UNIVERSITA DEGLI STUDI DI SALERNO
DISTRA - MIT

Dottorato Internazionale di Ricerca
Sistemi Informativi e Ingegneria del Software

XII Ciclo, Nuova Serie

Tesi di Dottorato in

Forensic Readiness Capability for Cloud Computing

Doctoral Dissertation of

Lucia De Marco

Ph.D. Coordinator Advisors
Prof. Filomena Ferrucci Prof. Filomena Ferrucci

Prof. M-Tahar Kechadi

Anno Accademico 2014-2015

ACKNOWLEDGMENT

The University of Salerno where I got my education basis gave me the chance
to participate to this extraordinary experience of an international Ph.D. At the end
of such a programme I can say that I am deeply grateful to it that better educated

and changed my person in many different ways.

In particular, I have to immensely thank my supervisor Professor Filomena
Ferrucci from University of Salerno, for her continuous and invaluable support
and advice. I had the privilege to learn from such an extraordinary academic, and
the honour to be guided by such a big experienced woman, who always involved

me despite the physical distance that this experience put between us.

I also have to thank my supervisor Professor Tahar Kechadi from University
College Dublin, who adopted me in Ireland since the the first day I landed. He
granted me the honour and privilege to study and work on an incredibly fasci-
nating and interdisciplinary research area. He always professionally guided me
throughout the time I spent in Dublin, and offered me the possibility to be totally

integrated in a foreign context.

I wish to thank Dr. Michela Bertolotto from University College Dublin, for
her support and constant presence throughout this long-lasting experience. She
has been an irreplaceable lighthouse for some specific concerns and I am grateful

to her too.

I wish to thank the Ph.D. student Pasquale Salza from University of Salerno,

for his determining contribution to the final activities of my research work.

I also wish to thank Dr. Sameh Abdalla from University College Dublin, who

I worked and spent very nice days with. It has been a pleasure to work with him.

I also wish to thank my colleagues and personnel from both University of
Salerno and University College Dublin, for providing a professional, competent,

and stimulating education environment.

I lovely thank my friends from Italy, Ireland, and other parts of the world, who
have always been a great source of laughter, joy and support, very important to

tackle every day of such a big experience.

A final but deeply special and lovely thanks to my father, mother, and sister,
for believing in my dreams, for supporting me in the incredibly bad days and
challenges that I faced, and for never denying a encouragement and a smile in the

good days. The physical distance never been a problem when love is deeply true.

Contents

1 Introduction
1.1 Problem
1.2 Motivations e
1.3 Challenges and Objectives
14 Contribution
1.5 Thesis Organisation
2 Cloud Computing
2.1 Introduction
22 History e
2.3 Definition and Features
24 Summary e e e e
3 Digital Forensics
3.1 Introduction
32 OVeIVIEW
3.3 DF Definition and Evolution
3.4 Digital Forensic Readiness
34.1 DFR Proposals in the Literature
342 ADefinitionfor DFR

35 Summary ...
Cloud Forensics
4.1 Introduction
42 OVEIVIEW i
4.3 Cloud Forensic Challenges
43.1 Technical,
43.2 Organisational
433 Legal
44 Cloud Forensic Readiness
4.5 Reference Architecture for Cloud Forensic Readiness System . . .
4.5.1 OperationsinaCFRS
4.5.2 Forensic Readiness System Constraints
453 CFRS Advantages
4.6 Summary . ..o ... e e e e
Forensic Readiness in Investigation Processes
5.1 Introduction
5.2 Digital Forensic Investigation
5.3 Systematic Literature Review
5.4 Digital Forensic Process Models SLR
54.1 PlanningPhase
54.2 ConductionPhase
5.4.3 An additional Conduction Phase
54.4 ReportingPhase
5.4.5 Discussion: Lessons Learned
5.5 Summary

23
23
23
24
25
25
26
27
28
31
33
34
35

6 Service Level Agreement Contracts

8

6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8

Introduction
Service Level Agreements
SLALifeCycle
SLAiInIT Services
SLAMonitoring v v vt
Services Metricsin SLA oL
6.6.1 Service Oriented Architecture
6.6.2 Cloud Computing
Literature Description

Summary

SLA in Cloud Forensics Readiness

7.1
7.2
7.3

7.4
7.5

Introduction
Service Level Agreements Interaction
Contractual Constraints
7.3.1 SLOSelection
7.3.2 SLO and Security Threats

Final Remarks

Automatic SLA Classifier

8.1
8.2
8.3
8.4
8.5

Introduction
SLOs Structure
SLOViolation
SLO Classification
Automatic Classifier for SLAs
85.1 Stepl

52
52
52
53
55
56
58
58
59
64
65

66
66
66
68
68
74
78
79

10

11

852 Step2

8.6 Assessment

86.1 Stepl
8.6.2 Step2 e

8.7 Summary

Formal Model

9.1 Introduction e

9.2 Related Work

9.3 SLACFR

9.4 Cloud Computing Formal Representation

9.5 SLA Formal Representation

9.6 Forensic Re

9.7 Summary

adiness

Prototype System

10.1 Introduction e e

10.2 Architecture o v i e e e e

10.3 Design Goa
10.4 Databases

IS o o e

10.4.1 SLADatabase
104.2 LogDatabase

10.4.3 Comparison Database

10.5 Interaction with GATE

10.6 Matching C
10.7 Summary

Case Study

omponent oo oo

11.1 Introduction v i i e e

97
97
97
99
100
104
106
107

109
109
109
110
114
114
115
115
116
117
120

122

11.2 Overview o
11.3 Scenario
11.4 Amazon SLAandLogs
11.5 Formal Model Example on AmazonS3
11.6 Summary

12 Log Files Generation
12.1 Introduction
12.2 Simulation Platform
12.2.1 Technical Requirements
12.2.2 Simple DoS Attack L.
12.3 LogFilesDataset

12.4 Summary e e e

13 System Testing
13.1 Introduction
13.1.1 Planning
13.1.2 Execution
132 Results oo

133 Summary

14 Conclusion and Future Work

131
131
132
134
135
136
139

142
142
142
145
150
153

155

Abstract

Cloud computing services represent the actual computation delivery to the most
of customer communities. Such services are regulated by a contract called Service
Level Agreement (SLA), cosigned between customers and providers. During its
validity time several contractual constraints have to be respected by the involved
parties. Due to their popularity, cloud services are enormously used and unfortu-
nately also abused, especially by cyber-criminals. A manner for guaranteeing and
enhancing cloud service security is the provisioning of a forensic readiness capa-
bility to them. Such a capability is responsible to perform some activities aimed to
prepare the services for a possible forensic investigation. Sometimes, the crimes
are related to some contractual constraint violations without the parties are aware
of. Thus, a dedicated forensic readiness capability interacting with cloud services
and detecting the SLLA violations by analysing some cloud log files can guaran-
tee more control on such contracts. In this dissertation, a formal model aimed to
represent a forensic readiness capability for the cloud that detects contractual vi-
olations is presented, together with a prototype system running on a specific case

study.

Chapter 1

Introduction

1.1 Problem

During the last half century humans have been both actors and spectators of rapid
changes in the whole technological world, especially for what concerns both the
devices and the manner in which computation is accessed. In the modern IT era,
the computation capability is delivered through some services, and at this time the
most popular vehicle for services is the cloud computing architecture type.

Cloud computing [81] is a manner in which hardware and software resources
are delivered through the Internet at a pay per use rate. Cloud services are de-
signed to provide a computing environment that utilizes virtual resources that
dynamically allocate the underlying physical ones. The result is to balance the
load and to scale resources provisioning up and down in order to guarantee some
services arriving at the needs of the end users.

Unfortunately, the ease of access to such resources is exploited by the crim-
inals who design more sophisticated and targeted methods to hack any type of
digital device, or to exploit existing computing platforms for illegal behaviour. A

digital forensic investigation (DFI) is triggered in order to conduct and resolve a

cyber crime [80]. Since a standard for DFI processes does not exist, several mod-
els have been proposed in the literature. Each of them represents an investigation
process composed of phases and sub-phases, when necessary. Sometimes, a DFI
is customised for specific computing architectures.

Information systems and computing capabilities delivered through the Internet
in the form of services are regulated by a Service Level Agreement (SLA) contract
co-signed by a generic Application Service Provider (ASP) and the end user(s)
[50]. Also cloud services are regulated by SLLAs, where all the constraints are
detailed. The contracts are co-signed by the parties, and have legal validity in
case of a court litigation.

Security and reliability of cloud applications are very important issues, broadly
considered by both cloud customers and the scientific community. Therefore, a
manner to render a service more protect in case of cyber crimes can be considered
as a matter of urgency. The provisioning of a forensic readiness capability [123] to
a cloud environment is considered as a possible solution to this issue, and broadly

discussed in this dissertation.

1.2 Motivations

Cloud computing services have been being adopted in both private and business
contexts. This escalation is a revolutionary event for forensics; thus, the branch
of cloud forensics has been introduced by the necessity to deal with a comput-
ing infrastructure that cannot be investigated with the available forensic tools and
procedures [112] . At the same time, practitioners are required to manage cloud
evidence respecting the existing admissibility and reliability principles for digital
evidence [1, 89].

The adaptation of existing forensic procedures to computing features is a con-

stant and challenging task; moreover, the provisioning of a forensic readiness (FR)
capability to computing infrastructures is sometimes complicated. Such a capa-
bility aims to prepare computing architectures for forensic investigations with the
advantage of optimizing the whole process [111].

FR can be conceived as the provisioning of an information system commu-
nicating with such architectures, with the purpose of identifying, collecting, and
storing critical data coming from them. This FR capability must be provided to
cloud computing architectures because, due to their escalating popularity, they
can be object of several attacks, and a way to conduct forensic investigations ef-
fectively, saving time, money and resources, must be designed.

The side effect of such capability is the enhancement of security aspects of
a cloud infrastructure and the immediate availability of information derived by
a constant monitoring of the platform itself. Such information can obviously be
related to potential forensic evidence; also to some organisational internal aspect,
such as data access control or customer behaviour or profiling, thus becoming a

source of data to exploit for different business-related purposes.

1.3 Challenges and Objectives

Cloud solutions have such a strong influence on all the aspects of human life, from
personal to business. In most cases, alongside progress, technology is a fertile
ground for the increase of criminal activities. Unfortunately, this phenomenon is
becoming more commonplace.

ICT progress is the engine of the Digital Forensic (DF) science, which deals
with the investigation of information gathered from digital devices in order to re-
solve court cases. A constant issue in this discipline is the evolving nature of the

investigation procedures, which have to follow the giant steps moved by technol-

ogy in short time periods in order to be effective.

In this doctoral dissertation some challenges have been derived and analysed;
they concern some technical, organisational, and legal aspects of cloud forensics
generated by some specific features of cloud architectures. In forensic readiness
some challenges of them have been considered and then addressed by the pro-
posal, i.e, by the formal model and the prototype system representing a forensic

readiness capability for cloud computing platforms.

1.4 Contribution

A DFR capability for the cloud is meant to observe and record changes in the
underlying computing architecture for the aims described above. Such changes
concern the operations happening in the cloud with respect to the SLA constraints
related to potential crimes. The output of the capability include important inves-
tigative details about the recorded information and the detection of contractual
clause violations. A means for implementing such a DFR capability in the cloud
includes a representation of the information to monitor. The most effective repre-
sentation is the adoption of formalisms.

One of the contributions of this doctoral dissertation on the topic of forensic
readiness is represented by a definition for Forensic Readiness. Then, a reference
architecture for the implementation of an FR system for the cloud is designed and
illustrated, together with some constraints and advantages. A rigorous system-
atic literature review is conducted in this dissertation in order to determine when
forensic readiness has been considered by the existing DFI processes proposed by
the scientific community. The SLLA constraints relevant for forensic readiness are
mapped on the most crucial security threats and sources of attacks in the cloud.

In this dissertation, a classification about some contractual contents is pro-

posed discussed; then an automation for SLLAs classification is designed and val-
idated. Natural language-based SLAs clauses, cloud logs, and several entities
necessary to output a comparison between them, have been structured via for-
mal specifications. The formal model utilizes tuple, set theory, and functions, to
represent the necessary entities.

The formal model is validated via a prototype system implementing a case
study, illustrated in the final chapters of this dissertation. This prototype has been
utilised to design the architecture, and to implement the routine detecting some
SLAs constraints violations. The system has been tested to detect a crime hap-
pening in the underlying architecture and specific test cases have been designed.

The automation for SLA classification correctly identifies the information to
monitor; then they are given as input to the developed prototyped system. An-
other input to such a prototype is represented by cloud services logs: they are
obtained in a controlled and simulated environment. The prototype routines are
launched and the test cases results are obtained: they highlight that the contractual
violations are detected in a real time manner, and also the potential crime alert is
generated by using the illustrated mapping between the cloud log information and
the security threats.

All the contributions of such a dissertation can be enlisted as follows:

o A definition for a forensic readiness capability;
e A reference architecture for a forensic readiness capability for the cloud;

¢ A systematic literature review about forensic readiness in digital forensic

investigations;
¢ A mapping of SLA constraints onto cloud security threats;

e A classification of SLA forensic-related constraints derived by the previous

mapping, together with its automation and assessment;

5

¢ A formal model about a cloud forensic readiness capability and constraint

violations;

¢ A prototype system design validating the formal model about a cloud foren-

sic readiness capability;

e A system test suite planning and execution on a case study for a cloud foren-

sic readiness capability.

1.5 Thesis Organisation

The doctoral dissertation is structured as follows: Chapter 2 presents an overview
of cloud computing; in Chapter 3 the Digital Forensic science and Digital Forensic
Readiness are described; Cloud Forensic is illustrated in Chapter 4. A systematic
literature review about forensic readiness in digital investigations is discussed in
Chapter 5. Service level agreement contracts are introduced in Chapter 6 and their
impact on cloud forensic readiness in Chapter 7. In Chapter 8 a classification
for SLAs and its automation are proposed. The formal model for cloud forensic
readiness is presented in Chapter 9, and the prototype system architecture for it
is described in Chapter 10. A case study on Amazon S3 is discussed in Chapter
11. The simulation platform necessary to generate log files to feed the prototype is
illustrated in Chapter 12, while the system testing in Chapter 13. Some conclusion

and future work are presented in Chapter 14 that closes the dissertation itself.

Chapter 2

Cloud Computing

2.1 Introduction

This chapter is dedicated to provide an overview of cloud computing. An in-
troduction about the history of the cloud begins the chapter. Some details about

definition, features, service models, and deployment models are illustrated.

2.2 History

In the modern IT era computation capability is delivered through some computing
services. This name became popular to the public when the Service Oriented Ar-
chitecture Web Services (SOA-WS) spread in the 90s [7]. The concept of deliver-
ing IT and computation capabilities through a network dates back to the late 60s.
In 1969 J.C.R. Licklider, who contributed to the development of the Advanced
Research Projects Agency Network (ARPANET), promoted the concept of an in-
tergalactic computer network [77]. Such a scientist had a vision and a hope that
in the future every individual would have access to data and applications from

anywhere. In 1961 the computer pioneer John McCarthy in 1961 predicted that

computation may someday be organised as a public utility [51].

The most popular and accurate definition of network-delivered service is the
one published by the World Wide Web consortium (W3C), which states that a
web service is a software application identified by a URI, whose interfaces and
bindings are capable of being defined, described, and discovered as XML arte-
facts. A web service supports direct interactions with other software agents using
XML-based messages exchanged via Internet-based protocols [130].

The word cloud was firstly introduced in the context of telecommunications in
the 1990s, as telecom cloud when some data communication providers started us-
ing Virtual Private Network (VPN) services. An important feature of such VPNs is
their capability to maintain a level of bandwidth comparable to that of non virtual
networks; the main advantage is to reduce costs, perform dynamic routing that al-
lows resource balancing across the network, and to increase bandwidth efficiency,
among others.

Cloud computing service architecture shares many of those features. Indeed,
it is designed to provide a computing environment that utilizes virtual resources
that dynamically allocate the underlying physical ones. The result is to balance
the load, and to scale resource provisioning up and down in order to guarantee
some services arriving at the needs of the end users.

Cloud services can be seen as evolution of SOA-WS services; the cloud is
taking advantages from them to build the services architecture, as described in the

next section.

2.3 Definition and Features

Cloud computing is a manner of delivering hardware and software resources through

the Internet at a pay per use rate. There exists an effective and complete definition

for cloud computing provided by the National Institute of STandards (NIST) [81]
for cloud computing: Cloud computing is a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction. This cloud model is composed of five essential characteris-
tics, three service models, and four deployment models.

Such a definition is the most widely adopted because it includes all the features
that make the cloud different from the previous computing delivery architectures.
As mentioned in the definition, there are five characteristics concerning the phys-
ical infrastructure, and that represent the strengths of the cloud itself.

The first characteristic concerns the cloud services resources; they are auto-
matically provisioned by the provider depending on the customer needs, without
physical interactions with the provider.

Secondly, such services are available over the Internet, which can be accessed
from any physical location and through almost any digital device. The only re-
quirement to guarantee the access to services is the reliability of the internet con-
nection, which is a customer concern.

The third characteristic affirms that the resources are shared among several
customers that utilize the services they subscribed for. The manner in which such
resources are pooled gains its advantage from a multi-tenant model, where the
provisioning of both physical and virtual resources is dynamic, according to cus-
tomers necessities and demands. Another advantage of such multi-tenant model is
that the customer has no perception of the physical location of the resources, but
(s)he can locate them at a higher level of abstraction, such as continent, country,
or data centre.

Fourth, the resources are elastically provisioned and released. For most providers,

this happens in an automatic manner, in order to satisfy the requests of the users.
From the customers point of view, the provisioned resources appear to be unlim-
ited and always available in the quantity they required.

Fifth and last in the order, the cloud resources are automatically controlled
and optimised; such a monitoring capability is performed at a level of abstraction,
which has to be appropriate to the type of service resources. The reason why such
monitoring is performed is to attempt to guarantee some degree of transparency
of the underlying infrastructure for both providers and customers.

Cloud computing architectures are delivered on three different service models;
they are called Infrastructure, Platform, and Service as a Service, acronymed as
laaS, PaaS, and SaaS, respectively. The differences among them are in the type
of services available on each model and the quantity of the resources under the

control of customers and providers, as illustrated in Figure 2.1.

Cloud Consumer

SaaS

PaaS

laaS

Middleware Layer

Saas

Operating System
Layer

Paa5

laaS

: Cloud Provider

Figure 2.1: Scope of Controls between Provider and Consumer [79]

In SaaS the customers can use cloud services without managing or controlling
the underlying physical infrastructure resources, with some exception related to

some specific configuration settings.

10

Platform as a Service is where a customer can deploy his applications devel-
oped by using the technologies available in such PaaS. As well as in SaaS, at
this level of the architecture the developer cannot have control of the underlying
infrastructure; instead he can have control over his applications, including some
configuration settings of the environment hosting them.

In an Infrastructure as a Service a customer can utilize some computing re-
sources such as processing, storage, or networks, to cite just a few. The customer
can use them to run arbitrary applications, comparable to if such resources were
physically located in his office. The resource control owned by the customer in
this case is about the applications deployed and running on such cloud service,
plus a limited control of select networking components, such as host firewalls.

The whole cloud computing architecture infrastructure is build by using this

three-layer services model, as illustrated in Figure 2.2.

Service Layer
Saa$S

PaaS

laa$S

Figure 2.2: Cloud Service Orchestration [79]

The deployment models for cloud computing services are divided into four
categories, namely public, private, community and hybrid. NIST provides details
for each of them as follows [81].

In a public cloud computing architecture the infrastructure can be accessed
and used by the general public, provided by a cloud provider which can be a

business, academic, or government organisation, or some combination of them.

11

A private cloud infrastructure is provisioned for being used exclusively by a
single organisation. Such infrastructure can be owned, managed, and operated by
the same organisation that uses it, or a third party, or some combination of them.

In a community cloud model the infrastructure is dedicated to a specific com-
munity of consumers requirements. The customers belong to organisations that
have shared concerns, e.g., security requirements, or policy. The resources can be
owned, managed, and operated by one or more organisations in the community, a
third party, or some combination of them.

Finally, in a hybrid cloud deployment model the infrastructure is a compo-
sition of two or more distinct cloud infrastructures among private, community,
or public; the elements of the composition remain unique but combined by using
some standard or proprietary technology enabling data and application portabil-

ity in order to facilitate data transmission.

2.4 Summary

In this chapter an overview of cloud computing is provided. It includes an intro-
duction about the history of the cloud, then the definition of such a computation
delivery provided by NIST is described. Some details about definition, features,
service models, and deployment models characterising cloud computing are illus-
trated.

In the following chapter the digital forensic science is described: an overview
of such a discipline is provided, together with its definition and historical evo-
lution. Also digital forensic readiness is introduced, together with a literature
summary about forensic readiness proposals. Finally, a definition for forensic

readiness is presented and discussed to close the chapter.

12

Chapter 3

Digital Forensics

3.1 Introduction

This chapter is dedicated to the digital forensic science. An overview of such a
discipline is provided, together with its definition and historical evolution. Also
digital forensic readiness is introduced, together with a literature summary about
forensic readiness proposals. Finally, a definition for forensic readiness is pre-

sented and discussed to close the chapter.

3.2 Overview

During the last half century humans have been both actors and spectators of rapid
changes in the whole ICT world, especially for what concerns both the devices and
the manner in which computation capability is accessed. Technological progresses
have been such a strong influence on all the aspects of human life, from personal to
business. Indeed, analogical devices and computation are considered an ancient
memory, due to the fact that everything is now digital, such as music, movies,

pictures, watches, telephones, connections, to cite just a few [122]. The utilisation

13

of the Internet is growing bigger and bigger, utilised for every type of activity, and
accessed by any kind of device. At this time it is almost unthinkable being off-line.

In most cases, alongside progress, technology is a fertile ground for the in-
crease of crimes. The ease of access to such resources is exploited by the criminals
who design more sophisticated and targeted methods to hack any type of digital
device, or to exploit existing computing platforms for illegal behaviour. Unfortu-
nately, this phenomenon is becoming more commonplace, and a manner to fight
it is the application of forensic science.

The forensic science concerns with applying science to law for resolving court

cases. It utilizes techniques coming from several disciplines, as illustrated in Fig-

ure 3.1.
ANATOMY SOCIALSTUDIES
LANGUAGE ARTS Law

Integumentary-Fingerprints, Hair Forensic History
Skeletal-- Bones MATH Communication--written, aral Psychology--Criminal Mind
Cardiovascular--Blood Technical Reading Skills Time Periods
Digestive-- Teeth, Saliva Measurements Research Skills Geography/ Maps
Reproductive--Semen Ratios Biographies

Algebraic Formulas Fiction / Nenfiction

Graphing

Distance

Practical Word Problems

g
BIOLOGY FORBNSIC CHEMISTRY

DNA SENCE Density
Genetics Mixtures

Entomology-Insects
Botany--Plant Identification
Zoology-- Animal Hair/ Blood

Organic Analysis
Inorganic Analysis
Texdcology-Drugs/ Poisons
Fibers

Fire / Explosives

Y

EARTH SCIENCE

Soil Studies
Casts and Molds

PHYSICS

TECHNOLOGY PHYSICALSCIENCE

Blood Splatters/ Pattems
Trajectory

Computers Paper and Ink Analysis

Speed Chromatography GENERAL Handwriting
Light Spectrometry Typewriting
Sound--Voice Patterns Microscopes Careers Forgery

Bone Fractures Electrophoresis

Photography

Critical Thinking
Deductive Reasoning.
Problem Solving Skills
Study Skills

Figure 3.1: Forensic Science Map [104]

The origins of the forensic science lie several centuries B.C. [104], and along

14

the millenniums, it followed the scientific and the technological progresses. In
modern times, e.g., at the beginning of 2000s, the ICT progresses led to the mod-
ern Digital Forensic (DF) science, which deals with the investigation of legal ev-
idence gathered from digital devices in order to resolve court cases. The place
where the crime happened is called crime scene, and it is also the place where the
investigation begins and where the evidence has to be collected. In DF the crime
scene is digital, namely place where a digital crime happened, e.g., a device or a

network in some cases.

3.3 DF Definition and Evolution

There exists no universally accepted definition for Digital Forensics, but the widest
one was coined in 2001 during the first digital forensic research workshop [95].
From that definition, digital forensics is the use of scientifically derived and proven
methods toward the preservation, collection, validation, identification, analysis,
interpretation, documentation and presentation of digital evidence derived from
digital sources for the purpose of facilitating or furthering the reconstruction of
events found to be criminal, or helping to anticipate unauthorised actions shown
to be disruptive to planned operations.

A constant issue in this discipline is the evolving nature of the investigation
procedures; consequently, the forensic practitioners must deal with the ICT pro-
gresses. In single machines forensics the crime scene is well delimited and com-
posed of single machines where the potential evidence can be located. Such de-
vices are seized by law enforcement on the crime scene; then they remain under
supervision and control of the practitioners until the case resolution.

The most common forensic procedures adopted by law enforcement for poten-

tial digital evidence are described by both UK [1] and USA [89] guidelines. For

15

instance, the officers have to guarantee that the examined devices are collected
following some specific procedures. Moreover the content of the machines might
be not altered, so the investigation has to be conducted on copies; such copies
have to be obtained following some guidelines.

With the diffusion and utilisation of computer networks by the general pub-
lic, forensic practitioners assisted in the establishment of Network Forensics (NF)
branch [95], which is the application of digital forensic procedures to computer
networks. In order to be applicable, such procedures enlarged the crime scene.
In addition to the computers, the devices can be included in network paths, e.g.,
routers, access points, switches, and server machines. ICT progress continues to
pose increasingly difficult challenges to DE, which in most cases are addressed
with the introduction of forensic tools and procedures customised for specific
computing environments. Several tools and procedures have been established,
as well as adaptations of forensic procedures to the features of computer science,
e.g., for networks and mobile phones [10, 22,24, 53, 103]. At the same time, a
great deal of different investigations processes has been presented in the literature
in order to satisfy some specific requirements; some of which are summarised in
two literature reviews [5, 102].

More recently, cloud computing services are been being adopted predomi-
nantly in both private and business contexts. As described by Gartner [54] and
depicted in Figure 3.2, the public cloud services spending is expected to record an
annual growth rate of 17.7% from 2011 to 2016, equivalent to 210 billion dollars.
This escalation together with its prediction can be considered as a revolutionary
event for forensics, which generated the branch of cloud forensics, described later

in Chapter 4.

16

Billions of Dollars Percent

250 7 - 25
20.8 210
200 186 18.5 18.4 181 - 20
i 158
| 17.2 I
150 i 15
110
100 93 10
77
50 5
0 : : : : T T 0
2010 2011 2012 2013 2014 2015 2016

Total —#—Annual Growth Rate

Figure 3.2: Public Cloud Service Market 2010 - 2016 [54]

3.4 Digital Forensic Readiness

In Digital Forensics some scientists proposed the idea of providing a computing
infrastructure with a capability to make it ready and prepared for forensic inves-
tigations and procedures. Such a capability is called Digital Forensic Readiness
(DFR), and it was introduced by Tan [123] in 2001. A definition provided by the
same author affirms that DFR is “the ability of an organisation to maximize its
potential to collect digital evidence and minimizing the costs of an investigation”.

In order to prepare computing architectures for forensics, a readiness capabil-
ity must be imagined as the provisioning of an information system communicating
with such architectures. The principal aim of a dedicated system is identifying,
collecting, and storing critical data coming from the underlying computing infras-
tructure, which are the potential evidence.

A crime can happen or not; thus, the pure sense of such a capability is to render
a digital context pro-active for something that can theoretically never take place.
This consideration can lead the reader to doubt about the effectiveness of DFR.

Specifically, if such a capability is dedicated to perform some activities whose

17

output might never be utilised, what is the booster for spending some effort to
design and implement a dedicated system is a legitimate doubt.

A positive side effect of DFR is provide an approach for addressing some
issues of DF, and enhance some security and privacy issues of a computing en-
vironment. In 2004, few years after DFR was introduced, Rowlingson proposed
a ten step process designed for organisations willing implement digital forensic
readiness [111]. The process includes some key activities necessary for gathering
potential digital evidence complying with the admissibility and reliability princi-
ples for court cases. It poses emphasis on the features that a forensic readiness

system needs to be effective.

3.4.1 DFR Proposals in the Literature

An interesting approach for managing forensic readiness is discussed in [106] by
Reddy et al. The examined issues deal with human, technical, and departmental
management problems for implementing a DFRS in large organisations. The ex-
amination leads the authors to propose a solution composed of frameworks rather
than ad-hoc systems. Such a novel architecture is provided for assisting the reali-
sation of an optimal level for managing DFR. It is composed of detailed functional
requirements determined by a literature survey, and it is also supported by an early
proof-of concept prototype system to demonstrate that it is feasible.

Other work stressed the importance of a DFR capability in order to enhance
the internal security of an organisation. In [59] the overlap between the DF and
some Information Security (IS) best practices was examined by Grobler et al. The
consideration made is that some DF aspects can be considered as IS best prac-
tices missing events prosecution procedures. These best practices excluded the
requirements for the preservation of digital evidence necessary for investigations.

The organisations adopting the actual best practices cannot prosecute events and

18

information related to security controls. In the authors opinion, DFR is the solu-
tion for implementing the respect of the legal admissibility guidelines on evidence
gathered during investigation procedures. A dedicated system can enrich the secu-
rity strategies of an organisation; this is justified by the main feature of providing
a way to prepare the existing computing infrastructure for incident handling by
collecting potential digital evidence. Thus, DFR is a good candidate to become a
component of the IS best practices, demonstrating that protecting valuable com-
pany information resources is critical.

In [46], Endicott et al. discussed several Network Forensics aspects. The au-
thors analysed some situations when cyber-targets are powerless with respect to
attackers and intruders exploiting and disrupting the networks. The authors af-
firmed that forensic readiness for network infrastructures can be a valuable solu-
tion in order to decrease the power of such attacks. Thus, a theoretical framework
to implement network forensic readiness in enterprise contexts is proposed.

In [35] the availability of digital evidence is discussed by Danielsson et al.
It must be collected in a proper and pro-active manner in order to render the in-
vestigations effective and successful. For this purpose, a DFR capability must
be implemented into an organisation, and it must follow a structured approach.
Its implementation includes several features regarding national and international
legislation, together with their constraints and requirements about data collec-
tion and preservation, and user data privacy protection. Such an approach aims
to pro-actively seek the sources of digital evidence, and to configure the existing
computing infrastructure for collecting and preserving the potential evidence. The
proposal takes into account relevant and established standards and best practices,
nevertheless it considers some already existing organisational routines, such as
some data collection operations performed for purposes different from forensics,

which can record some events related to potential crimes. Finally, it provides

19

guidance for reporting the incidents to law enforcement, including the content,
the format, the criteria for the report itself and the manner in which the interaction
between the law enforcement and the affected parties is regulated.

Again, the impact of DFR on a corporate context was analysed by Pangalos
et al. [96], where some positive aspects were highlighted, e.g., the enhancement
of the security strategy of an organisation, the reduction of security incidents, the
availability of evidence, and the derived effectiveness of an investigation.

Mouton et al. discussed another proposal for implementing a forensic readi-
ness capability concerns Wireless Sensors Networks [84]. A dedicated prototype
was designed as an additional layer to the existing infrastructure in order to not
modify the original architecture of an existing IEEE 802.15.4 network. The pro-
totype is designed according to a list of requirements that have not been tested in
real wireless sensor network scenarios. Thus, the requirements usability has been
tested through a prototype implemented as an additional layer of the network ar-
chitecture.

A DFR capability is considered crucial and necessary to be provided also to
cloud computing architectures through a dedicated system [115] by Ruan et al.
It is responsible to perform pro-active forensic investigations activities; it offers
some positive side effects, such as increased security and control on data access.

In [126] a forensic readiness capability usage was discussed for Public Key In-
frastructure (PKI) by Valjarevic et al. A PKI system is a set of hardware, software,
people, policies, and procedures necessary to create, manage, store, distribute,
and revoke digital certificates. These systems are used to implement information
system security services such as authentication and confidentiality. The authors
investigated a set of policies, guidelines, and procedures, together with a model
for implementing a forensic readiness framework for such systems. Some require-

ments for either preserving or improving information security and at the same time

20

not altering the existing business processes of such PKI systems is the analysed

and addressed issue.

3.4.2 A Definition for DFR

In this section one of the contributions of this dissertation is presented. It concerns
a definition for digital forensic readiness capability. The approach to design such
a definition has considered the related literature discussed in Section 3.4.1; an
initial version of [36] has been recovered and refined as it follows:.

A digital forensic readiness capability is shaped as an information system
communicating with a computing architecture. The main aim is collecting and
monitoring sensitive and critical information potentially related to digital crimes
before they happen, leading to save time and money for the investigations. Data
are closely related to the system artefacts and logging tools available at the mo-
ment. The collected data should be encrypted in order to guarantee more protec-
tion, and stored on a place accessible by selected subjects.

The reason to shape a capability with an information system is driven by the
necessity to represent something abstract, as a capability is, with something else
which can be seen, as an information system is [119]. Nevertheless, with the
execution of a process some output can be generated; they are related to pro-
active forensic tasks aimed to prepare an infrastructure for possible investigations.
Such output are the mere operations of the capability itself, namely they compute
some input data collected from the monitored infrastructure. This information is
composed of log files and additional system artefacts related to them, because they
can hide facts related to digital crimes, or close to their happening. The relation
of this data to crimes will be defined in the following.

The reason why data have to be encrypted and stored into an place different

from where it is gathered relies in some forensic best practices described in [1,

21

89], which provide details about evidence admissibility principles, among other
procedures.

Finally, as mentioned in [36] the provided definition for digital forensic readi-
ness is considered general and adaptable to every computing infrastructure, hence
valid both for the past and the future, as well as for the mentioned cloud infras-

tructures.

3.5 Summary

In this chapter an overview of digital forensic is provided. A broad description
of such a discipline begins the chapter, together with its definition and historical
evolution. Also digital forensic readiness is introduced and described, together
with a literature summary about forensic readiness proposals. Finally, a definition
for forensic readiness is presented and discussed to close the chapter.

In the following chapter another aspect of digital forensics is examined, namely
the adaptation of forensic to cloud computing. An overview of Cloud forensics is
provided, then the main challenges derived by the literature are illustrated. Foren-
sic readiness in the cloud is then described, and a reference architecture for a cloud

forensic readiness system is designed and explained.

22

Chapter 4

Cloud Forensics

4.1 Introduction

This chapter is dedicated to the adaptation of forensic to cloud computing. An
overview of Cloud forensics is provided, together with its three dimension model:
technical, organisational, and legal. The main challenges of each dimension are
derived by the literature and illustrated. Forensic readiness in the cloud is then
described, and a reference architecture for a cloud forensic readiness system is

designed and explained.

4.2 Overview

Cloud Forensics (CF) [112] deals with the management of crimes committed both
to hack cloud platforms and that use the cloud as means to commit crimes. Cloud
architecture novelties lead the forensic practitioners to deal with a computing in-
frastructure that cannot be investigated with the available forensic tools and pro-
cedures. Nevertheless, the practitioners are required to manage cloud evidence

respecting the admissibility and reliability principles for digital evidence [24].

23

Some cloud features have been used to build a cube model for cloud forensics
[112], which is composed of technical, organisational, and legal dimensions, as

depicted in Figure 4.1.

Legal Dimension

Cloud Forensics|

k _ "
Technical Dimension

Figure 4.1: Cloud Forensics 3-Dimensions Model [112]

The technical dimension deals with tools and procedures for performing foren-
sic investigations; the organisational one concerns with the manner of establish-
ing a forensic capability, e.g., what are the roles and the responsibilities to assign
into a cloud organisation; finally, the legal dimension covers issues about multi-

jurisdiction, multi-tenancy, and Service Level Agreement (SLA) policies.

4.3 Cloud Forensic Challenges

Cloud architectures generate some challenges [15, 107,112,115, 131] structured
according to the cube model depicted in Figure 4.1. A representation relating
forensic challenges to the cloud features determining them is represented in Table

4.1.

24

4.3.1 Technical

Cloud services are elastic, meaning that they are provisioned and released re-
sponding to users scaling demands. The services run on an infrastructure com-
posed of multiple machines located potentially in different geographical zones
without precise routing information; the resources are virtualised by using some
virtual machines (VMs) [81]. From a forensic perspective, these features deter-
mine a reduced access to data, because the providers intentionally hide data loca-
tion to facilitate ubiquitous access and replicas. Furthermore, the physical control
of the architecture components is lacking; it varies for the three services models,
as depicted in Figure 2.1, becoming larger when a customer moves to the bottom
of the architecture. Another issue in cloud architectures concerns the heterogene-
ity of the log files: because there is no standard for the formats, each provider can
customize its own log type. Nevertheless, there is no timestamps synchronisation
among several data centres and server machines under a single provider scope, as

well as among different providers components.

4.3.2 Organisational

Conducting a forensic investigation in the cloud might involve data and services
information belonging to both providers and customers. There might be also situ-
ations where the cloud providers out-source some services from third parties, thus
the scope of an investigation becomes wider. Moreover, such out-sourced services
can be based on a cloud architecture, hence all the issues related to the replica-
tion of data on multiple data centres located potentially under different physical
jurisdictions escalates. The lack of legal expertise specific for these features de-
termines that there is big uncertainty about the measures to undertake in case of

cross-providers or third parties resources supplying.

25

4.3.3 Legal

Cloud physical resources are virtualised to be used by multiple consumers via a
multi-tenant model; they are also dynamically assigned according to the demands.
The principal issue is the trade-off between multi-tenancies and tenants data pri-
vacy, i.e., what is the correct trade-off to guarantee multi tenancy and at the same
time preserve tenants data privacy. Another side effect of the on-demand elasticity
is the spread of customers and providers data under different jurisdictions; in most
cases also the SLLAs do not include information about the manner for determin-
ing data ownership or what can be the jurisdiction to consider, namely whether
the one related to the physical location of the customer, or to providers machines
and which provider; in this case the contracts might be tailored to include proper
constraints. Few proposals exist in the literature discussing and addressing this
issue [47,94,129].

Table 4.1: Cloud Forensics Main Challenges [39]

Broad Third
Multiple Cross -
CF Challenges Elasticity . VM Network Party . SLA
Locations Providers
Access Service
Reduced data access X X X
Lack of physical con- X X X
trol
Lack of standard X X X
Multiple log formats X X
No timestamps X X
synchronisation
No routing informa- X X X
tion
Lack of investigation X X
expertise
Inappropriate legal X X X X
measures

26

Broad Third
Multiple Cross -
CF Challenges Elasticity V™M Network Party SLA
Locations Providers
Access Service
Multi - tenancy X X
Multiple jurisdiction X X

4.4 Cloud Forensic Readiness

A forensic readiness capability must be provided to cloud computing architectures
because, due to their escalating popularity (see Figure 3.2) they can be object of
several attacks; thus, a way to conduct forensic investigations effectively, e.g.,
saving time, money, and resources, must be designed.

A result of a recent survey [113] conducted by Ruan et al. can corroborate
this needs; indeed, almost 90% of the interviewees familiar with digital foren-
sics, stated that “a procedure and a set of tool-kits to pro-actively collect forensic-
relevant data in the cloud is important”.

Dykstra et al. in [40] analysed some existing forensic tools like EnCase in a
cloud context; the result confirmed that the data collected by those tools are unre-
liable, because some cloud features require more effort for performing forensics
than simply tailoring the existing tools and procedures. The reason for this need
is due to the fact that new technical requirements must be managed for complying
with the legal principles required for digital evidence.

The same authors proposed a proper remote forensic acquisition suite of tools
for an open-source cloud environment [41]. This suite named FROST provides a
forensic capability into the IaaS level of OpenStack, an open-source Cloud Com-
puting platform. FROST performs data collection from provider machines and
from the host operating system, and renders the data available to the users, be-
cause it is assumed that the customers are cooperative during the investigations.
The data collected in FROST include virtual machines images, logs coming from

the API requests, and the OpenStack firewall logs. This suite is considered by the

27

authors as a way for enhancing forensic readiness into the cloud because it per-
forms the necessary investigation preparation activities, such as data collection.
Also in [124] a manner for achieving digital forensic readiness in the cloud
is described by Trenwith et al. It is composed of a remote and central logging
facility for accelerating the acquisition of data; the model was also prototyped for

Windows platforms.

4.5 Reference Architecture for Cloud Forensic Readi-
ness System

One of the contribution of this doctoral dissertation is represented by a reference
architecture for a cloud forensic readiness system (CFRS) [36]. The approach
undertaken to conceive such an architecture was based on an examination of the
most common cloud technical features, as described in Section 2.3, in order to
understand the potential sources of digital evidence among artefacts and managing
tools included in a cloud infrastructure.

Such a reference architecture provides a general approach and understanding
about the necessary operations that a CFRS must perform at a high level of ab-
straction. Its main advantage resides in its design, which is not constrained by any
specific and / or technical configuration; rather, it is flexible and customizable,
and it can be considered as a template for most organisations and cloud service
providers who will implement a forensic readiness capability.

The forensic readiness system is designed to communicate with an existing
cloud infrastructure without altering the original components (see Fig. 4.2). It in-
cludes two main sub-systems; the former is called forensic database, dedicated to
the collection of some cloud services information, namely the potential evidence.

Such data are classified depending on the type; the possible types are monitored

28

READINESS CORE MODULE

|

OVE
DATA VFo| DaTA Fo| pama CHAIN of
ENCRYPTION STORAGE MANAGEMENT CUSTODY

OVF

FORENSIC DATA BASE

-

L

MONITORED DATA J [SERVICES ARTIFACTS

p
J LFORENSIC LOG]

OVF

OVF
. — ' ~\
% Tools: Artifacts: Logs:
& | - Database Activity - VMs Images - Audit Logs
\ Monitoring | - Single Sign-On logs - Hypervisors Error Logs P,
(- File Activity Monitoring | - System state logs '| - Cloud Carrier Logs s
v | - Data Loss Prevention - Applications’ logs - Network logs
& | - Digital Rights - Running System - Activity logs
\ Management System Memory - Acess record facility logs |/
4 - Content Discovery System || - Snapshots 1 - Hypervisor events logs ™\
. - Virtual images
]
..
N ¥,

Figure 4.2: Reference Architecture for a Cloud Forensic Readiness System [36]

data, services artefacts, and forensic log; dedicated sub-systems are included in

the architecture design.

The monitored data sub-system refers to information coming from cloud fa-
cilities dedicated to data monitoring and control [29] e.g., database and file ac-
tivity monitoring, URL filtering, data loss prevention, digital rights management
system, and content discovery system. The database and file activity monitoring
tools are capable of recognizing whenever a huge amount of data is pushed into

the cloud or replicated, thus indicating a data migration. The data loss prevention

29

facility is used for monitoring data in motion; it also manages policies and rights.
URL filtering controls the customers connections to the cloud services, thus it can
be used during the reconstruction of a case time-line. The digital rights manage-
ment system implements and monitors customers rights and restrictions on data,
as stated by the SLAs and terms of use contractual clauses co-signed by providers
and customers; the content discovery system includes tools and processes aimed
to identify sensitive information in storage components of a cloud architecture,
hence their output can allow to identify some data violations or misuses.

The forensics artefacts sub-system is dedicated to the storage of a significant
quantity of artefacts gathered from the provider side, i.e., from the SaaS, the VM
images and the Single Sign-On logs; from the PaaS, the system states and appli-
cations logs; and from the IaaS, the snapshots and the running system memory.

Cloud auditors logs and error logs coming from the virtual machines hyper-
visors are instead collected by the forensic log; both of them are relevant for inci-
dent response procedures and crime investigations. Also some information from
the cloud carrier has to be considered in the forensic log module. A cloud carrier
is an intermediate between customers and providers, responsible for providing
connectivity and transport of the services to the customers through the network
and other access devices [114]. Therefore, some information suitable for foren-
sic investigations include network logs, activity logs, access record facility logs,
hyper-visor event logs and virtual images.

The second main component of the cloud forensic readiness system is the
readiness core module, which performs different activities on the gathered data,
executed by dedicated sub-systems. The collected data are encrypted and stored
by dedicated sub-components, i.e., data encryption and data storage, respectively.
The data management sub-system performs forensic analysis and knowledge ex-

traction with the purpose of reconstructing a correct and reliable event time-line

30

about the recorded information. Finally, the chain of custody report necessary for
cases resolution [89] is performed by the chain of custody sub-system.

A communication and data exchange channel is necessary between the cloud
infrastructure and the forensic readiness system, and also among the several sub-
systems. For this purpose, the Open Virtualisation Format (OVF) standard lan-
guage [93] is considered suitable for the design and the distribution of the system.
This standard language is capable of creating and distributing software applica-
tions to be executed on different VMs, independently from the hyper-visors and
from the CPUs architectures. Moreover, it exploits the XML standard to estab-
lish the configuration and the installation parameters; it can be extended for future
VM hyper-visors developments, thus considered extremely flexible and adaptable
for future versions of a forensic readiness system. In the reference architecture
depicted in Figure 4.2 the OVF communication channel between the cloud and
the system can be used to convert some data formats into a specific target one, in

order to render the necessary information readable and usable by the system itself.

4.5.1 Operations in a CFRS

The initial activity of a cloud forensic readiness system is data collection. The
valuable forensic data are the ones represented in the bottom boxes of Figure
4.2. They include cloud services artefacts and output from some existing cloud
monitoring tools [29].

Data are gathered from the cloud and manipulated outside the architecture. In
order to accomplish the UK [1] and U.S. [89] guidelines concerning the preser-
vation of the potential digital evidence, the collected data have to be copied and
secured to avoid tampering. This is performed by dedicated data storage and en-
cryption sub-systems (see Figure 4.3), where proper digital sign and data securing

routines are implemented. This step is necessary for preserving the original copies

31

/READINESS CORE MODULE \ INCIDENT
@ RESPONSE
DATA MINING (GENERATION PRESERVATICN OF PROCEDURES
OF DIGITAL EVIDENCES) HU OvF DIGITAL EVIDENCES
LAW
ENFORCEMENTS
j ovF COMMUNICATION
‘ [EVENTS ALERTING K:@{ INTRUSION DETECTION] ‘
\ i i /
ov$

6TA ENCRYPTION / DIGITAL SIGN / DATA SECURING \
/ DATA COPY \

FORENSIC DATA BASE \

MONITORED DATA SERVICES ARTIFATCS FORENSIC LOG
- Database Activity - VMs Images - Audit Logs

Monitoring - Single Sign-On logs - Hypervisors Error Logs
- File Activity Monitoring - System state logs - Cloud Carrier Logs
- Data Loss Prevention - Applications’ logs - Network logs
- Digital Rights - Running System - Activity logs

Management System Memaory - Acess record facility logs
- Content Discovery System - Snapshots - Hypervisor events logs

- Virtual images //

TT

flm—

[CLOUD COMPUTING ARCHITECTURE J

Figure 4.3: Reference Architecture for a Cloud Forensic Readiness System

A Different View [37]

when forensic activities are performed.

The whole system activities and modules are constantly running and collect-
ing the most up-to-date data. All this information is fed to the intrusion detec-
tion sub-system, responsible for relating the available information, in order to de-
tect suspicious behaviours. This sub-system has to consider the co-signed SLAs
clauses [81] necessary for correctly detecting contractual violations. The intru-
sion detection system component communicates with the events alerting one, as it
generates alarms as soon as suspicious behaviours and contractual violations are
detected. Such alarms might be different depending on the type of events, but this

is out of the scope of a forensic readiness capability.

32

The data mining module of Figure 4.3, which is the data management of Fig-
ure 4.2, is responsible for hidden knowledge extraction, necessary to generate the
incident-related evidence, and to relate the data and the sequence of events hap-
pened and happening, leading to construct a correct and reliable time-line.

The evidence must be treated considering guidelines, best practices, and laws
used in court admissibility for cases prosecutions. For this purpose, proper and
dedicated policies and routines are implemented in the preservation of digital ev-
idence module. Some information related to the them, e.g., location, treatment,
date, time, time zone, or system component, have to be recorded, in order to
maintain a reliable chain of custody necessary for prosecution purposes, which is
performed by the Chain of Custody sub-system depicted in Figure 4.2.

The proposed cloud forensic readiness system has to be communicative with
the possible competent bodies involved in the criminal cases management, which
can mean transmitting the necessary information related to the detected case, such
as a contractual violation. The competent bodies can be private or public incident
responses; thus dedicated communication interfaces with their information sys-
tems can become necessary, as well as depicted in Figure 4.3, where the compe-

tent bodies are incident responses and law enforcement.

4.5.2 Forensic Readiness System Constraints

In order to obtain the most from the proposed FR system, some constraints must
be verified. Initially, the cloud infrastructure to be furnished with such a capability
must provide the necessary monitoring tools to gather the data from, considered
common components to most cloud providers [29], therefore their presence should

be verified. Summarizing, they are listed as:

e components dedicated to the monitoring of both databases and files, neces-

sary for detecting data migrations;

33

e tools for filtering URLs, aimed to verify the connections made by different

IP addresses;

e tools with the purpose of controlling policies and rights established by the

co-signed contracts.

Big importance is assigned also to the potential evidence data sources. This
encompasses several logs generated by appropriate logging facilities present in
cloud architectures, as well as system images gathered through dedicated tools.

Another requirement concerns the capability of installing the necessary OVF
communication channels, responsible for data transmission. From both an or-
ganisational and legal perspective, these communication channels should require
authorisation for data exchange. In this manner, the involved cloud actors will be

warned, and eventual privacy violation threats can be managed.

4.5.3 CFRS Advantages

The implementation and the usage of a forensic readiness system for cloud com-
puting architectures are very important for multiple purposes. Implicitly, the first
aim is rendering a cloud infrastructure ready for digital forensics by executing the
operations described in Section 4.5.

One of the system side effects is the enhancement of cloud customers data pri-
vacy, together with major internal security; this can happen because a wider con-
trol and monitoring will be performed by the system itself for protecting critical
and sensitive information [36]. Nevertheless, the reconstruction of cases time-line
accompanied by a related chain of custody document [89] is the biggest contribu-
tion of such added value.

A cloud organisation or provider might realize that being prepared for man-

aging crimes or incidents can be vital for both the reliability and the reputation

34

of the offered services; indeed a pro-active gathering of digital evidence mini-
mizes the impact of a forensic investigation on a cloud organisation routines and
performances [111,123].

The detection of Service Level Agreement clauses violations can be managed
by a CFRS, as it will be discussed in this dissertation. Indeed, the sub-system ded-
icated to the events reconstruction, see Figure 4.2, can be capable of determining
a source of attack, or the exact time when a customer data violation happened,
relating them to some specific service levels described in an SLA.

The implementation of a CFRS can be helpful also to address some cloud
challenges for forensics described in Section 4.3. A manner for aligning multi-
ple log files formats and for synchronizing several machines timestamps can be
implemented; such a solution can lead to a correct and reliable reconstruction of
events time-lines, not necessarily related to the crimes, but also to some processes
executions.

From a cloud forensic organisational perspective, the usage of such a system
can be the means to assigning roles and responsibilities necessary for managing
cloud incidents, such as investigator or incident handler; indeed, the people trained
for the system can be responsible for some system modules and the manner in
which data are managed in the cloud organisation.

Finally, from a legal point of view, a CFRS can highlight the main issues
regarding the jurisdiction borders; it can become the instrument for alerting proper

governmental institutions, helping to address a more general problem.

4.6 Summary

In this chapter an overview of Cloud forensics is provided, together with its three

dimension model: technical, organisational, and legal. The main challenges of

35

each dimension are derived by the literature and illustrated . Forensic readiness
in the cloud is then described, and a reference architecture for a cloud forensic
readiness system is designed and explained.

In the following chapter forensic readiness in digital investigation processes is
examined by performing a Systematic Literature Review. The phases composing
such an investigation are detailed in specific sections, and some conclusions are

reported at the end of the chapter.

36

Chapter 5

Forensic Readiness in Investigation

Processes

5.1 Introduction

This chapter is dedicated to an examination of forensic readiness in the context
of digital investigations. They are initially defined and described, and then the
presence of forensic readiness in the literature involving them is investigated. For
this aim a Systematic Literature Review is performed, and the phases composing

it are detailed in specific sections.

5.2 Digital Forensic Investigation

A Digital Forensic Investigation (DFI) is defined as a process of collecting, iden-
tifying, preserving, analysing, and presenting digital evidence in a manner that
is legally acceptable [80]. The most known and used DFI definitions have been
proposed by the National Institute of Standards (NIST) [66] and the U.S. National
Institute of Justice (N1J) [90], as depicted in Figure 5.1.

37

> COLLECTION > EXAMINATION > ANALYSIS > REPORTING >
1 |

MEDIA ———— > DATA — > INFORMATION —> EVIDENCE

Figure 5.1: NIST DFI Process Definition [66]

Since a standard for DFI processes does not exist, several models were pro-
posed in the literature during the last few years [5, 6, 12, 19,71, 95, 102, 105,
108, 128]. Each of them represents a digital investigation process decomposed
in phases and sub-phases when necessary. Sometimes, the DFI is customised for
specific computing architectures [10,24,53,95,103]. In this chapter a rigorous sys-
tematic literature review process has been performed in order to determine when
forensic readiness has been considered by the existing DFI processes proposed by

the scientific community.

5.3 Systematic Literature Review

The Systematic Literature Review (SLR) method was introduced in Medicine by
Archie Cochrane in 1972 from the necessity of identifying effective evaluations
to guide research investments and health care provisioning [32]. The main aspect
leading to the formulation of such a research method was the lack at that time of
an organised and critical summary of medical trials.

The SLR process is composed of three different phases: planning, conduct-
ing, and reporting. In the planning phase, the first step is the formulation of some
research questions; they will be answered at the end of the review process. Sub-

sequently, a search string to feed some repositories must be composed, in order to

38

gather initial results. Some inclusion and exclusion criteria are defined, together
with a description of the quality criteria, applied in the following phases.

During the conducting phase all the operations involve the retrieved papers.
Once the literature is gathered, the inclusion and exclusion criteria are applied in
order to determine if the sought papers can be considered as primary studies. As a
secondary step, the quality assessment is performed through the utilisation of the
quality criteria, defined in the planning phase. From the selected studies, some
data extraction, monitoring and synthesis are executed.

The final reporting phase is dedicated to the composition of the review report,
containing the final results and the answers to the research questions.

This method is defined as systematic, due to some activities which have less
biases than a simple literature review. Such activities are even performed by hu-
mans, i.e., researchers, once they are stabilised the repetition of the whole process
will provide the same results. A search string is defined in a systematic manner,
together with the research method, the inclusion and exclusion criteria, and the
manner for assessing the sought literature collection.

One of the principal disadvantages of adopting an SLR is its duration, which is
considered a very time-consuming process. On the other hand, there are many ad-
vantages in adopting it, which lead to its consideration for this study. For instance,
and SLR provides a decomposition of big information in more accessible small
pieces, together with a minimisation of the biases. Moreover, it facilitates use of
the collected information by practitioners, decision makers, and researchers. Its
main application reasons reside in its capability of locating previous studies in
a certain area, and of finding effective research methodologies, and of verifying
whether a topic was investigated before, thus becoming a more critical, compre-
hensive and systematic evaluation method for previous studies.

Some SLR process variations have been proposed for disciplines other than

39

Medicine, such as the SLR guidelines for Software Engineering [69]. They are
effective for conducting a structured, repeatable, and scientific state of art or lit-
erature review about a specific research topic. Such guidelines have been widely
applied in Software Engineering [70] and also in other computer science branches,
like digital forensics. Indeed in [5] an SLR about some existing DFI models has
been conducted. As result, the authors found a model suitable for their purpose;
thereby they derived a novel model for their needs.

To the best of the knowledge, this is the unique SLR conducted in digital foren-
sics, but other non-systematic literature review about the forensic process models
have been published. For instance, in [102] fifteen published papers about DFIs
have been collected in a non-systematic and non-exhaustive review, as affirmed

by the authors.

5.4 Digital Forensic Process Models SLR

In this section the SLR guidelines for software engineering [69] are applied on a
specific topic in digital forensics, namely forensic investigations, with the aim of
providing an understanding the evolution of the published work, and the detection

of a forensic readiness capability among the collected results.

5.4.1 Planning Phase

The planning phase is composed of the following sub-phases. The first step is
the specification of the research questions (RQs). They will be answered at the
end of the whole SLR process, i.e., in the report phase in Section 5.4.4. According
to [69], the RQs must respect the Population, Intervention, Comparison, Outcome,

Context (PICOC) guidelines:
e Population: models for the DFI;

40

e [ntervention: how the DFI models are presented (e.g., involved actors; com-

puting environment);

e Comparison: works that report only the definition of the DFI without mod-
elling, or that focus only on a specific phase, or on other sub-branches of

the digital forensic science;

e Outcome: different models for the DFI, involving different phases, or struc-

tured in several manners, or built for different computing environment;

e Context: academic context; the SLR is undertaken by a PhD student, with-

out any external contribution.

The Research Questions are defined as it follows:
1. How many DFI models have been proposed in the literature?
2. Which types of actors are involved?
3. Do the models comprise taxonomy of incidents?
4. What type of computing environment is considered by the various models?
5. What are the common features among the models?

The investigated literature repositories are: ACM Digital Library, IEEE Xplore
Digital Library, Citeseer, SpringerLink, and SCOPUS. In the sections “title”, “ab-
stract” and “keywords” of the mentioned repositories, the following search string
has been used: (computer OR digital) AND forensic AND process AND model.
No publication year range was applied to the search form: the investigated topic
is very recent, but in order to corroborate it, that parameter was left open to ensure
to include also previous works, if any.

The Inclusion / Exclusion criteria are formulated as it follows:

41

Inclusion: the studies proposing new models for the DFI process must be
included; these models must be composed of at least four phases, because the
definition of the DFI process includes four necessary phases (see Figure 5.1).

Exclusion: the studies not written in English must be excluded; also studies
that do not present any model or present only the definition of the DFI process will
be excluded. Moreover, the studies composed from one to three phases will be
excluded; also the studies that model only a specific phase. Finally, all the studies
focusing on specific sub-branches of the forensic science, €.g., digital image or
audio forensics, will be not included in the report.

Each examined study is assessed by quality criteria are defined to evaluate the
importance and the impact of each model in the academic world, in such a way
that the included studies can be considered as a basis for developing innovative

DFIs. The used quality criteria are:
1. What is the international impact of the model?

(a) Is the model cited and used by other models in the result?

(b) Is the model exploited in the business context, i.e., security agencies?
2. What is the venue and where the model was presented?

(a) Was it published in International Journal?

(b) Was it presented at an International Conference?

Once the proposed models are collected, they will be analysed to extract sev-
eral characteristics, such as phases and sub-phases, the involved actors, the com-
puting environment, the year of publication, and so on. Finally, the resulting lit-
erature review will be summarised to outline what are the commonalities among

the DFIs in order to answer the aforementioned research questions.

42

5.4.2 Conduction Phase

The SLR was conducted during the last six months; it used the search string de-

scribed in Section 5.4.1 to feed to the aforementioned digital repositories, and the

number of resulting studies is shown in Table 5.1. The primary studies have been

gathered by applying the Inclusion / Exclusion criteria to the abstract, introduc-

tion, and conclusions sections of the sought documents. A summary of this phase

is provided in the last five rows of Table 5.1 with the total number of sought stud-

ies, the number of the duplicated results, and the number of included and excluded

studies. In Table 5.2, a list of the 33 included studies is presented.

Table 5.1: SLR Results per Repository

ACM Digital Library 65
IEEE Xplore 122
Citeseer 79
Scopus 250
Springer Link 1
TOT Studies 517

TOT Duplicated Studies | 236

Actual Examined Studies | 281
Actual Excluded Studies | 248
Actual Included Studies | 33

Table 5.2: Details on the 33 results of the SLR

ID | Title Year

01 | A Hypothesis-Based Approach to Digital Forensic Investigations [21] 2006

02 | Artificial Intelligence Based Model for Incident Response [61] 2011

03 | Computer Forensics Guidance Model with Cases Study [92] 2011

04 | How to Find Exculpatory and Inculpatory Evidence Using a Circular Digital Forensics Process Model | 2008
[68]

43

ID | Title Year

05 | Two-Dimensional Evidence Reliability Amplification Process Model for Digital Forensics [67] 2008

06 | Network Forensic Frameworks: Survey and Research Challenges [101] 2010

07 | Convergence of Digital and Traditional Forensic Disciplines: a First Exemplary Study for Digital | 2011
Dactyloscopy [62]

08 | Harmonised Digital Forensic Investigation Process Model [127] 2012
09 | VoIP Evidence Model: A New Forensic Method for Investigating VoIP Malicious Attacks [74] 2012
10 | Digital Forensic Readiness in the Cloud [124] 2013
11 | A System for Formal Digital Forensic Investigation Aware of Anti-Forensic Attacks [109] 2012
12 | A Common Process Model for Incident Response and Computer Forensics [52] 2007
13 | Computer Forensics Field Triage Process Model [110] 2006

14 | The Federal Court, the Music Industry and the Universities: Lessons for Forensic Computing Special- | 2003

ists [17]
15 | MFP: The Mobile Forensics Platform [2] 2003
16 | Systematic Digital Forensic Investigation Model [6] 2011
17 | The Enhanced Digital Investigation Process [12] 2004
18 | Common Phases of Computer Forensics Investigation Models [128] 2011
19 | Digital Forensic Model Based On Malaysian Investigation Process [99] 2009
20 | UML Modelling of Digital Forensic Process Models [71] 2008
21 | An Event-Based Digital Forensic Investigation Framework [20] 2004
22 | A New Approach of Digital Forensic Model for Digital Forensic Investigation [3] 2011
23 | Identification of User Ownership in Digital Forensic using Data Mining Technique [73] 2012
24 | Network Forensics for Cloud Computing [55] 2013
25 | Applying a Stepwise Forensic Approach to Incident Response and Computer Usage Analysis [78] 2009

26 | Taxonomy of Computer Forensics Methodologies and Procedures for Digital Evidence Seizure [117] 2006

27 | Integrated Digital Forensic Process Model [72] 2013
28 | An Integrated Data-Flow Based Model for Digital Investigation [27] 2009
29 | Honing Digital Forensic Processes [25] 2013
30 | Modelling the Forensics Process [4] 2012
31 | The Modelling of a Digital Forensic Readiness Approach for Wireless Local Area Networks [91] 2012
32 | A Multi-Component View of Digital Forensics [60] 2010
33 Analysis and Correlation [121] 2002

5.4.3 An additional Conduction Phase

An additional conduction phase has been performed with the necessity of covering
some missing existing DFIs. The literature referenced by the resulting thirty-three

papers has been examined, and the same inclusion, exclusion and quality criteria

44

have been applied on it. It is worth noting that in this manner some additional
DFIs have been gathered; they did not appear in the initial thirty-three publications
probably because the adopted keywords did not match with them. The list of these
additional papers is presented in Table 5.3.

Table 5.3: DFIs common to most of the 33 SLR results

| ID | Title | Year | Cited By

Al | A Road Map for Digital Forensic Research Technical 2001 01, 04, 05, 06, 08, 10, 16, 17, 18, 20, 21, 22,
Report [95] 23,25, 27,28,30, A3

A2 | Electronic Crime Scene Investigation A Guide for | 2001 01, 03,08, 12, 16, 17, 20, 21, 28, 30, 31, A3
First Responders [90]

A3 | An Examination of Digital Forensics Models [108] 2002 01, 05, 06, 08, 13, 16, 17, 18, 19, 20, 21, 22,
28, 30

A4 | Digital Evidence and Computer Crime [23] 2004 01, 03, 06, 12, 13, 19, 20, 27, 28, 32

5.4.4 Reporting Phase

In this section, the SLR outcome is examined in order to provide answers to the

research questions presented in Section 5.4.1.

Data Extraction

Table 5.4 shows the features extracted from the thirty-seven collected studies.
Such features include the used modelling diagram, the names of the principal
phases, the total number of phases and sub-phases, the involved actors, and the
computing environment they were designed for, where included.

Table 5.4: Features of the 37 Forensic Process Models

ID | Diagram Phases # of phases; | Actors Computing En-
Type sub-phases vironment
01 | finite state | observation; hypothesis formula- | 4
machine tion; prediction; testing and search-
ing

45

ID

Diagram

Type

Phases

of phases;

sub-phases

Actors

Computing En-

vironment

02

flow chart

gather information; database;

searching and identification;

sorting; analysis; result

6

Artificial Intelli-

gence System

03

flow chart

preparation; physical forensics and
investigation; digital forensics; re-

porting and presentation; closure

04

circle dia-

gram

initialisation; evidence collection;
evidence examination & analysis;

presentation; case termination

Inspector ; Man-
ager; Investiga-

tors Team

05

“Umbrella”

diagram

initialisation; evidence collection;
evidence examination & analysis;

presentation; case termination

Inspector; Man-

ager

06

flow chart

preparation; detection; incident re-

sponse; collection; preservation;

examination; analysis; investiga-

tion; presentation

Computer Net-

works

07

flow chart

strategic preparation; physical ac-
quisition; operational preparation;
data gathering; data investigation;

data analysis; documentation

7,6

08

flow chart

incident detection, first response,

planning, preparation, incident

scene documentation, potential

evidence identification, potential

evidence collection, potential

evidence transportation, potential

evidence storage, potential evi-
dence analysis, presentation and

conclusion

12; 7; 6 (par-

allel actions)

Judge, Jury, Ac-
cused, Lawyers,
Prosecutors;

Company Man-
agement

Shareholders

Team,

and Involved

Employees

09

terminal state/available evidence;
information gathering; evidence
generation; print generated evi-

dence

4,5

Investigators

VOIP

logs identification; collection; com-

pression; encryption; transporta-

tion; storage; examination

Cloud Comput-
ing

flow chart

preparation; collection & preserva-
tion; analysis of anti-investigation
attacks; analysis of regular attacks;

presentation & reporting

5;3

Computer Net-

works

46

ID

Diagram

Type

Phases

of phases;

sub-phases

Actors

Computing En-

vironment

flow chart

pre incident preparation; pre analy-
sis phase; analysis phase; post anal-

ysis phase

4;11

workflow

planning; triage; usage/user pro-
files; chronology/timeline; Internet

activity; case specific evidence

6;6

flow chart

preparation; running; assessment;

investigation; learning

circular

flow chart

acquire; preserve; normalize; anal-

yse; examine results

Remote Com-

puter Networks

flow chart

preparation; securing the scene;
survey & recognition; documenta-
tion; communication shielding; evi-
dence collection; preservation; ex-
amination; analysis; presentation;

result

flow chart

readiness; deployment; trace back;

dynamite; review

flow chart

pre-process; acquisition & preser-
vation; analysis; presentation; post-

process

flow chart

planning; identification; reconnais-
sance; analysis; result; proof & de-

fence; diffusion of information

7,6

20

UML ac-
tivity dia-

gram

preparation; investigation; presen-

tation

3;5

Investigator;
Prosecution;

Defence; Court

21

flow chart

readiness; deployment; physical
crime scene investigation; digital
crime scene investigation; presenta-

tion

22

flow chart

preparation; interaction; recon-

struction; presentation

Investigator;

Court

23

evidence disk; forensic data extrac-
tion; disk image; data carving; at-
tribute distribution; data transfigu-

ration; data analysis; presentation

47

ID

Diagram

Type

Phases

of phases;

sub-phases

Actors

Computing En-

vironment

24

data collection; separation; aggre-

gation; analysis; reporting

Computer Net-

works

25

flow chart

case identification; planning; usage
pattern analysis; user-files analysis;

reporting

26

flow chart

identification; acquisition of evi-
dence; authentication of evidence;

analysis; presentation

5;3

27

preparation, incident, incident re-
sponse, physical investigation, dig-
ital forensic investigation, presenta-

tion

28

preparation; incident response;

recording; collection; exami-

nation; analysis; presentation;

preservation; feedback; handover

10; 13

29

preparation; preservation/storage;

extraction/survey; examina-

tion/analysis; reporting

Forensic Examin-
ers, Digital In-
vestigators, Man-

agers

File Systems,

Computer Net-

works

30

flow thing

model

acquisition, processing, examina-

tion, analysis, presentation

Collector, Exam-
iner, Analyst, and

Presenter

31

block dia-

gram

monitoring, logging, preservation,

analysis, reporting

Wireless LAN

32

incident response and confirma-
tion; physical investigation; digital
investigation; incident reconstruc-
tion; present findings; incident clo-

sure

6;3

33

collecting evidence; analysis of in-
dividual events; preliminary corre-
lation; event normalizing; event de-
confliction; second level correla-
tion; timeline analysis; chain of ev-

idence construction; corroboration

48

ID | Diagram Phases # of phases; | Actors Computing En-

Type sub-phases vironment
Al | 2-D identification; preservation; collec- | 7;41
schema tion; examination; analysis; presen-

tation; decision

A2 collection; examination; analysis; | 4;7 Prosecution; De-
report fence; First Re-

sponder; Investi-

gator
A3 | abstract identification; preparation; ap- | 9
proach strategy; preservation;
collection; examination; analysis;
presentation; returning evidence
A4 | abstract preparation; survey; documenta- | 7 Single Machines

tion; preservation; examination &

analysis; reconstruction; reporting

Answering the Research Questions

In this section, the answers to the research questions are as provided:

RQ1: How many DFI models have been proposed in the literature?

AQ1: There are 37 different DFI models presented in the literature.

RQ2: Which types of actors are involved?
AQ2: From the 37 DFI models, only 11 include the involved actors; the common
ones among them are identified as: Inspector/ Investigator/ Investigation Team;

Manager; Prosecution; Defence; First responder; Court.

RQ3: Do the models comprise taxonomy of incidents?
AQ3: Unfortunately, there is no taxonomy and no handling strategy. In few cases

some incidents scenarios are reported as examples.

RQ4: What type of computing environment is considered by the various models?
AQ4: Papers with ID 6, 11, 24, and 29 present a model for Computer Networks;
the number 9 described a DFI for VOIP, number 10 was customised for Cloud

Computing, number 15 was for Remote Computer Network, number 31 was de-

49

signed for Wireless LAN; finally, the paper with ID A4 presents a model for non-

networked computers.

RQS5: What are the common features among the models?

AQS5: The discovered common features are explained in the following:

¢ Some models include the readiness phase, which is slightly different from
the preparation phase: in this phase some operations for collecting data

before the crimes happen are executed.

¢ In some models, the crime scenes to be investigated are differentiated in
physical and digital, depending on the nature of the investigated devices.
From these crimes, scenes the evidence and footprints are collected, and
different procedures to preserve them are implemented, based on the nature

of the devices.

e The design model most commonly used is the flow chart.

5.4.5 Discussion: Lessons Learned

The SLR is a structured and well formulated procedure. From its application to
the DFI models some general guidelines can be summarised. First, the computer
architecture is not a mandatory feature for designing a novel DFI, but it would be
preferable for this to be expressed, in order to have a reliable basis for some spe-
cific computing environments, since it happens in the literature works that added
this feature. Moreover, it would be more complete to also include the actors /
stakeholders in order to assign the responsibilities and to schedule the investiga-
tions phases in the most appropriate way and without overlapping. The common
features discussed in the previous section might be considered for future models

since they are existing in all the sought studies. Finally, remembering that the

50

principal aim was to investigate about the forensic readiness capability in the pub-
lished literature, only two models include it among their phases. The manner in
which it is conceived is very close to a preparation activity, present in thirteen
process models, by including some preventive data collection operations from the

target computing architectures.

5.5 Summary

An examination of forensic readiness in the context of digital investigations is the
topic of this chapter. In order to investigate the presence of such a capability in
the context of digital investigations a Systematic Literature Review is performed.
Thus, the chapter is structured by following the phases of an SLR. Finally, the
results of such an investigation are illustrated and reported.

The following chapter is dedicated to introduce Service Level Agreements.
Such contracts are described in terms of life cycle, importance in IT services, and

monitoring literature proposals.

51

Chapter 6

Service Level Agreement Contracts

6.1 Introduction

This chapter is dedicated to introduce Service Level Agreements. Such contracts
are described in terms of principal contents; then their life cycle is illustrated;
also their importance in IT services is presented, in order to clarify the impact
in forensics. Some contractual monitoring literature proposals are illustrated in
the chapter: they represent the basis for a forensic readiness capability aimed to
monitor some contractual constraints. Finally, an examination of service metrics

derived by SLAs for SOA-based and Cloud-based services is provided.

6.2 Service Level Agreements

Information systems and computing capabilities are delivered through the Internet
in the form of services; they are regulated by a Service Level Agreement (SLA)
contract [50] co-signed by a generic Application Service Provider (ASP) and the
end user(s), as happens for instance in the cloud [81]. In such a type of contract

several clauses are established; they concern the level of the services to guarantee,

52

also known as quality of service (QoS) parameters, and the penalties to apply in
case the requirements are not met during the SLA validity time, among others.
The SLAs contracts are written in natural language, and may be personalised by
idioms, so that different lingual versions may exist for each of them.

An SLAs validity begins when a customer is looking for a particular (set of)
service(s) and it finishes when such a provisioning is terminated (see Figure 6.1).
During this time period, both parties are responsible for respecting the clauses,
due to the legal value of the document [13,98]; therefore, a dedicated contract
management facility should be part of the service provisioning because of the
contractual importance and contents [30]. Some effort has been made in the lit-
erature to address this challenge, as discussed in the following sections. In par-
ticular, different metrics are exploited to measure specific contractual constraints
concerning some non-functional requirements of the services, e.g., availability or

performance indicators, are included in the contracts.

6.3 SLA Life Cycle

In a free trade context, the users have the freedom to choose which services they
prefer for a specific need. Once such a choice is made, a user usually contacts a
specific service provider, which will be responsible for delivering the service to the
user after the instantiation of a particular Service Level Agreement contract. An
SLLA concerning the provisioning of IT services is defied as a formal, negotiated,
document in qualitative and quantitative terms detailing the services offered to a
customer [63].

To the best of our knowledge, an SLA follows the life cycle depicted in the
UML [116] state chart diagram in Figure 6.1. An SLA is initially defined via

a contractual template, which is customised by the provider depending on some

53

users variation requests on the standard offer. Subsequently a negotiation phase
happens, where solutions to the change requests are included, together with infor-
mation about expenses, penalties, and reports. The SLA Co-Signed phase deter-
mines that both entities agree on the actual contractual contents, then the service
provisioning can begin. The SLA has a validity time, that can be either explicitly
expressed with start and end dates, or with an initial date together with a time in-
terval, both included in the document. Such validity time begins after the contract
is co-signed by both parties in the SLA Execution phase.

During its life cycle, an SLA can be subject to revisions to resolve some
change requests instantiated by either parties. In case no solution is arrived at,

the service provisioning has to be terminated and the SLA no longer has validity.

Change Requests

(| Potenial iati Changes (igned

| SLA Template ‘2: fien? R SLA Negotiation Approved | SLA Co-Signed
T g P »

Potential Changes By BOth

Client Parties

Request

Service
Activation

A 4

SLA Execution
—Time Expired Change
l] Request
Y

A

A

A
@ Change
Y Revision

T Request
SLA Texmination Approved

<&

)

Change
Request
Discarded

Figure 6.1: SLA Life Cycle [38]

54

6.4 SLA in IT Services

The IT service provisioning has been being subject to an escalating evolution in
terms of deployment architectures, ranging from classical client-server deploy-
ment models to cloud computing infrastructures, including all the intermediate

varieties (see Figure 6.2) [18].

h a single deployment wnit] deployed Separrife/ys

!

Sone Z‘/?fng in betioeen

Monolitdhic Service-based
architecture arcAitecture
(ypically a big ball of meed (SOH, micro-services, etc

O
3

Co)o
OO

oQO

(e g. Components in & Single deployable emid)

Figure 6.2: IT Service Architecture Evolution [18]

The necessity of regulating a fair service out-sourcing via co-signed SLAs
aims to give an explicit understanding to the end users about what a service is,
where and when it is delivered, and how to use it; also duties and responsibilities
of both parties and the possible interaction of a third party is outlined.

The main contents of an SLLA concern a definition and description of the ser-
vice, some rules and regulations about its delivery, some performance measures
together with possible tolerance intervals about the levels of the services to guar-

antee, and the pricing and penalties measures in case such tolerances are not re-

55

spected. For the sake of monitoring and user satisfaction purposes, it is good prac-
tice to provide service levels that can be audited, managed, and measured [76].

One of the biggest issue in automatic SLA monitoring is the lack of a standard
for representing the contracts. Unfortunately, the WSLA framework developed by
IBM [65] for both specifying and monitoring SLAs is customised for SOA web
services. The main advantage of such a proposal is the elasticity of the framework
and its capability to customize the underlying computing architecture parameters
to measure. This is facilitated by the open access to the resources and to their
performances calculators, which is not possible in the cloud.

In the literature, some effort has been made in order to outline some SLAsS
commonalties, as discussed in [13], where the anatomy of such contracts is pro-

vided. The authors of this paper affirm that an SLLA is composed of:

the provided service levels and the metrics used for guaranteeing them;

the services time duration and their granularity;

the billing structure;

the policy about the level measurement;

the reporting manners about service guarantee violations.

6.5 SLA Monitoring

Automating the management of a textual document is a big challenge, specially
if this document is a contract with legal validity like SLAs stipulated for cloud
services. One of the reasons to implement a dedicated automatic contractual man-

agement system can be the detection of contractual violations to be exploited in

56

many circumstances, such as forensic readiness activities. Several approaches ex-
ist in the literature that exacerbate the automatic management of SLLAs, and the
different modalities to face this issue are discussed in this section.

Some work dedicated to manage the SLAs decompose the issue by monitoring
the single constraints included in the contract. For instance, a framework called
DESVI [43], proposed by Emeakaroha et al., is dedicated to monitor the perfor-
mances of low level cloud resources in order to detect if the obtained measures
respect the constraints extracted from SLAs with the goal of detecting QoS viola-
tions. This work has been used by Emeakaroha et al. as a background monitoring
platform in [45] to demonstrate its efficiency in monitoring a single cloud data
centre. Also Brandic et al. in [16] used DESVI as a low level resource value cal-
culator, but the metrics applied on the resources have to output a value required to
match with a specified threshold to prevent possible contractual violations. In [83]
Morshedlou et al. proposed a pro-active resources allocation prototype for reduc-
ing the negative impact of SLAs’ violations, and for improving the level of users’
satisfaction. In [82] a prototype for an autonomic SLA enhancement is discussed
by Maurer et al. It behaves as a resource parameter reconfiguration tool at virtual
machine level of cloud infrastructures, with the main advantage of reducing SLA
violations and of optimizing resource utilisation. Instead, in [44] Emeakaroha et
al. proposed an SLA monitoring and violation detection architecture that plays
at a cloud application provisioning level, where some metrics are exploited to
monitor at runtime the resources consumption behaviour and performance of the
application itself. In [26] Cedillo et al. presented an approach to monitor some
cloud services non-functional SLA requirements. A middle-ware interacting with
services and applications at runtime is designed; it analyses the information and
provides some reports as soon as an SLLA violation is identified. Last but not least,

SALMonADA [85] is a platform proposed by Muller at. al that utilizes a struc-

57

tured language to represent the SLA, which is then automatically monitored to
detect whether any violation occurs or not; this detection is performed by imple-

menting a technique based on a constraints satisfaction problem.

6.6 Services Metrics in SLLA

Automatic monitoring of textual SLAs has been investigated in many research
works. In most cases the contributions deal with approaches designed for trans-
lating contractual constraints into a specific format; the purpose is to monitor
constraints about resources metrics parameters, because they are the measurable
entities described in a contract. Research efforts have been conducted in different

computing contexts, and an overview is given in the following sections.

6.6.1 Service Oriented Architecture

In [8] the improvement of a protocol describing the phases of an SLA life cycle
is investigated by Amani et al. The proposed approach begins with an evaluation
of the WS-Agreement protocol [11], which provides standard templates for SLAs
management. Such a protocol is considered to be lacking of a proper evaluation
phase, dedicated to detect service levels violations, thus it is furnished with a
resources monitoring facility where some metrics are instantiated. The metrics
are dedicated to the measure of operational performances, resources availability,
percentage of product requests completed in time, and repair time commitments.
The central focus of such a protocol improvement has the goal of determining
a fair manner to calculate the penalties related to the resource levels violations
constraints. To accomplish this final aim the authors utilize some defined metrics
for measuring the unavailability time of the service, and the monthly charge to the

customers, necessary in order to determine such penalties.

58

In [125] SLAs aggregation within business processes is investigated by Unger
et al. The contracts are structured in concepts of parties, parameters, and service
level objectives, formally modelled with tuples, logic predicates, boolean algebra,
and normal forms. The aggregation in a business process happens once some spe-
cific requirements are arrived at, and consequently a target service level objective
is generated. The aggregation process considers several pieces of information,
such as the parameters responsible to express the used metrics necessary to calcu-
late the final quality of service levels. The considered parameters refer to quality
attributes such as availability, performance, security, integrity, and reliability of

the services.

6.6.2 Cloud Computing

Some efforts in monitoring SLLAs by considering the architectural resources met-
rics have been made in the cloud too. For instance, in [34] a protocol for negoti-
ating SLLAs among several actors is defined by Czajkowski et al.; the contractual
contents are represented via mathematical tuples. The used information includes
the definition of some metrics used to measure the service resources. The idea be-
hind their approach is to parametrize the resources through a set of attributes,
intended as particular properties of the resources, e.g., bandwidth, latency, or
space. In this approach the time metrics are expressed in this format “Wed Apr 24
20:52:36 UTC 2002”, while scalar metrics are expressed in x real-valued units u,
e.g. 512 MB. Sometimes, the expected values of the resource properties are con-
strained in capacity ranges, which are partitioned in exclusive or inclusive upper
or lower limits.

In [57] SLAs are monitored in the context of a Storage as a Service facil-
ity, discussed by Ghosh et al. The contractual clauses are decomposed in several

services parameters, which are the atomic information of some defined service

59

level objectives (SLO) describing the QoS levels to guarantee. Such SLOs are

measured by some key performance indicators (KPI), essentially the metrics to

use. The used parameters for this particular service are derived by a deep anal-

ysis of the major cloud storage providers, such as Amazon, Salesforce, Google,

Microsoft, Rackspace, for instance. The parameters are fault tolerance, perfor-

mance, disaster recovery, security, governance, data life cycle management, and

error rate, which are measured with the metrics, i.e. KPIs depicted in Figure 6.3.

SLA Parameter

Key Performance Indicators (KPIs)

Fault Tolerance

Data Replication: different categories include synchronous, asynchronous, semi-synchronous, and point-in-time
Data Mirroring
Multipath 10

Performance

Type of Application: transaction processing, scientific application, elc.
Maximum number of User Requests

Response Time: Read 10 Latency & Write 10 Latency

Transferring Bandwidth: inbytes, outbytes, and degree of link redundancy

Disaster Recovery

Recovery Point Objective (RPO):The maximum amount of data that will be lost following an interruption or
disaster,

Recovery Time Objective (RTO): The period of time allowed for recovery i.e.. the time that is allowed to
elapse between the disaster and the activation of the secondary site.

Security

Confidenfiality: The storage cloud should be able to isolate data in a multi-tenant environment to support
confidentiality or privacy as well as industry standard identity management.

Integrity: Data should be prevented from tampering to restore integrity. This demand for data protection against
worms, viruses, spywares, Trojans. or even scripting, application-specific, and injection attacks.

Availability: The storage service and data should be available whenever the consumer requires them. This
requires prevention of Denial-of-Service (Dos) attacks which includes SYN flooding, ICMP flooding, etc.
Authentication: Determining whether the access rights on the data in the storage cloud are in conformance
with the privilege levels. This tenet also encompasses auditing and non-repudiation mechanisms.
Authorization: Involves verifying that an authenticated subject has permission to perform certain operations
0N access specific resources.

agement (DLM)

Data Life Cycle Man-

Data Archival: Determines whether the data has been archived from Tier-I storage to tapes only after a
predefined period of time.

Accessibility of the Archived Data: Determines the privilege level of the consumer who accesses archived
data.

Access Time: For newer data that needs to be accessed frequently, latency should be lower as the data is
fetched from faster and expensive storage media. For obsolete data which has been archived the latency may
be high depending on the type of the storage media where it is archived.

Governance Geographic Location: Different geographically dispersed locations where the cloud provides storage service.
Regulations: Regulatory compliance policies that influence the data storage at various geographic locations.
Availability: Determines if a data co-located at geographically dispersed locations are available, if one of the
sites goes down.

Emor Rate Total Storage Transactions: All the storage transactions in a given time interval (initially set at one hour) for

a subscription, with a few notable exceptions.
Failed Storage Transactions: Includes those transactions which fail to complete within a predefined processing
time.

Figure 6.3: SLA Parameter and Metric Relation [57]

The framework DESVI [43], proposed by Emeakaroha et al., monitors low

level cloud resource metrics to identify whether some parameter values respect

the constraints extracted from some SLAs clauses, in order to detect QoS viola-

tions. A mapping between low level resources metrics to high level contractual

60

constraints is implemented in a dedicated component called LoM2HiS [42] pro-
posed by the same authors, moreover, such a component is responsible for check-
ing whether or not such constraints are respected by the service providers. The
resources parameters monitored in this study are illustrated on the bottom of Fig-
ure 6.4; instead the top section of the same figure provides an example of the

mapping discussed in the DESVI proposal.

Resource Metrics SLA Parameter Mapping Rule
downtime, uptime Availability (A) _y_downtime
uptime
inbytes, oufbytes, Response Time Rypral = Rin + Ry (m5)
packetsize, [R:m:]
avail bandwidthin,
avail. bandwidthout
SLA Parameter SLA Objective T::rf_atl =
Availability 98 % 98.9 %
Response time 500 ms 498.9 ms
Storage 100 GB 102 GB
Memory 3 GB 3.9GB
Incoming 50 Mbit/s 52 Mbit/s
Bandwidth
Outgoing 100 Mbit/s 102 Mbit/s
Bandwidth

Figure 6.4: SLA Parameter and Metric Relation [43]

The DESVI framework has been utilised in [45] by Emeakaroha et al. for mon-
itoring a single cloud data centre resources parameters, indeed different scenarios
have been analysed in the proposed experiments. Also in another framework pro-
posal designed to prevent possible contractual violations [16], Brandic et al. used
DESVI as the underlying platform. In particular, based on some requirements de-
scribed in the SLLA, specific resources performances metrics are applied on some
cloud low level resources. The expected values are tested to match with a specific
threshold calculated by mining a data collection of past metrics calculations.

The user satisfaction point of view is considered by Morshedlou et al. as the
resource parameter to be tested in [83]. For reducing the negative impact of SLAS’

clause violations, the authors suggest a pro-active resources allocation approach.

61

The considered metrics are defined as users willingness to pay for a service and
user willingness to pay for certainty. They are obtained by aggregating some
resource parameter atomic measures.

Another SLA monitoring and violation detection approach for the cloud is
proposed in [44] by Emeakaroha et al. It controls information at the application
provisioning layer, by monitoring some resources allocation, scheduling and de-
ployment facilities. The monitoring happens at runtime and it has to detect some
application metrics in order to determine resources consumption and application
performances. The information related to the metrics are collected by application
or operating systems log files. The metrics used in this approach are all devoted
to calculate service performances such as guaranteeing the application response
time and throughput values to be respected by the constraints of the SLAs. Al-
though they can vary depending on the application type, the parameters are CPU
and memory utilisation, among others.

An approach to monitor some cloud services non-functional requirements is
presented in [26] by Cedillo et al. The information to monitor is contained in
SLAs; the discussed solution for this issue is shaped as a middle-ware interact-
ing directly with services and applications at runtime. The middle-ware analyses
the information and provides some reports as soon as an SLA violation is identi-
fied. The presented case study considers some parameters as services availability,
which is measured through the metric robustness of service. The authors argue
that the middle-ware is capable of measuring different services parameters by in-
stantiating proper metrics, and the choice is strongly related to the SLA constraints
to consider.

A European community report [48] analyses different research projects de-
voted to automate different aspects of the SLAs life cycle in the cloud. Some

projects investigate the management of the service level parameter violations, and

62

consider some specific metrics, although with different purposes and final objec-
tives.

For instance, Cloud4SOA [28] aims to monitor the performances of business-
critical distributed PaaS applications. The proposed solution compares the ac-
tual performances values with their expected values described in some SLAs con-
straints. The main challenge faces the variety of metrics among the providers and
it is addressed by implementing specific APIs. Moreover, a set of unified met-
rics across the PaaS providers is selected to monitor the application execution and
usage. Such metrics are at the application and infrastructure level, and include ap-
plication / database response time, cloud response time, web container response
time, application status, memory and CPU usages.

In the EC research report in [48] some other projects involve the measure-
ment of some cloud services attributes, such as availability or response time, but
unfortunately the metrics used are not reported.

The cloud dynamic resource allocation is the issue investigated in [82], where
Maurer et al. propose a prototype for an autonomic SLA resource parameters re-
configuration tool at cloud virtual machines level. The main advantage is to reduce
SLA violations by optimizing resources utilisation. The workload volatility is the
used parameter leading to a better reconfiguration, and the rapidity of changes
in the machines workload is the used metric. For the considered resources, e.g.,
CPU, storage, memory, or bandwidth, the utilisation is divided in three categories,
namely over-provisioned, normal-provisioned and under-provisioned. They are
used to calculate the target value of a resource provisioning that optimizes the
global resources utilisation. The autonomic resources adaptation is then com-
puted, depending on two different parameters: the first considers a cost function
capable of determining the penalties to pay according to the number of SLA vio-

lations; the latter pays attention to the workload volatility defined as the intensity

63

of changes in the measured workload for a specific resource.

6.7 Literature Description

Contractual management is a delicate discipline that involves different perspec-
tives, such as legal validity, rights granting, and responsibilities guaranteeing. In
computing services this topic becomes instead less complicated. Dealing with
machines is a rational activity due to the logic and unambiguous nature of the
computing components. Indeed, even the examined literature presented in Sec-
tion 6.6 deals with different computing architectures, the parameters to monitor
guaranteeing SLA constraints involve machine and network attributes that can be
rationalised through specific metrics. All the considered metrics involve the quan-
tification of some resources physical attributes, such as bandwidth, latency, space,
fault tolerance, error rate, response time, memory, and CPU.

The considered parameters do not take into account information about time,
which is instead included in the SLAs. Indeed, beyond the whole contract validity
time, individual constraints may express different values for the same parameters
in different time intervals; for instance a service availability can be 99% during the
working days and 50% at the weekends. Consequently, the values measured with
a specific metric have to match depending on temporal information for correctly
detecting a service level violation.

In other cases, some atomic metrics are combined to generate others, such as
service availability, workload volatility, robustness of a service, and willingness
to pay for a service. Moreover, the metrics aggregation can provide measures for
other quality attributes included in the SLAs, as for instance the ones concerning
security aspects.

An escalation of metrics aggregation can be also a driver toward an additional

64

research topic, namely the automatic management of the whole SLA life cycle. It
can be obtained by aggregating studies that concern the automation of individual
phases, where the gaps can be bridged by designing facilities capable of measuring
specific parameters. For instance, it would be interesting to obtain a measure
evaluating the necessity of a customer to revise the SLA during its validity time,

by calculating some user-related attributes.

6.8 Summary

Service Level Agreements are introduced in this chapter. Such contracts are de-
scribed in terms of principal contents; then their life cycle is illustrated; also their
importance in IT services is presented, in order to clarify the impact in foren-
sics. Some contractual monitoring literature proposals are illustrated in the chap-
ter: they represent the basis for a forensic readiness capability aimed to monitor
some contractual constraints. Finally, an examination of service metrics derived
by SLAs for SOA-based and Cloud-based services is provided.

The following chapter is also focusing on SLAs; they are considered in the
context of forensic readiness. An explanation of the contractual constraints is
presented and then a selection of some of them necessary for forensics is provided.
Finally, a mapping of the selected constraints on the principal security threats for

the cloud is illustrated.

65

Chapter 7

SLA in Cloud Forensics Readiness

7.1 Introduction

This chapter is focusing on SLAs in the context of forensic readiness. An ex-
planation of the contractual constraints, named service level objectives, proposed
by some EU guidelines is presented. Some of them are necessary for forensics,
so their selection is broadly detailed in dedicated sections: their presence on a
hundred publicly accessible SLAs is calculated. Then, a mapping of constraints
on the principal security threats for the cloud is illustrated. Finally, a selection of
primary, secondary, and optional service level objectives for forensic readiness is

derived.

7.2 Service Level Agreements Interaction

In the cloud the SLAs are co-signed between a provider and a customer who
subscribes a service utilisation. Additional SLAs can exist in other circumstances,
for example SLAs co-signed among different providers for hardware and software

resources out-sourcing, or SLAs involving third parties. Most of the times, the

66

customers are unaware of the complete data flow along different sub-providers;
this is because the chain of sub-services necessary to accomplish an activity and
the related SLAs are not disclosed to unconcerned parties. Figure 7.1 illustrates a
possible customers and providers interaction governed by SLAs. Interactions and

SLAs can expand depending on the chain of services out-sourcing.

Y

CLOUD SERVICE
SLA: PROVIDER,

T

[CLOUDSERVICE J CLOUDSERVICE }

PROVIDER, PROVIDER;

Figure 7.1: SLAs Interactions [37]

An SLA is composed of a set of clauses, which describe all the constraints,
behaviours, and duties of the co-signer parties in order to guarantee the level of
the predefined services. For instance, some clauses concern the metrics neces-
sary for measuring the described services level attributes, such as latency or av-
erage transmission errors rate. In this chapter an analysis of the SLAs contents is
discussed, together with a classification of some contractual contents in a cloud

forensic readiness context.

67

7.3 Contractual Constraints

The structure of an SLA may differ from one cloud service provider to another.
However, such a contract is composed of several sections. Among these sec-
tions, an SLA can be structured as a set of Service Level Objectives (SLO). In a
European Union guideline document [49] the described SLOs are catalogued as

follows:
e Performance;
e Security;
e Data management;
e Personal data management.

The focus of this section is to outline the SLOs necessary for digital forensic
readiness. The approach undertaken is composed of the following steps. Initially,
the presence of the SL.Os mentioned in [49] has been verified in most public cloud
service providers that have accessible SLAs. The annual list of the hundred most
important cloud providers published by the top news source CRN has been utilised
for this purpose [33]. After the selection has been made, as described in Section
7.3.1, the resulting SLOs are matched with the cloud threats discussed in a cloud

security alliance report [31]. The mapping result is shown in Table 7.7.

7.3.1 SLO Selection

The annual list of the hundred most important cloud providers [33] is composed
of providers in every cloud service model. The model categorisation utilised in
this document includes laaS, PaaS, SaaS, Storage, and Security; moreover, there

are twenty providers for each model. After an initial screening of the document,

68

some included providers are still open projects, therefore excluded from the SLO
selection study due to not providing the necessary information. The whole set of
analysed providers is composed of seventy-six elements; unfortunately only half
of the selected elements provides a public SLA, mostly as providers of infrastruc-
ture model services.

All the analysed SLOs are described in the following tables, depending on
what category they belong to: the description is composed of their name, together
with a definition, and the percentage of their presence in the analysed thirty-eight
SLAs. In Table 7.1 the attributes composing the performance SLOs are described;
in Table 7.2 the ones for security SLOs; in Table 7.3 the attributes related to data

management; and in Table 7.4 the attributes composing data protection SLOs.

Table 7.1: Performance SLO Presence Percentage

Name Definition Presence
Level of uptime Time of the service availability, expressed as a percentage 84.2%
Percentage of successful | Number of requests processed by the service without errors over | 0%
requests the total number of submitted requests, expressed as a percentage
Percentage of timely ser- | Number of service provisioning requests completed within a de- | 0%
vice provisioning requests fined time period over the total number of service provisioning re-
quests, expressed as a percentage
Average response time Statistical mean over a set of cloud service response time observa- | 0%
tions for a particular form of request
Maximum response time Maximum response time target for a given particular form of re- | 0%
quest
Number of simultaneous | Maximum number of separate connections to the cloud service at | 0%
connections one time
Number of simultaneous | Target for the maximum number of separate cloud service customer | 0%
cloud service users users that can be using the cloud service at one time
Maximum resource capac- | Maximum amount of a given resource available to an instance of | 2.7%
ity the cloud service for a particular cloud service customer
Service throughput Minimum number of specified requests that can be processed by | 0%
the cloud service in a stated time period

69

Name Definition Presence

External connectivity Service capability to connect to systems and services which are | 7.8%
external to the cloud service

Support hours Time period a provider accepts general inquiries and requests from | 0%
the customer

Support responsiveness Maximum time the provider acknowledges a customer about in- | 0%
quiries or requests

Resolution time Target resolution time for customer requests 39.4%

Data retrieval period Time necessary to a customer to retrieve a copy of personal data | 0%
from the service

Data retention period Time period a provider retains backup copies of the customer data | 7.8%
during the termination process

Residual data retention Customer data retained after the end of the termination process 0%

Table 7.2: Security SLO Presence Percentage

70

Name Definition Presence

Level of redundancy Level of redundancy of the service supply chain taking into ac- | 0%
count the percentage of the components or service that have fail-
over mechanisms

Service reliability Ability of the service to perform its function correctly and without | 2.7%
failure over some specified period

User authentication and | Level of assurance of the mechanism used to authenticate a user | 0%

identity assurance level accessing a resource

Authentication Availability of the authentication mechanisms supported by the | 0%
CSP on its offered cloud services

Mean time required to re- | Arithmetic average of the times required to revoke users access to | 0%

voke user access the cloud service on request over a specified period of time

User access storage pro- | Mechanisms used to protect cloud service user access credentials 0%

tection

Third party authentication | Third party authentication is supported by the service and with | 0%

support which technologies

Cryptographic brute force | Strength of a cryptographic protection applied to a resource based | 0%

resistance on its key length

Key access control policy Whether a cryptographic key is protected from access, when it is | 0%
used to provide security to the service

Cryptographic hardware | Level of protection afforded to cryptographic operations in the ser- | 0%

module protection level vice through the use of cryptographic hardware modules

Percentage of timely inci- | Service incidents reported to the customer in a timely fashion. Per- | 0%

dent reports

centage of the number of defined incidents reported within a pre-
defined time after discovery, over the total number of defined inci-

dents to the cloud service

71

Name Definition Presence
Percentage of timely inci- | Incidents assessed and acknowledged by the provider in a timely | 0%
dent responses fashion. Percentage of the number of defined incidents assessed

and acknowledged by the provider within a predefined time limit

after discovery, over the total number of defined incidents to the

cloud service
Percentage of timely inci- | Percentage of defined incidents against the service resolved within | 0%
dent resolutions a predefined time limit after discovery
Logging parameters Parameters captured in the service log files 0%
Log access availability Log file entries a customer has access to 0%
Logs retention period Time period logs are available for analysis 0%
Certifications applicable List of certifications held by the provider for a service, including | 0%

body, expiration date and renewal period
Percentage of timely vul- | Number of vulnerability corrections performed by the provider, | 0%
nerability corrections represented as a percentage of the number of vulnerability correc-

tions performed over the total number of them
Percentage of timely vul- | Number of vulnerability reports to the customer, represented as | 0%
nerability reports a percentage of the number of vulnerability reports over the total

number of them
Reports of vulnerability | Mechanism to inform customers of vulnerability corrections ap- | 0%
corrections plied to the systems together with its frequency
Cloud service change re- | Type of change, mechanism and notification frequency to the cus- | 0%
porting notifications tomers
Percentage of timely cloud | Number of change notifications made within a specified period of | 0%
service change notifica- | time over the total number of change notifications, expressed as
tions percentage

Table 7.3: Data Management SLO Presence Percentage

Name Definition Presence
Cloud service customer | Policies for any intended use of customer data 0%
data use by the provider
Cloud service derived data | What is the derived data created by the provider from customer | 0%
use data, the intended uses and rights of the customer
Data mirroring latency Difference between the time data are placed on primary storage and | 0%

the time same data are placed on mirrored storage
Data backup method List of methods used to backup cloud service customer data 13.8%
Data backup frequency Time period between complete backups of customer data 0%
Backup retention time Time period a given backup is available in data restoration 2.7%
Backup generations Number of backup generations available in data restoration 0%

72

Name Definition Presence
Maximum data restoration | Committed time to restore customer data from a backup 0%
time
Percentage of successful | Committed success rate for data restorations, expressed as percent- | 0%
data restorations age between the number of data restorations performed for the cus-
tomer without errors over the total number of data restorations
Data deletion type Quality of deleted data 0%
Percentage of timely effec- | Percentage between the number of customer data deletion requests | 0%
tive deletions completed within a predefined time limit over the total number of
deletion requests
Percentage of tested stor- | Amount of customer data retrievable after being deleted 0%
age retrievability
Data portability format Electronic formats a customer data can be transferred to / accessed | 0%
from the service
Data portability interface Mechanisms used to transfer customer data to and from the service | 0%
Data transfer rate Minimum rate customer data can be transferred to / from the service | 0%
using the mechanisms stated in data interface
Table 7.4: Data Management SLO Presence Percentage
Name Definition Presence
Applicable data protection | Data protection codes of conduct, standards and certification mech- | 7.8%
codes of conduct, stan- anisms that the service complies with
dards, certifications
Processing purposes Processing purposes acting as controllers 0%
Temporary data retention | Maximum time period temporary data are retained after identified | 0%
period as unused
Cloud service customer | Maximum time period customer data are retained before destruc- | 0%
data retention period tion, after acknowledgement of a delete request or contract termi-
nation
Number of customer data | Number of personal data disclosures to law enforcement authorities | 0%
law enforcement disclo- | over a predefined period of time
sures
Number of personal data | Number of personal data disclosures to law enforcement authorities | 0%
disclosure notifications actually notified to the customer over a predefined period of time
List of tier subcontractors Providers subcontractors involved in the processing of customers | 0%
personal data
Special categories of data List of specific categories of personal data 0%
Personal data breach pol- | Data breach policies adopted by the providers 0%

icy

73

time

essary to allow the customer to respond to access requests by data

subjects

Name Definition Presence

Documentation List of documents the provider makes available to demonstrate | 0%
compliance to data protection requirements and obligations

Data geolocation list Geographical locations where customers data may be stored and | 2.7%
processed by the provider

Data geolocation selection | Whether customer can choose a given geographical location for the | 0%
storage of his data

Access request response | Time period the provider shall communicate the information nec- | 0%

From the percentage of presence described above in Tables 7.1 - 7.4, only ten
SLOs out of the proposed sixty-six, i.e., 15.1%, are present in the public SLAs
retrieved from [33]. Some others are instead present in other contractual docu-

ments, like terms of service (TOS) or general agreements. However, some of the

absent features are useful to prevent some cloud threats.

7.3.2 SLO and Security Threats

According to the Cloud Security Alliance document [31], the main threats for

cloud services security can be:

e Data breach / loss: a customer can lose control of their data; there can

be several causes, such as multi-tenancy, provider vulnerabilities, network

misuse;

¢ Hijacking: attackers can gain access to customers credentials to manipulate
data, return false information, redirect the navigation to illegitimate sites.
In addition, the power of a cloud provider can be leveraged to launch sub-
sequent attacks. Cloud vulnerabilities permitting hijacking attacks include

mash-up authorisation, the transitive nature of cloud, or authentication and

authorisation vulnerabilities;

e Insecure APIs: attackers can be aware of the service architecture and design

74

details; the providers should select what to render publicly available through

encryption, abstraction, or encapsulation mechanisms;

DoS and DDoS: such attacks prevent users from access to their data or ap-
plications. Not much effort has been expended do defend services platforms

from such threats;

Malicious insiders: an attacker can have access to sensitive information.
Even with some encryption techniques implemented, the system is still vul-

nerable to malicious insiders;

Abuse of services: attackers use cloud platforms to address their attacks,
and to host illegal materials. Nevertheless, providers allow quick and easy

services subscriptions; this makes it harder to detect an offender identity;

Lack of transparency: cloud organisations promise cost reduction together
with operational and security improvement; several risks and issues can
then arise, not disclosed to enterprises and organisations moving to cloud

services;

Shared technology: multi-tenancy architectures and shared resources repre-
sent key points of elastic scalability guaranteed by cloud organisations; un-
fortunately these features introduce some vulnerabilities. A compromised
component shared in the architecture can represent a threat for the whole

system.

In order to prevent some security threats via a forensic readiness capability,

some cloud parameters need to be measured. The measurement constraints to

be guaranteed are identified in the SL.Os, but not in all of them; thus, according

to their relation with the main cloud threats, they can be classified as Primary,

Optional, and Unnecessary SLOs. In Table 7.5 the primary SLOs related to the

75

cloud threats are shown, and also the rationale behind the proposed mapping.

the same manner, a mapping is proposed for secondary SLOs in Table 7.6.

Table 7.5: Primary SLOs - Security Threats Mapping

SLO Cloud Threat Motivation

Level of uptime DoS or DDoS - | If the cloud has been unavailablefor longer how much it is allowed,
Hijacking then there can be a DoS or DDoS attack caused by a hijacking threat

Percentage of suc- | DoS or DDoS - | If the percentage is lower than how much allowed, then the network

cessful requests Hijacking can be under DoS or DDoS attack caused by a hijacking threat

Average response | DoS or DDoS - | If the response time is bigger than how much allowed, then the

time Hijacking network can be under DoS or DDoS attack caused by a hijacking

threat

Max response time DoS or DDoS - | If the response time is close to the maximum allowed, then the

Hijacking network can be under DoS or DDoS attack caused by a hijacking

threat

Max number of simul-

taneous connections

DoS -Hijacking

A number of connections from a single client close to the maximum

allowed can determine a DoS attack caused by a hijacking threat

Max number of simul- | DDoS A number of simultaneously connected users close to the maximum

taneous cloud service allowed can be a sign of an DDoS attack

users

Percentage of service | DoS or DDoS - | If the percentage is lower than how much allowed in time, then the

provisioning requests | Hijacking network can be under DoS or DDoS attack caused by a hijacking

in time threat

External connectivity DoS or DDoS - | If the measures of jitter and latency are out-of-bounds, then there
Hijacking may be a DoS or DDoS attack caused by a hijacking threat

Backup method Data breach The availability of the backup method is useful to identify possible

unhallowed access to data backup

Data transfer rate DoS or DDoS - | If the data transfer rate is lower than the allowed average, then the

Hijacking network can be under DoS or DDoS attack caused by a hijacking

threat

Table 7.6: Secondary SLOs - Security Threats Mapping

SLO Cloud Threat Motivation Optionality
Max resources | DoS or DDoS - | If the resource capacity is close to | Itis an optional feature because
capacity Hijacking the maximum, then the resources | applicable only to network re-

can be under DoS or DDoS attack

caused by a hijacking threat

sources, €.g., storage resources

capacity is not enough

76

In

Motivation

Optionality

If the throughput is lower than the
allowed average, then the network
can be under DoS or DDoS attack

caused by a hijacking threat

It is optional because related to
the actual user usage of the net-
work, e.g., if the network is not
used, the value is affected neg-

atively

It is useful to know what informa-
tion can be read by an intruder on

the network

It is optional because hardly

made public by providers

When a backup is made available
is useful to identify possible unhal-

lowed access to data backup

The parameter is usually ex-
pressed by days or weeks,
which is a long period to detect

real-time violations

SLO Cloud Threats
Service through- | DoS or DDoS -
put Hijacking

Log access avail- | All

ability

Backup retention | Data breach
time

Applicable All

data protection,

codes of con-

duct, standards,

specifications

It is useful to know what are the

measures to defend from intruders

This SLO is often generic and
approximate: providers can
deny to disclose their security

measures

All the SLOs that are not considered in Tables 7.5 and 7.6 are consequently
classified as unnecessary, as they are not measurable with monitoring tools, e.g.,
support hours, or are not necessary for forensic readiness purposes, e.g., cloud

service change reporting notifications. In Table 7.7 a summary of the results dis-

cussed in this section is illustrated.

Table 7.7: SL.Os Classification

Primary

Optional

Unnecessary

Level of uptime

Max resources capacity

All the others SLOs

Percentage of successful requests

Service throughput

Average response time

Log access availability

Max response time

Backup retention time

Max number of simultaneous con-

nections

Applicable data protection, codes
of conduct, standards, specifica-

tions

Max number of simultaneous cloud

service users

Percentage of service provisioning

requests in time

77

External connectivity

Backup method

Data transfer rate

7.4 Final Remarks

Evidence to be collected during a forensic investigation has to respect some court
admissibility guidelines [1,89]. In some cases, such guidelines can be in contrast
with some SLA constraints expressing jurisdictional principles. For instance, let
us assume that a SaaS cloud service provider X is responding to the European
Jurisdiction. It can out-source additional services from a storage cloud service
provider Y responding to the Asian or Middle East laws. The SLA regulating the
relationships between X and Y includes some clauses that do not allow the col-
lection of evidence, such as network logs or database transaction logs, and that
regulate data access depending on other jurisdictions. Let us also assume that a
customer of X accessing to the service from the U.S. is victim of a data breach
crime, and law enforcement has to conduct an investigation. Very likely, depend-
ing on both the SLAs regulating the relationships between the customer and X,
and X and Y, respectively, such an investigation cannot be finalised due to the
presence of the clauses denying access to the potential evidence. The hypothetical
investigation can collect evidence-related data belonging to the communications
between the customer and the service provider X; moreover the logs from both
customer and provider sides can be utilised, as well as the performance indicators,
and the values of the used metrics to evaluate the resources parameters. However,
once the investigation has to deal with the infrastructure of the service provider
Y, depending on the expressed constraints the access to the necessary information

can be denied to law enforcement.

78

7.5 Summary

SLAs in the context of forensic readiness is the topic of this chapter. An expla-
nation of the contractual constraints, named service level objectives, proposed by
some EU guidelines is presented. Some of them are necessary for forensics, so
their selection is broadly detailed in dedicated sections: their presence on a hun-
dred publicly accessible SLLAs is calculated. Then, a mapping of constraints on
the principal security threats for the cloud is illustrated. Finally, a selection of
primary, secondary, and optional service level objectives for forensic readiness is
derived.

The following chapter is dedicated to a classification of SLAs for forensic
readiness. A possible classification in three classes of some contractual contents is
provided and motivated. Then, an automation of such a classification is proposed:
it is performed by a customisation of a text engineering tool. At the end of the
chapter an assessment of such an automation is performed utilising a dataset of

thirty-six public SLAs.

79

Chapter 8

Automatic SLLA Classifier

8.1 Introduction

This chapter is dedicated to a classification proposal of SLLAs, dedicated to detect
the sections of the contracts to monitor by a forensic readiness capability. Such a
classification is composed of three classes, representing a definition of a param-
eter to monitor, a value of such a parameter, and all the remaining sentences to
discard. Then, an automation of such a classification is proposed: it is performed
by a customisation of an already existing text engineering tool. At the end of the
chapter an assessment of such an automation is performed utilising a dataset of

thirty-six public SLAs.

8.2 SLOs Structure

The SLA contracts are written in natural language and legal jargon because they
have validity in case of a court litigation. The considered contents are related to
the forensic readiness context, and they are identified as Service Level Objectives

(SLOs) as discussed in Chapters 6 and 7. Every SLA is different from provider to

80

provider, so the necessity for an automation of SLOs recognizer can be considered
as a matter of urgency.

It 1s reasonable to affirm that an SLA is a set of SLOs, because each of them
describes a single parameter without overlapping with the remaining ones. An
SLO is composed of a set of sentences, usually more than one. The SLO describes
a constraint about a parameter of a service level included in an SLA, together with
the value and a unit measure and / or a percentage value of such a parameter. An
SLO in some cases can describe the metrics used by the service provider to cal-
culate the value of the parameter it indicates. Generally, the description is textual,
expressed in natural language; in some other cases, beside the textual description,
a mathematical formula is textually described. The time interval to consider is
also an important feature. Every SLA has a validity time period expressed either
explicitly with start and end dates, or with a start date plus a time period, such as
a billing month or a solar year. The SLOs included in the SLA are not necessarily
constrained during the same time interval; indeed they can have validity during
a different time period, which can even end after the SLA validity time, e.g., the
backup retention time SLLO can finish after the SLA termination; certainly, no SLO

can begin before an SLA starting time.

8.3 SLO Violation

An SLO is legally violated when the actual value of the parameter is calculated
by the formula included in the constraint description, and it does not respect the
foreseen value included in the description too. In the cases the metric / formula
to calculate the value of the parameter is not expressed, the actual value can be
calculate by using some documented metrics, in such a way the comparison can

be performed. An SLO violation has in general a billing consequence for the

81

provider; indeed, it can determine that the customer receives some extra money
on the account because the service level was violated in the provider side, so out
of the customer control. Moreover, from the forensic perspective, one or more
SLO violations can be symptoms of a cyber attack in the service infrastructure.

The mapping proposed in Section 7.3.2 is an example if such relationships.

8.4 SLO Classification

The sentences composing the SL.Os can be classified by following the proposed

approach [86]:
1. Definition
2. Value

3. Not Definition

The assumption made in this approach is that every sentence of an SLO can
fall only in one class; a sentence is a sequence of words enclosed in two full stops,
where the initial one is discarded. The sentences composing an SLO can repre-
sent either a value together with a unit measure or percentage for the constrained
parameter, or the metric description. So, the classifier has to recognise whether
a sentence of an SLO is a definition, a numeric value, or not a definition; in the
latter case the sentence is discarded by forensic readiness. A subsequent step of
the classification is the identification of mathematical and textual formulas from

the detected definition; in this way the class Definition can be split in two:

e Mathematical Formula

e Textual Formula

82

The mathematical formula represents a manner in which the detected description
can be easily translated into a mathematical formula, namely some strategic words
are recognised, such as adding, divided by, rate, ratio,

The textual formula instead describes a definition that outlines a textual de-
scription for the metric necessary to the computation of the value of a parameter
included in the SLO, which cannot be represented with a mathematical formula.

It is necessary to mention that the difference between mathematical and tex-
tual formulas is very narrow; namely a sentence can belong to either one just
depending on some few words due that the description is anyway textual, but in
both cases they represent a description for a formula. This reason motivates also
the presence of one class and two subclasses, instead of proposing four classes in

total.

8.5 Automatic Classifier for SLLAs

In order to design and develop an automatic SLLA classifier, some Natural Lan-
guage Processing (NLP) techniques have to be utilised. Such techniques have the
aim to elaborate the document containing an SLA and to obtain the information
about the SLOs necessary to forensic readiness to feed a dedicated service mon-
itoring tool. A means of addressing this challenge in SLACFR is represented by
the usage of Algorithm 1 ([39]). The algorithm correctly identifies what words to
either consider or discard. The computation recognizes a set of words representing
the information according to the formal model described in Chapter 9, to popu-
late specific sets, such as resources, attributes and unit measures, which contain
elements to be considered without being combined with anyone else. Conversely,
the set of indicators / includes information derived from the other three domains.

The output is represented by the population of the sets of resources, attributes,

83

unit measures, and indicators.

Algorithm 1 Text to Formal Rules
1: procedure T2FR(SLA) > Textual SLA

2: Information Extraction techniques set up parameters;

3: while Textual SLA not ended do

4: current <— InformationExtractiontechniquesout put;
5: if currentisrecognised then

6: PopulateR||A||U;

7: else

8: discardcurrent;

9: end if

10: end while
11: [< combinationo fR,A,U;
12: return R,A, U, I, > The sets are populated

13: end procedure

The principal open-source Information Extraction (IE) [58] tools are, Apache
OpenNLP, OpenCalais, DBpedia, and GATE. The principal tasks of OpenNLP
are tokenisation, sentence segmentation, part-of-speech tagging, named entity ex-
traction, chunking, parsing, and coreference resolution. All these tasks are present
also in OpenCalais and GATE with a more usable graphical interface. OpenCalais
can annotate documents with rich semantic meta-data, including entities, events,
and facts. However, the output of the tool is text enriched by annotations, which
are not user-customizable.

GATE [56] performs all the tasks described for the other tools and has the
advantage of being customizable; indeed, it allows to create customised types of
annotations using a JAPE transducer personalisation; also the annotation that the

tool recognizes can be customised. Due to its features GATE is used for the im-

84

plementation of the automatic classifier for SLAs [86]. The most used component
from GATE for this automation is the Information Extraction (IE) one. The input
to the system is a dataset of SLA documents in MS Word or Adobe formats. The
output of the classifier is composed of the same documents annotated. The anno-
tations are added to some sentences of the documents and they correspond to the
identified classes described before. Subsequently, the tool extracts the representa-
tion of the metrics for the SLLO parameters. The implementation of the classifier

works following two sequential steps:

e Step 1: classification of the sentences of the document according to the three

classes described before;

e Step 2: identification of the mathematical and the textual formulas included

in the Definition class from the previous step.

8.5.1 Stepl

The ANNIE (A Nearly-New Information Extraction system) plug-in is the princi-
pal and most used component of the software GATE. It takes an input document
that is annotated as output of the process. Step 1 is composed of a pipe of activi-
ties, where each depends on the output of the previous one and gives the input for
the subsequent. Almost each activity of this pipe is responsible to implement and
execute a specific information extraction technique. In this section the whole pipe

of phases composing Step 1 is described.

¢ Document Reset: this phase is responsible to delete all the annotations al-
ready included in the document; it cleans the file so that it is ready for the

whole annotation process.

e Tokenisation: the tokeniser component in GATE implements a word seg-

mentation technique. It divides the document in tokens, such as numbers,

85

punctuations, and so on. The tokeniser implementation in GATE is based
on the primitives Java types of the Class Character; such types are com-
bined via regular expressions and an initial annotation of token is assigned
to them. Subsequently, each token is recognised as a kind, such as word,
number, symbol, or punctuation, orth, length, and string.

@ GAlE Developer 50 buld 4525 - 8 x
Fle Options Tool: Hels

Q‘\M@ﬁw& ﬁh |14
[-y p—p—

it otors ik Cordfrrs St OAT RATC o T -

[mf ==
Tokert.
} Original markups.

Nemumawmmmwmm.%mmww 8 Hisi SLAS, o Hhi 1 08 |

et St bnd L
i

-1

Figure 8.1: Tokenisation Example

e Gazetteer: this component is responsible to perform a Named Entity Recog-
nition (NER) technique. It identifies the names of the entities based on some
lists. Such lists are simple text file with an entry for each line. Each list rep-
resents a set of names depending on a domain, such as cities, week days,
organisations, and so on. An index exists to give access to such lists. As
default the gazetteer creates a special annotation named Lookup for each en-
try found in the text. GATE gives the possibility to create a gazetteer with

personalised lists.

86

G GATE Dveloger 30buld 4825

- X
Fie Options Toole Help
(@[0D 5 P M| & |2
T S 5
1= f vessages s arvaenoion . {fh awee 67 Sthdessicat. & orova ffp anE
[orkafis Arvotaton ets| Amotatonstit arvotstons Stadk Corefrenedtor OAT RATC RATE Teel -
v 15
e
&5 Chssficaton of Cloud SLA features
1 e
19 Languzge Resources ice Level Acreement (SLA) isa formal document, a0°ed on 3 custamer and a service sioplie’, that defines a series of guarartees from tre
csler o the cutome abct the e,
& prova In the case of Cloud Computing, the two parties are the chud povider, that manages the service, and the cloud customer, that use it » Original markups
- e pincpa task f the sste it v w devep £0 CoTpare th measesComtened e SLA Wt e fealtne messurements. The fs
4§ st et feabr | probiem, thereore, s to extact and core the SLA infomztion. Jnforturately the couc SLAS aren's written i a stardad bnguage ke WSLA, an
b ke enguage developed by B. They are rrten i natural nguage and we have to use Tnformztion Fetrieval (IR, technig.es.
. eason s meortant to dcide Which festures ar2 for2 SGNfiGNt than others to gve thema priorty. In ths documert 1 anahze the presence ct
B e it them n one or more of the most MpOTTant Ciod provcer SLAS and 1 cBssfy the for ther uIity T tre forensc rzadiess.
an 2. Whatare tre sL features
9 AENE Transducer B e SLA el i o 01 st ol L0 sl Ut Dt st 10 a4 L of LA e s 1w ¢
4 or some uideines. A document, for this purpcse, s pudliied by the Eutopean Union the 20-3(1] and, in i e ataogec and
‘B avaeros o aes»nm all the 5LOs (Service Lavel Objective) that shouli be present in a cloud arovider SLA. They can be divided n:
rerformance L0
8 e Sentence spitir || [Socurty SLC:
Data Nanagement SL0s
g ANE Gazetee Peraral d3r2 mamagement S10:
1t Rasus et sararo iy wibe defnec i detals it resnce i chuc StAs
W nvzengisn o | |13 Coud sea sarle o
rs o hoiing the st f SLA features i recassary tof sl o the mostIrprtant o providarsand anlze tek SUA,Fe 65, Luse o
< L || SN p—
| frooie o ol
Loohp o
Looiup o
[o
Cooiup o
Lookup o
Em o o
s >
|smmmmsamd, prees =
SoaumentEdir IntaisatonParamste's Relaton Viever

Figure 8.2: Gazetteer Example

e Sentence Splitter: this component implements a Sentence Breaking tech-
nique. The Sentence Splitter divides the text in sentences and it utilises a
Gazetteer composed of a list of abbreviations that help to distinguish the
acronyms from the full stops ending the sentences. Every sentence is anno-

tated with a Sentence type.

G GATE Developer 3.0buld 4825
File Options Tools Help

5\0\@@“1*\-\1% %
B N e

Jteiation i s Fmral] it cock Corereeier AT e s 1o G =
e =

H] o ot 2 s

1. Overview
——— 4 Sarvica Laval Acraamant (SLA) isa formal doctiment, ag-aed on customer and a seivics sipplie, that defines a series of guarantass fiom the
supsiir to the custome* aboLt
& prova n the case of Claurd “mnuting, the twn parties are the chiid ovider, that manages the senvice, and the raud ~istomer, t1at tise i
& “he piincpa task of the system chat wie wil devebp to compare the measures conteined 1 t1e SLA wi the realtine measurements, The fit
467 St dassiicaion teatre. ||| proplem, therefare, isto extract and scor2 te SLA informetion. nforturately the clouc SLAS aren's witten i a sardard Bnauzge fke WSLA, an i
bo s ke nguage developed by 'BW. They are arcten in natural anguage and we have to use Informetion Fetreval (IR technia.es. For this ¥ Oriainal markups
Forantto dace whch featfesars ors SGACIn tha Gehers t Qe the & prirty, n s focumert {anaiee he presence cf
A2 s v them i one or more of the most important cload provicer SLAS and 1 chssfy them for ther uiity i the forensc rzatiness,
g the SL features?
q‘s ANNIENE Transducar Because the SLA strcture difers fro o coud servce povide to another, the best soltion to establsh 3 I of SLA features 510 Usea
<tandard or some gurfelnes. A docurment, or ths puTpCse, s pudisned by the Euopean Lnion n the 2U-3([1] and, n ., are Gatalogec and
‘@ anaeres Tagger descrited all the SLOs (Service Lavel Objective) that should be present Ina doud dravider LA, ~hey an be dvided n:
Perfurnante SLOS
82 e sestence spitter ||| Securty st
Data Nanagement 5L0s
& ATE Goetren Persoral dats management SL0s
In the "Restits report” paragraph they wil ba definec in detais vith their preserice in cou SLAs:
W e engish Tokeriser |15 cou 5L sample
@ vourenivarn ||| oot wtor find = sample of the vartant coid proddars and anale their SIAS. Fer s, Tuse
< > [st o md 1 Feotes
] |fsenence U sfsur -
c S| 6l sanu/ Qura=zxeeraly
senence o sulszlp
i 22 a2 sl
senence = sl
ot = w5200)
senence = alszonlg)
= el
<

A VT THOR .

72 ot G e somc

Document Edtor IntalsatonParameters Relaton Viever

Figure 8.3: Sentence Splitter Example

e Part-of-Speech Tagger: the tagger component of GATE implements the

part-of-speech tagging technique. Such a component adds to the previously

87

obtained tokens the correct category, which has to be intended as a part-of-
speech, namely a verb, a noun, a pronuon, etc. The used lexicon is derived

by a training made on a big dataset of articles of the Wall Street Journal.

& GATE Developer 30buld 4825 o= %
File Options Tools

o e

Jé Appications
ras
S

b orignal markups

fnes. A Gacument, ot (i purpcse, s pusksied by e Eufopean Ui e 2
A R

Figure 8.4: Part-of-Speech Tagging Example

e Semantic Tagger: in the ANNIE component such a tagger is based on the
JAPE language, which uses a mixture of Java code and regular expressions.
This phase is responsible to produce some specific annotations enriched
with additional feature, such as for instance the annotation Person with fea-
ture gender and values male, female; the annotation Location with feature
locType and values region, airport, city, country, county, province, other.
Some values of the features are derived by the lists used by the Gazetteer,
but they can also be customised depending on the specific needs. The im-

plemented technique is the Named Entity Recognition (NER).

88

& GaTE Deveoger 30buld 4623

Tools Help

@& |7

f—
o

I# Languzge Resources

& oo

PP ———
- procesingResorces

A

A% e oo
e v Tansiser
[—

| $52 ANNIE Sentence Spitter
&g EGaetee

Y A o Toenser

Vessages T aniiEEngin T AneE &7 SLAdessicat. & prova i AE

ot Aorsl fvasor ok CorefeeeEdr GAT TG AT s &

standard or some guideines. A document, for this. Duvp(se. is puslisned by the E\wnpean Uniieh in the 20:3[1] and in rc are catalogec and
descrized al the SLOs (Service Level Objective) that should be present in @ cloud arovider SLA. They cn be divided n:

Seaury SLCs
s Mgt 105
Per!nrﬁ\ data management SLOs
Resu rennrl paragrapt they wil be definec in detais with their presence in douc SLAs.

5. doud i
e ot of SLAfetres recasaary to find 2 samle of the mast important doud Drwd=vsand anaize their SLAs. Fer tis, Tuse
the amnual s of the most imporcant 100 cleud providers publshed by the top news source C [2]. They selected 20 droviders fo- each clouc

e (e P e g Sy A o e o8 7y o e o b St o S i 3 ek
jeveloprrent and, fo* this pumose, are excluded.

Hnaly Lhave aralzed /b provders anc, of these, oni tie S offers publc sLa, MOSE La3s.

e I 07 the provdzrs WEh the reatie SLA features are I the Appendx .

<. Fesulls repurl

In the folowing table ft s rsported 3l the 5L0s descrbed in the Bl guidelines and the respective presence percertage n the provider SLAs. The
frst colurmn s £1c name of the 8EG, the second fs dofintion, the £11d the presence percentage in the provider SLAs.

1 Parfomanca SLOs
In this secticn we have 6 attrbutes of Performance SLCs: Avaiabilty, Response Time, Capacity, Capabity Indicato's, Support, Reversibity and the
termination process

Hame v

mApeTmE
TKA METAALTHOR

<

¢ Orthographic Co-reference (Ortho Matcher) e Pronominal Co-reference:
this component implements a co-reference resolution technique. The Ortho
Matcher module allows the adding of relationships to the entities identified
by the Semantic Tagger. Such a module assigns a type to the annotations
that have not been tagged by the Semantic Tagger. The Pronominal Co-
reference module performs a check on the pronouns included in the docu-

ment and their context in order to obtain the flow of references to the same

x Ty Set Star: End Id Features
| ~|||arceniztien 44|_ar7|sss23) ie =AgonymOrg} "
cromzsten] | 565|572 50604 (o e onmors)
) Person 610 nlg szsu\(ﬁ =3 =
e | == —— =OrcFral
rganizaticn| 13 IE | =AconymOr
e | om0 e e -aronmons)
crganzaten] | 1123|1120 5062
[TIKA DC:CREATOR v | Crganizaticn| 1334] 1348/58 05|, Final}

Locaon
[tosen

P orignal markups

123 Anatators (0 selecied] Select:

Dol Bl Intalsatonaramsters | Reaton Viewer

Figure 8.5: Semantic Tagging Example

entity the pronoun is referring to.

&) GATE Daveloper 20 buld 1235 %
File Options Teols Help
YT
=
{ vessogs s ssncengarr. . @ avee. 7 srdossicor.. & prove g wvee
[t ‘ Arvoteton Sets Amotatons st Anrotatons Stock CoretenceEdtor CAT RATC RAT1 o & v
e I
e2s0n s meortant to d=cide WA festures ars morz sanfcant than thers to Qv thema prarty. In thS Jocumert [analze the presence cf A
8 e them i one or mare of the most impartant clo.d provicer SLAS and 1 dassiy them for ther usiity ir the forensc raadiness.
2. Wratare tre SIA features?
¥ Lanzuzge Resources becuse the SIA scricture difers from one cloud service p'ovder to anather, the best solution to establsh 3 let of LA features s o Use a
tandard or some guifeines. A dacument, for this purpcse, s puslsnd by the EUGPEARUTIAN I the 20.3(1] and, n . are wlogec and
& o s o Une SLOs (Serrice Level Obj<eLire) Uil should b present in 4 Uoud aroviden SLA. ey can b divded 1z
P cissicann s | FSEPAPSS
o Processing Resources: SRR ©Lo:
< Parsoral dats maragamant SLO:
A2 oz vt St o sl VA e d i 8 s s o
3 3. i §
Fe asnienE Transdicer At chaosn e st of B fesure s recessryto i = samle o the o rpotant doud prosdes and anabe tex SAS Fer g T use
the amual It of the most imporzant 100 clcud provilers publshed by the top 1ews source RN [21. They saected 20 oroviders fo each couc =
‘B aEpCs Tageer sevice (1aaS, paas, <aas, Storage, emvt‘{) but for che analysis I cansidered only the frst four sem(es ey nf the providers are prcjects in
developrren: and, fo this purpose, are excluded.] ke
8% anie senterce pitter (|| ially [have aralyzed 76 providers anc, of these, only t1e 503 offers publc SEA, mostly 1aas. O3 (ks
5 e I 0 the providars weh the reiative S features are in the Appendx A.
g Az Gt - Resuts report b Origial markups
ANNTEFnih Tokenser |1y th folowing table s rported 3l the SLOS descrbed i the & gudeines and th resDeciie presence percertage n the proviter SIAS. The
st colurn s Ui e of Ure S0, Ure securnd s defintion, Ure Liid U présence percentage in U pronider SLAs. ¢
et st 1 10 reeures
oo smottors (1 s seect o
ST OocumentEdir IntalsatonParamste's Relatin Viever

Figure 8.6: Co-referencing Example

89

After the preprocessing pipe of activities, the machine learning plug-in in-
cluded in GATE is executed. It is responsible to execute a sentence classification
process, aimed to classify the sentences of the document depending on the three
classes described in Section 8.4. In the SLLA Classification context several features
are added to a customisation of such machine learning component in GATE. The
input to this component is the set of sentences obtained by the Sentence Splitter.
Then it has to recognise the Class which is an annotation added to the semantic
tagger; the feature of such annotation is type and its values are definition, value,

not_definition.

8.5.2 Step 2

This step is dedicated to the extraction of mathematical formulas and parameter
values from the sentences classified as Definition and Value. The input to this step
is the output of Step 1, namely the classified sentences of the document given as
input. Then, the sentences with feature = definition OR value are elaborated by
a dedicated transducer JAPE file, respectively. The output from this step is an
additional feature to the already existing annotations.

The sentences definition are analysed token by token; the current token is
matched with a set of mathematical keywords, e.d., adding, subtracting, divided
by, rate, and so on. At the end of the process two features are extracted: the for-
mula which is the definition of the parameter expressed mathematically; and the
period, which is the time interval during which the constraint has to be valid.

From the sentences classified as value some other features are extracted: the
numeric value of the parameter, its unit measure, a condition that determines how
to compare the actual value and can be one among {=, <>, <, <,>,>1}, kind that
is the name of the parameter, and the value time that is the time period during

which the constraint has to be valid.

90

8.6 Assessment

The automatic SLLA classifier is assessed in order to validate the behaviour of the
proposed GATE customisation so some experiments are run in order to obtain
the necessary information [86]. The experiment utilises thirty-six SLAs where
twenty-seven are from some Cloud providers and the remaining nine are from
some SOA-based Web Services. Two different assessment have been performed,
each concerns a step of the proposed automation, namely Step 1 and Step 2 de-

scribed above.

8.6.1 Stepl

The SLAs documents have been used to feed the sentence splitter component of
the software, and then all the identified sentences have been manually annotated
with the correct class. The number of sentences among all the thirty-six SLAs
classified as definition is 71, while the value sentences are 39; the total number of
identified sentences is 2016, so the sentences classified as not definition and dis-
carded by the assessment is 1906. A leave-one-out cross classification method has
been performed with five classification algorithms, which are Support Vector Ma-
chine (SVM), Perceptron Algorithm with Uneven Margins (PAUM), Naive Bayes,
K-nearest neighbour (KNN), and C4.5 decision tree algorithm. The dataset is di-
vided in training set and test set; the training set is composed of thirty-five SLAs
documents and the test set of one; the classification algorithm runs thirty-six times
and the training and test sets change for every run, so in turn a different SLA doc-
ument is used as test set.

At the end of the leave-one-out for each of the five algorithms some measures
are calculated, namely precision, recall, and F-measure. Precision is intended

as the ratio between the number of real positive results, namely the sentences

91

correctly classified, and the sum of real positives and false positives. Recall is
calculated as the ratio between the number of real positive results and the sum of
real positives and false negatives, namely the sentences classified in another class
but actually belonging to it. The F-measure is the harmonic average of precision

and recall, calculated as

2xreal positives
2xreal positives+ false positives+ falsenegatives

Some parameters are set for three of the five classification algorithms; the two
left unaltered are Naive Bayes and C4.5. The parameters set for SVM are cost
and value. Cost (c) is the soft margin allowed for the errors; it will be in the
range between 10 3and10? in multiples of 10. Value (t) represents the irregular
margins of the classifier; when 7 is set to 1 it represents the standard execution of
SVM; when the training set items have a small number of positive examples and
a big number of negative ones T is set to a value lower than 1 in order to have a
better F-measure; in this experiment the training set items have a small number of
positive examples than negatives, so T varies between 0 and 1 with some jumps of
0.25.

In PAUM the number of negative and positive margins can vary; they are set
to the values in the following sets, respectively {—1.5,—1,—0.5,0,0.1,0.5,1.0}
and {—1,—-0-5,0,0.1,0.5,1,2,5,10,50}.

In the K-nearest neighbours algorithm the parameter representing the number
of neighbours can vary; the default value is set to 1, but the more such a number
increases, the more the classification noise is reduced but it lows the precision; in

this experiment it varies between 1 and 5.

Results

The SVM algorithm on the classes Definition and Value performs an increase of

the values for precision, recall and F-measure coincident with the increase of the

92

¢ parameter; they become more stable with ¢ > 1. The final result is a value for
precision, recall, and F- measure lower than 60%; this is caused by some outfit that
have parameter definitions not matching with the most common pattern, which
play an influence on the classification. The value sentences are not so many,
usually one per document, so the values for precision, and F- measure is lower
than 50%, and the recall is lower than 60%.

The PAUM algorithm on the class Definition performs irregularly when the
parameters n and p increase. The best results happen with n = -0.5 and p = 0, with
precision and recall > 50% and F-measure a bit lower than 50%. On the class
Value PAUM performs better with n = 0.5 and p = 1, with values for precision,
recall and F-measure lower than 40%.

K-NN on the classes Definition and Value performs worse than SVM and
PAUM,; it classifies worse and worse when the parameter k increases. The best
result on the class Definition is obtained with k set to 1, but such a result is worse
than SVM and PAUM due to an F-parameter value around 40%, a precision a bit
lower than 50%, and a recall lower than 40% and lower than the F-measure. On
the class Value KNN performs the best results with k = 1 and becoming stable on
< k < 4. The best results output an F-measure, precision and recall values around
30%.

The classification algorithm that behaves better for the classes definition and
value is SVM with the cost ¢ parameter set to 1. It outputs a precision and a recall
values bigger than 55% on definition and a bit lower than 50% for value. The
classification algorithms without parameters, namely C4.5 and Naive-Bayes have
bad behaviours, with a precision and recall = 0 , indeed they fail to classify the

sentences for both Definition and Value classes

93

8.6.2 Step 2

This assessment phase is dedicated to the effectiveness of the transducer compo-
nents customised in GATE and their capability to correctly recognise the math-
ematical formulas. The utilised dataset is identical to the one of the previous
assessment phase, namely thirty-six SLAs documents. The training set is com-
posed of the whole dataset items; every sentence of the documents is manually
annotated with the definition, value and not definition classes. The mathematical
formulas of the thirty-six documents are 25 up to the 71 definitions annotated.
The assessment utilises some distance formulas to calculate the errors, which are
the Levenshtein / Hamming distance metric, the Jaccard similarity metric, and the
similarity cosine.

The Levenshtein distance metric represents the minimum number of elemen-
tary changes necessary to transform string A to string B, where A # B. An el-
ementary change can be the cancellation, replacement, or insertion of a single
character in A.

Both thie following analyse the sentences word by word, instead of using the
character as distance unit measure. The Jaccard similarity is mainly utilised to
compare similarity and diversity of sample sets. In this case the sample is a string,
and the single elements are the single words composing it. The value is obtained
as a ratio between the difference of the sizes of union and intersection sets of
words by the size of the union set.

The similarity cosine is an heuristic technique that measures the similarity of
two numeric vectors by calculating their cosine. In textual contexts, the vectors
are composed of the frequency of the words considered in the strings to calculate
the similarity on. The word frequency is the number of times such a word recurs
in a text, so the k" element of the vector represents the frequency of word k, 0

otherwise. The values of the vector elements vary in a range for O to +1, where +1

94

indicated that the both texts include exactly the same words, but not necessarily
in the same order; O indicates that both texts have no word in common.
Also a manual semantic analysis is performed on couples of strings, in order

to check if they have a different meaning in presence of a similar text.

Results

The Levenshtein distance metric performs a check character by character; the
average result is a similarity value of 91% The main difference between the oracle
and the actual results relies in the presence of a blank space character nearby the
parenthesis symbol, which does not alter the strings. In some cases the similarity
value is lower, between 70% and 80% and this is because some words are not
present in the oracle, or some numbers are textually-represented, not by digits.

The Jaccard similarity metric gives an average result of 57%. The reason is due
to the checks performed on single words, where a word is a sequence of characters
enclosed by blank spaces. In the previous metric the presence of blank spaces
was already detected, and such a presence consequently contributes to lower the
average result of the Jaccard metric because a difference by a final or ending
character is interpreted as the presence of two totally different strings, e.g. month)
and month).

The similarity cosine gives an average result of 71%; it also verifies the simi-
larity of two strings at words level, but considering the word frequency instead of
the set of characters composing it.

The results of the manual semantic analysis indicate that the implementation
output does not differ much from the oracle. Analysing the details of the results,
the main differences with the oracle concern again some blank space characters, or
the representation of numbers with strings instead of digits, which do not represent

a semantic difference between the two strings. The manual analysis of the results

95

can affirm that the actual output is semantically identical to the oracle.

8.7 Summary

A classification proposal of SLLAs dedicated to detect the sections of the contracts
to monitor by a forensic readiness capability is the topic of this chapter. Such a
classification is composed of three classes, representing a definition of a param-
eter to monitor, a value of such a parameter, and all the remaining sentences to
discard. Then, an automation of such a classification is proposed: it is performed
by a customisation of an already existing text engineering tool. At the end of the
chapter an assessment of such an automation is performed utilising a dataset of
thirty-six public SLLAs, used to run five classification algorithms.

The following chapter is dedicated to the proposal of the formal model rep-
resenting the forensic readiness capability for cloud computing. Such a model
utilises formalisms as set theory, tuples, and functions in order to represent and

relate the concept abstractions involved in it, e.g., SLA and cloud logs.

96

Chapter 9

Formal Model

9.1 Introduction

This chapter is dedicated to introduce the formal model representing the forensic
readiness capability for cloud computing. Such a model utilises formalisms as
set theory, tuples, and functions in order to represent and relate the concept ab-
stractions involved in it, e.g., SLA and cloud logs. Moreover, some constraints
among these concepts are represented in the form of theorems, and some specific
definitions are designed.

The chapter begins with an overview of some related work concerning con-
tractual monitoring formal representations. Then, an abstraction of the input and
output of FR is designed in order to clarify its information flow. Finally, all the

equations and definitions are illustrated.

9.2 Related Work

A forensic readiness system for the cloud is meant to observe and record infor-

mation from the underlying computing architecture to render it forensically pre-

97

pared. Such information concerns operations happening in the cloud to be related
to some SLA constraints. The capability output include some important investiga-
tive details about the recorded information and the detection of contractual clauses
violations.

Contractual monitoring is a topic actively investigated in the recent past in
different contexts. Moreover, researchers provide customised manners to structure
and represent the SLAs contents. The most effective representation is the adoption
of formalisms. Then, natural language-based SLAs clauses have been structured
via formal specification methods.

For instance, in [34] Czajkowski et al. focus on the design of a protocol for
negotiating SLLAs among several actors. Different types of SLAs are defined, and
some formalisms are utilised, such as tuples for describing an SLA. Also some
definitions concerning the metrics to use for services are provided.

In [120] Skene et al. formalise the SLLAs by using set theory for defining the
concepts of actions, actors, events, parties, actions requirements. The purpose is
to determine the possible SLAs degree of monitorability in the context of services
provisioning through the Internet.

In [97] a framework called Contract Log for monitoring SLAs is presented by
Paschke et al., which uses several formalisms. The SLLAs have been categorised
depending on the purpose they have been written for. Their contractual contents
are formalised with different kinds of rules, such as derivation rules, reaction rules,
integrity rules and deontic rules; all of them are included in a homogeneous syntax
and knowledge base. Finally, the conceptual framework has been evaluated by a
tool running some specific test suites.

In [125] the concepts of parties, SLA parameters, and service level objectives
are used by Unger et al. for formalizing SLAs in order to provide a manner for

aggregating more SLAs in a single business process. In this formal model sev-

98

eral formalisms are utilised, such as tuples, logic predicates, boolean algebra, and
normal forms.

Instead in [57] the contracts are decomposed by Ghosh et al. in concepts of
services parameters, service level objectives, and key performance indicators; all
these entities are formalised via tuples. The SLLAs concern a storage as a service
facility where a design model for a dedicated monitoring system is provided.

In [75] formal specifications are used by Ishakian et al. for representing and
transforming SLLAs in order to address the issue of verifying efficient workload co-
location of real-time applications. The approach allows transforming the SLAs
whenever they do not meet the workload efficiency requirements into an equiv-
alent SLA that respects the same QoS. The used formalism is the tuple. The
proposal includes a reasoning tool used by the transformation rules process that
comprehends inference rules based on a database of concepts, propositions, and

syntactic idioms.

9.3 SLACFR

A Cloud Forensic Readiness for SLA management (SLACFR) formal model is
aimed to provide a theoretical approach to structure the management of the SLA
contracts for cloud computing services in the context of a forensic readiness ca-
pability. Its principal purpose is to record some information about the cloud be-
haviour with respect to SLAs. This information is structured as a set of compar-
isons between an attribute of a cloud entity and a (set of) constraint(s) on that
attribute at a specific time.

The capability recognizes suspicious information in real-time: they represent a
violation of a contractual constraint, such that some pre-investigative activities are

executed. The input of forensic readiness is composed of both information about

99

some cloud attributes and some SLA constraints, all represented with formal rules.
The execution begins on the availability of the contract(s) to monitor. The text is
properly parsed via information extraction techniques [58] and transformed into a
set of formal rules.

The used approach to build this formal model follows a bottom up strategy:
the contents of the SLAs discussed in Chapter 7 are decomposed and structured
to represent a constraint on a cloud entity. The cloud information is gathered from
service logs; they represent some resources information, and are used to compute
the actual value of a specific entity. For information coming from the cloud logs,
a bottom up approach is followed: the contents of the logs are decomposed and
structured to represent individual cloud entities and the operations changing their
values.

The formal model utilizes mathematical formalisms such as tuple, set theory,
and functions [14], to represent both SLAs, cloud logs, and SLA violation detec-
tion [37-39]. The abstraction of the computation of SLA violations detection is

depicted in Figure 9.1.

9.4 Cloud Computing Formal Representation

Let CA be the set of cloud architectures, it is defined by equation 9.1:

CA = {cay,car,cas,...,ca;},j €N 9.1)
A cloud architecture ca is composed of at least two data centres, then
ca={D“CD:|D“ >2}

where D is the set of data centres, represented by equation 9.2

DZ{d],dz,d3,...,dj},j€N 9.2)

100

CLOUD SERVICE PROVIDER

X X X

= 0= 0=
Oo—— E Oo— E Oo— ShAs
S4aS P4aS
u

SaaS|Logs Paap Logs TaaS| Logs

SLA EXTRACTION
INFORMATION

i

A 4 A 4 A 4

)

CLOUD LOGS CONVERTER]

S
FORMATTED
LOGS ACTIONS

Figure 9.1: SLACFR Capability [38]

.| COMPARISON

PERFORMER

SLAs
VIOLATION
DETECTION?2

A data centre d is an entity containing one or more machines, which can be
both physical and virtual. The virtual machines are lying above a physical ma-
chine, and managed by a virtual machine monitor. In a Cloud architecture ca more
data centres are connected each other, such that they can compose a network. Let
d be a data centre belonging to the set of data centres D, it is described by the

tuple in equation 9.3
d = (P V¢ vmm,N) (9.3)
PAcp
vicy
vmm € VMM

N¢ C CN

101

where P is the set of physical machines, V the set of virtual machines,VMM is
the set of virtual machine monitors, and N¥ is the set of nodes that d is connected
with. N9 is subset of the set of all the connections CN. Each element of the set N¢

describes the connected data centres.

CN = {ni,nz,ns,...,nj},je€N (9.4)
n = <d1,d2>

Theorem 1. In a cloud computing architecture c there exist at least two data cen-

tres such that |CN| # 0.

Proof. By definition |D*| > 1, then at least D = {d;,d,},

where d| = (P V4 vimmg, ,NU) and dy = (P2, V% vmmg,, N%)

NN = {ni|n = (d1,d2)}

N = {ny|no = (do,dy)}

N4 C CN and N CCN = CN = N UN% = CN = {n|,ny} = |CN| #0. O

Both physical and virtual machines can be composed as a set of resources R,

either software or hardware, as described by equation 9.5.

P={R°|R’ CR} (9.5)
V={R'|R" CR}

R={r,r,r,....rj},jeN

A resource r is described by a set of attributes A, e.g., filename, date of cre-
ation, size. Let a be an attribute, it belongs to the set of attributes A as described

by equation 9.6.

102

A:{al,az,a3,...,aj},j€N (9.6)
r={A"|A" CA} 9.7)

A| £ OVr € R

Theorem 2. The set of attributes A cannot be empty.

Proof. Every resource r € R is described by a set of attributes A” which is subset

of A.
A=JAL = Al <A
DS AT £ OWr € R
= |A| #0

O

During the execution of a cloud service, the value of an attribute of a resource
is subject to change via an operation 0. An operation o is an element of the set of
operations O. Each operation is described by a mathematical tuple composed of
a sender s that is the executor of the operation, a result value(a”) that describes
the value assigned to attribute a of resource r, an operation resource r, an attribute
a, and an operation time #,. The operation value is a mathematical function that
assigns a value to an attribute of a resource. The assigned value can be either a
numeric or textual. A sender s is an entity performing operations in the Cloud,
either a human or a system process, e.g., an Internet session or an application

process. Let s be a sender, it belongs to the set of senders S.

S={s1,52,53,...,5;},j €N (9.8)

103

0 = {01,02,03,...,0j},j €N 9.9)
0= (s,a",value(a”),u,t,) (9.10)
uclU
value : a" — value(a") = k € ZUTEXT
TEXT = {klk ¢ Z.}
The information about the flow of operations are stored in a cloud log cl,
which is an element of the set of cloud logs CL. Every log is composed of a set of

operations O¢! concerning an attribute a of a resource r; the set O is included in

the set of all the operations O.

CL={cly,ch,ch,...,clj},jeN (9.11)
cl =0

Oclgo

9.5 SLA Formal Representation

An sla [is an element of the set of slas L. An sla is described by a mathematical
tuple composed of a set of service levels SL, the validity starting time #,s and the

validity ending time 7,,,.

L:{l],lz,l3,...,lj},j€N 9.12)
| = <SL7 z‘starhtend>

Tend 2 tstart

A service level s/ is an element of the set of service levels SL. Each s/ has a validity

time interval, determined by a starting and an ending time; during this time, some

104

indicators related to a service level attribute for a specific service resource need to
be verified, hence an sl is described by the following tuple, composed of the set of
indicators /, the attribute a of the resource r, and the starting and finishing times,

t and 17 respectively.

SL = {sly,sl,sl3,...,sl;},j €N (9.13)
sl={I,a"t;,tr)

z‘}‘21‘5

An indicator i is an element of the set of the indicators /. An indicator is de-
scribed by a mathematical tuple composed of a conditioned value ¢ k u of the
attribute a’Sl for the resource r. A condition ¢ belongs to the set of conditions C;
in case any condition is not expressed in the contractual text, the value of ¢ will be
set as =. A value £ is related to the attribute a’Sl of the resource r; u is the optional
unit measure used to express the value k, belonging to the set of unit measures
U. The conditioned value ¢ k u has to be verified through the application of the
metric m belonging to the set of metrics M. The metrics can be either atomic or

composed, namely the value is obtained by combining more atomic metrics.

I:{il,iz,...,ij},jEN (9.14)
i = (cku,m)
ceC
C={<><5><> =} (9.15)
uelU

U={u,u,...,uj},jeN

105

meM

M:{m1,m2,...,mj},j€N

9.6 Forensic Readiness

A cloud forensic readiness capability f is an element of the set of forensic readi-
ness capabilities F. A capability is described by a mathematical tuple composed
of a set of comparisons Q and a set of SLAs L, where L is described in the previ-
ous section, while Q is defined in the following to illustrated how a comparison is

intended.

F={fi,fo,f5,---.fi},i €N (9.16)
f=1{0,L)
Q# 2
Lt

A forensic readiness capability is responsible to perform a comparison be-
tween an indicator of an attribute for a resource expressed in a service level i € I*/
and a set of operations of a specific cloud log O where the sequence of values
of this attribute is contained. The comparison is evaluated according to the metric
miSlused to calculate the value. Formally, these entities are correlated in the fol-
lowing tuple. A comparison g belongs to the set of comparisons Q. A comparison
tuple is composed of a cloud log ¢/, an indicator that has to be verified i € I*/, and

the comparison time 7.

106

Q:{61176127437---761j}7j€N (917)
q = <ClviSlvtq>
tthocl

Yoe 0 Wier ()% = (a)"

Definition 1. SLA Violation

Given a comparison g € Q and a service level s/ € SL, the comparison is consid-
ered an SLA violation if the values of the set of operations O/ composing the
cloud log cl on the attribute a of the resource r at the time ¢ are different from the
conditioned value cku of the related indicator #! about the service level si, on the
same attribute a of the same resource r. The validity has to be determined during
the correct time interval, namely the time of the operations have to be included in
the time interval 7/(i) — #,(i); the value value(a") is obtained by the application of

the metric m'.

m'(a") = value(a”) # (cku)' (9.18)

ts<i) < Loalue(a”) < tf<i) 9.19)

9.7 Summary

The formal model representing the forensic readiness capability for cloud com-
puting is the main topic of this chapter. Such a model utilises formalisms as set
theory, tuples, and functions in order to represent and relate the concept abstrac-
tions involved in it, e.g., SLA and cloud logs. Moreover, some constraints among
these concepts are represented in the form of theorems, and some specific defini-

tions are designed.

107

The chapter begins with an overview of some related work concerning con-
tractual monitoring formal representations. Then, an abstraction of the input and
output of FR is designed in order to clarify its information flow. Finally, all the
equations and definitions are illustrated.

The following chapter is dedicated to the description of the prototype system;
its architecture is designed, together with some design goals. The databases struc-
ture is described and represented with some UML diagrams. Also the interaction
with the text extraction tool is presented, with details about the manner in which
the information is gathered and recorded. Then, the core module routines are

illustrated, together with the interactions with the utilised existing libraries.

108

Chapter 10

Prototype System

10.1 Introduction

This chapter is dedicated to the description of the prototype system,; its archi-
tecture is designed, together with some design goals. The databases structure is
described and represented with some UML diagrams. Also the interaction with
the text extraction tool is presented, with details about the manner in which the in-
formation is gathered and recorded. Then, the core module routines are illustrated,

together with the interactions with the utilised existing libraries.

10.2 Architecture

In this chapter the prototype for cloud forensic readiness for SLA violation de-
tection system is discussed [39]. The objective of the prototype is to perform
comparisons between SLA constraints and real-time cloud services resources at-
tributes measures. The prototype implements the comparison performer module
depicted in Figure 9.1, which obtains the input from external tools it is interfaced

with [87]. A general prototype system architecture is depicted in Figure 10.1,

109

whose components are detailed in the sub-system decomposition diagram in Fig-
ure 10.2; finally, the hardware / software mapping is depicted in the diagram in
Figure 10.3. Both Log Indexing and Extraction and SLA Extraction components
are dedicated to the structuring of both cloud logs and SLAs information respec-
tively. SLA documents are manipulated with Information Extraction techniques
automated with the software GATE as described in Chapter 8, and the indicators
described in equation 9.14 in Section 9.5 are generated. Pseudo real cloud log in-
formation is used to structure the cloud log entities of equation 9.11 described in
Section 9.4. Such information is stored in the Storage component, and the Match-
ing component is responsible for performing the comparisons between the two
inputs, and generating information structured as described by equation 9.17. The
Values Matcher module is responsible for computing the values of some resources
attributes gathered from the Storage module. The computation is performed via
specific metrics, obtained by information from real SLLAs and stored in the Storage
module in the format described in equation 9.5. The measures are obtained by the
Formula Evaluator component, and compared with the related SLA constraints,
storing them persistently. The Storage module includes all the functions used to

manage the databases.

10.3 Design Goals

In this section, some design goals of the prototype system are discussed [87].

e Performance

— Response time: the system compares the constraints contained in the
SLA with the log information in real-time and according to the dead-
lines foreseen by the SLLAs constraints (e.g., Monthly Uptime Percent-

age is verified every month);

110

v

e S | s B E—

Log Indexing and Extraction SLA Extraction Formula Evaluator Values Matcher

Storage

Figure 10.1: SLACFR System Architecture

— Memory: the system does not require a big amount of RAM capacity,

because most of the generated data are stored in databases.
e Reliability
— Robustness: the system manages possible user input errors, like con-

figuration errors (e.g. a non-existent file path into configuration file);

— Effectiveness: the system is effective during the start - stop time period
determined by the user; it performs without errors in order to recognize

all possible SLA violations;

— Fault tolerance: errors can be generated by hardware and software
faults, such as flaws of the two DBMS (MySQL and MongoDB), and

hardware problems like lack of persistent storage memory.
e Maintenance
— Portability: the system can run on every operating system and plat-

form;

111

Log Indexing and Extraction

SLA Extractor

LogManager

GateManager

- ReadLogl)
- Manipulst=Entry(]

Storags

LogDBManager SLADBManager

Insertl) - Insert)
Select) Select!)
-Update{)

Formula Evaluator

Values Matcher

Matcher

Calculator

CustomFunction

Figure 10.2: SLACFR Sub-Systems Decomposition

— Legibility: the code is furnished with simple but exhaustive comments,

facilitating the impact analysis in case of change requests during main-

tenance activities.

e End user

— Usability: the system intuitive, furnished with a user manual and proper

on-line help.

e Persistent data management

— DBMS: both a relational and non-relational DBMS are utilised, MySQL
and MongoDB, respectively. MySQL stores data extracted from the
SLAs, because such data are composed of entities in relation, i.e,
SL.Os with values and definitions. MongoDB is used for cloud logs
and for the output of the Values Matcher system components. All this

data have no relations, and can be stored in simple query-able collec-

tions.

e Access control and security

112

F—
MySQL DBMS

L
<<Piocossors> ' MySQL
cpu HC)

Figure 10.3: SLACFR HW / SW Mapping

— Access matrix: there is only a single user in every instance of the
system, and the interaction is limited to start and stop the system, and
to receive notification about contract violations detections. An access

matrix is not necessary;
— Data protection: it is guaranteed via by MySQL and MongoDB cre-
dentials;

¢ Boundary conditions

— Start and stop: the single system user has to set up a series of param-
eters in a configuration file, and then he launches the executable file.
Such a forensic readiness system theoretically should never stop, but
if the user prefers, he can interrupt the system, and the system stores

all the information calculated before being stopped;

— Exception management: possible runtime exceptions are managed by

113

the system with user-friendly error messages graphical interfaces ex-

plaining plain errors to the user.

10.4 Databases

10.4.1 SLA Database

The SLA database model is illustrated in this section [87]. In Figure 10.4 is de-
picted the UML Entity-Relation model, and a logic model follows. Every SLA is
formed by n SLOs and n Definitions. Every SLLO can have more than one value
in a single SLA, e.g, multiple services with different definition for uptime; and
for every SLOValue there is a different definition. The logic model of the SLA
database is composed of four tables, and their primary keys are in italic:

SLA (ID, provider, service)

SLO (name, id_SLA)

Definition (ID_Sla, name, form, period, unit, valuetime, service);

SLOValue (name, id_SLA, valuetime, value, operator, unit, value_service, def-

inition_name)

Figure 10.4: SLACFR ER Diagram

114

10.4.2 Log Database

The log database is managed by a non-relational DBMS, specifically MongoDB.
This choice is driven by the following considerations. The number of entries can
be huge and query on a big file could be really difficult for the system purposes.
Moreover, in order to calculate real values to match with contractual values, a
large number of queries has to be launched, sometimes in a short time period.
MongoDB is one of the most popular non relational databases, and it provides
some useful features, such as flexible data model: data can have any structure
and it can be dynamically modified. Indeed, this feature fits perfectly with the
system necessities, because the logs can have different structures and information
depending on the log sources. Again, MongoDB is highly scalable, from a single
server to thousands of nodes. It can deploy in the cloud and across multiple data
centres. MongoDB provides a query language that allows various query types;
the availability of drivers for any programming language facilitates the queries in
a really easy way. Database initialisation and population happens via dedicated
Java modules of the prototype system. The module retrieves the log file entries

and stores them directly into a MongoDB collection.

10.4.3 Comparison Database

The information generated by the system are structured in an Entity - Relation
database, called Comparison Database. It is composed of three tables, represent-
ing the calculated data, the detected contractual violations, and the detected at-
tacks. The first table stores information about the calculated SLO, such as the
name, the obtained value, and the time the computation happens. The second one
is about the contractual violations detected by the system; the information is com-

posed of the name of the violated SLO, the difference between the real value and

115

the value contained in the SLO, the SLO unit of measure, and the time the viola-
tion is detected. The attack table stores data about the identified security attack,
calculated on the basis of the detected violations; the table stores both name and
time of the identified attack.

Calculated Data(Type, Value, Time)

Detected Violations(SLO, Difference, Unit, Time)

Attack(Name, Time)

10.5 Interaction with GATE

GATE tool is interfaced with the SLACFR prototype via GATE APIs. After the
classification and the information extraction has been performed by GATE, the
output is transformed into objects, and the features into class variables. There ex-
ist five Java classes executing this data exchange: the class Gate_main loads GATE
and the ANNIE plug-in; then it launches the sub-applications in the pipeline, in-
cluding the personalised transducers. Then, two objects are instantiated, one of
class DefinitionSet, composed of a set of Definition objects, and one of class SLA,
composed of a set of object SLO and the previous DefinitionSet. The variables
of the class Definition are the corresponding annotation features. All the objects
are instantiated and stored in the SLA relational DB, by a dedicated Java module
that communicates with the storage component. In this way GATE will be called
only when the cloud SLA is modified. During a normal execution, main_system
obtains SLA information directly from the database, using the provided interface
classes. The UML Class Diagram of the gate system package, interfacing with
the GATE tool, is depicted in Figure 10.5.

116

Figure 10.5: UML Class Diagram for the SLA Extraction System Module

10.6 Matching Component

In this section the matching engine that performs the contractual violation detec-
tions is described. Such an engine is composed of a set of modules performing:
data aggregation and indexing, comparison, and eventual alert. An UML Class
Diagram is depicted in Figure 10.6. The engine obtains input from the SLAs and
log databases, then it calculates the actual SLOs values and compares them to the
values contained in the SLAs object. The system starts initializing the MongoDB
log database and recovering all SLA objects stored into the SLA database. The

matching operation is launched for each SLA.

117

<alava Classss

(©Main_system

(@ faul pacicage)

@ itain_system(y

<=lava Ciass=» ==lavadass>>
Gmatching (® AttackChecker Controller
matching matching
4 valles: Map<SLOVale Double= ool sLA
4
Sivpl a oL el ‘o sttackCheckerCanroler(SLA)
4 faReturr: Map=SLOVae Double= .
& runfvvoid
asSA
@FMatching(SLA)
@ runiivoid 3y
R}
=lavaiass>
: (@DDoSChecker
==Java Class== ==lava Cless=> e —— ; matohing
@ Uptimehatcher @SimlisersMatcher (® MvgResTimeMatcher 2 o sla; LA
matefing matching matching & man int
4 sloYalue: SLOValue 4 slovalue: SLOValue A slovalue: SLOValue i e
a3 5LO Asl0: SLO &slo: SLO ki @ DDoSCheckerS.
& UptimeMatcherSLO SLOValue) @ simUsersMatcher(SLO,SLOValuE) & avgResTimeMatohar(SL 0 SLOValug) i @ runi):void
© rungvoid ® run(yvoid @ run(yvoid © checkAttack(:ho...
© matchSLAYalus(SLOValue Obisct Siring)vaid | | © matehSLAVais(SLOValue Objsct Sting)vaid | | @ matchSLAYalue(SLOValus Object String) void | |
i P ;
sclava Clsss>> o <slava intertace== <slava Interface==
@ Calculator = €3 SLOMatcher @ AttackChecker
masching matching matching
AR el @ run(y voiel @ run()void
5 numOfhinutes: String
@ matchSL AValue(SLOValue Obiect Stringly. ® checkAttack{Yhoolean
o form: String
& unit: String
REiY, e, <<lava Closs=>
@ CountFunction
& Calculstor(String String String, Siring, String) matching
© cal()Dauble P———
& CountFunction()
<= lava Class=> © execute(Evaluctor Siring) FunclionResut
@ AvgFunction © gethams():String
matching 7
A list ArrayListsString> [
S avarction0 _<<ava Clessa>
© getameCLString WT"":"I“"U""“’ <=lava Class=>
@ execute(EvaluatorString) Functionfesuit S, [Cle il
- atime: long miaa
& TimerTaskUtty(... | o farmuls: String
— s e @ cli():Long o period: double. <<Java Classss
<=lva Opsson <lava Class»
= AvSDictionary<K, V>
@ Avghrray (@ AwgSingleResult Challine < T <)
matehing matching EHIsER i
@ resul String o¥dictionary: Dictionary=String String
& formula: String 4 formuls; String Ml
r T S — ©¥in_use: boolean
& period: dovkle: 4 result: String b & @ limin; ong
& imint. long & evalistor: Evalustor callyString ipt:
o limSup: ng
= Imsup: long & periad: doukle
5 resukt Shing s fiin: long o AisDictonary)
o @ refreshvalues(yveid
o fvpdrray(String double) iapelong : mmmmg)em .
°
P — 5 unit: String .
& AvgSingleResuNEvaluator String,double, String) ol
ey g String 7 @ setimSupgong}:void
 cal):Sting .
| © aetResultey String pe e r
Rl g © translete(String) DEObject

Figure 10.6: UML Class Diagram for the Matching System Module

In order to calculate the actual values, some SLO formulas have to be utilised.
The formulas are stored in the form field of the definition table. Every definition
is related to its SLLO with a foreign key, i.e., definition_name in the SLO table.
A mathematical formula is needed by the matcher in order to compute the SLO
numeric value. A formula is one or more mathematical operations applied to one
or more variables and / or numerical constants. The system translates a variable
in a query, then it retrieves its numerical value querying some logs information.

An external library called JEval [64] performs the formula evaluation. It gives

118

a mathematical formula as input to an evaluator that parses and calculates the
corresponding value. In order to translate each atomic variable of the query, a
dictionary is implemented; it maps relations between such atomic variables and a
query .

Every SLO has its own time window based on the evaluation period, as spec-
ified into the SLA. The parameters of the queries are the upper and the lower
bounds of the time value. Time value is expressed in milliseconds, as a Java Cal-
endar Time. This parametrisation is necessary to have the right result set based on
time windows.

To use the dictionary to retrieve the right query, it is necessary to invoke meth-
ods setLimInf(Long time) e setLimSup(Long time) to update the upper and lower
bounds. Then, the method translate(String key) returns the query matching with
the given atomic variable, namely the dictionary key.

The following line of code is an example of the population of a dictionary
entry, e.g., the Error Code parameter used to calculate the MUP for Amazon S3.

dictionary.put(“error “InternalError” or “ServiceUnavailable” ”, “ $and : [$or: [Error-
Code : “InternalError ”, ErrorCode : “ServiceUnavailable], $and : [Time: $gte : “+lim-
Inf+”, Time:$lte : “+limSup+”"]] ”);

The dictionary is implemented as a static Java class, then it needs an access
policy from each running thread launched by the system. This policy has been
realised using a lock on the static class: before using the dictionary, every thread
checks a variable containing this lock, and then the access can be granted or de-
nied.

This mapping is very difficult to be performed automatically, because very
sophisticated textual manipulation techniques are necessary. In this prototype it is
performed manually, and updated as soon as additional information is included.

Nevertheless, most of the entries can be valid for every service, such as HTTP

119

messages name and code. In Figure 10.7 some flow charts about the calculation
of the actual values are depicted. The diagram on the left hand side represents
a generic formula evaluation; the middle diagram depicts the calculation of an

average formula; and the right hand side diagram describes a counting formula.

formula.comtains(“count’)?

Figure 10.7: Flow Chart Diagrams for Resources Attributes Values Calculation

10.7 Summary

The description of the prototype system is the topic of this chapter; its architecture
is designed, together with some design goals. The databases structure is described
and represented with some UML diagrams. Also the interaction with the text ex-

traction tool is presented, with details about the manner in which the information

120

is gathered and recorded. Then, the core module routines are illustrated, together
with the interactions with the utilised existing libraries.

The following chapter is dedicated to the description of a case study utilised in
this dissertation in order to execute the prototype system. Some motivations and
a description of some assumptions open the chapter, then a scenario is presented.
Subsequently, the SLA and the logs of the chosen cloud platform are detailed, and
the customisation of the proposed cloud forensic readiness formal model on it is

llustrated.

121

Chapter 11

Case Study

11.1 Introduction

This chapter is dedicated to the description of a case study utilised in this disserta-
tion in order to execute the prototype system. Some motivations and a description
of some assumptions open the chapter, then a scenario is presented. Subsequently,
the SLA and the logs of the chosen cloud platform are detailed, and the customi-

sation of the proposed cloud forensic readiness formal model on it is illustrated.

11.2 Overview

It is well documented that the amount of information accessible by cloud service
customers is large in IaaS level, medium in PaaS, and small in SaaS (see Figure
2.1). Thus, the choice of an IaaS cloud service suits the requirements of this
section, because it grants the access to a bigger amount of information than in the
other two service models.

The choice has been on Amazon Simple Storage Service (S3) [9], which is an

Infrastructure as a Service (IaaS) provided by AWS. It owns a public SLA, includ-

122

ing several constraints. They are composed of definitions, values, and formulas
of the parameters necessary to be calculated by the proposed prototype system.
Nevertheless, also a detailed description of the service access log files is provided
by Amazon S3. This has been the leader to such a choice, namely the availability
to be aware of the structure of the data utilised to calculate the actual value of the
SLA parameter to monitor, in order to perform the comparisons.

It is worth to mention that some other options have been considered but then
discarded, because of several reasons: the lack of a public SLA but the presence
of a description of the log file structure; the presence of both elements, but the
difficulty to apply the formula necessary to calculate the actual values of the pa-
rameters because some specific and strongly technical details hidden to customers
were required; the presence of SLAs but the lack of a description useful to inter-
pret the log files.

The following section explains the scenario of a typical situation were the

proposed formal model and prototype system play a significant role.

11.3 Scenario

Bob is an administrator of a wiki website; he needs the contents of his website to
be available to the public 24/7; moreover he would like that the platform hosting
the mentioned wiki website is scalable, flexible, and accessible from every coun-
try. To full-fill these requirements, Bob decides to host his website on a cloud
platform, but he is aware of the possibility of data security issues. Thus, Bob
would like the hosting platform to be capable of generating alerts when a security
attack takes place, to facilitate some forensic activities to verify the platform be-
haviour is in line with the contract he signed. Assuming that some cloud services

are provisioned with a forensic readiness capability, Bob will chose one of them.

123

The Amazon Web Services (AWS) platform is chosen by Bob because it suits
his needs. It provides an external system performing forensic readiness activities.
Bob selects a standard utilisation of AWS regulated by a public SLA. Bob uses
his Elastic Compute Cloud (EC2) instances to run his wiki website. The data are
stored using the Relational Data Base Service, included in the AWS pool. The
static website contents, like HTML and CSS pages, images, video, are located
on the Simple Storage Service (S3). Figure 11.1 depicts the AWS hosting logical

architecture used by Bob to store all his contents

Highly available and scalable web hosting can be complex and
expensive. Dense peak periods and wild swings in traffic pattems
result in low utiization rates of expensive hardware. Amazon Web

Services s the reliable, scalable, se

provide: 5 , secure, and high-
performance: infrastructure required for web applications while
enabling an elastic, scale out and scale down infrastructure to
match IT costs in real time s customer traffic fluctuates.

3

amazon
webservices

B 17 s DS requests are serveg by Amazon Route 53, 2 [Vet servers and appiication servers are deployed on [Fesources and siamic content used by e web apslicstion
System highly available Domain Name Sysiem (DNS) service. Amazon EC2 instances. Most organizations will select an are stored on Amazon Simple Storage Service (S3), a highly
= Network trafficis routed o infrastructure Funning in Amazon Web Amazon Machine Image (AMI) and then customize it to their durable storage infrastructure designed for mission-critical and
QOverview Services. needs, This custom AMI will then be used as the starting point for primary data storage.
[HTTP requests are frst handied by Elastc Load Balancing, UEE SEb develDpIE. [Sietc and streaming content & defvered by Amazon
which automatically distributes incoming application traffic Wt e e aric ety Severs e dechoye i Autn CloudFront, a giobal network of edge lorations. Requests
across multiple Amazon Elastic Compute Cloud (EC2) instances BB e e i i are automatically routed o the nearest edge location, o content
across Availability Zones (AZs). t enables even greater fault A Bsc 115 O tolkiy e ceding: - £ waditiors e efne With AL s defivered with the best possible performance.
‘tg;;mr::‘al: s ﬂ(gpht(;itw":,‘;j;r‘;\l?;'v f;fwi‘:f “’r's B:‘:’l:::tl:f Scaling, you can ensure that the number of Amazon EC2 instances Availability zones (AZs) are distinct geographic locations
£ e e e you'e using increases sesmiessly during demand spikes to that are engineered to insulate against failures in other AZS
application traffic. maintain performance and decreases automatically during demand Multiple AZS are combined into a region. Here, the entire web
Iulls to minimize costs. application i deplnyer in twa different 47< for high availabilty

Figure 11.1: Amazon Web Services Reference Architecture [9]

124

11.4 Amazon SLA and Logs

Amazon S3 is the chosen cloud computing service that is furnished with an ex-
ternal forensic readiness capability. It provides a public SLA and a detailed de-
scription of the service access log file structure. Among all the legal constraints
of the SLA, the service level uptime is considered in this case study because it
is the most present SLO in the public SLAs, as analysed in Chapter 7.3.1 with
a percentage of presence of 84.2%, and classified as the first primary SLO (see
Table 7.7).

The service level uptime in Amazon S3 is expressed as Monthly Uptime Per-
centage. This parameter becomes a quality attribute of the Amazon S3 cloud
service. Amazon Web Services will use commercially reasonable efforts to make
Amazon S3 available with a Monthly Uptime Percentage [...] of at least 99.9%
during any monthly billing cycle.

In the SLA also the metric to calculate the attribute value is included: Monthly
Uptime Percentage is calculated by subtracting from 100% the average of the
Error Rates from each five minute period in the monthly billing cycle. Again,
Amazon carefully defines the aforementioned Error Rates as the total number
of internal server errors returned by Amazon S3 as error status InternalError or
ServiceUnavailable divided by the total number of requests during that five minute
period [9].

In order to guarantee the respect of the monthly uptime percentage service
level, an SLACFR capability has to consider the information about server re-
sponses to the HTTP requests made to S3 every five minutes. Such data are
available in the server access log files available in S3, which collects some in-
formation every request made to the service. All the fields in an S3 log entry are
space-delimited; an example of such a log is shown in the following line.

79a59df900b949e55d96ale698fbacedfd6e09d98eact8fS8d52 18e7cd47ef2be mybucket [06/Feb/

125

2014:00:00:38 +0000] 189.48.46.51 - 3E57427F33A59F07 WEBSITE.GET.OBJECT /photos/2014/
08/puppy.jpg “GET /mybucket/photos/2014/08/puppy.jpg ?x-foo=bar” 200 - 14200 14200 15 15
“http://www.puppypicturest.com/” “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/36.0.1985.143 Safari/537.36” -

As mentioned in the AWS S3 documentation page, any field can be set to “-
” to indicate that information is unknown or unavailable, or that this field is not
applicable to the request.

An example of the structure of such logs is provided in Figure 11.2. The
information in circles is necessary to calculate the Error Rates, i.e., the time and

the Error Code.

5

Jadlcbalef5830adT4cdafeT351dT74682ecaalTea

d74cdafe7351d74682ecaa072a2b

your request was

/GetResource/Console.html?region—us-cast—

Figure 11.2: Amazon S3 Sever Access Log [38]

In a specific five minute time period, the capability has to collect the log files
for all the requests made, i.e., from Timeg to Time, s,,;,. Then, the Error Rate is
calculated counting the number of Error Code equals to InternalError or Service-
Unavaiable, and divided by the total number of requests during that five minute
time period.

Considering that every entry in the log has a related Error Code field, the total

126

number of requests during that five minute period is obtained by the following

formula:
+5Smin

SminRequests = Z ErrorCode
0

The Error Rate of a five minute time period is obtained by the following for-

mula:

ngmi” ErrorCode = Internal ErrorORServiceUnavaiable

SminErrorRate = -
SminRequests

In order to have a monthly value, the computation has to be done during a
billing month time period. Every solar day has 60/5 * 24 = 288 five minute time
periods; this value has to be multiplied for the number of days of a billing month.
Assuming that a billing month is composed of thirty days, we will have 28830 =
8640 five minutes time periods. Finally, the monthly uptime percentage will be

obtained by the following formula:

23640 SminErrorRate
8640

AverageErrorRate =

MUP = 100% — AverageErrorRate

11.5 Formal Model Example on Amazon S3

The Amazon S3 SLA has a validity time that begins when a customer has access
to S3 until he decides to terminate. The solar year 2015 is the S3 SLA validity
time.

L={s3}
S3 = (S3SL,01,/01/2015,31/12/2015)

The service level uptime is expressed as Monthly Uptime Percentage, MUP for
short. Amazon Web Services will use commercially reasonable efforts to make

Amazon S3 available with a Monthly Uptime Percentage [...] of at least 99.9%

127

during any monthly billing cycle. April 2015 is considered as the billing month
range.

a = MonthlyU ptimePercentage
r = S3server
S3SL = {MUP}

MUP = (I, MonthlyU ptimePercentage>>*""*" 01,/04/2015,30/04/2015)

I={ii}
¢ = atleast

atleast =>

c=>
i ={(>99%,MUP,,)

The unit measure is not expressed, but the percentage symbol, so it is set to %.

Recalling the definition of this attribute: Monthly Uptime Percentage is cal-
culated by subtracting from 100% the average of the Error Rates from each five
minute period in the monthly billing cycle. Error Rate is the total number of in-
ternal server errors returned by Amazon S3 as error status InternalError or Ser-
viceUnavailable divided by the total number of requests during that five minute
period [9].

The metric for calculating MUP is a composed metric, because it needs the
computation of the AverageErrorRate that depends on SminErrorRate, depending

again on SminRequests .
M = {MUP,,,AverageErrorRate,,, SminErrorRate,,, SminRequests, }

MUP,, = 100% — AverageErrorRate,,

23640 SminErrorRate,,
8640

AverageErrorRate,, =

128

+5min
SminRequests,, = Z ErrorCode
0

235’”"” ErrorCode = Internal ErrorORServiceUnavaiable

SminRequests

SminErrorRate,, =

Every five minutes the SLACFR capability collects the S3 Server Access Log
files generated by the execution of the service hosting the wiki website of Bob.
The logs contain every HTTP request made to the service, and the response is
stored. The information from those logs is mapped in the formal model in the

following way.

R = {S3server}
A = {MonthlyU ptimePercentage}
}S3server}

S3server = {{MonthlyU ptimePercentage

During the execution of an S3 instance, the value of an attribute of a resource
is subject to change via an operation o. Each operation is described by a mathe-
matical tuple composed of a sender s that is the executor of this operation, a result
value(a”) that describes the value assigned to attribute a of resource r, an opera-
tion resource r, an attribute a, and an operation time #,. The sender is the Remote

IP address field of the log in Figure 3.2.
S ={137.43.248.70}
The operation o is the operation field of the S3 Server Access Log file.
O = {REST.GET.OBJECT}
The components of the operation are described in the following tuple.
REST.GET.OBJECT = (137.43.248.70, MonthlyU ptimePercentage>>*™¢"

,,,18/Feb /2015 : 10 : 37 : 23+ 0000)

129

The value element of the tuple is empty, as well as the unit measure. More pre-
cisely, the value element is neither InternalError nor ServiceUnavailable, as de-
picted in Figure 11.2.

In order to build a log ¢/ € CL, the SLACFR capability translates many S3
Server Access Log files in a set of operations O/, From this mapping, the cloud
log feeds the metric MU P, in order to determine the elements of the set of com-

parisons Q described by equation 9.17 in Section 9.6.

11.6 Summary

The description of the case study utilised in this dissertation in order to execute the
prototype system is the focus of this chapter. Some motivations and a description
of some assumptions open the chapter, then a scenario is presented. Subsequently,
the SLA and the logs of the chosen cloud platform are detailed, and the customi-
sation of the proposed cloud forensic readiness formal model on it is illustrated.
In the following chapter the simulation platform utilised to generate some
Amazon S3-like log files is described. Such files are then used to feed the proto-
type system in order to run some test cases aimed to detect the possible contractual
violations. So, the technical requirements of the platform are described, together
with the simulated attack routine, and the generation of the log file dataset. Such
dataset is then converted into a format that can be matched by the forensic capa-

bility, so such converter routine is illustrated.

130

Chapter 12

Log Files Generation

12.1 Introduction

In this chapter the simulation platform utilised to generate some Amazon S3-like
log files is described. The log files needed for the system testing have to be compli-
ant with the case study described in Chapter 11 in order to be correctly matchable
with the related SLA. The necessity to obtain simulated logs is derived by the un-
availability of such information: log files are private because they represent all the
flow of operations happening during the execution of a Cloud service, Amazon S3
in this case, for a specific customer.

Such files are then used to feed the prototype system in order to run some
test cases aimed to detect the possible contractual violations. So, the technical
requirements of the platform are described, together with the simulated attack
routine, and the generation of the log file dataset. Such dataset is then converted
into a format that can be matched by the forensic capability, so such converter

routine is illustrated.

131

12.2 Simulation Platform

Amazon S3 is the Simple Storage Service of Amazon [9]. In this cloud service
the files are organised in structures called bucket. They are are similar to machine
file system folders, but they have no capacity limit. Amazon S3 allows to use
buckets for hosting static websites, composed of HTML, CSS, and JS pages, and
to memorise the access logs concerning such resources. Such logs are used to test
the prototype system for detecting SLA violations in a cloud forensic readiness
context. In a theoretical usage of the cloud forensic readiness system the log files
should be retrieved directly from the service provider. In this case study instead,
the generated logs are stored locally in a file and imported by the prototype tool
into a not-relational data base, as described in Chapter 10.

The simulation platform is a replacement of the real Amazon S3 service that
cannot be used because it is a private and a charged service on which a cyber
attack can be extremely hard to be executed. An Amazon S3-similar platform is
needed to automatically execute multiple requests from different machines that
simulate a normal usage of the original service. The choice fell on a small Web
application named LittleS3 [100] that is free and open-source and that provides
the same functionalities of the original service. LittleS3 [100] is used to generate
Amazon S3-compliant log files. It runs on a Tomcat Web server, and it receives
HTTP requests in order to GET, PUT or DELETE an object from a specified
bucket. As well as Amazon S3, LittleS3 allows to manage the service objects
and buckets through a Web interface. The service files are stored on its own Web
server, which makes very easier to manage requests and resources, and to monitor
the service status and the host machine availability. Also the simulated log file are
stored on Tomcat, as server access log files, where they are collected from.

The diagram in Figure 12.1 represents the different components of the simula-

tion platforms and their interactions with the SLACFR prototype system described

132

in Chapter 10 and the automatic SLLA classifier described in Chapter 8.

IMaster

SSH

Slaves

Malicious client.

Marmal clients

HTTP Requests

Tomcat/ LittleS3

Apache
Log

Perl
Translation
Script

Dataset

Figure 12.1: Simulation Platform

o Tomcat & LittleS3: the Amazon S3 service is executed on a machine; it
waits for requests to be executed, and it records every access on the Tomcat

access log;

e Simple DoS Attack [118]: it is an open source project utilised to perform
automatic requests from some service clients; such a tool is executed on
multiple machines with a different parameter set-up depending on the nature

of the request, i.e., attack or not-attack;

e Perl Script: it is a conversion script written in Perl that utilises regular ex-
pressions to convert the Tomcat access log files format to the Amazon S3

one;

133

e CFRS: it is the system prototype described in Chapter 10.

The master machine utilises the SSH protocol to order the slave machines
to execute the Simple DoS Attack command. The malicious client executes the
evil version of such command that will perform multiple and frequent requests
to the server. It will request always the same file with the aim to increase the
response time and simulate a DoS attack. The attack will be performed along
five minutes, and then the client will perform standard requests. Such simulation
will be repeated many times, increasing in every time the number of five minute
time interval duration of the evil command, namely the first time it will last five
minutes, the second time ten, and so on. Both slave machines and Little S3 server
produce log files that will be used to compose the log files dataset. The slave
machines log files are used to identify the five minutes time intervals when an
attack was executed; the Tomcat log files are converted to the Amazon S3 format
and then utilised to perform the computation determining the actual values of the

SLA parameters to monitor.

12.2.1 Technical Requirements

The machines technical requirements are described in this section, together with
the manner in which the Simple DoS Attack command is invocated [87].

Several virtual machines are set-up in the simulation environment; they are
dedicated to the execution of the normal clients, the malicious client, the master
node, and the LittleS3 server. There is one server machine (IP: 192.168.60.17)
where Little S3 is installed on; one malicious client machine (IP: 192.168.60.6);
one master machine (IP: 192.168.60.2; Public IP: 193.205.186.57) dedicated to
the scheduling of the Simple DoS Attack command; ten normal client machines

(IP range : 192.168.60.[18-28]). The technical features are listed in Table 12.1.

134

Table 12.1: Machine Technical Requirements

Normal Client | Malicious Client | Master | Little S3 Server
CPU | 1core 2 core 2 core 2 core
RAM | 512 MB 2GB 2GB 2GB
DISK | 20 GB 20 GB 20GB | 20GB

12.2.2 Simple DoS Attack

SimpleDos.jar is the Java program used to automate the experiment process. A

copy of this program is installed on each client / master machine.

When the Simple DoS Attack command runs, ten files with different sizes will

be created using the following command:

of="+name+i+" bs="+i*10*%1024+" count=1");

The .jar file is launched with different options, depending on the role of the
client machine:

java -jar SimpleDoS.jar http://[server_address] littleS3-2.3.0/[bucket_name] [mode] [mode]

can have 3 different values:

e (for Normal client: it executes an HTTP request every 5 seconds with
probability of 40% on a randomly chosen file from the set of created files,

e.g., an image or a text file. The request type will be a GET with 70% of

this.executeCommand(”dd if=/dev/urandom

probability and a PUT / DELETE with 30% of probability;

¢ | for Malicious client: every hour the malicious routine is launched; it starts

a pool of 10 threads, each one sends a PUT request with the file with the

biggest size chosen from the set;

¢ 2 for Health checker: it acts as a normal client that checks the response time

of the service; as soon as a time-out is detected a command to restart the

service is executed.

135

12.3 Log Files Dataset

A big enough dataset of log files has to be generated for the prototype system
testing. In order to obtain the log files correctly, the logging module of Tomcat in
LittleS3 has to be configured. The log files format is edited in the file server.xml
in this manner [87]:

pattern="%h %l %u %t "Y%or" %s %b " YoRefereri"
" %oUser-Agenti" %D %q”

9%D and %gq. are added at the end of the file, where %D allows to obtain
information about the time used to process the requests, expressed in milliseconds,
and %q the query string. This information will be used to generate logs containing
the same information of the Amazon S3 access logs.

The log file entries are generated as soon as the server receives HT'TP requests
and provides HTTP responses. The requests sent by the client machines can ei-
ther represent a standard behaviour or attempt to violate the service by sending
multiple and frequent requests, aimed to perform a DoS or DDoS cyber attack.

Moreover, a data preparation and transformation phase follows the collection
one, because the Apache logs format does not match with the Amazon S3 one.
A script written in Perl, which is well suited to the use of regular expressions,
automates the format transformation of Tomcat-format files to Amazon S3-format
files, without altering the contents.

In Table 12.2 the mapping between Tomcat log structure and Amazon S3 log
structure is reported.

Some fields in the Apache column are marked with - when there is no value
to be used to convert to the Amazon S3 format. Indeed information in the S3 logs
result to be more accurate than in the Apache log format. The fields that have no
match have been generated using the method described in Table 12.3.

The Apache access log file is a text file composed of several entries separated

136

Table 12.2: Tomcat and Amazon S3 Log File Structure Mapping

Apache Example Entry Apache Access Log Field | Amazon S3 Access Log Field
- - Bucket Owner
- - Bucket
[10/0ct/2000:13:55:36 -0700] Time Time
127.0.0.1 Remote host Remote IP
- - Requester
- - Request ID
”GET /apache_pb.gif HTTP/1.0” Request line Operation
”GET /apache_pb.gif HTTP/1.0” Request line Key
”GET /apache_pb.gif HTTP/1.0” Request line Request-URI
200 Status code HTTP status
- - Error Code
2326 Size of object returned Bytes Sent
2326 Size of object returned Object Size
- - Total Time
7 Time to process the request | Turn-Around Time
“http://www.example.com/start.html” | Referrer Referrer
”Mozilla/4.08 [en] (Win98; I ;Nav)” User-Agent User-Agent
- Version Id

by the new line character, and every field is separated by a blank space. A regular

expression is used to obtain for every entry each field; then they are converted and

stored to the Amazon S3-line log file.

(/PO =T+ (w2 =J)\s+ (=T HAOdHN/ Qw+)\/(\d+) : (\d+) :
(\d+) : Ad+N\s?2([\w N+ =)\ +7OwH)\s + \S+)\s + HTTP\/I\Ad™\s + (\d+)\s +
(Nd=J) (s () +)21+) Ns(\d+)\s\ 2atk = (\d+)$/)

The Perl script can be executed on Ubuntu system launching the following

command on the terminal: $ perl parser.pl Apache_access_log_file > S3_log_file where

parser.pl is the Perl script, Apache_access_log_file is the Apache log file and S3_log_file

137

is the output file.

These commands will create a new file named S3_log_file containing the Ama-
zon S3-simulated access log file. A the end of this process, such log entries are
stored on MongoDB. An example of the generated logs follows.

“_id” : Objectld(“550b410fe4b0fd7341b84bed”), “BucketOwner” : “5927116389¢7d406047
097a41cba2ef5830ad74cdaf67351d74682eeaal7eab”, “BucketName” : “mybucketwebsite”, “Day”
2 “157, “Month” : “027, “Year” : “2015”, “Hours” : “03”, “Minutes” : “11”, “Seconds” :
“09”, “Time” : NumberLong(“1423969869000”), “GMT” : “+0100”, “RemotelP” : “201.92.110.117”,
“Requester” : “-”, “RequestID” : “O1KAIWBCHS8X4XL90", “Operation” : “WEBSITE.GET.OBJECT”,
“Key” : “wp-includes/js/jquery/ui/accordion.css”, “Request” : “GET”, "URI” : “/wp-includes/js/jquery/
ui/accordion.css?ver=1.11.2", “HTTPVer” : “HTTP/1.1”, “HTTPStatus” : “200”, ”ErrorCode”
:“27, “ByteSent” : “8508”, “ObjectSize” : “8508”, “TotalTime” : “104”, “TurnAroundTime”
: “104”, “Referrer” : “http://www.laclessidracicciano.it/”, “UserAgent” : “Mozilla/5.0 (Win-
dows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Sa-
fari/537.36”, “VersionID” : 7 ”

The metrics described in the Amazon S3 SLAs used to calculate the service
parameters constraint the calculation time interval on five minutes [9]. Some val-
ues are calculated on the generated log files on such five minute time intervals to

facilitate the final comparison between actual and constrained values:
e AVG (object size) : average size of the requested objects, in bytes;

e Success rate: number of HTTP requests with response code 200 divided by

the total number of requests;

e Error rate: number of HTTP requests with response code 500 divided by

the total number of requests;

e PUT rate: number of PUT type requests divided by the total number of

requests;

138

GET rate: number of GET type requests divided by the total number of

requests;
AVG (response time): average server response times;

Sim User: number of users simultaneously connected to the service; this is
calculated considering the number of different IP addresses making a server

request during the last five minutes;

Uptime: percentage value of the uptime parameter, calculated with the met-

ric specified in the Amazon S3 SLA;

Uptime Violation: boolean value indicating whether an actual uptime level

is violating the value specified in the Amazon S3 SLA;

Sim User Violation: boolean value indicating whether an actual Sim User

value is violating the value specified in the Amazon S3 SLA;

AVG (response time) Violation: :boolean value indicating whether an actual
average response time value is violating the value specified in the Amazon

S3 SLA;

Attack: boolean value used indicating whether an service attack is detected.

12.4 Summary

The simulation platform utilised to generate some Amazon S3-like log files is

described in this chapter. Such files are then used to feed the prototype system in

order to run some test cases aimed at detecting the possible contractual violations.

So, the technical requirements of the platform are described, together with the

simulated attack routine, and the generation of the log file dataset. Such dataset

139

is then converted into a format that can be matched by the forensic capability, so
such converter routine is illustrated.

In the following chapter the usage of such simulated log files is described, and
the prototype system testing is illustrated. The testing phase is planned, executed,
and reported in dedicated sections. The test suite is composed of seven test cases

aimed to detect different contractual violations.

140

Table 12.3: Amazon S3 Log File Missing Field Generation Method

Amazon S3 Access Log Missing Field

Generation Method

Bucket Owner

Static field the bucket owner is a constant value corresponding

to an alphanumeric string.

Bucket

Static field the bucket name is a constant value corresponding
to the name of bucket. A constant bucket name ID is used to fill

this field. All the log entries will have the same Bucket ID.

Requester

Static field for WEBSITE.GET.OBIECT operations on public
objects from a not-authenticated user, the requester ID is a - char-

acter, like in this simulation.

Request ID

A unique alphanumeric string. The Perl script generates a unique

alphanumeric string for each request.

Error Code

Depending on the HTTP response, this field reports the error
name. The Perl script generates the name of the error according
to both HTTP response number and the error code provided in

the Amazon S3 documentation.

Total Time

Its value depends on the size of the requested object. This value
is calculated as: [Turn-Around Time]+[Network Write Speed].
The average of the Network Write Speed has been calculated
by doing GET requests on objects (text and images) of different
sizes (1IMB, 2MB and 5MB) on different day hours. The Perl
script uses a download speed that ranges randomly from 30MB/s

to 70MB/s.

Version Id

This field in not used for Website services. For each log entry a

- constant is generated for this field.

141

Chapter 13

System Testing

13.1 Introduction

In this chapter a system testing based on the case study described in Chapter 11
is performed. A cloud service user Bob performs his daily security controls using
SLACFR. The system detects anomalies about SLA parameters, such as Monthly
Uptime Percentage, Average Response Time, and Number of Simultaneous Con-
nections, on Amazon S3. At the same time, the system raises a warning message
to Bob as soon as such anomalies are detected; possible security attacks can be
also identified, and this information has to be sent to Bob too. Such a test suite is
composed of seven test cases aimed to detect different contractual violations, and

are planned, executed, and reported in dedicated sections.

13.1.1 Planning

In order to catch the anomalies, the system extracts the SLOs values from the SLA
document with GATE. Figure 13.1 depicts a phase of the execution of GATE with
the customised JAPE and Transducer files.

According to the document, one of the extracted SLO is the Monthly Uptime

142

5 GATE Developer 8.0 build 4825 - o IEH
File Options Tools Help

LR A
G o Nl essages| 467 masinczmn e, | e
@*nwmm] e et & B

o=
Amzzon S35LA Y

(theserves

¥
‘oc in the morhly biling ¢ydk, The caleutaton of the number af
eined below),

that five miite penod, e vl calalate the Erer Rate for

Cregit’ s a colar Grecit calculsted a5 et forth below,
redrs

@ weozrosTon the total chorges paid by you for Am i whih the error sccurred in it e scheduie below

SR A Setence

g oo

Original markups.

Less thar
g P Gazetizer 2%

pe:CREATOR e | o ‘
oefen| e firiton, period=five inute, Lrit=")
Defimition| L

¥

<
[P Annatations (0 selected) Select: New

3 || Document Edtor | Initalestan arameters | Refzton Viensr

Figure 13.1: GATE Execution

Percentage (MUP), calculated by subtracting from 100% the average of the Error
Rates from each five minute period in the monthly billing cycle. Error Rates is
the total number of internal server errors returned by Amazon S3 as error status
InternalError or ServiceUnavailable divided by the total number of requests dur-
ing that five minute period. The system has to calculate the MUP value day by
day, using the access logs provided by S3. Thus, the system gets all the HTTP re-
quests registered in every five minutes intervals, and using the following formulas,

it calculates the real value of MUP, as described in Chapter 2?.

MUP = 100% — AverageErrorRate

23640 SminErrorRate
8640

AverageErrorRate =

+5min
SminRequests = Z ErrorCode
0

Yo Smin B rrorCode = Internal ErrorORServiceUnavaiable

SminRequests

SminErrorRate =

The system has to recognize a suspect MUP difference equal to 0.1% on the value

contained in the SLA document. According to the parameter definition, a de-

143

crease of monthly uptime percentage corresponds to an unusual increase of in-
ternal server errors. This problem could be caused by an attack on Amazon S3
server (DDoS, DoS) (see Table 7.5). Every 24 hours the MUP value is stored in
the Calculated Data DB, and then compared with the values of previous days. At
the end of the billing month, the final calculated value is compared with the SLLO
value.

The other SLOs to test are the Average Response Time (ART), and Number
of Simultaneous Connections (NSC). Unlike MUP, ART is not extracted by the
public Amazon S3 SLA. Its definition is obtained by the European guidelines def-
inition [49]; the value to be respected is obtained by a benchmark [88] where the
average response time has to be of 500 milliseconds every five minutes. Accord-
ing to the EU guidelines, ART is the average of all the requests response times
from each five minute time period in a billing month cycle. Response time is only
the Turn-Around Time without transmission time, because related to the file size.

The used formula for ART is:

+5Smin .
ResponseTimes
ART = Lo P

numbero f request s

Also the NSC parameter is not extracted by GATE. It is defined using the
European guidelines definition [49]. NSC is the number of single customers using
the service in a minute time period. Its value can be negotiated depending on
application needs. In this scenario, Bob owns a wiki website, and the number of
connections cannot be extremely high. Then, such a number can be assumed to
be set as 500 connections in a single minute. The time period is set very short to
allow to catch an attack, such as DDoS. The used formula for NSC is a count of
different IP addresses performing a request in a minute time period:

+1min

NSC = Z IPAddressper formingrequests
0

144

In order to execute the comparisons, some logs are necessary. Some simulated
Amazon S3 logs are generated as described in Chapter 12, and utilised for this

system testing.

13.1.2 Execution

The system starts recovering all the SLAs objects stored in the SLA database. A
matching operation is launched for each SLO. Three SLOs violation recognition
have been implemented: Monthly Uptime Percentage, Average Response Time,
and Number of Simultaneous Connections. In order to catch an MUP violation
during a time period shorter than a billing month, some additional metrics have
been added to the test code, namely to calculate the uptime percentage per hour

(HUP) and per day (DUP).

HUP = 100% — AverageErrorRatey,

125, -
SminErrorRat
AverageErrorRate;, = Lo~ SminErrorRate
12
+5min
SminRequests = Z ErrorCode
0
. Yo min BrrorCode = Internal ErrorORServiceU navaiable
SminErrorRate = -
SminRequests
DUP = 100% — AverageErrorRate,
288 .
SminErrorRate
AverageErrorRate; = 2o
288
Y3t HUP
DUP ==—"———
24
Y'pUP
MUP = —=————
30

145

The system calculates HUP, and after 24 hours it can compute the average of
all the previous values. After thirty days the average of all the DUP can calculate
the MUP value. For this purpose, two circular arrays to store such data have been
used. Every calculated uptime value obtained is stored in a MongoDB collection.
The task calculating HUP, is a Java thread Calculator launched every hour: it eval-
uates the necessary formula stored in the database using JEval. The JEval function
Avg calculates information average for every five minutes time period; it launches
a Callable thread that searches the atomic elements into the related formula; then,
using the dictionary, it executes the corresponding MongoDB queries. The cal-
culated values are obtained, and the formula is evaluated by JEval. Its value is
returned to the Avg function that performs the average of all values computing the
Average Error Rate. Then a simple subtraction is calculated. The UML sequence

diagram in Figure 13.2 depicts the interactions of the system components.

uuuuuuuuuuuuuu

Figure 13.2: MUP Calculation UML Sequence Diagram

The test execution to verify the ART SLO is similar to the previous one. A
thread Calculator is launched every five minutes evaluating the formula using
JEval. The Avg function calculates the average of all response times, i.c., field
Turn-Around Time of the logs, using a Callable thread that extracts all the requests
every five minute time periods. The average result is returned to Calculator for the

matching between the real value and the SLO value. The UML sequence diagrams

146

in Figure 13.3 and 13.4 depict the interactions of the system components without

and with errors, respectively

‘ uuuuuuuuu ‘ avaFunctor Avsdictoney

" g ity vosdi

|
|
I
|
MangoDB duery
" Riongel resdit
|
|
|
I
|
1
|

1 | |

| | |

| | |

run()) | |
Start thread SLOMatcher | |

|

Batch_procsss Start thread Calculatar

Figure 13.4: ART Calculation UML Sequence Diagram - Errors

For the NSC SLO a thread Calculator is launched every five minutes evalu-
ating the formula using JEval. A new Count function uses a Callable thread that
counts during every minute the distinct recorded IP Addresses, i.e., field Remote
IP in MongoDB. The total is returned to Count, and the count result to Calculator
for the matching between the real value and the SLO value. The UML sequence

diagram in Figure 13.5 depicts the interactions of the system components.

147

Figure 13.5: NSC Calculation UML Sequence Diagram

After the actual values for the three SLOs have been calculated, the system
sends them to the matching component: it extracts values and operators, such
as < or =, from the SLO value object, and then it builds the matching formula.
This is evaluated by JEval, that returns the boolean result of the match. If the
result is false, the difference between the actual and the contractual SLOs values
is calculated, then it is stored in MongoDB and notified to the user via a pop-up

similar to the one in Figure 13.6.

Mo -
59 Inane warning

{!} Violation on numberOfConnectionswith difference of 1 connections

Figure 13.6: SLACFR Violation Alert

In addition to the match for single SLOs, the system uses the information
stored in the violation database, recorded as soon as a JEval matching result is
negative, to detect a possible attack, composed of multiple SLOs violations (see
Table 7.5). In this case, anomalies in the three implemented SLOs can be caused
by a DDoS attack. This functionality is implemented using another thread execu-

tion; it is launched and then paused during a time interval equal to the maximum

148

time period of the three chosen SLOs; then it wakes up and seeks HUP, NSC,
and ART violations. The UML sequence diagram in Figure 13.7 depicts the in-
teractions of the system components. If all the violations are gathered from the

database, then a notification is sent to the user via pop-up similar to the one in

Figure 13.8.
- |
|

T
| |
| |
——runQ—— | |
) |
|

|—Start thread AttackChecker—mr
.
MongoDB violation query
[WongoD number of violation resuit

:| notify_attack()

Batch process

—
|
|
|
|
|
|
|
|
|

Figure 13.7: DDoS Calculation UML Sequence Diagram

™ Inane warning

& Warning: possible DDoS attack on your system!

Figure 13.8: SLACFR Attack Alert

149

13.2 Results

In this section, some tests executions results are reported. The input of the tests is
represented by S3-like log files and S3 public SLA; in particular, the three SL.Os
of MUP, ART, and NSC extracted by GATE are considered. Because the log
recorded a system execution during a single hour, the MUP parameter cannot be
calculated; instead, it is scaled down to the hourly uptime percentage, described
by the formula HUP in the previous section, whose constraint remains unaltered,
1.€., > 99%. The constraint for ART is < 500milliseconds, while the NSC value
has to be < 10.

The used logs about one hour service execution have eleven entries; each entry
has a different IP address. The turn around time and error code fields of the eleven
rows is changed in order to detect the violations in the following test cases.

An example of a log entry is described by the following code:

5927116389e7d406047097a4 1cba2ef5830ad74cdaf67351d74682eeaal7eab mybucketweb-
site [15/02/2015:03:07:53 +0100] 66.249.78.20 - UGBXDJ9QZGSG2EX5 WEBSITE.GET.OBJECT
fanarea.html “GET /fanarea.html HTTP/1.1” 500 InternalError 0 0 9999 99999 “-” “Mozilla/5.0
(compatible; Googlebot/2.1; +http://www.google.com/bot.html)” -

The followed approach is to identify all the possible combinations of the three
SLOs violations. The total number of test cases should be eight because we have
three SLOs that can be violated or not at one time, i.e., 23 = 8. Excluding a test
case where no violation is detected, we obtain 8 — 1 = 7 test cases. The first three
test cases detect a violation of a single SLO each; then, from the fourth to the
sixth a violation for two SLLOs, and finally a violation for all the three SL.Os, with
a related DDoS attack information. In the following list, the output of the seven

test cases is described.

e Casel: HUP violation detection

150

Some log entries Error Code field is set to InternalError. The system detects

a violation for HUP SLO, then one entry is stored in the violation database.
“_id” : Objectld(”55366fcbe4b0ad64725155d5”), “SLO” : “hourlyUptimePercentage”,
“Difference” : -1.6, “Unit” : “%”, “Time” : NumberLong(” 1423973273000)

Case2: ART violation detection

The Turn-Around Time field is 999 millisecond for some log entries. The
system detects a violation for ART SLO, then one entry is stored in the

violation database.
Violations database:

“_id” : Objectld(”553665c¢6e4b050717035da71”), “SLO” : “averageResponseTime”,
“Difference” : 20013.32, “Unit” : “ms”, “Time” : NumberLong(” 1423969973000)
Case3: NSC violation detection

Eleven log entries have eleven different IP addresses. The system detects a

violation for NSC SLO, then one entry is stored in the violation database.
Violations database:

“_id” : Objectld(“553664d6e4b050717035da6c”), “SLO” : “numberOfConnections”,
“Difference” : 1, “Unit” : “num”, “Time” : NumberLong(” 1423969733000)
Case4: HUP and ART violations detection

The Turn-Around Time field is 999 millisecond for some log entries, also
some and Error Code fields are set to InternalError. The system detects a
violation for both HUP and ART SLOs, then two entries are stored in the

violation database.

Violations database:

151

“_id” : Objectld(“55366fcbe4b0ad64725155d5”), “SLO” : “hourlyUptimePercentage”,

“Difference” : -1.6, “Unit” : “%”, “Time” : NumberLong(” 1423973273000)

“_id” : Objectld(“553665c¢6e4b050717035da71”), “SLO” : “averageResponseTime”,
“Difference” : 20013.32, “Unit” : “ms”, “Time” : NumberLong(” 1423969973000)
Case5: HUP and NSC violations detection

The Error Code field is set to InternalError for some log entries, which
have recorded eleven different IP addresses. The system detects a violation
for both HUP and NSC SLOs, then two entries are stored in the violation

database.
Violations database:

“_id” : Objectld(”55366fcbe4b0ad64725155d5”), “SLO” : “hourlyUptimePercentage”,

“Difference” : -1.6, “Unit” : “%”, “Time” : NumberLong(” 1423973273000)

“_id” : Objectld(”553664d6e4b050717035da6c”), “SLO” : “numberOfConnections”,
“Difference” : 1, “Unit” : “num”, “Time” : NumberLong(” 1423969733000)
Case6: ART and NSC violations detection

The Turn-Around Time field is 999 millisecond for some log entries, which
have recorded eleven different IP addresses. The system detects a violation
for both ART and NSC SLOs, then two entries are stored in the violation

database.
Violations database:

“_id” : Objectld(”553665c¢6e4b050717035da71”), “SLO” : “averageResponseTime”,

“Difference” : 20013.32, “Unit” : “ms”, “Time” : NumberLong(” 1423969973000)

“_id” : Objectld(”553664d6e4b050717035da6c”), “SLO” : “numberOfConnections”,

“Difference” : 1, “Unit” : “num”, “Time” : NumberLong(” 1423969733000)

152

e Case7: HUP, ART, NSC violation detections; DDoS attack generation

Eleven log entries have eleven different IP addresses. The Turn-Around
Time field is 999 millisecond for some of them. Some log entries Error
Code field is set to InternalError. The system detects a violation for HUP,
ART, and NSC SLOs, then three entries are stored in the violation database,

and one entry in the attack database when a DDoS is recognised.
Violation database:

“_id” : Objectld(”55366fcbe4b0ad64725155d5”), “SLO” : “hourlyUptimePercentage”,

“Difference” : -1.6, “Unit” : “%”, “Time” : NumberLong(” 1423973273000)

“_id” : Objectld(”553665c¢6e4b050717035da71”), “SLO” : “averageResponseTime”,

“Difference” : 20013.32, “Unit” : “ms”, “Time” : NumberLong(” 1423969973000)

“_id” : Objectld(”553664d6e4b050717035da6c”), “SLO” : “numberOfConnections”,

“Difference” : 1, “Unit” : “num”, “Time” : NumberLong(” 1423969733000)
Attacks database:

“_id” : Objectld(”55378610e4b0245276203cad”), “Attack” : “DDoS”, “Time” : Num-

berLong(” 1423973273000)

13.3 Summary

A system testing for the cloud forensic readiness prototype is described in this
chapter. Such a test suite is composed of seven test cases aimed to detect different
contractual violations. The first three test cases detect a violation of a single SLA
parameter each; then, from the fourth to the sixth a violation for two parameters,
and finally a violation for all the three with a related DDoS attack information.
At the same time, the system raises a warning message to the user as soon

as such anomalies are detected; the identified security attacks raise an additional

153

warning message, i.e., the seventh test case, and the user is informed as well.
The following chapter is dedicated to the conclusion of the whole dissertation.
A summary is provided, together with some limitations of the research work and

some possible directions for the future.

154

Chapter 14

Conclusion and Future Work

The adaptation of existing forensic procedures to computing novelties is a con-
stant and challenging task; moreover, the provisioning of a forensic readiness ca-
pability to computing infrastructure is becoming more and more complicated. FR
is conceived as the provisioning of an information system communicating with
an underlying computing architecture with the purpose of identifying, collecting,
and storing critical data coming from them, representing potential evidence. This
FR capability must be provided to cloud computing architectures because, due
to their escalating popularity, they can be object of several attacks. Thus a way
to conduct forensic investigations effectively, saving time, money and resources,
must be designed. A DFR capability for the cloud is meant to observe and record
changes concerning the operations happening in the cloud with respect to the SLA
constraints related to potential crimes. The capability output include important
investigative details about the recorded information and the detection of contrac-
tual clause violations. A contribution of this doctoral dissertation to the topic of
forensic readiness is discussed, and a definition for DFR is provided. Moreover,
a reference architecture for the implementation of an FR system for the cloud is

designed and illustrated, together with some constraints and advantages.

155

A means for implementing such a DFR capability in the cloud includes a rep-
resentation of the information to monitor. The most effective representation is the
adoption of formalisms. Then, in this doctoral dissertation natural language-based
SLAs clauses, cloud logs, and several entities necessary to output a comparison
between them, have been structured via formal specifications. The formal model
utilizes tuple, set theory, and functions, to represent the necessary entities. The
formal model is validated via a prototype system implementing a case study, il-
lustrated in the final chapters of this dissertation. This prototype has been utilised
to design the architecture, and to implement the routines detecting some SLAs
constraints violations. Moreover, by using the mapping between the cloud log
information and the security threats identified in the central chapters, the system
has been used to detect a possible crime happening in the underlying architecture.

In the future, several efforts can be made to expand this research topic. The
proposed formal model can be enriched with information considered necessary
in a forensic readiness capability. For instance, some law principle formal repre-
sentations can be added to the existing ones, paying attention to do not alter the
relations among them. Indeed, case studies involving conflictual SILAs can be the
drivers for this extension, as illustrated in Section 7.4.

From the prototype system illustrated in the last chapters, several conclusions
can be drawn. First of all, the manner in which information is extracted from
SLAs needs a lot of research efforts in text engineering in order to automate the
whole process. Indeed, in this simulation, the managed information has been very
limited, using only three parameters; and some system configuration files have
been manually generated because some information extraction techniques specific
for contracts have not been implemented.

The main limit of the whole research work is the focus on a single case study,

even it has been very time-consuming. In the future, the possibility to expand the

156

set of case studies can lead to some additional research directions.

For example, the comparison module can be useful to address some of the
cloud forensic challenges described in Table 4.1, namely the multiple log for-
mats and the lack of timestamps synchronisation, because the system successfully
relates cloud information coming from log files by using a dictionary. Unfortu-
nately, the dictionary is provider-related, because some SLA parameters can be
calculated differently from one provider to another. With the availability of multi-
ple dictionaries a common mapping between SLOs and log files components can
be drawn by composing several provider-related items.

In addition, log information used for forensic readiness can vary among providers.
Nevertheless, if several dictionaries are generated and merged, then a common
format for log files an be designed, and maybe also a standard can be proposed to
the community.

Moreover, the SLACFR formal model and its prototype actually increase some
security aspects of a cloud provider. Though the system has been tested only on
an laaS service, which grants more access to information than PaaS and SaaS, the
warning messages allow the users to be aware of what is happening in the cloud
in real-time. In this way, every type of action can be undertaken.

Finally, a very important extension of this capability can be driven by the avail-
ability of historical data, namely cloud log files. Such a big dataset can consent
some reasoning, knowledge extraction, and prediction information useful to fore-
see some SLA violations detection. Also the design of a cyber-attack prediction

metric can be a possible application of such a data availability.

157

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

ACPO - Association of Chief Police Officers. Good Practice
Guide for Computer Based Electronic Evidence. 2007 [on-line]

http://www.acpo.police.uk/asp/policies/Data/ ACPO%?20Guidelines%20v18.pdf

Adelstein, F. MFP: The Mobile Forensics Platform. International Journal

of Digital Evidence, 2003, vo. 2, no. 1.

Ademu, 1.0., Imafidon, C.O., Preston, D.S. A New Approach of Digital
Forensic Model for Digital Forensic Investigation. International Journal

of Advanced Computer Science and Applications, 2011, vol. 2, no.12, pp.
175-178.

Al-Fedaghi, S., Al-Babtain, B. Modelling the Forensics Process. Interna-

tional Journal of Security and Its Applications, 2012, vol. 6, no. 4, pp.
97-108.

Alharbi, S., Weber-Jahnke, J., Traore, 1. The Proactive and Reactive Digital
Forensics Investigation Process: A Systematic Literature Review. Commu-

nications in Computer and Information Science, 2011, vol. 200, 87-100.

Agarwal, A., Gupta, M., Gupta, S., Gupta, S.C. Systematic Digital Foren-
sic Investigation Model. [International Journal of Computer Science and

Security, 2011, vol. 5, issue 1, pp. 118-131.

158

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Alonso, G., Casati, F., Kuno, H., Machiraju, V. Web services. Springer
Berlin Heidelberg. 2004, pp. 123 - 149.

Amani, N., Hajipour, P., Seyedmostafaei, F. An Appropriate Violation De-
tection Scenario for Service Level Agreements Based on WS-Agreement
Protocol. Journal of Convergence Information Technology, 2010, vol. 5,

no. 1, pp. 40-47.

Amazon Web Service, [on-line] http://aws.amazon.com/, accessed on

22/02/2015.

Ambhire, V. R., Meshram, B. B. Digital Forensic Tools. IOSR Journal of

Engineering, 2012, vol. 2, issue 3, pp. 392-398.

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata,
T., Pruyne, J., Rofrano, J., Tuecke, S., Xu., M. Web Services Agree-
ment Specification (WSAgreement). GWD-R (Proposed Recommenda-
tion), Open Grid Forum, 2007.

Baryamureeba, V., Tushabe, F. The Enhanced Digital Investigation Process

Model.” Proc. DFRWS Workshop, 2004, pp. 1-9.

Baset, S.A. Cloud SLAs: present and future. ACM SIGOPS Operating Sys-
tems Review, 2012, vol. 46, no. 2, pp. 57-66.

Ben-Ari, M. Mathematical Logic for Computer Science, Springer, first edi-
tion 1993.

Birk, D., Wegener, C. Technical Issues of Forensic Investigations in Cloud
Computing Environments. IEEE 6" International Workshop on Systematic

Approaches to DF Engineering, 2011, pp. 110.

159

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Brandic, I., Emeakaroha, V.C., Maurer, M., Dustdar, S., Acs, S., Kertesz,
A., Kecskemeti, G. LAYSI: A Layered Approach for SLA-Violation Propa-
gation in Self-Manageable Cloud Infrastructures. COMPSACW Workshop,
2010, pp.365 - 370.

Broucek, V., Frings, S., Turner, P. The Federal Court, the Music Indus-
try and the Universities: Lessons for Forensic Computing Specialists.

Proc. Australian Computer, Network and Information Forensics Confer-

ence, 2003, pp. 1-8.

Brown, S. Software Architecture for Developers, Coding the Architecture,
2013.

Carrier, B.D., Spafford, E.H. Getting Physical with the Investigative Pro-
cess. International Journal of Digital Evidence, 2003, vol. 2, issue 2, pp.

1-20.

Carrier, B.D., Spafford, E.H. An Event-Based Digital Forensic Investiga-
tion Framework. Proc. DFRWS Workshop, 2004, pp. 11-13.

Carrier, B.D. A hypothesis-based approach to digital forensic investiga-
tions, Ph.D. Dissertation, Purdue University. ProQuest, 2006.

Casey, E. Handbook of Computer Crime Investigation. New York: Aca-
demic Press, 2002.

Casey, E. Digital Evidence and Computer Crime, 2" edition, Academic

Press, Elsevier Science, 2004.

Casey, E. Digital Evidence and Computer Crime, 3" edition. Academic

Press, Elsevier Science, 2011.

160

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Casey, E., Katz, G., Lewthwaite, J. Honing Digital Forensic Processes. Dig-

ital Investigation, 2013, vol. 10, no. 2, pp. 138-147.

Cedillo, P., Gonzalez-Huerta, J., Abrahao, S., Insfran, E. Towards Monitor-
ing Cloud Services Using Models @run.time. [International Workshop on

Models at run.time, 2014, in press.

Cheng, C.P,, Shaw, R.S., Liang, T.C., Fu, T.Y. An Integrated Data-Flow
Based Model for Digital Investigation. Proc. EB Conference, 2009, pp.
507-515.

Cloud4SOA Project, [on-line] http://www.cloud4soa.eu/

Cloud Security Alliance. Security Guidance for Critical Ar-
eas of Focus in Cloud Computing v 3.0, 2011[on-line]

https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf

Cloud Security Alliance. = Mapping the Forensic Stan-
dard ISO IEC 27037 to Cloud Computing, 2013 [on-line]
https://cloudsecurityalliance.org/download/ mapping-the-forensic-

standard-isoiec-27037 -to-cloud-computing/

Cloud Security Alliance. Top Threats Working Group. The noto-
rious nine: cloud computing top threats in 2013. 2013 [on-line]
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/

The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf

Cochrane, A. Cochrane Collaboration. Cochrane Reviewers Handbook,

2003, Version 4.2.1.

161

[33]

[34]

[35]

[36]

[37]

[38]

CRN - The Channel Company. The 100 Coolest Cloud Computing Vendors
Of 2015. 2015. [on-line] http://www.crn.com/news/cloud/300075525/the-

100-coolest-cloud-computing-vendors-of-2015.htm

Czajkowski, K., Foster, 1., Kesselman, C., Sander, V., Tuecke, S. SNAP:
A Protocol for Negotiating Service Level Agreements and Coordinating
Resource Management in Distributed Systems, Job scheduling strategies

for parallel processing, Springer Berlin Heidelberg, 2002, pp. 153-183.

Danielsson, J., Tjostheim, I. The Need for a Structured Approach to Digital
Forensic Readiness. Digital forensic readiness and e-commerce (IADIS),

2004, pp. 417 - 421.

De Marco, L., Kechadi, M-T., Ferrucci, F. Cloud Forensic Readiness:
Foundations, Proc. of the 5" International Conference on DF & Cyber
Crime (ICDF2C), 2013, Springer International Publishing, LNICST series,
vol. 132, pp. 237-244.

De Marco, L., Abdalla, S., Ferrucci, F., Kechadi, M-T. Formalization of
SLAs for Cloud Forensic Readiness, Proceedings of the 2" International
Conference on Cloud Security Management (ICCSM), 2014, Academic
Conferences and Publishing International Limited, Reading, UK, Dr. Bar-
bara Endicott-Popovsky University of Washington, Seattle, USA Edition,
pp- 42 - 50.

De Marco, L., Ferrucci, F., Kechadi, M-T. SLAFM: A Service Level Agree-
ment Formal Model for Cloud Computing. Proceedings of the 5'" Interna-
tional Conference on Cloud Computing and Services Science (CLOSER),
Scitepress 2015, pp. 521-528.

162

[39]

[40]

[41]

[42]

[43]

[44]

[45]

De Marco, L., Ferrucci, F., Kechadi, M-T. A Cloud Forensic Readiness
Model for Service Level Agreements Management. Proceedings of the 14"
European Conference on Cyber Warfare and Security (ECCWS) 2015, Aca-
demic Conferences Limited, pp. 346-354.

Dykstra, J., Sherman, A.T. Acquiring Forensic Evidence from
Infrastructure-as-a-Service Cloud Computing: Exploring and Evalu-
ating Tools, Trust, and Techniques, Proc. of the 12" Annual DF Research
Conference, DFRWS, Digital Investigation, 2012, vol. 9, pp. 9098.

Dykstra, J., Sherman, A.T. Design and Implementation of FROST: Digi-
tal Forensic Tools for the OpenStack Cloud Computing Platform, preprint
submitted to the 13" Annual DFRWS Conference, 2013.

Emeakaroha, V. C., Brandic, 1., Maurer, M., Dustdar, S. Low level metrics
to high level SLAs-LoM2HiS framework: Bridging the gap between mon-
itored metrics and SLA parameters in cloud environments, High Perfor-
mance Computing and Simulation (HPCS), 2010 International Conference

on, IEEE, pp. 48-54.

Emeakaroha, V.C., Calheiros, R.N., Netto, M.A., Brandic, 1., De Rose,
C.A. DeSVi: An Architecture for Detecting SLA Violations in Cloud Com-

puting Infrastructures, ICST Cloud Comp Conference, 2010.

Emeakaroha, V.C., Ferreto, T.C., Netto, M.A.S., Brandic, 1., De Rose,
C.A.F. CASViD: Application Level Monitoring for SLA Violation Detec-
tion in Clouds, IEEE COMPSAC Conference, 2012, pp. 499 - 508.

Emeakaroha, V.C., Netto, M.A., Calheiros, R.N., Brandic, I., Buyya, R.,

De Rose, C.A. Towards Autonomic Detection of SLA Violations in Cloud

163

[406]

[47]

[48]

[49]

[50]

[51]

Infrastructures, Future Generation Computer Systems, 2012, vol. 28, issue

7, pp. 1017-1029.

Endicott-Povsky, B., Frinckle, D.A. A theoretical framework for organi-
zational network forensic readiness. J. Comput. 2007, vol 2, issue 3, pp.

111.

European Network and Information Security Agency (ENISA). Cloud
Computing: Benefits, risks and recommendations for information
security 2009 [on-line] http://www.enisa.europa.eu/activities/risk-

management/files/deliverables/cloud-computing-risk-assessment

European Commission, Cloud Computing Service Level Agreements
- Exploitation of Research Results, Directorate General Communi-
cations Networks, Content and Technology Unit E2 Software
and Services, Cloud, 2013 [on-line], Editor: Dimosthenis Kyriazis,
http://ec.europa.eu/information_society/newsroo m/cf/dae/document.cfm?

doc_1d=2496

European Commission - DG CONNECT Cloud Select Industry Group,
Cloud Service Level Agreement Standardisation Guidelines, 2014,
[on-line] https://ec.europa.eu/digital-agenda/en/news/cloud-service-level-

agreement-standardisation-guidelines, C-SIG-SLA.

Ford, G. Service level agreements, New Review of Academic Librarian-

ship, 1996, vol. 2, issue 1, pp. 49-58.

Foster, 1., Zhao, Y., Raicu, 1., Lu, S. Cloud computing and grid comput-
ing 360-degree compared. Grid Computing Environments Workshop, GCE,
2008, IEEE, pp. 1-10.

164

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Freiling, F.C., Schwittay, B. A Common Process Model for Incident Re-

sponse and Computer Forensics. IMF, 2007, vol. 7, pp. 19-40.

Garfinkel, S.L. Digital forensics research: The next 10 years. Digital Inves-

tigation, 2010, vol. 7, Supplement, pp. 64-73.

Gartner, Forecast Overview: Public Cloud Ser-
vices, Worldwide, 2011-2016, 2013 [on-line]
http://www.forbes.com/sites/louiscolumbus/2013/02/19/gartner-predicts-

infrastructure-services-will-accelerate-cloud-computing-growth/

Gebhardt, T., Reiser, H.P. Network Forensics for Cloud Computing. Dis-
tributed Applications and Interoperable Systems, 2013, pp. 29-42.

General Architecture for Text Engineering - GATE - University of Sheffield,

[on-line] https://gate.ac.uk/

Ghosh, N., Ghosh, S.K. An Approach to Identify and Monitor SLA Param-
eters for Storage-as-a-Service Cloud Delivery Model. GC Wkshps, 2012,
pp. 724-729.

Grishman, R. Information extraction: Techniques and challenges. Informa-
tion extraction a multidisciplinary approach to an emerging information

technology. Springer Berlin Heidelberg, 1997, pp. 10-27.

Grobler, T., Louwrens, B. Digital forensic readiness as a component of in-
formation security best practice. Proc. of New Approaches for Security, Pri-

2nd

vacy and Trust in Complex Environments, IFIP TC- 11, 22" International

Information Security Conference, 2007, vol. 232, pp. 13-24.

Grobler, C.P., Louwrens, C.P., von Solms, S.H. A Multi-Component View
of Digital Forensics. Proc. ARES Conference, 2010, pp. 647-652.

165

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Hasan, R., Raghav, A., Mahmood, S., Hasan, M.A. Artificial Intelligence
Based Model for Incident Response. Proc. ICIII Conference, 2011, vol. 3,
pp. 91-93.

Hildebrandt, M., Kiltz, S., Grossmann, I., Vielhauer, C. Convergence of
Digital and Traditional Forensic Disciplines: a First Exemplary Study for

Digital Dactyloscopy. Proc. ACM MM & Sec Workshop, 2011, pp. 1-8.

Information Technology Infrastructure Library (ITIL), [on-line]

http://www.itil-officialsite.com
JEVAL, [on-line] jeval.sourceforge.net

Keller, A., Ludwig, H. The WSLA framework: Specifying and monitoring
service level agreements for web services. Journal of Network and Systems

Management, 2003, vol. 11, issue 1, pp. 57-81.

Kent, K., Chevalier, S., Grance, T., Dang, H. Guide to Integrating Foren-
sic Techniques into Incident Response. Special Publication 800-86, Na-
tional Institute of Standards and Technology (NIST), Gaithersburg, Mary-
land, 2006.

Khatir, M., Hejazi, S.M., Sneiders, E. Two-Dimensional Evidence Reli-
ability Amplification Process Model for Digital Forensics. Proc. WDFIA
Workshop 2008, pp. 21-29.

Khatir, M., Hejazi, S.M. How to Find Exculpatory and Inculpatory Evi-
dence Using a Circular Digital Forensics Process Model. Int. J. Electron.

Secur. Digit. Forensic, 2009, vol. 2, no. 1, pp. 68-76.

166

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Kitchenham, B., Charters, S. Guidelines for performing Systematic Litera-
ture Reviews in Software Engineering. EBSE Technical Report, 2007, vol.
1, pp. 1-57.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Ni-
azi, M., Linkman, S. Systematic Literature Reviews in Software Engineer-
ing A Tertiary Study. Information and Software Technology, 2010, vol. 52,
issue 8, pp. 792-805.

Kohn, M.D., Eloff, J.H.P., Olivier, M.S. UML Modelling of Digital Foren-
sic Process Models. Proc. ISSA Conference, 2008, pp. 1-13.

Kohn, M.D., Eloff, M.M., Eloff, J.H.P. Integrated Digital Forensic Process
Model. Computers & Security, 2013, vol. 38, pp. 103-115.

Kumar, K., Sofat, S., Aggarwal, N., Jain, S.K. Identification of User Own-
ership in Digital Forensic using Data Mining Technique. International

Journal of Computer Applications, 2012, vol. 50, no. 4, pp. 1-5.

Ibrahim, M., Abdullah, M.T., Dehghantanha, A. A VoIP Evidence Model:
A New Forensic Method for Investigating VoIP Malicious Attacks. Proc.
CyberSec Conference, 2012, pp. 201-206.

Ishakian, V., Lapets, A., Bestavros, A., Kfoury, A. Formal Verification of
SLA Transformations, IEEE World Congress on Services, 2011, pp. 540-
547.

Larson, K. D. The role of service level agreements in IT service delivery.
Information Management & Computer Security, 1998, vol. 6, issue 3, pp.
128-132.

167

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Lee, J., McCarthy,J., Licklider, J.The beginnings at MIT. IEEE Annals of

the History of Computing, 1992, vol 14, issue 1, pp. 18-30.

Lim, K.S., Lee, S.B., Lee, S. Applying a Stepwise Forensic Approach to
Incident Response and Computer Usage Analysis. Proc. CSA Conference,

2009, pp. 1-6.

Liu, F,, Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D. NIST
Cloud Computing Reference Architecture. NIST Special Publication 500-
292.2011.

McKemmish, R.What is forensic computing? Trends and issues in crime

and criminal justice, Canberra, Australian Institute of Criminology, 1999.

Mell, P., Grance, T. Final Version of NIST Cloud Computing Definition,
2011 [on-line], http://csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf

Maurer, M., Brandic, 1., Sakellariou, R. Self-Adaptive and Resource-
Efficient SLA Enactment for Cloud Computing Infrastructures. /EEE
CLOUD Conference, 2012, pp. 368 - 375.

Morshedlou, H., Meybodi, M.R. Decreasing Impact of SLA Violations: A
Proactive Resource Allocation Approach for Cloud Computing Environ-

ments. I[EEE Transactions on Cloud Computing, 20014, vol.2, no.2, pp.
156-167.

Mouton, F., Venter, H.S. A prototype for achieving digital forensic readi-

ness on wireless sensor networks. AFRICON, 2011, pp. 16.

Muller, C., Oriol, M., Franch, X., Marco, J., Resinas, M., Ruiz-Corts, A.,

Rodriguez, M. Comprehensive explanation of SLA violations at runtime.

168

IEEE Transactions on Services Computing, 2014, vol. 7, issue 2, pp. 168-
183.

[86] Napoli, G. Sviluppo e sperimentazione di un tool per lestrazione automatica
di vincoli contrattuali da Service Level Agreement. University of Salerno,

master thesis in computer science, 2015.

[87] Napolitano, S. A Log based tool for monitoring service level agreements
violations in cloud environments. University of Salerno, master thesis in

computer science, 2015.

[88] Nasumi Benchmark [on-line] http://cache.nasuni.com/Resources/Nasuni_Cloud_

Storage_Benchmark_Report.pdf

[89] National Institute of Justice. Electronic Crime Scene In-
vestigation — Guide: A Guide for First Responders, 2008,
[on-line] http://www.nij.gov/publications/pages/publication-

detail.aspx?ncjnumber=219941

[90] National Institute of Justice. Electronic Crime Scene In-
vestigation: A Guide for First Responders. 2011 [on-line]
http://www.ncjrs.org/pdles1/nij/187736.pdf

[91] Ngobeni, S., Venter, H., Burke, I. The Modelling of a Digital Forensic
Readiness Approach for Wireless Local Area Networks. Journal of Uni-

versal Computer Science, 2012, vol. 18, no. 12, pp. 1721-1740.

[92] Noureldin, S.H., Hashem, S., Abdalla, S. Computer Forensics Guidance
Model with Cases Study. Proc. MINES, 2011, pp. 564-571.

[93] Open Virtualization Format. OVF Standard. [on-line]

http://www.dmtf.org/standards/ovf

169

[94] Orton, I., Aaron, A., Endicott-Popovsky, B. Legal Process and Require-
ments for Cloud Forensic Investigations. Cybercrime and Cloud Foren-
sics: Applications for Investigation Processes, ed. Keyun Ruan, IGI Global,

Forthcoming, 2012.

[95] Palmer, G. A Road Map for Digital Forensic Research. Report from the
First Digital Forensic Research Workshop (DFRWS), 2001.

[96] Pangalos, G., Ilioudis, C., Pagkalos, 1. The importance of corporate foren-
sic readiness in the information security framework. In: 19 IEEE Interna-

tional Workshop on Enabling Technologies: Infrastructures for Collabora-

tive Enterprises (WETICE), 2010, pp. 1216.

[97] Paschke, A., Bichler, M. Knowledge Representation Concepts for Auto-
mated SLA Management, Decision Support Systems, 2008, vol. 46, issue
1, pp. 187-205.

[98] Patel, P, Ranabahu, A.H., Sheth, A.P. Service Level
Agreement in Cloud Computing, 2009 [on-line],

http://corescholar.libraries.wright.edu/knoesis/78

[99] Perumal, S. Digital Forensic Model Based On Malaysian Investigation Pro-
cess. International Journal of Computer Science and Network Security,

2009, vol. 9, no.8, pp. 38-44.
[100] Peterson, J. LittleS3 - Github - https://github.com/igorhvr/littles3

[101] Pilli, E.S., Joshi, R.C., Niyogi, R. Network Forensic Frameworks: Survey

and Research Challenges. Digital Investigation, 2010, vol. 7, no. 1, pp. 14-
217.

170

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Pollitt, M. An Ad Hoc Review of Digital Forensic Models. Systematic Ap-

proaches to Digital Forensic Engineering, Second International Workshop

on, 2007, pp.43-54.

Pollitt, M. A History of Digital Forensics. IFIP Int. Conf. Digital Forensics,
2010, pp. 3-15.

Rankin, S. Forensics Science Central. 2005 [on-line]

http://forensicsciencecentral.co.uk/history.shtml

Rasmi, M., Jantan, A., Al-Mimi, H. A new Approach for Resolving Cyber
Crime in Network Forensics Based on Generic Process Model. Proc. ICIT

Conference, 2013, pp. 1-12.

Reddy, K., Venter, H.S. The architecture of a digital forensic readiness

management system. Computers & Security, 2013, vol. 32, pp. 73-89.

Reilly, D., Wren, C., Berry, T. Cloud Computing: Pros and Cons for Com-
puter Forensics Investigations. International Journal of Multimedia and Im-

age Processing (IJMIP), 2011, vol. 1, pp. 26-34.

Reith, M., Carr, C., Gunsch, G. An Examination of Digital Forensic Mod-
els. International Journal of Digital Evidence, 2002, vol.1, issue 3, pp.
1-12.

Rekhis, S., Boudriga, N. A System for Formal Digital Forensic Investiga-
tion Aware of Anti-Forensic Attacks. IEEE Transactions on Information

Forensics and Security, 2012, vol. 7, no. 2, pp. 635-650.

Rogers, M., Goldman, J., Mislan, R., Wedge, T., Debrota, S. Computer
Forensics Field Triage Process Model. Journal of Digital Forensics, Secu-

rity and Law, 2006, vol. 1, no. 2, pp. 19-37.

171

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Rowlingson, R., A ten step process for forensic readiness. International

Journal of Digital Evidence, 2004, vol. 2, issue 3, pp. 1 28.

Ruan, K., Carthy, J., Kechadi, T., Crosbie, M. Cloud forensics: an

overview. Advances in Digital Forensics VII, 2011.

Ruan, K., Baggili, 1., Carthy, J., Kechadi, T. Survey on cloud forensics and
critical criteria for cloud forensic capability: a preliminary analysis. Proc.

of the 6!" Annual Conference on Digital Forensics, Security and Law, 2011.

Ruan, K., Carthy, J. Cloud Computing Reference Architecture and its
Forensic Implications: A Preliminary Analysis. Proc. of the 4" Interna-
tional Conference on Digital Forensics & Cyber Crime (ICDF2C), 2012,
vol. 114, pp. 1-21.

Ruan, K., Carthy, J., Kechadi, T., Baggili, I. Cloud forensics definitions and
critical criteria for cloud forensic capability: An overview of survey results.

Digital Investigation, 2013, vol. 10, issue 1, pp.-34-43.

Rumbaugh, J., Jacobson, 1., Booch, G. Unified Modeling Language Refer-
ence Manual, The. Pearson Higher Education, 2004.

Sansurooah, K.Taxonomy of Computer Forensics Methodologies and Pro-
cedures for Digital Evidence Seizure Proc. ADF Conference, 2000, pp. 1-
13.

Simple DoS Attack, https://github.com/jtf323/SimpleDOS Attack

Sommerville, 1., Sawyer, P. Requirements engineering: a good practice

guide. John Wiley and Sons, Inc., 1997.

172

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Skene, J., Skene, A., Crampton, J., Emmerich, W. The Monitorability of
Service-Level Agreements for Application-Service Provision, Proc. Inter-

national Workshop on Software and Performance, 2007, pp. 3-14.

Stephenson, P. Analysis and Correlation. Computer Fraud and Security,

2002, vol. 12, pp. 16-18.

Sood, A., Tellis, G.J. Technological Evolution and Radical Innovation.

Journal of Marketing , 2005, vol. 69, no. 3, pp. 152-168.

Tan, J., Forensic Readiness, Technical report, @Stake Organization, 2001

[on-line] http://isis.poly.edu/kulesh/forensics/forensic_readiness.pdf

Trenwith, P. M., Venter, H.S. Digital forensic readiness in the cloud. Proc.

of Information Security for South Africa, 2013, pp.1-5.

Unger, T., Leymann, F., Mauchart, S., Scheibler, T. Aggregation of Service
Level Agreements in the Context of Business Processes. Proc. ICEDOC

Conference, 2008, pp. 43-52.

Valjarevic, A., Venter, H.S. Towards a Digital Forensic Readiness Frame-
work for Public Key Infrastructure systems. Proc. of Information Security

South Africa (ISSA), 2011, pp.1-10.

Valjarevic, A., Venter, H.S. Harmonised Digital Forensic Investigation Pro-

cess Model. Information Security for South Africa (ISSA), 2012, pp. 1-10.

Yusoff, Y., Ismail, R., Hassan, Z. Common Phases of Computer Forensics
Investigation Models. International Journal of Computer Science & Infor-

mation Technology, 2011, vol. 3, issue 3, pp. 17-31.

Ward, B.T., Sipior, J.C. The Internet Jurisdiction Risk of Cloud Computing.
Information Systems Management, 2010, vol. 27, issue 4, pp. 334-339.

173

[130] World Wide Web Consortium Home Page, [on-line] http://www.w3.org

[131] Zargari, S., Benford, D. Cloud Forensics: Concepts, Issues, and Chal-
lenges. 3" International Conference on Emerging Intelligent Data and Web

Technologies (EIDWT), 1IEEE, 2012, pp. 236-243.

174

