [N/m2] 2.06 x 1011

Spectra R©- UHMWPE

% [kg/m3] 970

σ [N/m2] 2.7x109

E [N/m2] 120x109

Table 4.1: Material properties.

n p Ftot [N ] β∗B [deg] µ∗B µ∗tot
4 1 12201.34 6.95 5.8932 10.8179

5 1 12191.10 7.00 6.0406 10.7148

6 1 12188.45 7.03 6.1121 10.7214

7 1 12187.78 7.04 6.1469 10.7400

8 1 12187.61 7.05 6.1641 10.7530

Table 4.2: Optimal masses µ∗
B (4.20) and µ∗

tot (4.30) and optimal aspect angles
β∗
B (4.21) of substructure bridges with steel bars and cables, under combined

yielding and buckling constraints (B), for different complexities n.

be reached for a generic finite complexity n, as a function of the ratio between

the total deck force (2n md g) and the total external force (F ).

The final total mass to be optimized is then the summation of the mass of

the bridge structure (4.20), the total mass of the deck (4.13) and the mass of

the joints, Ωnn:

µ∗tot = µ∗B + µ∗d + Ωnn, (4.30)

being Ω a factor equal to zero for perfect joints and greater then zero for

crudely constructed (cheaper) joints.
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Figure 4.6: Dimensionless mass µB (4.27) vs. aspect angle βB for: solution
with steel bars and cables (left, η = 238.65), steel bars and Spectra cables (right,
η = 7569.04).

n p Ftot [N ] β∗B [deg] µ∗B µ∗tot
1 1 12019.39 2.06 10.4357 25.4791

2 1 12010.97 2.13 15.1186 23.6251

3 1 12007.50 2.18 17.2522 23.0724

4 1 12006.35 2.21 18.2414 23.1662

5 1 12006.03 2.23 18.7080 23.3822

Table 4.3: Optimal masses µ∗
B (4.20) and µ∗

tot (4.30) and optimal aspect angles
β∗
B (4.21) of substructure bridges with steel bars and Spectra R©cables, under

combined yielding and buckling constraints (B), for different complexities n.

4.5 Numerical Results

4.5.1 Minimal Mass Design

In this section we show the minimal masses and the optimal angles of tensegrity

bridges with several complexities n. The numerical results are presented in

terms of µ∗B and β∗B denoting respectively the minimal masses and the optimal

aspect angles under combined yielding and buckling constraints. The results

are obtained numerically applying Theorem 4.4.1.
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Figure 4.7: Dimensionless total mass µtot (4.30) vs. complexity n for: solution
with steel bars and cables (left, η = 238.65), steel bars and Spectra cables (right,
η = 7569.04) and different joint factors Ω.

The optimization problems are solved assuming L = 30.48 m, F = 12 kN ,

w = 4.88 m, αd = 1 deg and the material properties in Table 4.1. We present

a first set of numerical results without joint mass in Table 4.2, in which we

make use steel for bars and cables, and a second set of results in Table 4.3, in

which we use steel for bars and Spectra R© for cables. The cables placed on the

deck are needed to stabilize the structure in the horizontal plane.

For each optimized structure note that, if η is close to 1, the total masses

of cables, given in (4.25), is comparable to the mass total mass of the bars,

given in (4.26).

The results of the first optimizations (steel bars and cables) are presented in

Table 4.2 and in the left sides of Figs. 4.6 and 4.7. The optimal angles β∗B can

be obtained from (4.21) or from the left plot of the structureal masses (4.27)

in Fig. 4.6. We obtained optimal angles β∗B approximately 7 deg, slightly

increasing with complexity n. The structural masses µ∗B (4.20) reported in

Table 4.2 increase with n and have a minimum value for n = 1. Anyway, if

we focus our attention on the minimization of the total masses µ∗tot (4.30), we

obtain a finite optimal complexity n = 5 (µ∗tot
∼= 10.72), also for increasing

joint mass factors Ω, as illustrated in the left plot of Fig. 4.7.

The results of the second optimizations (steel bars and Spectra R©cables)
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cables

i ns,i si Ai [m2] Vi [m3] ti [N ] mi [kg] µi

0 32 0.9525 2.6707x10−5 2.5439x10−5 1.8428x104 0.2000 0.0480

1 2 15.354 3.6244x10−5 5.5651x10−4 2.5009x104 4.3753 1.0498

2 4 7.6772 1.8122x10−5 1.3913x10−4 1.2504x104 1.0938 0.2625

3 8 3.8386 9.0611x10−6 3.4782x10−5 6.2521x103 0.2735 0.0656

4 16 1.9193 4.5305x10−6 8.6955x10−6 3.1261x103 0.0684 0.0164

5 32 0.9597 2.2653x10−6 2.1739x10−6 1.5630x103 0.0171 0.0041

bars

i nb,i bi Ai [m2] Vi [m3] fi [N ] mi [kg] µi

1 1 1.8712 3.6321x10−4 6.7965x10−4 6.0955x103 5.3434 1.2821

2 2 0.9356 1.2841x10−4 1.2015x10−4 3.0478x103 0.9446 0.2267

3 4 0.4678 4.5401x10−5 2.1239x10−5 1.5239x103 0.1670 0.0401

4 8 0.2339 1.6052x10−5 3.7546x10−6 7.6194x102 0.0295 0.0071

5 16 0.1170 5.6751x10−6 6.6372x10−7 3.8097x102 0.0052 0.0013

Table 4.4: Properties of the members for the minimal mass design of the sub-
structure bridge with steel bars and cables and complexity n = 5, (β = 7.00 deg).

are presented in Table 4.3 and in the right sides of Figs. 4.6 and 4.7. In this

case, the optimal angles β∗B (4.21) are approximatively of 2 deg (see also right

plot of Fig. 4.6). The minimum of the total masses µ∗tot (4.30) is obtained for

n = 3 (µ∗tot
∼= 23.15), also for increasing factors Ω, as illustrated in the right

plot of Fig. 4.7.

From the comparison of the numerical data in Table 4.2 with the data in

Table 4.3, we compare steel versus Spectra R©cables. Spectra R©makes a more

streamlined structure, with β∗B � 7 deg. It is worth noting that from steel to

Spectra R©we increasing the factor η (4.8) from 238.65 to 7569.04 and we are

reducing the ratio %s/σs from 1.14x10−5 s2/m2 to 3.59x10−7 s2/m2. Note that

the ratio (%s/σs)
−1 increases with the efficiency of a material, if one imagines

that the efficiency increases with σs and decreases with %s. Of course, the

Spectra R©design is much more efficient then steel, since the mass is ZZZ times

than steel.
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cables

i ns,i si Ai [m2] Vi [m3] ti [N ] mi [kg] µi

0 8 3.8100 5.4117x10−5 2.0619x10−4 1.4612x105 0.2000 1.5220

1 2 15.2510 2.9228x10−5 4.4576x10−4 7.8916x104 0.4324 3.2905

2 4 7.6255 1.4614x10−5 1.1144x10−4 3.9458x104 0.10810 0.8226

3 6 3.8128 7.3070x10−6 2.7860x10−5 1.9729x104 0.0270 0.2057

bars

i nb,i bi Ai [m2] Vi [m3] fi [N ] mi [kg] µi

1 1 0.5801 1.1175x10−4 6.4832x10−5 6.0038x103 0.5097 3.8790

2 2 0.2901 3.9511x10−5 1.1461x10−5 3.0019x103 0.0901 0.6857

3 4 0.1450 1.3969x10−5 2.0260x10−6 1.5009x103 0.0159 0.1212

Table 4.5: Properties of the members for the minimal mass design of the sub-
structure bridge with steel bars and Spectra R©cables and complexity n = 3,
(β = 2.18 deg).

4.6 Remarks

We present the optimal complexity of the substructure bridge that minimizes

the sum of structural mass, deck mass and joint mass. Making better joints

(less joint mass) results in higher optimal complexity and less mass. So the

economic radeoff between material cost of the truss structure and costs of

making better joints will lead to the proper trade between mass and labor

costs.

We define a 3D deployable tensegrity structure made of repetitive planar

substructure bridges (spanning the canal in the transversal direction) conve-

niently stabilized out of plane with a set of cables, in both the transversal and

the longitudinal direction of the canal. Each planar structure has a self-similar

fractal type of topology generated by the complexity parameter n. The min-

imal mass solution yields complexity n∗ which depends upon material prop-

erties. Moreover, the topology of the 3D structure is function of canal width

L, aspect angle (β) of the substructures bridges, longitudinal aspect angle (α)

governing the deploy-ability of the structure, the distance between consecutive
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repetitive structures in the longitudinal direction (wd).

Using steel bars, we derived an optimal design for two choices of cable ma-

terial, steel and Spectra R©. The Spectra R©design produced an optimal structure

that was much more streamlined (requiring much less volume) and much less

mass, than the optimized steel design. In either material case, the design

is substantially less mass than previous bridge designs. The design occupies

much less volume and mass than the designs for the most advanced attempts

at energy production and shading over water canals (Gujarata, India, 2012).

Formulas are given which will allow economic tradeoffs between material costs

of the structure, the labor cost (assuming price per joint is inversely propor-

tional to mass of the joint) of making more refined joints, and the choice of

material (steel, Spectra R©, or other). Implicit in these tradeoffs, the optimized

complexity n∗ of the structure is derived to allow economic decisions on the

number of components (bars and cables) that will minimize mass for the given

choice of material and joint costs.
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5.1 Introduction

Over recent years, several researchers have focused their attention on the

modeling of continuous media such as plates, walls, membranes, vaults and

domes with ”equivalent” truss and/or tensegrity structures (refer, e.g., to

[86, 87, 15, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98], and therein references). Nu-

merious up-to-date contributions to such a longly debated topic of structural

mechanics deal with ‘non-conforming’ or ‘mixed’ finite element methods, also

referred to as Lumped Stress Methods (LSMs) [87, 15, 93, 94]; the so-called

Thrust Network Analysis (TNA), reciprocal force diagrams and limit analysis

approaches [86, 90, 92, 91, 95, 96], as well as Discrete Exterior Calculus (DEC)

[97, 98]. A common trait of the above methods consists of looking at the ap-

proximating truss structure as the support of uniaxial singular (or lumped)

stresses, which approximate the stress field of the background medium. Studies

regarding the convergence of a singular discrete stress network to its continuum

limit have been carried out through Gamma-Convergence [88], and mixed finite

element methods [99]. Particular attention has been devoted to masonry struc-

tures described through the no-tension constitutive model [100], since for such

structures the singular stress approach allows one to linearize the no-tension

constraint, and to make use of form-finding approaches based on convex-hull

techniques and weighted Delaunay triangulations [86, 90, 91, 93, 94, 95, 96, 98].

Remarkable is the use of polyhedral Airy stress functions in 2D elasticity prob-

lems, and Pucher’s approaches to the membrane theory of shells [101], which

leads to an effective characterization of internally self-equilibrated frameworks

associated with simply connected domains [87, 15, 99, 93, 94].

Force networks are also employed within‘atomistic’ models and discrete -

continuum approaches to mechanical systems, to represent the state of stress

of solids, fluids and biomechanical systems. Coupled discrete-continuum ap-

proaches combine force networks and continuous stress fields (refer, e.g., to

[102] for an extensive review), in order to circumvent scaling limitations of

fully atomistic models, which are particularly suited to describe small pro-
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cess zones (interested, e.g., by dislocation and fracture nucleation, nanoin-

dentation, marked atomic rearrangements, etc.). Areas of research involv-

ing discrete models of mechanical systems include bio- and nano-structures

[103, 104, 105, 106, 107, 108, 109, 110]; tensegrity models of engineering and

biological systems [111, 112, 113, 27, 114]; structural optimization and form-

finding methods [93, 94, 115, 116, 117, 118], and strut and tie models of dis-

continuous regions in reinforced-concrete structures [119], just to name a few

examples. Key aspects of scale-bridging approaches to discrete systems regard

the estimation of the Cauchy stress at the meso-scale, to be carried out via

statistical mechanics, variational approaches, and/or homogenization meth-

ods. Several discrete (or ‘microscopic’) definitions of the Cauchy stress have

been proposed in the literature, such as, e.g., the virial stress, the Tsai trac-

tion and the Hardy stress (cf.,e.g., [120, 121], and therein references). Different

studies have highlighted issues related to the kinetic terms of such stress def-

initions [120], and spatial fluctuations of the discrete stress (cf. Sect. 6 of

[121]).

The present Chapter deals with the correspondence between polyhedral

(Airy) stress functions, internally self-equilibrated tensegrity structures, and

discrete notions of the Cauchy stress in two-dimensions. We extend previous

research on such topics [87, 15, 99, 93, 94], on examining two new subjects: (i)

the computation of the Airy stress function associated with a given, internally

self-equilibrated framework; (ii) the formulation of convergent estimates of

the Cauchy stress associated with unstructured force networks. Our previous

studies in this field were instead focused on the derivation of force networks

from a given polyhedral stress function (inverse problem with respect to (i),

cf. [87, 15, 93, 94]), and the convergence of stress measures associated with

structured force networks [15, 99]. By examining a simply connected domain

in two dimensions, we here develop and discuss an algebraic equation relating

polyhedral stress functions and internally self-equilibrated frameworks associ-

ated with arbitrary triangulations. Further on, we formulate a regularization

technique that is devoted to generate a convergent notion of the Cauchy stress
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of the discrete system in the continuum limit.

5.2 Internally self-equilibrated tensegrity structures

and polyhedral stress functions

We refer to a triangulation Πh of a polygonal and simply-connected domain Ω

of the two-dimensional Euclidean space, which shows M non-degenerate trian-

gles Ω1, ...,ΩM and features the following size: h = supm∈{1,...,M} {diam(Ωm)}.
We name ‘physical’ the edges of Πh that do not belong to the boundary of Ω.

Figure 5.1: Illustration of a triangulated force network and the associated
polyhedral stress function ϕ̂h (red: tensile forces, blue: compressive forces).

5.2.1 Internally self-equilibrated framework associated with a

given polyhedral stress function

Let us introduce Cartesian coordinates x1 and x2 in the plane of Ω and the

polyhedral function defined as follows
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ϕ̂h(x) =
N∑
n=1

ϕ̂n gn(x) (5.1)

where x = [x1, x2]T ; N is the total number of nodes of the triangulation Πh;

ϕ̂n is the value taken by ϕ̂h at the node xn; and gn is the piecewise linear basis

function associated with such a node (‘umbrella’ basis function). We agree to

denote the coordination number of xn by Sn, and the edges attached to such a

node by Γ1
n, ...,Γ

Sn
n . The unit vectors perpendicular and tangent to Γ1

n, ...,Γ
Sn
n

will be hereafter indicated by ĥ1
n, ..., ĥ

Sn
n , and k̂1

n, ..., k̂
Sn
n , respectively (Fig.

5.2). By interpreting ϕ̂h as a generalized (Airy) stress function, we associate

a set of NΓ forces with such a function, where NΓ indicates the total number

of physical edges of Πh. The generic of such forces is is given by

P sn =
[[
∇ϕ̂h · ĥsn

]]s
n

(5.2)

where [[∇ϕ̂h]]sn indicates the jump of the gradient of ϕ̂h across the edge Γsn

[15, 99]. The gradient ∇ϕ̂h is computed as follows over the generic triangle

xn, xsn, xtn (refer, e.g., to [122])

Figure 5.2: Details of an inner node (left) and a boundary node (right) of Πh.
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∇ϕ̂h =
1

2A

[
{ϕ̂n(xsn − xtn) + ϕ̂sn(xtn − xn) + ϕ̂tn(xn − xsn)} · ê2

{ϕ̂n(xtn − xsn) + ϕ̂sn(xn − xtn) + ϕ̂tn(xsn − xn)} · ê1

]
(5.3)

where A is the area of the above triangle, and êα is the unit vector in the

direction of the xα-axis. Equation (5.2) shows that the forces P sn are associated

with the ‘folds’ of the graph of ϕ̂h. In particular, convex folds of ϕ̂h correspond

with tensile forces, while concave folds correspond with compressive forces

(Fig. 5.1). It is useful to recast (5.2) in matrix form, by proceeding as follows.

Let us sort the x1
n, ...,x

Sn
n nodes connected to xn in counterclockwise order,

as shown in Fig. 5.2, and denote the values taken by ϕ̂h at such nodes by

ϕ̂1
n, ..., ϕ̂

Sn
n , respectively. Said Pn ≤ Sn the number of physical edges attached

to xn, we collect the forces associated with such a node into the Pn-dimensional

vector P̂n = [P 1
n , ..., P

Pn
n ]T , and the values of ϕ̂ at x1

n, ...,x
Sn
n and xn into the

(S
′
n = Sn + 1)-dimensional vector ϕ̂n = [ϕ̂1

n, ..., ϕ̂
Sn
n , ϕ̂n]T . Straightforward

calculations show that the substitution of (5.3) into (5.2) leads to the following

algebraic equation

P̂n = Ĉn ϕ̂n (5.4)

where Ĉn is the Pn × S
′
n matrix defined through
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(Cn)jk =



a = ĥj
′′′
n · ĥj

′
n /(`

j′
n (ĥj

′′′
n · k̂j

′
n ))

− ĥj
′′
n · ĥj

′
n /(`

j′
n (ĥj

′′
n · k̂j

′
n )), k = j′,

b = −ĥj
′
n · ĥj

′
n /(`

j′′
n (ĥj

′
n · k̂j

′′
n )), k = j′′,

c = ĥj
′
n · ĥj

′
n /(`

j′′′
n (ĥj

′
n · k̂j

′′′
n )), k = j′′′,

d = −a− b− c, k = S
′
n,

0, otherwise,

(5.5)

In (5.5), `sn denotes the length of Γsn, and it results

inner node boundary node

j′ = j j′ = j + 1

if j′ > 1 then j′′ = j′ − 1, else j′′ = Sn j′′ = j′ − 1

if j′ < Sn then j′′′ = j′ + 1, else j′′′ = 1 j′′′ = j′ + 1

(5.6)

By using standard matrix assembling techniques, we finally obtain the

following ‘global’ equation

P̂h = Ĉh ϕ̂h (5.7)

which relates the vector P̂h collecting all the forces P sn to the vector ϕ̂h collect-

ing all the nodal values of ϕ̂h. In (5.7), Ĉh is the NΓ ×N matrix obtained by

assembling the nodal matrices (5.5). It can be shown [98] that the forces P̂h

computed through (5.7) automatically satisfy the equilibrium equations of the

internal nodes of Πh with zero external forces, for any given ϕ̂h ∈ RN . This
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implies that P̂h and the graph structure associated with Πh form an internally

self-equilibrated framework [123, 92].

5.2.2 Polyhedral stress function associated with a given, in-

ternally self-equilibrated framework

We now pass to examine the problem of finding a polyhedral stress function

ϕ̂h associated with a given, internally self-equilibrated framework P̂h in two-

dimensions. The latter may arise e.g. from pair-interactions in a particle

system [121], or a lumped stress/tensegrity approach to the equilibrium prob-

lem of a continuous medium [15, 27]. As anticipated, we assume that P̂h is

associated with the (physical) edges of a planar (non-degenerate) triangulation

Πh of simply-connected domain Ω. It is clear that the current problem is re-

lated to the inversion of the linear system of algebraic equations (5.7). Let us

refer to the illustrative example represented in Fig. 5.3, which shows a trian-

gulated force network with a total of N = 115 nodes; 77 inner nodes; and 266

physical edges. We have observed in the previous section that the forces P̂h

computed through (5.7) satisfy the equilibrium equations of the inner nodes

of Πh (with zero applied forces), for any given ϕ̂h ∈ RN . This proves that the

rank of Ĉh is equal to 112 (r = rank(Ĉh) = 266− 2× 77 = 112), and that the

nullity of the same matrix is equal to 3 (n = nullity(Ĉh) = 115− 112 = 3, cf.,

e.g., [124]), in the case under examination. Given an arbitrary internally self-

equilibrated force network P̂h ∈ Rr, we therefore conclude the following: (i)

the linear system (5.7) actually admits solutions ϕ̂h ∈ RN ; (ii) such solutions

are determined up to three arbitrary constants; (iii) two solutions differ by

linear functions associated with zero axial forces along the edges of Πh. It is

not difficult to realize that the above results (i), (ii) and (iii), which generalize

analogous ones concerned with smooth Airy functions [125], can be extended

to arbitrary triangulations of simply-connected domains. Consider, e.g., that

the insertion of an additional (inner) node into the triangulation in Fig. 5.3

leads to a new triangulation carrying 116 nodes; 269 forces: and 2× 28 = 156

equilibrium constraints (rank(Ĉh) = 269− 156 = 113). It is easily shown that

147



5. ON THE CONTINUUM LIMITS OF TENSEGRITY STRUCTURES

such an insertion leaves the nullity of Ĉh equal to 3. The indeterminacy of

system (5.7) can be resolved by prescribing ϕ̂h at three non-collinear nodes of

Πh (e.g., prescribing the values of ϕ̂h at the vertices of a given triangle). A

particular solution of (5.7) is given by

ϕ̂h = Ĉ+
h P̂h (5.8)

where Ĉ+
h denotes the Moore-Penrose inverse of Ĉh. We address the special

case of a multiple-connected domain to the Appendix.

Figure 5.3: 2D view of the force network in Fig. 5.1 (red: tensile forces, blue:
compressive forces).
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5.3 Stress field associated with a tensegrity struc-

ture

It is not difficult to realize that a scale bridging approach to the stress field

associated with a self-equilibrated force network P̂h describing a tensegrity

structure can be obtained by introducing a suitable regularization of the cor-

responding stress function ϕ̂h. Consider, indeed, that the stress field associ-

ated with a smooth Airy stress function ϕ0 corresponds with the hessian of ϕ0

(under a suitable rotation transformation, see, e.g., [126, 125]), i.e. the second-

order tensor with Cartesian components ∂ϕ0/∂xα∂xβ (α, β = 1, 2). Since the

second-order derivatives of a polyhedral function ϕ̂h exist only in the distri-

butional sense, the definition of a stress field associated with ϕ̂h calls for the

introduction of a generalized notion of the hessian of such a function [88, 99].

A convergent stress measure has been defined in [99], on considering sequences

of polyhedral stress functions associated with structured triangulations. The

latter match the PΣ property defined in Sect. 5 of [99], and consist, e.g., of

triangulations associated with rectangular or hexagonal Bravais lattices (cf.

Figs. 2 and 3 of [99]). Let us define a ’dual mesh’ Π̂h of Ω, which is formed by

polygons connecting the barycenters of the triangles attached to the generic

node xn to the mid-points of the edges Γ1
n, ...,Γ

Sn
n (’barycentric’ dual mesh,

cf. Fig. 5.1). The stress measure defined in [99] is a piecewise constant stress

field T̂h over Π̂h, which takes the following value in correspondence with the

generic dual cell Ω̂n

T̂h(n) =
1

|Ω̂n|

Pn∑
j=1

`j
′
n

2
P j
′
n k̂j

′
n ⊗ k̂j

′
n (5.9)

Here, |Ω̂n| denotes the area of Ω̂n, and j′ is defined as in (5.6). Under the

assumption that Πh is a structured triangulation, it has been shown in [99]

that the discrete stress (5.9) strongly converges to the stress field associated
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with the limiting stress function, as the mesh size approaches zero (cf. Lemma

2 of [99]). It is worth observing that T̂h(n) is obtained by looking at the quan-

tity P snk̂
s
n ⊗ k̂sn as a ‘lumped stress tensor’ acting in correspondence with the

edge Γsn, and that Eqn. (5.9) spatially averages the lumped stress tensors

competing to xn, over the corresponding dual cell Ω̂n (averaging domain). We

also note that the stress measure (5.9) corresponds with the virial stress of

statistical mechanics at zero temperature (cf. [121], Sect. 2.2 and Appendix

A). Unfortunately, the error estimate given in Lemma 2 of [99] does not cover

unstructured triangulations, as we already noticed. We hereafter handle the

case of an unstructured polyhedral stress function ϕ̂h by employing the regu-

larization procedure formulated in [127] to predict the curvatures of polyhedral

surfaces. Let us consider an arbitrary vertex xn of ϕ̂h, and a given set Kn of

selected neighbors of xn (such as, e.g., the nearest neighbors, second nearest

neighbors, etc., cf. Fig. 5.4). We first construct a smooth fitting function

Φ̂Kn(x) of the values taken by ϕ̂h at the node set Kn. Next, we evaluate

Φ̂Kn(x) at the vertices x̃1, ..., x̃Ñ of a second, structured triangulation Π̃h,

which is built up around xn (Fig. 5.4). We finally construct the following

‘regularized’ polyhedral stress function

ϕ̃h =
Ñ∑
n=1

Φ̂Kn(x̃n)g̃n (5.10)

where Ñ is the number of nodes of Π̃h, and g̃n denotes the piecewise linear

basis function associated with x̃n ∈ Π̃h. Useful fitting models are offered by

interpolation polynomials, local maximum entropy shape function, Moving

Least Squares (MLS) meshfree approximations, and B-Splines, just to name a

few examples (refer, e.g., to [128] for a comparative study of such methods).

Let us focus now on Eqns. (5.2) and (5.9). The replacements of all the quan-

tities relative to Πh with the analogous ones referred to Π̃h in such equations,

leads us to (structured) ‘regularizations’ P̃h and T̃h of the force network and
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stress field associated with the unstructured mesh Πh, respectively.

Figure 5.4: Illustration of Kn and Ω̃n.
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5.4 Numerical results

The present section provides a collection of numerical applications of the pro-

cedures described in the sections 5.2 and 5.3. We deal with the Flamant solu-

tion to the stress field of a half-plane loaded by a normal force, and tensegrity

models of a cantilever beam and an elliptical dome. In all the given examples,

we analyze both structured and unstructured force networks describing the

problem under examination, and study the properties of the associated stress

fields. Given a source triangulation Πs, and a polyhedral function ϕ̂h associ-

ated with Πs, we name smooth projection of ϕ̂h over a target triangulation Πt

the polyhedral function defined through: (i) the construction a smoothing of

ϕ̂h through local quintic polynomials around each node of Πs [129]; (ii) the

sampling the fitting function Φ̂ at the vertices of Πt. We assume that the

fitting patch Kn associated with such a projection coincides with the entire

source mesh Πs (cf. Sect. 5.3).

5.4.1 Convergence Study

Let us study the convergence behavior of the regularized stress measure in-

troduced in Sect. 5.3 by considering the well known Flamant solution for the

problem of a half plane loaded by a perpendicular point load. Such a problem

has been analyzed in [15] through a lumped stress approach based on struc-

tured meshes. We examine the Flamant solution in terms of the Airy stress

function, which reads

ϕ0 = −F
π
r θ sinθ (5.11)

where r and θ are polar coordinates with origin at the point of application of

the load F (cf., e.g., [15]). The above stress function generates the following

radial stress distribution in the loaded half-plane (Fig. 5.5).
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T (0)
rr = −2 F cosθ

π r
(5.12)

Figure 5.5: Flamant solution for for the problem of a half plane loaded by a
perpendicular point load (left), and examined simulation region (right).

We consider approximations to ϕ0 associated with four structured and un-

structured triangulations of a 1.6× 1.4 rectangular domain placed on one side

of the loading axis (‘simulation region’, cf. Fig. 5.5). The analyzed struc-

tured triangulations Π̃(1), ..., Π̃(4) are supported by hexagonal Bravais lattices,

and show equilateral triangles with the following edge lengths: h̃1 = 0.20

(mesh # 1): h̃2 = 0.10 (mesh # 2); h̃3 = 0.05 (mesh # 3); and h̃4 = 0.025

(mesh # 4), respectively. The unstructured triangulations Π(1), ...,Π(4) are

instead obtained through random perturbations of the positions of the nodes

of Π̃(1), ..., Π̃(4).

We first examine the projections ϕ̂(1), ..., ϕ̂(4) of the Flamant solution (5.11)

over the unstructured meshes Π(1), ...,Π(4). Each of such stress functions gen-

erates an unstructured force network P̂(i) (cf. Sect. 5.2), and a piecewise

constant approximation T̂
(i)
rr to the Flamant stress field (Sect. 5.3). Next, we

construct a smooth projection ϕ̃(i) of the generic ϕ̂(i) over the structured trian-
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gulation Π̃(i) (unstructured to structured regularization). We let P̃(i) and T̃
(i)
rr

respectively denote the force network and the discrete stress field associated

with such a ‘regularized’ stress function.

The accuracy of each examined approximation to the radial stress field

(5.12) is measured through the following Root Mean Square Deviation

err(T
(i)
rr ) =

√(∑N
n=1

(
(T

(i)
rr )n − (T

(0)
rr )n

)2
)
/N (5.13)

whereN denotes the total number of nodes of the current mesh; (T
(i)
rr )n denotes

the value at node n of T
(i)
rr ; and (T 0

rr)n denotes the value at the same node of the

exact stress field (5.12). In (5.13), we let T
(i)
rr denote either T̂

(i)
rr (unstructured

approximation to T
(0)
rr ), or T̃

(i)
rr (structured approximation to T

(0)
rr ).

Fig. 5.6 graphically illustrates the force networks P̂(i) and P̃(i) computed

for some selected meshes, while Fig. 5.7 plots the approximation error (5.13)

against the mesh size h̃, for each of the analyzed approximation schemes.

Finally, Fig. 5.8 depicts 3D density plots of T̃
(i)
rr and T̃

(i)
rr for meshes #3

and #4. As the mesh size h̃ approaches zero, we observe from Fig. 5.7 that

the approximation errors of the unstructured approximations to T
(0)
rr show

rather low reduction rate, while those of the structured approximations instead

feature slightly super-linear convergence to zero. The results shown in Fig. 5.8

confirm the higher degree of accuracy of the structured approximations T̃
(i)
rr , as

compared to the unstructured approximations T̂
(i)
rr . In this figure, we marked

selected contour lines of the exact radial stress T
(0)
rr by white circles (cf. Fig.

5.5).

5.4.2 Cantilever Tensegrity Structure

The current example is aimed to show how the procedures presented in Sects.

5.2 and 5.3 can be applied to determine the Airy stress function and the stress

field associated with two different tensegrity models of a cantilever beam. We

examine a truss structure Π̃ that has the same topology as the minimum
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P̂(1) P̃(1)

P̂(2) P̃(2)

P̂(3) P̃(3)

Figure 5.6: Illustrations of selected unstructured (left) and structured (right)
force networks approximating the Flamant problem in Fig. 5.5 (blue: compres-
sive forces; red: tensile forces).

volume frames analyzed in a famous study by A.G.M. Michell [20] (see also

[27], Chap. 4). Such a truss is composed of a system of orthogonal and

equiangular spirals, which carries a force F at a given point A, and is rigidly

anchored in correspondence with a small circle centered at the origin B of the

spirals (refer to Fig. 5.9, and [20, 27, 131]). We assume that the length of

the AB segment is 10; the opening angle of the truss is π; the radius of the

anchoring circle is 2; and it results F = 10 (in abstract units). We complete the

Michell truss with the insertion of diagonal edges connecting the two orders of

spirals, obtaining an enriched truss model supported by a triangulation with
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Figure 5.7: Root Mean Square Deviations of the examined approximations to

the radial stress T
(0)
rr of the Flamant problem.

589 nodes and 1578 physical edges (cf. Fig. 5.9). We also consider a perturbed

configuration Π of the Michell truss, which is obtained by randomly moving

the inner nodes of the regular configuration (Fig. 5.9).

We initially follow Michell’s approach to the equilibrium problem of Π̃, by

computing the axial forces in the spiral members through the nodal equilibrium

equations of the structure (refer to [27], Chap. 4), and setting the forces in the

remaining edges to zero (‘Michell truss’). Next, we associate an Airy stress

function ϕ̃ to such a force network P̃, through Eqn. (5.8) of Sect. 5.2.2 (cf.

Fig. 5.9). On proceeding in reverse ordered with respect to the previous

example, we then construct a smooth projection ϕ̂ of ϕ̃ over the perturbed

configuration Π, and let P̂ denote the associated force network (Fig. 5.9).

Let us focus our attention on the Cartesian components T11 and T12 of the

stress fields associated with P̃ and P̂ (x1 denoting the longitudinal axis). The

results in Fig. 5.10 highlight that the ‘structured stress’ T̃ (associated with

P̃) smoothly describes the stress field associated with the background domain

of the Michell truss, while the ‘unstructured stress’ T̂ (associated with P̂), on

the contrary, provides a fuzzy description of such a stress field.

A different approach to the truss Π̃ is obtained by looking at the 2D elastic

problem of the background domain Ω (here supposed to be homogeneous),
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T̂
(3)
rr T̃

(3)
rr

T̂
(4)
rr T̃

(4)
rr

Figure 5.8: Density plots of the examined approximations to the radial stress

T
(0)
rr of the Flamant problem for different meshes and interpolation schemes.

under the given boundary conditions. We now interpret Π̃ as a lumped stress

model of Ω, i.e., a non-conventional elastic truss having the strain energy

computed per nodes (i.e., per dual elements) and not per elements (‘LSM

truss’, cf. [15]). Accordingly, we determine the forces in its members by

solving the elastic problem presented in Sect. 5 of [15]. As in the previous

case, we also consider the smooth projection of the Airy function associated

with the regular truss Π̃ over the perturbed configuration Π. We show in Fig.

5.11 the force networks and the stress fields corresponding to the LSM trusses

Π̃ (Fig. 5.11, left), and Π (Fig. 5.11, right). By comparing the results in Figs.

5.9 and 5.10 with those in Fig. 5.11, we realize that the LSM truss Π̃ shows

non-zero forces in the non-spiral members, differently from the Michell truss

(Fig. 5.9, left). The results in Figs. 5.10 and 5.11 point out that averaging
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Π̃

A

F

B

Π

A

F

B

P̃ P̂

ϕ̃ ϕ̂

Figure 5.9: Michell truss example. Top: ordered (right) and unstructured
(left) configurations. Center: details of the force networks near the tip (blue:
compressive forces; red: tensile forces). Bottom: Airy stress functions associated
with ordered (left) and unstructured (right) force networks.

techniques based on unstructured force networks do not generally produce

smooth descriptions of the Cauchy stress field, as we already observed in Sect.

5.3.
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T̃11 T̂11

T̃12 T̂12

Figure 5.10: Density plots of different approximations to the stress compo-
nents T11 (top:longitudinal normal stresses) and T12 (bottom:tangential stresses)
associated with the Michell truss.

5.4.3 Tensegrity bridges

Let us now apply the Airy stress function approach to predict the stress field

associated with a particular topology of the nominal tensegrity bridge illus-

trated in Fig. 2.3. As in the case of the structure analyzed in Sect. 5.4.2,

we complete the tensegrity topology by adding a number of edges that allow

us to fully triangulate the design domain covered by the bridge. We load the

deck with the forces defined in Eq. (2.93), and we prescribe the aspect angles

of superstructure and substructure to 30 deg.

We analyze the bridge model corresponding to the complexity (n, p, q) =

(3, 3, 3) (featuring 51 nodes and 134 edges, cf. Figs. 5.12, 5.13), and the model

corresponding to the complexity (n, p, q) = (5, 5, 5) (343 nodes and 998 edges,

cf. Figs. 5.14, 5.15). It is worth noting that the analyzed bridge structure
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P̃ P̂

T̃11 T̂11

T̃12 T̂12

Figure 5.11: LSM truss example. Top: ordered (left) and unstructured (right)
force networks (blue: compressive forces; red: tensile forces). Center and bottom:
ordered and unstructured approximations to the stress field of the background
domain.

tends to completely fill the design domain, i.e. converging to a continuum

medium, as the complexity parameters n, p and q tend to infinity.

The plots of the deformed shapes, force networks and Cartesian stress

components T11, T22 and T12 associated with analyzed bridge structures are

shown in Figs. 5.12, 5.13, 5.14 and 5.15. Such results graphically illustrate the

discrete-to-continuum process that descends by increasing the complexity of

the analyzed bridge topology. The force networks supported by the structure

and the density plots of the Cartesian stress component T11 shown in Figs.

5.12(c), 5.13(a), 5.14(c) and 5.15(a) graphically illustrate the arch resistant
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mechanisms diffusely discussed in Chap. 2. In particular, the force networks

in Figs. 5.12(c) and 5.14(c), as well as the density plots of the longitudinal

stresses T11 illustrated in Figs. 5.13(a) and 5.15(a) highlight the presence of

compressed arches at the boundary of the superstructure, and tensile arches

at the boundary of the substructure. The density plots of the shear stresses

T12 show that such stress components grow in magnitude by moving towards

the extremities of the bridge, as it was to be expected (cf. Figs. 5.13(c) and

5.15(b)). Finally, the density plots of the transverse stresses T22 show that

such stress components change sign by moving from the superstructure to the

substructure (cf. Fig. 5.13(b)).
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Figure 5.12: LSM bridge with complexities n = p = q = 3: (a) structural
scheme, (b) deformed shape, (c) force network.
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Figure 5.13: LSM bridge with complexities n = p = q = 3: (a) T11 stresses, (b)
T22 stresses, (c) T12 stresses.
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Figure 5.14: LSM bridge with complexities n = p = q = 5: (a) structural
scheme, (b) deformed shape, (c) force network.
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Figure 5.15: LSM bridge with complexities n = p = q = 5: (a) T11 stresses, (b)
T12 stresses.

5.5 Discussion

The results of the present chapter highlight that the smooth projection of an

unstructured stress function over a structured triangulation is able to generate

a convergent discrete notion of the Cauchy stress associated with tensegrity

structures in the continuum limit. Such a stress measure can be usefully em-

ployed to smoothly predict the stress field associated with tensegrity models

of flat and curved membranes [86, 87, 15, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,

98], and to formulate concurrent discrete-continuum approaches based on the

lumped stress method [87, 99, 93, 94, 15]. Due to its ability in generating un-

structured and structured force networks over a given design domain, the pro-

posed regularization technique can also be used in association with structural

optimization procedures and form-finding methods [93, 94, 115, 116, 117, 118].

Several aspects of the study illustrated in the present chapter pave the
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way to relevant further investigations and generalizations that we address to

future work. First, the inclusion of body forces calls for specific attention,

since network structures are usually loaded by nonzero forces at all nodes.

Such a generalization of our current results could be carried out by deriv-

ing explicit formulae for the passage from unstructured to structured force

networks, which do not require polyhedral stress functions. A second modifi-

cation of the procedure described in Sect. 5.3 relates to the use of mesh-free

interpolation schemes, such as, e.g., the local maximum-entropy approach pre-

sented in [108]. Finally, another relevant generalization of the present research

regards the prediction of the stress fields associated with fully 3D tensegrity

structures. In principle, such a challenging extension might be accomplished

by making use of Maxwell or Morera stress functions [132], and applying the

present procedures in correspondence with three different planes. However,

the application of this approach to the development of provably convergent

numerical schemes for 3D stress field remains at present an open question,

which we look forward to analyze in future studies.
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This thesis provides closed form solutions (analytical expressions) and nu-

merical results for minimal mass tensegrity bridge designs. The tensegrity

paradigm used for bridges in this paper allows the marriage of composite

structures within the design. Our tensegrity approach creates a network of

tensile and compressive members distributed throughout the system at many

different scales (using tensegrity fractals generates many different scales).

Moreover, the choice of materials for each member of the network can

form a system with special electrical, acoustic properties, and/or mechanical

properties (stiffness, etc). The mathematical tools of this thesis can be used

therefore to design metamaterials and composite materials with unusual and

very special properties not available with normal design methods. Analytic

and numerical approaches to the parametric design of tensegrity bridges have

been respectively presented in Chap. 2 and Chap. 3, obtaining a collection

of minimum mass shapes as a function of the adopted design strategy. The

numerical results of Chap. 3 confirm the theoretical predictions given in Chap.

2.

Tensegrity bridge structures have been employed as deployable roofs for

water canals. The forces, locations, and number of members have been opti-

mized to minimize mass subject to buckling (for bars) and yielding (for cables)

constraints for a planar structure with fixed-hinge/fixed-hinge boundary con-

ditions.

The relationship between polyhedral Airy stress function and the stress

field associated with tensegrity structures in two dimensions has also been

discussed, by generalizing classical results of plane elasticity [126, 125]. Such

a relationship allows for determining the continuum limit of the parametric

designs presented in Chaps. 2, 3, as the complexity parameters tend to infinity.

A two-mesh technique has been proposed for the definition of the Cauchy stress

associated with unstructured triangulations corresponding to the topologies of

arbitrary tensegrity bridges.

The dynamics of tensegrity bridges will follow as future work to impose

further design constraints on stiffness issues (vibrational frequencies, mode
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shapes, displacements for high winds conditions, etc). It is worth noting,

however, that the capability all of these choices and adjustments are within

the free parameters of the designs in this thesis. The subsequent dynamics

approach will evaluate the value (economics and performance tradeoffs) the

use of feedback control for the deployable and service functions, or to adjust

the stiffness of the structure (varying the prestress of the cables) to modify

stiffness or damping after storm damage.
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Multiple connected domains

We examine in the present Appendix the case of a force network defined over

a triangulation of a multiple-connected domain. Without loss of generality, we

focus our attention on the illustrative example shown in Fig. 7.1, which deals

with a doubly-connected domain Ω. The generalization of the arguments pre-

sented in Sects. 5.2 and 5.3 to such a domain is pretty straightforward, when

Ω is suitably discretized into a collection of simply-connected domains. Fig.

7.2 illustrates a subdivision of the current domain into two simply-connected

subdomains Ω1 and Ω2. Let us apply the approximations schemes formulated

in Sects. 5.2 and 5.3 to each of such subdomains, on introducing two different

stress functions ϕ̂
(1)
h and ϕ̂

(2)
h ; two force networks P̂

(1)
h and P̂

(2)
h ; and two piece-

wise constant stress fields T̃
(1)
h and T̃

(2)
h . We obtain an overall approximation

of the Airy stress function that is doubly-valued in correspondence with the

separation between Ω1 and Ω2. It is easily shown that such an indeterminacy

in terms of the Airy stress function does not affect the overall prediction of the

Cauchy stress of Ω. As a matter of fact, the stress fields T̃
(1)
h and T̃

(2)
h pertain

to complementary tessellations Ω1 and Ω2 of Ω, which have null intersection

and are such that Ω = Ω1 ∪ Ω2 (Fig. 7.2).
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Figure 7.1: Illustration of a doubly-connected domain Ω.
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Figure 7.2: Subdivision of a a doubly-connected domain Ω into two simply-
connected domains Ω1 and Ω2.
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[23] Sakamoto , T., Ferrè, A., Kubo, M. (Eds.), 2008. From Control to Design:

Parametric/Algorithmic Architecture. Actar.

[24] Skelton, R. E., 2002. Structural systems: a marriage of structural engi-

neering and system science. J. Struct. Control, 9,113–133.

[25] Skelton, R. E., de Oliveira, M. C., 2010a. Optimal complexity of deploy-

able compressive structures. J. Franklin I., 347,228–256.

[26] Skelton, R. E., de Oliveira, M. C., 2010b. Optimal tensegrity structures

in bending: the discrete Michell truss. J. Franklin I., 347,257–283.

[27] Skelton, R. E., de Oliveira, M. C., 2010c. Tensegrity Systems. Springer.

[28] Skelton, R. E., Nagase, K., 2012. Tensile tensegrity structures. Int. J.

Space Struct., 27,131–137.
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