
Università degli Studi di Salerno
dipartimento di informatica

Dottorato di Ricerca in Informatica
ciclo xiv

Ph.D. Thesis in Computer Science

Models and Algorithms for Some
Covering Problems on Graphs

Candidate

Selene Silvestri

Tutor

Prof. Raffaele Cerulli
Co-Tutor

Prof. Gilbert Laporte

Coordinator Prof. Gennaro Costagliola

2014/2015

A mia madre, mio padre, mio fratello.. a me.

Acknowledgements

Il primo grazie va al mio tutor,
il Prof. Raffaele Cerulli, per
avermi introdotta alla Ricerca
Operativa, per aver creduto nelle
mie capacità (anche prima di
me) e per aver guidato i miei
passi in tutti questi anni.

Ringrazio tantissimo il Prof.
Giovanni Rinaldi del CNR di
Roma per i suoi insegnamenti e
la grande disponibilità. È stato
un onore poter lavorare con lui.

Un grazie di cuore a tutti
i componenti del mio gruppo
dell’Università di Salerno. In par-
ticolare, grazie al dott. Carmine
Cerrone, per essere stato un buon
amico e un esempio da seguire e
al dott. Francesco Carrabs, per
avermi aiutata ogni volta che ne
ho avuto bisogno.

Ringrazio con affetto Vinicius,
Xiaolu, Yunfei, Aurélien, Slavic,
Andrea, Giusy e tutti gli amici

My first thanks goes to my tutor,
Prof. Raffaele Cerulli, for intro-
ducing me to the Operational
Research, for believing in my
potential (even before I did) and
for having guided my steps all
these years.

Many thanks to Prof. Giovanni
Rinaldi from the CNR of Rome,
for his teachings and his great
helpfulness. It has been an honor
working with him.

A heartfelt thanks to all members
of my group at the University of
Salerno. In particular, thanks to
Dr. Carmine Cerrone, for being
a good friend and an example
to follow, and to Dr. Francesco
Carrabs, for helping me whenever
I needed.

I affectionately thank Vinicius,
Xiaolu, Yunfei, Aurélien, Slavic,
Andrea, Giusy and all friends of

del Cirrelt di Montréal. È stato
un bellissimo periodo!

Grazie a Vittorio e a tutti gli
amici per esserci stati.

Un grazie speciale va poi ai miei
genitori, a mio fratello Ivan e ad
Antonio che mi hanno aiutata e
incoraggiata in ogni momento.

L’ultimo grande grazie va al mio
co-tutor, il Prof. Gilbert Laporte
dell’HEC di Montréal, al quale
sono grata per il tempo che mi ha
dedicato, per la sua pazienza, per
il prezioso aiuto. Sinceramente
grazie!

the Cirrelt of Montréal. I really
had a good time!

Thanks to Vittorio and to all my
friends for having been there.

A special thanks goes to my
parents, to my brother Ivan and
to Antonio for the encouragement
and help.

My last big thanks goes to my
co-tutor, Prof. Gilbert Laporte
from the HEC of Montréal, I am
extremely grateful to him for the
time he has dedicated to me, for
his patience, for the precious help.
Sincerely thanks!

May 10, 2016

Selene Silvestri

Contents

List of Figures 7

List of Tables 9

Introduction 11

1 General concepts: a brief overview 14
1.1 Integer and Combinatorial Optimization 14
1.2 Computational complexity . 15
1.3 Graph theory . 16
1.4 Polyhedral theory . 19
1.5 Branch-and-Cut Algorithm . 23

2 Spanning Tree and Cycle Cover 26
2.1 Introduction . 26
2.2 Spanning Trees . 26

2.2.1 Spanning Tree on edge-labeled graphs 29
2.3 Cycle Cover Overview . 30

2.3.1 Cycle Cover on edge-labeled graphs 33

3 The Rainbow Cycle Cover Problem 34
3.1 Introduction and Problem Description 34
3.2 Mathematical formulation and Properties 35

3.2.1 Properties of a Rainbow Cycle Cover 37
3.3 Valid inequalities . 40
3.4 Branch-and-cut algorithm . 45

CONTENTS

3.5 Computational results . 46
3.5.1 LP lower bounds and duality gaps 48

4 The Rainbow Spanning Forest Problem 53
4.1 Introduction and Problem Description 53
4.2 Problem Complexity . 54

4.2.1 Problem Complexity: A Polynomial Case 59
4.3 Mathematical Formulations . 60

4.3.1 First Mathematical Formulation 60
4.3.2 Second Mathematical Formulation 62

4.3.2.1 Valid inequalities for ILP2 65
4.4 The Greedy Algorithm . 68

4.4.1 The multi-start scheme . 74
4.5 Computational results . 75

5 A Branch-and-Cut Algorithm for the Minimum Branch Vertices
Spanning Tree Problem 82
5.1 Introduction . 82
5.2 Undirected formulation, properties and bounds 84

5.2.1 Spanning tree properties . 85
5.3 Polyhedral analysis of the undirected formulation 88
5.4 Directed and hybrid reformulations 97
5.5 Branch-and-cut algorithm . 100
5.6 Computational results . 102

5.6.1 LP lower bounds and duality gaps 106

Conclusions and Future Works 109

References 112

Nomenclature 117

List of Figures

1.1 Map of Königsberg in Euler’s time. 17

1.2 Euler’s representation of the bridges of Königsberg. 17

1.3 The black dots represent the set of integral points S. On the left a set containing

S, on the right conv(S). 19

1.4 Linear system defining S ⊂ R2. 22

1.5 Branch-and-Cut Algorithm. 24

2.1 The Minimum Spanning Tree: an example. 27

2.2 The Traveling Salesman Problem: an example. 30

3.1 Solution where γ1 = 1 and γ2 = 0.34 and constraints (3.24) are violated by v24
and v25 in c = 2. 41

3.2 A constraint (3.33) is violated for k = k2 44

3.3 An example of valid inequalities (3.36) 45

4.1 (a) A generic instance of the Minimum Set Covering Problem, and, (b) the

corresponding instance of the Bounded Rainbow Spanning Problem. 55

4.2 (a) A generic instance of the 3-SAT Problem, and, (b) the corresponding instance

of the Bounded Rainbow Spanning Forest Problem in Edge-Colored Trees. . . 58

4.3 Non-integer solution. 65

4.4 (a) An example of valid inequalities 4.25, and, (b) an example of valid inequalities

4.26. 68

4.5 (a) An example of valid inequalities 4.27, and, (b) an example of valid inequalities

4.28. 69

4.6 Feasible rainbow spanning forest Fk with four components 71

7

LIST OF FIGURES

4.7 Feasible solution Fk+1 obtained by adding edge (v3, v8). 72
4.8 Feasible solution Fk+1 obtained by adding edge (v3, v11). 73
4.9 The AvgGap of GA and MS algorithms on the larger scenarios. 79

5.1 For a given graph on the left, two spanning trees with one and two branch vertices. 83
5.2 For a given graph on the left, v is a cut vertex u is not a cut vertex. 88

8

List of Tables

3.1 Summary of computational results for the RCCP 49
3.2 Linear programming lower bounds for RCCP 50
3.3 Linear programming duality gap for RCCP 51

4.1 Test results of ILP1 model, GA and MS algorithms on the small
scenarios. 77

4.2 Test results of GA and MS on the large scenarios. 81

5.1 Undirected formulation: computational results for small instances . 103
5.2 Undirected formulation: computational results for medium instances 104
5.3 Hybrid formulation: computational results for small and medium

instances . 104
5.4 Hybrid formulation: computational results for large instances 105
5.5 Hybrid formulation: lower bounds for MBVP on small and medium

instances . 106
5.6 Hybrid formulation: lower bounds for MBVP on large instances . . 107
5.7 Hybrid formulation: duality gap on small and medium instances . . 107
5.8 Hybrid formulation: duality gap on large instances 108

9

“ If we knew what it was we were doing, it would not be
called research, would it? ”

Albert Einstein

“ The scientist is not a person who gives the right answers,
he is one who asks the right questions. ”

Claude Levi-Strauss

“ Somewhere, something incredible is waiting to be known. ”
Carl Sagan

..and that day I would like to be there!

Introduction

Several real-life problems as well as problems of theoretical importance within
the field of Operations Research are combinatorial in nature. Combinatorial
Optimization deals with decision-making problems defined on a discrete space. Out
of a finite or countably infinite set of feasible solutions, one has to choose the best
one according to an objective function. Many of these problems can be modeled
on undirected or directed graphs. Some of the most important problems studied in
this area include the Minimum Spanning Tree Problem, the Traveling Salesman
Problem, the Vehicle Routing Problem, the Matching Problem, the Maximum Flow
Problem. Some combinatorial optimization problems have been modeled on colored
(labeled) graphs. The colors can be associated to the vertices as well as to the edges
of the graph, depending on the problem. The Minimum Labeling Spanning Tree
Problem and the Minimum Labeling Hamiltonian Cycle Problem are two examples
of problems defined on edge-colored graphs.

Combinatorial optimization problems can be divided into two groups, according
to their complexity. The problems that are easy to solve, i.e. problems polynomially
solvable, and those that are hard, i.e. for which no polynomial time algorithm
exists. Many of the well-known combinatorial optimization problems defined on
graphs are hard problems in general. However, if we know more about the structure
of the graph, the problems can become more tractable. In some cases, they can
even be shown to be polynomial-time solvable. This particularly holds for trees.

In the last 80 years combinatorial optimization problems have been addressed
through various modeling and algorithmic approaches, and many papers proposing
algorithms which solve them efficiently have been published. These algorithmic
approaches to combinatorial optimization problems can be classified as either exact
or heuristic. Exact techniques are applied in order to find optimal solutions to the

11

Introduction

problems. Because of the complexity of the problems, exact approaches are not
able to prove the optimality for large instances. The concept of large instance is
related to the problem under consideration. When an exact approach fails, heuristic
techniques are usually applied. The aim of a heuristic is to produce good feasible
solutions within a reasonable time. Heuristics can also be embedded within exact
approaches, e.g. they may be used to generate good initial feasible solutions.

This dissertation is devoted to the study of three different problems of combi-
natorial optimization defined on graphs and belonging to the class of Spanning
Tree and Cycle Cover Problems: the Rainbow Cycle Cover Problem (RCCP), the
Rainbow Spanning Forest Problem (RSFP) and the Minimum Branch Vertices
Spanning Tree Problem (MBVP).

Given a connected and undirected graph G = (V,E, L) and a coloring function
` that assigns a color to each edge of G from the finite color set L, a cycle whose
edges have all different colors is called a rainbow cycle. The RCCP consists of
finding the minimum number of disjoint rainbow cycles covering G. The RCCP on
general graphs is known to be NP-hard.

Given a graph G = (V,E, L) and a coloring function ` : E → L that assigns
a color to each edge of G from a finite color set L, the Rainbow Spanning Forest
Problem (RSFP) consists of finding a spanning forest of G such that the number
of rainbow components is minimum. A component of the forest whose edges have
all different colors is called rainbow component. The RSFP on general graphs is
known to be NP-hard.

Given a connected undirected graph G = (V,E), the Minimum Branch Vertices
Spanning Tree Problem (MBVP) asks for a spanning tree of G with the minimum
number of vertices having degree greater than two in the tree. These are called
branch vertices. This problem is known to be NP-hard.

Chapter 1 provides a brief overview on some basic concepts from integer and
combinatorial optimization, graph theory, computational complexity and polyhedral
analysis. Moreover we present a brief description of the Branch-and-Cut Algorithm.

In Chapter 2 we present some Spanning Tree and Cycle Cover Problems that
are standard topics in the combinatorial optimization literature and are frequently
embedded as subproblems in more general problems. The two best-known and

12

studied problems are probably the Minimum Spanning Tree Problem and the
Traveling Salesman Problem.

In Chapter 3 we model and solve the Rainbow Cycle Cover Problem (RCCP). We
present an integer linear mathematical formulation and we describe some properties
that a rainbow cycle cover must satisfy. Moreover we derive valid inequalities for
the RCCP and we solve it by branch-and-cut. Computational results are reported
on randomly generated instances.

Chapter 4 is devoted to the Rainbow Spanning Forest Problem (RSFP). We prove
that the problem is NP-hard on trees and we provide a polynomial case. Moreover
we propose two new integer mathematical formulations, (ILP1) and (ILP2), and
for the second one we propose some valid inequalities. To solve large instances
we present a greedy algorithm and a multi-start scheme applied to the greedy
algorithm to improve its results. We show the computational results obtained by
solving the ILP1, the greedy algorithm and the multi-start scheme.

In Chapter 5 we model the Minimum Branch Vertices Spanning Tree Problem
(MBVP) as an integer linear program, with undirected variables and we also
investigate some properties of the problem and the LP relaxation. Moreover, we
derive the dimension of the polyhedron of integer solutions as well as some valid
inequalities and prove than some these are facet defining. We then develop a hybrid
formulation containing undirected and directed variables. Both model are solved
by branch-and-cut. Comparative computational results show the superiority of the
hybrid formulation.

Final remarks on the presented problems and future work projects are reported
at the end of this thesis.

13

Chapter 1

General concepts: a brief overview

In this chapter we provide a brief overview of some basic concepts from integer and
combinatorial optimization, graph theory, computational complexity, polyhedral
theory and we briefly describe the Branch-and-Cut Algorithm. These concepts will
turn out useful in the subsequent chapters of this dissertation.

1.1 Integer and Combinatorial Optimization

Integer and combinatorial optimization concerns the resolution of problems defined
in a discrete space. The objective is to maximize or minimize a function of
several variables, the so-called objective function, subject to inequality and equality
constraints which with the integrality restrictions on some or all of the variables,
define the feasible solution set.

Integer and combinatorial optimization is used to solve many problems of
the everyday life. The problem of optimizing the productivity of a company, by
managing the use of resources and by planning the production scheduling and the
distribution of goods is only a first example of application. In mathematics there
are applications in graph theory, statistic and logic. Lately, molecular biology has
become a new interesting area of application.

In this thesis we consider only linear integer programming problems, namely we
assume that the objective function and the constraints are linear and the variables
are integer. In most cases, solving an integer programming problem is not easy.

14

Section 1.2 will be devoted to clarify what easy means and to find out whether a
problem is easy or hard.

For more information about Integer and Combinatorial Optimization we refer
to the books of Wolsey [55], and Nemhauser and Wolsey [42].

1.2 Computational complexity

In this section we summarize the most important concepts of complexity theory.
To this end we refer to the books of Schrijver [48], Wolsey [55] and Nemhauser
and Wolsey [42]. This theory deals with how much may be difficult a problem to
solve. Informally a problem is a question, or a task, in fact there are two different
types of problems: those that ask to find a solution and those that require only a
‘yes’ or ‘no’ answer. In the remainder of this section, we restrict ourselves to the
last type of problems, and we refer to them as decision problems. This is not that
much of a restriction, since the most problems can be reformulated as a decision
problem. Usually a problem has several parameters defining it and by assigning
them numerical values we obtain an instance of the problem. The size of a problem
instance is the amount of information needed to represent it.

An algorithm is a list of instructions to solve every instance of a problem. The
running time of an algorithm is the maximum number of steps that the algorithm
needs to solve an instance of a given size s. It is estimated by an upper bound on the
number of elementary operations such as additions, multiplications, comparisons,
and so on, by assuming that each elementary operations is done in unit time. We
say that a function γ(n) is O(Γ(n)) when there exists a constant c > 0 and an
integer value n0 such that |γ(n)| ≤ c|Γ(n)| for all n ≥ n0. An algorithm is said to
be polynomial if its time complexity function is O(π(n)), where π(n) is polynomial,
namely if the running time is polynomially bounded, otherwise it is said to be
exponential. Decision problems for which a polynomial time algorithm exists are
considered to be ‘easy’, their class is denoted by P.

The class NP consists of all those problems such that for any input that has a
positive answer, is possible to verify in polynomial time if such answer is correct.
This definition does not imply that a problem belonging to NP is polynomially
solvable, but just that the correctness of an answer can be verified in polynomial

15

General concepts: a brief overview

time. Obviously, P ⊆ NP, but P 6= NP remains an open question.
The NP-complete problems are defined to be the hardest problems in the

class NP. To well understand this statement we need to introduce the concept of
polynomial reduction. A problem Φ1 can be polynomially reduced to anther problem
Φ2 if there exists a polynomial time algorithm that transforms each instance φ1 of
Φ1 into an instance φ2 of Φ2, namely for every instance of Φ1 the answer is yes if
and only if the answer for the corresponding instance of Φ2 is yes.

Definition 1.1. A decision problem Φ is called NP-complete if it belongs to NP

and any other problem in NP can be polynomially reduced to Φ.

Note that, as previously observed, the majority of the problems can be reformu-
lated as a decision problem, in particular, optimization problems (in which the aim
is to maximize or minimize the objective function) can be reformulated as decision
problems by fixing a bound on the value to be optimized. If the optimization
problem is easy, the related decision problem belongs to P. Conversely, if the
decision problem belongs to the class NP, then the corresponding optimization
problem is hard to solve. Note that, while linear programming belongs to P, integer
linear programming is NP-complete, i.e. it belongs to the most difficult problems
in the class NP.

1.3 Graph theory

In this section we provide some basic concepts from graph theory. To this end
we refer to the paper of Gribkovskaia, Halskau and Laporte [25], The bridges of
Königsberg—a historical perspective, and to the book of Bondy and Murty [2].
Many real-world situations can conveniently be described and modeled on graphs,
i.e a set of points together with lines, joining some or all these points.

In 1973 the Swiss mathematician Leonhard Euler (1707-1783) solved the problem
of The Seven Bridges of Königsberg, that is one of the most famous problems
in graph theory, laying the foundation for modern graph theory. The city of
Königsberg in Prussia (now called Kaliningrand, Russia), was crossed by the river
Pregel, and included two islands connected to each other and to the mainland
by seven bridges (Figure 1.1). In the 18th century, the inhabitants of Königsberg

16

Figure 1.1: Map of Königsberg in Euler’s time.

tried to discover whether there existed a closed walk that crossed exactly once
each of the seven bridges. Euler represented each land mass with a point, called
vertex or node, and each bridge with an line, called edge or arc (Figure 1.2) and
proved that no such walk exists (see [17]). He proved that a walk can exists in
a undirected graph such this, if the graph is connected and each vertex has even
degree. Nowadays, a graph containing a closed walk crossing each edge exactly

Figure 1.2: Euler’s representation of the bridges of Königsberg.

once is called Eulerian graph.
An undirected graph G = (V,E) consists of a finite set of vertices V and a finite

set of edges E. An edge is a non-ordered pair of vertices. We will denote by n the
number of vertices and by m the number of edges of the graph. A complete graph

17

General concepts: a brief overview

is a graph with an edge between every pair of vertices.
If G = (V,E) is a graph and e = (v, u) ∈ E, we say that v and u are adjacent,
and that e is incident to v and u. The set of all edges incident to v is denoted by
δ(v), and the degree of vertex v is the number of edges incident to it, that is |δ(v)|.
Note that, if a vertex has no incident edges, it is called isolated and its degree is
zero. Given a set S ⊆ V , we denote by E(S) the set of all edges with both end
vertices in S, i.e. E(S) = {e = (v, u) ∈ E : v, u ∈ S}. Moreover, we denote by
δ(S) the set of edges having one end vertex in S and the other in V \ S, that is,
δ(S) = {e = (v, u) ∈ E : v ∈ S, u ∈ V \ S}.
A subgraph of G is another graph G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E. If
V ′ = V , then G′ is called covering (spanning) subgraph. If E ′ = E(V ′), then G′ is
called subgraph induced by V ′.
A path P from v to u in G is a sequence of distinct vertices v1, v2, . . . , vk such that
v = v1, u = vk and (vi, vi+1) ∈ E for i = 1, . . . , k − 1, namely P = (VP , EP) is a
subgraph of G such that VP = {v1 = v, v2, . . . , vk = u} and EP = {(vi, vi+1) ∈ E :

i = 1, . . . , k − 1}. The vertices v and u are called end points of the path P and k
is the length of the path. A graph is connected if and only if there exists a path
linking every pair of vertices of V . The maximal connected subgraphs of a graph
are called connected components.
A cycle C of G is a closed path, that is a path whose end points coincide. A cycle
is called Hamiltonian if it visits all the vertices of the graph, i.e. it is a covering of
the graph.
A tree T is a connected graph that does not contain cycles. A vertex v is called
a leaf of a tree T if it has degree equal to one in T . A forest F is an acyclic
graph. Note that a connected forest is a tree. A spanning forest F = (VF , EF) of
G = (V,E) is a forest with VF = V . A spanning tree T = (VT , ET) of G = (V,E)

is a tree having VT = V and ET ⊂ E.
A direct graph is a pair G = (V,A), where V is a set of vertices and A is a set of
arcs, i.e. ordered pairs of vertices.
An edge-colored graph (labeled graph) is a graph G = (V,E, L) such that to each
edge is assigned a color from the finite set L of l colors. A rainbow graph is an
edge-colored graph such that all edges have different color. In particular, if we
denote by ` : E → L the coloring function assigning to each edge a color from the

18

finite set L, the graph G = (V,E, L) is rainbow if |`(E)| = |E|.

1.4 Polyhedral theory

Let Rk be the Euclidean linear space of dimension k, i.e. the set of k-dimensional
vectors.

Definition 1.2. Let t > 0 and x1, . . . , xt ∈ Rk. A point x ∈ Rk is a linear
combination of xi, i = 1, . . . , t, if x =

∑t
i=1 λixi, for some λ1, . . . , λt ∈ R. Moreover,

if
∑t

i=1 λi = 1, x is an affine combination. An affine combination is called convex
combination if λi ≥ 0, i = 1, . . . , t.

In integer programming one of the main objectives is to find a linear inequality
description of the set of feasible points.

Definition 1.3. Given a set S ⊆ Rk, the convex hull of S, denoted by conv(S), is
the set of all points that are convex combination of points in S.

Given a set S of integral points, finding an inequality description of conv(S) is
not easy and knowing the dimension of conv(S) as well as which inequalities are
necessary for the description of conv(S) are very important. Figure 1.3 shows a

Figure 1.3: The black dots represent the set of integral points S. On the left a set containing S, on
the right conv(S).

generic hull containing a set of integral points in R2 on the left and the convex hull
on the right.
In this section we will provide some basic results from linear algebra and some
results concerning polyhedra.

19

General concepts: a brief overview

Definition 1.4. A set of points x1, . . . , xt ∈ Rk is linearly independent if the unique
solution of

∑t
i=1 λixi = 0 is λi = 0, i = 1, . . . , t.

Note that the maximum number of linearly independent points in Rk is k.

Definition 1.5. A set of points x1, . . . , xt ∈ Rk is affinely independent if the unique
solution of

∑t
i=1 αixi = 0,

∑t
i=1 αi = 0, is αi = 0, i = 1, . . . , t.

Linear independent implies affine independent, but the converse is not true.

Proposition 1.1. Let x1, . . . , xt be t points in Rk. Then the following statements
are equivalent:

• The t points are affinely independent.

• The t− 1 points x2 − x1, . . . , xt − x1 are linearly independent.

• The t points (x1,−1), . . . , (xt,−1) ∈ Rk+1 are linearly independent.

It is easy to see that the maximum number of affinely independent points in Rk

is k + 1, i.e. k linear independent points and the zero vector.

Definition 1.6. A polyhedron S ⊆ Rk is a set of points that satisfy a finite set of
linear inequalities, namely S = {x ∈ Rk : Ax ≤ b}, where A ∈ Rh×k and b ∈ Rh. A
bounded polyhedron is called polytope.

Note that some inequalities defining S can be equations.

Definition 1.7. A polyhedron S = {x ∈ Rk : Ax ≤ b} is full-dimensional if
dim(S) = k.

Let M = {1, . . . ,m}, M= = {i ∈ M : aix = bi for all x ∈ S} and M≤ =

{i ∈ M : aix < bi for some x ∈ S} = M \M=. Let (A=, b=) and (A≤, b≤) the
corresponding rows of (A, b). According to this notation, the following proposition
holds true:

Proposition 1.2. If S ⊆ Rk, then dim(S) + rank(A=, b=) = k.

Given a polyhedron S = {x ∈ Rk : Ax ≤ b}, there may exist inequalities
aix ≤ bi that are not necessary for the description of S and can therefore be
dropped.

20

Definition 1.8. Given an inequality πx ≤ π0, we say that πx ≤ π0 is a valid
inequality for S if it is satisfy by all points in S.

It is easy to see that if πx ≤ π0 is a valid inequality, S ⊆ {x ∈ Rk : πx ≤ π0}.

Definition 1.9. If πx ≤ π0 is a valid inequality for S and if F = {x ∈ S : πx = π0},
F is called a face of S. Moreover, if F 6= ∅ and F 6= S, then F is called a proper
face induced by πx ≤ π0. A facet is a maximal proper face, namely is a proper face
F such that dim(F) = dim(S)− 1. A vertex of S is a face having dimension zero.

Definition 1.10. A linear system that define a polyhedron S is called minimal
when:

i. by setting an inequality to equality the polyhedron is reduced, and

ii. by removing an inequality or an equality the polyhedron changes.

Example 1.1. Suppose S ⊂ R2 is given by

x1 ≤ 3

2x1 + 3x2 ≤ 15

x1 − x2 ≤ 3

x2 ≤ 5

3x1 + 2x2 ≥ 6

x1 ≥ 0

x2 ≥ 0

see Figure 1.4.
S is full-dimensional since (2, 0), (0, 3), (3, 3) lie in S and are affinely independent.
Note that (0, 3) and (3, 3) are two affinely independent points that satisfy the
inequality x1 ≤ 3 as equality, therefore x1 ≤ 3 is a facet. Similarly the inequalities
2x1 + 3x2 ≤ 15, 3x1 + 2x2 ≥ 6, x1 ≥ 0 and x2 ≥ 0 are facets for S. Moreover
x2 ≤ 5 is a face containing only one point in S, hence, it is redundant. Inequality
x1 − x2 ≤ 3 can be obtained as the sum of x1 ≤ 3 and −x2 ≤ 0, therefore it is
another example of redundant inequality.

21

General concepts: a brief overview

Figure 1.4: Linear system defining S ⊂ R2.

The minimal description for S is given by

x1 ≤ 3

2x1 + 3x2 ≤ 15

3x1 + 2x2 ≥ 6

x1 ≥ 0

x2 ≥ 0.

The following theorem is useful to establish whether a valid inequality is a facet.

Theorem 1.1. Let (A=, b=) be the equality set of S ⊆ Rk and let F = {x ∈ S :

πx = π0} be a proper face of S. The following two statements are equivalent:

• F is a facet of S.

• If λx = λ0 for all x ∈ F then

(λ, λ0) = (απ + uA=, απ0 + ub=) for some α ∈ R and some u ∈ R|M
=|.

For more details on polyhedral theory we refer to the textbooks of Schrijver
[48], Wolsey [55] and Nemhauser and Wolsey [42].

22

1.5 Branch-and-Cut Algorithm

In this section we introduce and describe the branch-and-cut algorithm, that is an
algorithm for solving integer linear programming problems. The branch-and-cut
algorithm, introduced by Padberg and Rinaldi [43] consists of a combination of the
branch-and-bound algorithm and the cutting plane method.
The branch-and-bound algorithm was designed by Dakin [14] by modifying an
earlier method of Land and Doig [31]. This method works by solving a sequence of
linear programming relaxations of the integer programming problem by following
a divide-et-impera approach. The idea is to solve the integer linear programming
problem by solving smaller and easier subproblems, obtained recursively partitioning
(branching) the feasible solution set. The branch-and-bound approach differs from
a complete enumeration method as it tries to explore only promising areas of the
feasible solution set by using the upper and the lower bounds on the optimal value
of the solution to exclude a priori certain subproblems. In consequence, having
good lower and upper bounds for the optimal value is essential for the effectiveness
of the algorithm. This procedure can be graphically represent by a tree (the
branch-and-bound tree) such that the root node represents the initial integer linear
programming and each node of the tree is a particular subproblem. The leaves
of the tree represent the active nodes, i.e. the subproblems that still need to be
solved.
The cutting plane method has been developed by Gomory [24] to solve linear integer
programming. Given an integer linear program (ILP), the first step is to identify an
optimal solution of the linear programming relaxation (RL) and check whether this
solution is integer or not. If the solution is integer, it is an optimal solution for ILP,
otherwise, the idea is to find and add one or more valid inequalities (cuts), which
are satisfied by all integer feasible solutions of ILP, but not by the optimal solution
of RL, and solve the linear programming relaxation of the problem obtained by
adding the cuts. The method will keep appending cuts and solving the new linear
programming relaxation until the solution will not be integer or it will conclude
that the problem is not feasible. If an integer solution exists, the cutting plane
method will find it by adding a finite number of cuts, the problem is that such
number could be very high.

23

General concepts: a brief overview

1. Initialization Denote the initial integer programming problem by P 0 and
set the active nodes to be L = P 0. Set the upper bound to be ub =∞
and zl = −∞ for the one problem l ∈ L.

2. Termination If L = ∅, then the solution x∗ associated with the incumbent
objective value ub is optimal. Note that if no such x∗ exists, i.e. if
ub =∞, then the integer linear programming is infeasible.

3. Subproblem selection Select and delete a subproblem P l from L.

4. Relaxation Solve the linear programming relaxation of P l.

• If the relaxation is infeasible, set zl =∞ and go to Step 6.

• If the relaxation is feasible and the optimal objective value is finite,
set zl equal to this value and let xlRL be an optimal solution; otherwise
set zl = −∞.

5. Add cutting planes Search for cutting planes that are violated by xlRL;
if one or more cuts are found, add them to the linear programming
relaxation of P l and go to Step 4.

6. Updating and Pruning

• If zl ≥ ub, go to Step 2.

• If zl < ub, and xlRL is integer, update ub = zl, delete from L all
subproblems l̄ with zl̄ ≥ ub and go to Step 2.

7. Partitioning Let Slj, j = 1, . . . , k, be a partition of the constraint set Sl
of the subproblem P l and let P l

j , j = 1, . . . , k, be P l with feasible region
restricted to Slj. Add {P l

1, . . . , P
l
k} to L and set zlj, j = 1, . . . , k, to the

value of zl for the parent problem l. Go to Step 2.

Figure 1.5: Branch-and-Cut Algorithm.

24

The branch-and-cut algorithm arises from an attempt to overcome the limitations of
both the branch-and-bound algorithm and the cutting plane method. At each vertex,
i.e. at each subproblem, of the branch-and-bound tree new cuts are generated and
added to find an integer feasible solution or at least to improve the bound. When
the new cuts turn out to be ineffective a new branching is performed. The step-
by-step description of the branch-and-cut algorithm for a minimization problem is
summarized in Figure 1.5.

For more details on branch-and-bound, cutting planes and branch-and-cut
algorithms we refer to the paper of Mitchell [41], Branch-and-Cut Algorithms for
Combinatorial Optimization Problem, and the book of Wolsey [55].

25

Chapter 2

Spanning Tree and Cycle Cover

2.1 Introduction

The aim of this chapter is to present some Spanning Tree and Cycle Cover problems.
Some particular versions of these problems are standard topics in the combinatorial
optimization literature and arise frequently as subproblems in more general problems.
The Minimum Spanning Tree Problem and the Traveling Salesman Problem are an
example of Spanning Tree and Cycle Cover, respectively. These problems are among
the best known and intensively studied combinatorial optimization problems.

2.2 Spanning Trees

Given a connected undirected graph G = (V,E), with n = |V | vertices and m = |E|
edges, and given a function w : E → R+, assigning to each edge e ∈ E a weight
we ∈ R+, the Minimum Spanning Tree Problem (MSTP) aims to find a spanning
tree T of G having the minimum total weight (see Figure 2.1). The total weight of
a tree is the sum of the weights of the edges of the tree. The MSTP has several
applications in the design of networks, including computer, telecommunication,
transportation networks, etc. Moreover it occurs as a subproblem in the solution
of others problem, and its algorithms are used in several exact and heuristics
algorithms for solving the traveling salesman problem, the matching problem, and
so on.

26

Figure 2.1: The Minimum Spanning Tree: an example.

Given the connected undirected grapg G = (V,E), the MSTP can be formulated
as a linear program (LP) [16] with variables xe, e ∈ E, as follows

minimize z =
∑
e∈E

wexe (2.1)

subject to ∑
e∈E(S)

xe ≤ |S| − 1 S ⊂ V, |S| ≥ 2 (2.2)

∑
e∈E

xe = n− 1 (2.3)

xe ≥ 0 e ∈ E, (2.4)

where E(S) denotes all edges of E which have both ends in the vertex set S. In
this formulation, constraints (2.2) are subtour elimination constraints [15], they
guarantee that the optimal solution contains no cycles. Constraint (2.3) imposes
that the solution contains exactly n− 1 edges. Constraints (2.4) ensure that the
variables can assume only positive values. In spite of the fact that the linear pro-
gram has an exponential number of constraints, the LP can be solved in polynomial

27

Spanning Tree and Cycle Cover

time by the greedy algorithm of Kruskal [30] or the greedy algorithm of Prim [45].
Moreover, Edmonds [16] proved that the extreme points of the constraint set of
LP correspond exactly to the incidence vector of trees in G and that, if we assume
that the graph G is complete, all the constraints define facets of the associated
polytope.

Many real world problems can be modeled as Spanning Trees with the addition
of some new requests. For this reason the literature contains many constrained
versions of the STP.

The Steiner Tree Problem (STP) can be considered a generalized MST. Given
a connected graph G, suppose that the set of vertices is partitioned into two set,
the set of terminal vertices and the set of Steiner vertices. The STP consists of
determining a minimum cost tree spanning all terminal vertices and, if necessary,
some Steiner vertices. The Steiner vertices do not need to be spanned, but they
may belong to the optimal solution if their inclusion reduces the solution cost
(see, for example, [23], [26]). The problem was first studied for Euclidean distance
metric [26]. Given a set N of n points in the Euclidean plane, the shortest network
interconnecting N is called a Euclidean Steiner Minimal Tree (ESMT) for N . The
MSTP is a special case of the STP, where all vertices are terminal. Unlike the
MSTP, that can be solved in polynomial time, the STP is NP-hard [20].

Given a connected undirected graph G, the Maximum Leaf Spanning Tree
Problem (MLSTP) [19], [35] is to find a spanning tree whose number of leaves, i.e.
the vertices having degree equal to 1 in the tree, is maximum. The problem, which
has applications in communication networks and circuit layouts, is trivial to solve
for complete graphs. However, for the general case, when the graph is sparse, it
known to be NP-hard [21].

Given a connected undirected graph G, the Degree Preserving Spanning Tree
Problem (DPSTP) [13] asks for a spanning tree of G with the maximum number
of vertices having the same degree in the solution tree and in the graph G. These
vertices are called full degree vertices and the problem is also known in the literature

28

as the Full Degree Spanning Tree Problem [1]. The main real application of the
DPSTP originates from the Vertex Feedback Edge Set Problem (VFESP), which
can be seen as the complementary problem of the DPSTP. The VFESP is to find
a complement of a tree (cotree) of G that is incident on the minimum number of
vertices. It is easy to see that the vertices that are not incident to the edges of a
co-tree have full degree in the tree.

2.2.1 Spanning Tree on edge-labeled graphs

In this subsection we describe two known combinatorial problems defined on edge-
colored graphs.

Given a connected undirected edge-colored graph G = (V,E, L), the Minimum
Labeling Spanning Tree Problem (MLSTP) [11] asks for a spanning tree of G having
as few colors as possible. The colors (labels) on the edges can represent different
transportation modes in a transportation networks, or connections belonging to
different competing companies in the case of a telecommunication network. In
[11] the authors proved that the MLSTP is NP-hard by reduction from the Set
Covering Problem. Independently, in [4] the authors proved that the MLSTP is
NP-hard by reduction from the Dominating Set Problem.

Given a positive integer k and a connected undirected graph G = (V,E, L),
whose edges are colored, the k-Labeled Spanning Forest Problem (KLSFP) [9]
consists of finding the minimum number of connected components that can be
obtained when there is a constraint on the maximum number k of colors that
can be used. The problem, which finds application in telecommunication network,
generalizes the MLSTP. It is easy to see that a spanning tree would be the optimum
if it can be found by using at most k colors. In [9] the authors showed that the
KLSFP is NP-complete by observing that the MLST is a special case of it.

29

Spanning Tree and Cycle Cover

2.3 Cycle Cover Overview

Given a connected directed graph D = (V,A), with n = |V | vertices and m′ = |A|
edges, and given a function c : A→ R+, assigning to each arc a = (v, u) ∈ A a cost
(or distance) cvu ∈ R+, the Traveling Salesman Problem (TSP) consists of finding a
minimum distance cycle passing through each vertex exactly once, i.e. the shortest
Hamiltonian cycle in the graph (see Figure 2.2). If cvu = cuv, the problem is called

Figure 2.2: The Traveling Salesman Problem: an example.

symmetric traveling salesman problem, otherwise it is called asymmetric. The most
known application of the TSP is that of a traveling salesman that wants to visit a
set of towns exactly once, starting from and returning to his home town, and wants
to do it using the shortest possible tour. This problem underlies several vehicle
routing applications and there are many practical problems that can be formulated
as TSP problems.

The TSP has been one of the first problems to be proven NP-complete by
reduction from the Hamiltonian Cycle Problem. One of the first integer linear
formulations for the TSP was proposed by Dantzing, Fulkerson and Johnson [15].
It associates one binary variable za to every arc a ∈ A, equal to 1 if the arc belongs

30

to the optimal solution. The formulation is

minimize z =
∑
a∈A

caza (2.5)

subject to ∑
a∈δ−(u)

za = 1 u ∈ V (2.6)

∑
a∈δ+(v)

za = 1 v ∈ V (2.7)

∑
a∈A(S)

za ≤ |S| − 1 S ⊂ V, 2 ≤ |S| ≤ n− 2 (2.8)

za ∈ {0, 1} a ∈ A (2.9)

where δ+(w) = {(v, u) ∈ A : v = w}, δ−(w) = {(v, u) ∈ A : u = w} and A(S)

denotes all arcs of A having both ends in the vertex set S. Constraints (2.6) and
(2.7) are degree constraints, they impose that each vertex is visited exactly once
and is left exactly once, respectively. Constraints (2.8) ensure the formation of a
tour only on the set V . Because of degree constraints, subtours over one vertex
and over n− 1 vertices cannot occur. Therefore constraints (2.8) are defined for
2 ≤ |S| ≤ n− 2 only. Finally, constraints (2.9) impose binary conditions on the z
variables. For more details we refer to the paper The Traveling Salesman Problem
of Jünger, Reinelt and Rinaldi [28] and the paper The Traveling Salesman Problem:
An overview of exact and approximate algorithms of Laporte [32].

The Vehicle Routing Problem (VRP) can be seen as a natural generalization
of the TSP. Given a connected directed graph D, suppose that the set V of n
vertices represents n− 1 cities (v2, . . . , vn), and a depot (v1) and suppose that to
each arc (v, u) is associated a non-negative distance cost cvu. Moreover, let k be
the number of available vehicles based ot the depot. The value k can be fixed a
priori or it can be a decision variable. If k is a decision variable, it makes sense
to associate a fixed cost on the use of a vehicle. The VRP [33] is the problem of
identify optimal delivery routes from the depot v1 to the cities, in such a way that

31

Spanning Tree and Cycle Cover

each city is visited exactly once by only one vehicle and all vehicles have to end at
the depot. Note that there could be some side constraints that have to be satisfied,
for example:

• capacity restrictions : to each city vi can be associated a demand di, therefore
it is necessary to associate to each vehicle a set of vertices such that the sum
of the corresponding demands does not exceed the vehicle capacity;

• route restrictions : in a route a vehicle cannot visit more than a fixed number
q of cities;

• time windows : some city must be visited within a fixed time interval;

• precedence relations: may be required that a city must be visited before
another one.

It is easy to see that if k = 1 and all the side constraints are relaxed, we obtain
the TSP, therefore the VRP is another example of NP-complete cycle cover problem.

Given a connected undirected graph G = (V,E), non-negative edge costs ce, for
all e ∈ E, and a positive integer p the Hamiltonian p-Median Problem, introduced
by Branco and Coelho [3], consists of finding p disjoint cycles of minimum total
cost, covering all vertices of the graph G. The problem, that finds applications in
the context of depot location or multi-depot vehicle routing, coincides with the
TSP when p = 1. For this relation, it follows that the HpMP is NP-hard.

The Steiner Cycle Problem (STP) is closely related to the Traveling Salesman
Problem and the Steiner Tree Problem. Given a connected undirected graph G,
suppose that the set of vertices V is partitioned into two subsets, the set of required
vertices and the set of optional vertices. Assume that to each edge is associated a
cost and to each optional vertex a non-negative penalty. The STP [46] asks for a
simple cycle in G visiting at least the required vertices and such that the sum of
the costs of the edges in the cycle plus the penalties of the optional vertices that
does not belong to the cycle is minimum. The problem has applications in the
optimal design of telecommunication systems and transportation networks, and in
[46] the author showed that it is strongly NP-hard since the TSP is a particular
case.

32

2.3.1 Cycle Cover on edge-labeled graphs

In this section we describe a cycle cover problem defined on edge-colored graph
and two variants.

Given a connected undirected edge-colored graph G = (V,E, L), the Minimum
Labeling Hamiltonian Cycle Problem (MLHCP) [8], also known in the literature as
the Colorful Traveling Salesman Problem (CTSP), asks for a Hamiltonian cycle
with the least number of labels (colors). Colors can represent transporters, types
of telecommunication fibers or production technologies [8], [56]. The Minimum
Labeling Hamiltonian Cycle Problem with Length Constraint (MLHCPLC) and
the Label Constrained Traveling Salesman Problem (LCTSP), are two variants of
the MLHCP [27] defined on a connected undirected edge-colored graph with edge
costs. In the MLHCPLC the tour cannot be longer than a given length, instead in
the LCHCP the objective is to minimize the tour length with a constraint on the
maximum number of colors that can be used.

33

Chapter 3

The Rainbow Cycle Cover Problem

“ Whenever the rainbow appears in the clouds, I will see it
and remember the everlasting covenant between God and
all living creatures. ”

Genesis 9:16

3.1 Introduction and Problem Description

In this chapter we address The Rainbow Cycle Cover Problem (RCCP), that repre-
sents another example of cycle cover problem, defined on a connected undirected
edge-colored graph. A slightly different version of this chapter was submitted to
Networks. The main contribution of the chapter is to present a mathematical
model and a branch-and-cut algorithm for the RCCP.
Let G = (V,E, L) be a connected, undirected and edge-colored graph, where V
is the set of n vertices, E is the set of m edges, and L is a set of l colors. Let
` : E → L be a coloring function assigning to each edge a color from the set L.
A rainbow cycle of G is a cycle C = (VC , EC), where VC ⊆ V and EC ⊆ E, in
which all edges have different colors, i.e. |`(EC)| = |EC |. A rainbow cycle cover
(RCC) of G is a collection of rainbow cycles such that each vertex of the graph G
belongs to exactly one cycle. Note that in this context a single vertex is considered

34

as a degenerate rainbow cycle. From now on, we will refer to these as the trivial
rainbow cycles. The RCCP asks for a RCC with the least number of rainbow
cycles. Li and Zhang [34] investigated the complexity of the rainbow tree, cycle
and path partition problems and proved that identifying a RCC with the minimum
number of cycles is NP-hard. To the best of our knowledge, no mathematical
formulation for this problem has ever been put forward. In this work we propose
an integer mathematical formulation and valid inequalities that will be used within
a branch-and-cut algorithm. We will also consider some properties that a rainbow
cycle cover must satisfy. These properties will allow us to preprocess the instances
and add some ad hoc constraints that will help to solve the problems, sometimes
in a very effective way. The remainder of this chapter is organized as follows. The
mathematical formulation and the description of the properties that a RCC must
satisfy are presented in Section 3.2. Section 3.3 contains the valid inequalities.
The branch-and-cut algorithm is described in Section 3.4. Section 3.5 contains the
computational results.

3.2 Mathematical formulation and Properties

In this section we present an integer linear mathematical formulation for the RCCP.
Since the objective is to minimize the number of rainbow cycles needed to cover the
vertices of the graph, we introduce the set of binary variables γc, for c = 1, . . . , c̄

associated with each non-trivial cycle c of a RCC, whose value is equal to 1 if
and only if c contains at least three vertices. It is easy to see that the number of
variables γc depends on the number of possible non-trivial cycles, so it is useful
to compute a good upper bound c̄ on this number. Note that, according to the
definition, the variables γc are equal to one if and only if c contains at least three
vertices, therefore bn/3c is an obvious upper bound on the maximum number of
non-trivial rainbow cycles that a RCC of a graph can contain. Moreover, we define
binary variables ycv equal to 1 if and only if vertex v belongs to cycle c, and binary
variables xce equal to 1 if and only if edge e belongs to cycle c. In order to introduce
constraints that can help prevent equivalent solutions, it is useful to define an
index set Iq = {1, . . . , q}, for an integer q, and to define the undirected graph

35

The Rainbow Cycle Cover Problem

G = (V,E, L), with vertex set V = In. The formulation is then as follows:

minimize z =
c̄∑
c=1

γc +
∑
v∈V

M
(

1−
c̄∑
c=1

ycv

)
(3.1)

subject to∑
v∈V

ycv ≤ l γc c = 1, . . . , c̄ (3.2)

3 γc ≤
∑
v∈V

ycv c = 1, . . . , c̄ (3.3)

c̄∑
c=1

ycv ≤ 1 v ∈ V (3.4)∑
e∈δ(v)

xce = 2 ycv v ∈ V, c = 1, . . . , c̄ (3.5)

xce ≤ ycv v ∈ V, e ∈ δ(v) (3.6)∑
e∈δ(S)

xce ≥ 2(ycv + ycu − 1) S ⊂ V, v ∈ S, {v, u} ∈ {S, S̄}, c = 1, . . . , c̄ (3.7)

∑
e∈Ek

xce ≤ 1 c = 1, . . . , c̄, k ∈ L (3.8)

γc+1 ≤ γc c = 1, . . . , c̄− 1 (3.9)
c̄∑

c=v+1

ycv = 0 v ∈ V : v < c̄ (3.10)

ycv ≤
∑
w<v

yc−1
w v ∈ V \ {1}, c = 3, . . . , c̄ (3.11)

γc ∈ {0, 1} c = 1, . . . , c̄ (3.12)

ycv ∈ {0, 1} v ∈ V, c = 1, . . . , c̄ (3.13)

xce ∈ {0, 1} e ∈ E, c = 1, . . . , c̄, (3.14)

where δ(v) denotes the set of edges incident to v in G, S̄ = V \ S, δ(S) =

{e = (v, u) ∈ E : v ∈ S u ∈ S̄}, {S, S̄} = {{v, u} : v ∈ S, u ∈ S̄} and
Ek = {e ∈ E : `(e) = k}. Note that the set δ(S) contains only edges of the graph,
whereas the set {S, S̄} contains all the possible pairs between S and V \ S.

36

Constraints (3.2) and (3.3) are logical constraints linking the binary variables γc
with the binary variables ycv. Note that at most l vertices can belong to the same
cycle since this is the number of different colors of the graph. Constraints (3.4)
and (3.5) ensure that each vertex belongs to at most one cycle and, if it belongs to
a cycle, it has a degree equal to 2 in that cycle. It is easy to see that to ensure
the validity of the constraints (3.5), if a variable γc is equal to one, then there
must be at least three vertices in the corresponding rainbow cycle. Constraints
(3.6) impose that if a vertex is not in the cycle c, the edge incident on such vertex
cannot belong to that cycle. Constraints (3.7) guarantee solutions with not more
than one cycle associated to each variable γc. Constraints (3.8) ensure the rainbow
property. These constraints impose that a cycle cannot contain two edges having
the same color. Even if constraints (3.9), (3.10) and (3.11) are not necessary for
the model, we insert them in the model because they help eliminate symmetries.
Constraints (3.9), mean that there will never be a variable γc+1 equal to one if γc
is equal to zero, for any c. Constraints (3.10) impose that vertices with and index
v < c̄ cannot belong to a cycle c such that c > v. Moreover, constraints (3.11)
mean that a vertex v can belong to a cycle of index c if and only if at least one
vertex w with a lower index belongs to the cycle of index c− 1. The constraints
(3.10) and (3.11) are a generalization of the symmetry constraints introduced by
Fischetti et al. [18] in the context of the Vehicle Routing Problem. The objective
function (3.1) requires the minimization of the number of rainbow cycles. To this
end, we need an objective function with two terms. The first part minimizes the
number of non-trivial cycles by minimizing the sum of the variables γc. The second
part forces the vertices to belong to a cycle, whenever possible, giving a weight M
to each isolated vertex. If we do not force the vertices to belong to a cycle, the
optimal solution would be n trivial cycles and the optimal value would be zero.

3.2.1 Properties of a Rainbow Cycle Cover

In this subsection we present some properties that a RCC must satisfy. Let ζv
denote the colored degree of vertex v, i.e. the number of different colors incidents
to v. It is easy to see that if a vertex v has colored degree equal to one, i.e. ζv = 1,

37

The Rainbow Cycle Cover Problem

then vertex v will be a trivial rainbow cycle, that is, it will be isolated:

c̄∑
c=1

ycv = 0 v ∈ V : ζv = 1. (3.15)

Therefore, all edges incident to that vertex will be equal to 0 in the optimal solution.
In view of these observations, if we denote by n1 the number of vertices whose
colored degree is equal to one, then the upper bound on the number of variables γ
reduces to b(n− n1)/3c.
This observation is easily extensible to the edges. Suppose that given an edge
e = (v, u), the total number of colors incident to v and u is equal to two, i.e.
|{`(δ(v)) ∪ `(δ(u))}| = 2, then edge e cannot belong to a rainbow cycle. Note that,
if |{`(δ(v))∪ `(δ(u))}| = 2, then one of these two colors must be the color of edge e,
therefore there will be only one more color available to connect e with others edges
of a RCC which is not possible. We can state this property through the constraints

c̄∑
c=1

xce = 0 e = (v, u) ∈ E : |{`(δ(v)) ∪ `(δ(u))}| = 2. (3.16)

This two observations can be used in a preprocessing phase to reduce the size
and the difficulty of the instances. Note that, the last property is included in the
following most general one. Pairs of vertices having a colored degree equal to 2

and the same set of incident colors cannot belong to the same cycle:

ycv + ycu ≤ 1 v, u ∈ V : `(δ(v)) = `(δ(u)), ζv = ζu = 2, c = 1, . . . , c̄. (3.17)

Obviously, if two of these vertices are adjacent, the edge linking them cannot belong
to a RCC, which means that all variables associated to the edge will be equal to
zero and then constraints (3.16) are satisfied. Moreover, for each vertex v such
that ζv = 2, the following constraints are valid for the RCCP:∑
e∈δk(v)

xce −
∑

e∈δh(v)

xce = 0 v ∈ V : ζv = 2, `(δ(v)) = {k, h}, c = 1, . . . , c̄, (3.18)

38

where δk(v) = {e ∈ E : e ∈ {δ(v) ∩ Ek}}, i.e. the set of all the edges incident to v
and having color k.
Suppose now that the shortest cycle including two fixed vertices v and u contains
at least l + 1 edges, then it is easy to observe that the two vertices cannot belong
to the same rainbow cycle, since a rainbow cycle cannot contain more than l edges.
Identifying shortest cycles containing two fixed vertices can be efficiently achieved
by means of Suurballe’s algorithm ([53], [54]). This algorithm identifies two disjoint
paths in a non-negative weighted directed graph so that both paths connect the
same pair of vertices and have a minimum total length. Suurballe’s algorithm uses
Dijkstra’s algorithm to find the first path. It then modifies the weights of the edges
preserving their non-negativity. After this modification Suurballe’s algorithm uses
Dijkstra’s algorithm a second time. Procedure 1 shows the details of Suurballe’s
algorithm.
A key point of the algorithm is line 3. The weights of the arcs are modified according

Procedure 1: Suurballe’s algorithm
Input: G(V,A), v ∈ V , u ∈ V , w(A)
Output: SC(v, u) the shortest cycle containing v, u

1 T1 ← DijkstraAlgorithm(v,G,w(A))
2 P1 ← IdentifyPath(v, u, T1)
3 w(A)← updateWeightEdge(T1, G)
4 GP1 ← CreateResidualGraph(P1, G)
5 T2 ← DijkstraAlgorithm(v,GP1 , w(A))
6 P2 ← IdentifyPath(v, u, T2)
7 SC(v, u)← mergePaths(P1, P2)
8 return SC(v, u)

to the following formula

w(i, j) = w(i, j)− d(v, j) + d(v, i) (i, j) ∈ A, (3.19)

where v is the root vertex of the shortest path tree T1, and d(v, j), d(v, i) are the
distances from v to j and i in T1. Thanks to Suurballe’s algorithm we can impose

39

The Rainbow Cycle Cover Problem

the constraints

ycv + ycu ≤ 1 v, u ∈ V : |SC(v, u)| ≥ l + 1, c = 1, . . . , c̄, (3.20)

where SC(v, u) represents the shortest cycle containing the vertices v and u. Note
that when two vertices v and u are incompatible, that is, when two vertices cannot
belong to the same cycle because of (3.17) and (3.20), then the following inequalities
are valid for the RCCP:∑

e∈{δ(v)∪δ(u)}

xce ≤ 2 v, u ∈ V : ycv + ycu ≤ 1, c = 1, . . . , c̄ (3.21)

∑
e∈{δk(v)∪δk(u)}

xce ≤ 1 v, u ∈ V : ycv + ycu ≤ 1, k ∈ L, c = 1, . . . , c̄. (3.22)

A last observation about the properties of a RCC is the following: given a color k, if
the edges of color k are incident to fk distinct vertices, i.e. if |{v ∈ V : δ(v)∩Ek 6=
∅}| = fk, then only bfk/2c edges of color k can belong to a RCC. It is sufficient to
select one more edge and there will be at least two edges having the same color
and incident to a same vertex. We can therefore impose the following constraints:

c̄∑
c=1

∑
e∈Ek

xce ≤ bfk/2c k ∈ L. (3.23)

3.3 Valid inequalities

In the previous section we proposed a mathematical formulation for the Rainbow
Cycle Cover Problem and we also provided some simple properties that a RCC
has to satisfy. We now present some valid inequalities for the RCCP.

Proposition 3.1. The constraints

ycv − γc ≤ 0 v ∈ V, c = 1, . . . , c̄ (3.24)

xce − γc ≤ 0 e ∈ E, c = 1, . . . , c̄ (3.25)

are satisfied by all optimal RCCP solutions.

40

Proof. These constraints state that the variable representing a cycle has to be equal
to 1 if a vertex or an edge belongs to that cycle.

An example of a solution violating constraints (3.24) but satisfying constraints
(3.2) is the following: γ1 = 1, γ2 = 0.34, y1

1 = 1, y1
2 = 1, y1

3 = 1, y1
4 = 0.53,

y1
5 = 0.24, y1

6 = 0.71, y1
7 = 0.41, y2

4 = 0.47, y2
5 = 0.76, y2

6 = 0.29, y2
7 = 0.06,

x1
(1,2) = 1, x1

(1,3) = 0.35, x1
(1,5) = 0.06, x(1,6) = 0.59, x1

(2,3) = 0.76, x1
(2,6) = 0.24,

x1
(3,4) = 0.88, x1

(4,6) = 0.18, x1
(5,7) = 0.42, x1

(6,7) = 0.41, x2
(4,5) = 0.93, x2

(5,6) = 0.53,
x2

(5,7) = 0.06, x2
(6,7) = 0.06. It is depicted in Figure 3.1:

Figure 3.1: Solution where γ1 = 1 and γ2 = 0.34 and constraints (3.24) are violated by v24 and v25
in c = 2.

Proposition 3.2. The constraints

c̄∑
c=1

{
xce +

∑
f∈{δh(u)∪δh(v)}

xcf

}
≤ 2 e = (v, u) ∈ E : `(e) = k, h ∈ L \ `(e) (3.26)

are valid for the RCCP.

Proof. These constraints impose that if an edge e = (v, u) having color `(e) = k

is selected, then at most one edge having color h 6= k and belonging to the set
{δh(v) ∪ δh(u)} can be selected.

Proposition 3.3. The constraints∑
e∈δk(v)

xce ≤ ycv k ∈ L, v ∈ V, c = 1, . . . , c̄ (3.27)

41

The Rainbow Cycle Cover Problem

are valid for the RCCP.

Proof. If a vertex v belongs to a cycle c, then at most one edge of color k and
incident on v can be selected. Note that for fixed a vertex v, a cycle c and a color
k, the inequality∑

e∈δk(v)

xce ≤ |δk(v)|ycv k ∈ L, v ∈ V, c = 1, . . . , c̄ (3.28)

represents an aggregate version of constraints (3.6), when the color k is fixed.
Moreover, due to (3.8) the left-hand side of (3.28) results in∑

e∈δk(v)

xce ≤
∑
e∈Ek

xce ≤ 1 k ∈ L, v ∈ V, c = 1, . . . , c̄, (3.29)

and due to (3.5) all the edges xce, i.e. e ∈ δ(v), are equal to 0 if ycv is equal to 0.
Thanks to these two observations the right-hand side of (3.28) can be reduced to
ycv, i.e. exactly constraints (3.27).

Proposition 3.4. The constraints∑
e∈δk(v)

xce −
∑

e∈{δ(v)\δk(v)}

xce ≤ 0 v ∈ V, k ∈ L, c = 1, . . . , c̄ (3.30)

are satisfied by all the optimal RCCP solutions.

Proof. These constraints impose that for each vertex v, for each color k and for each
possible cycle c = 1, . . . , c̄, if an edge incident to v and having color k is selected,
then an edge incident to v and having a different color must be selected.

Proposition 3.5. The valid inequalities (3.27) and (3.30) are equivalent.

Proof. The valid inequalities (3.27) state that, fixed k ∈ L and c = {1, . . . , c̄},∑
e∈δk(v)

xce ≤ ycv

42

adding and subtracting 1
2

∑
e∈δ(v) x

c
e to the left-hand side, we obtain

∑
e∈δk(v)

xce +
1

2

∑
e∈δ(v)

xce −
1

2

∑
e∈δ(v)

xce ≤ ycv

which, due to (3.5), is equivalent to

∑
e∈δk(v)

xce −
1

2

∑
e∈δ(v)

xce ≤ 0. (3.31)

Note that, with easy mathematical operations, one can see that (3.31) are exactly
the valid inequalities (3.30). One also observes that without constraints (3.5),
constraints (3.27) are stronger than constraints (3.30).

Proposition 3.6. The constraints

xce −
∑

h∈L\`(δ(v))

∑
f∈δh(u)

xcf ≤ 0 v : ζv = 2, c = 1, . . . , c̄ (3.32)

are valid for the RCCP.

Proof. These constraints state that if an edge e = (v, u), incident to a vertex v
having colored degree ζv = 2, is selected, then at least one edge that is incident on
the vertex u and having color h ∈ {L \ `(δ(v))} must be selected.

Proposition 3.7. The constraints

∑
{v∈V :δk(v)6=∅}

{
ycv −

∑
e∈δk(v)

xce

}
≥ 0 k ∈ L, c = 1, . . . , c̄ (3.33)

are valid for the RCCP.

Proof. These constraints impose that for each color k and for each cycle c, twice
the number of edges having color k and belonging to c must be less than or equal
to the number of vertices belonging to c on which those edges are incident, since
on a single vertex cannot incide twice the same color.

An example of a solution violating constraints (3.33) when k = k2 but satisfying
the constraints (3.2 - 3.11) is depicted in Figure (3.2):

43

The Rainbow Cycle Cover Problem

Figure 3.2: A constraint (3.33) is violated for k = k2

Proposition 3.8. Let F = {(v, u) ∈ E : |`(δ(v)) ∪ `(δ(u))| = 3}}. Moreover, for
each edge e = (u, v), let ∆(e) = {δ(u) ∪ δ(v)} and let ∆k(e) = {δk(v) ∪ δk(u)}.
Then the constraints

xc(e) −
∑

f∈∆k(e)

xcf ≤ 0 e = (u, v) ∈ F, k ∈ {`(∆(e)) \ `(e)}, c = 1, . . . , c̄ (3.34)

are valid for the RCCP.

Proof. These constraints impose that each edge e = (u, v) such that
{
{`(δ(u)) ∪

`(δ(v))} \ `(e)
}

= {h, k} can belong to a RCC if and only if at least one edge of
the set {δh(u) ∪ δh(v)} and one of the set {δk(u) ∪ δk(v)} is selected. It is clear
that, since we are looking for a RCC, if an edge of the set F will be selected, then
exactly one edge for each set will belong to the solution.

We can extend the observation made for constraints (3.34) to the set of edges
F̄ = {(u, v) ∈ E : |`(δ(u)) ∪ `(δ(v))| = 4}.

Proposition 3.9. The constraints

xce −
∑

f∈∆t(e)∪∆s(e)

xcf ≤ 0 e = (u, v) ∈ F̄ , t, s ∈ {`(∆(e)) \ `(e)}, c = 1, . . . , c̄

(3.35)

are valid for the RCCP.

44

The last set of valid inequalities that we will present, differently from all the sets
described until now, are not easy to identify. Let P (v, u) denote a path between
the vertices v and u, where v 6= u, and let P be the set of all the rainbow paths of
the graph G, i.e. P = {P (u, v) : P (u, v) is rainbow}.

Proposition 3.10. The constraints

c̄∑
c=1

{ ∑
e∈δk(v)∪δk(u)

xce +
∑

e∈P (u,v)

xce

}
≤ |P (u, v)|+ 1 k ∈ L \ `(P (u, v)), P (u, v) ∈ P

(3.36)

are valid for the RCCP.

Proof. These constraints state that if all the edges of the rainbow path P (v, u)

belong to the solution, then at most one edge belonging to the set {δk(v) ∪ δk(u)},
where k ∈ L \ `(P (u, v)), can be selected. Conversely, if two edges from the set
{δk(v) ∪ δk(u)} are selected, then at least one edge of the rainbow path P (v, u)

cannot be in the optimal solution.

In the Figure (3.3) is depicted an example of the structure described above for
the valid inequalities (3.36). Note that the valid inequalities (3.26) are a particular

Figure 3.3: An example of valid inequalities (3.36)

case of this set of inequalities, in which the rainbow path is a single edge.

3.4 Branch-and-cut algorithm

In this section we describe the main features of the branch-and-cut algorithm for
the Rainbow Cycle Cover Problem. The description of the steps is summarized in

45

The Rainbow Cycle Cover Problem

Procedure 2. The first step of our algorithm consists in a preprocessing phase in
which we identify all vertices and edges that satisfy the properties (3.15) and (3.16).
We then set the corresponding variables to 0, which allows us to reduce the instance
size. In line 2, the initial subproblem is obtained by relaxing constraints (3.6) and
(3.7) as well as the integrality constraints (3.12), (3.13) and (3.14). Note that,
thanks to constraints (3.5), constraints (3.6) are redundant in an integer solution,
but we add them as valid cuts. We also add constraints (3.17), (3.18), (3.20),
(3.21), (3.22) and (3.23) to the initial subproblem. From this point, in line 12 a
search for violated constraints (3.7) is performed on the integer solutions, to prevent
solutions with more than one cycle associated to each variable γc. Furthermore,
in line 14, at non-integer solutions, a search for violate constraints (3.6) and (3.7)
and violated valid inequalities (3.24), (3.25), (3.26), (3.27) and (3.32) is performed.
Valid inequalities (3.33), (3.34) and (3.35) turned out to be ineffective and were
not considered. A subset of the most violated inequalities of each type is added
to the cut-pool. Moreover, since identifying all rainbow paths between all pairs
of vertices in a graph is not possible, a search for violated inequalities (3.36) is
performed only among the set SP = {P (u, v) ∈ P : P (u, v) is a shortest path}.
However, except for (3.7) and (3.36), in order to identify violated inequalities, we
consider all of them and verify which are violated by the current relaxed solution.
The algorithm for the identification of the most violated constraint (3.7) is a simple
max-flow separation problem. In line 16, all the violated constraints are added
to the model. If no violated constraints are identified, in line 18, branching is
performed in priority on the ycv and xcv variables with the lower index c and having
the fractional value closest to 0.5.

3.5 Computational results

The algorithm was coded in C and solved using IBM ILOG CPLEX 12.5. The
computational experiments were performed on a 64-bit GNU/Linux operating
system, 96 GB of RAM and one processor Intel Xeon X5675 running at 3.07 GHz.
Experiments for the RCCP were conducted on randomly generated instances and
their results are reported in Table 3.1. Each instance is characterized by the number
of vertices n (size), the number of edges m and the number of colors l. For each

46

Procedure 2: Branch-and-cut algorithm
Input: an integer program P .
Output: an optimal solution of P , if exists.

1 ub←∞, L = ∅
2 Define a first subproblem S0 and insert it in the list L
3 while L is not empty do
4 choose a subproblem and remove it from L
5 solve the subproblem to obtain the solution z
6 if z < ub then
7 if the solution is integer then
8 if the solution is feasible then
9 ub← z

10 update incumbent solution

11 else
12 search and add constraints 3.7 on integer solution

13 else
14 search violated constraints
15 if violated constraints are identified then
16 add them to the model

17 else
18 branch on a variable and add the corresponding subproblems

in L

47

The Rainbow Cycle Cover Problem

instance with n vertices, the number of edges is set to m = dn(n− 1)/2× d+ ne,
with d ∈ {0.1, 0.2, 0.3}, and the number of colors is set to dlog(m)/2e, dlog(m)e
and d2 log(m)e. For each size, there are nine different scenarios. We have generated
five instances for each scenario, with the same number of nodes, edges and colors
and the results reported in each line of our tables are average values over these
five instances. In Table 3.1 the first four columns report the characteristics of
each scenario: scenario ID, the number of vertices (n), the number of edges (m)
and the number of colors (l), respectively. This table also provides the number
of rainbow cycles (cycles), the number of non-trivial cycles and the number of
trivial cycles (non-trvl and trvl, respectively) the value of the optimal solution
(Obj), the computing time (t(s)) in seconds and the number of nodes in the search
tree (nodes). We have imposed a time limit equal to 10, 800 seconds. Whenever α
instances of a scenario was not solved to optimality within the time limit, we report
(α) close to the solution value, therefore the value reported is an upper bound on
the optimal solution. We also refer to the solutions with the symbol (α) as the best
known solutions. Note that in the objective function, the part that minimizes the
number of non-trivial cycles is less then or equal to c̄ in the worst case. Thanks to
this observation a value equal to 2 c̄ is given to the weight M .
The results show that when the number of vertices increases, instances with a large
number of edges and a small number of colors are the hardest to solve. Test results
show that in these cases also the computational time and the number of nodes
in the search tree seem to increase. This is due to the symmetry of the problem.
Indeed several cycles can have the same number of colors and several equivalent
solutions can be identified. The number of colors also affects the solution in terms
of the presence of trivial cycles, mainly for the instances with a small number of
edges.

3.5.1 LP lower bounds and duality gaps

We present the LP lower bounds and the duality gaps for the RCCP obtained by
adding one valid inequality each time, respectively in Table 3.2 and Table 3.3. The
first two columns of the Table 3.2 provide the instance ID and the objective value.
A symbol * appears in the table close to the solution value to indicate that such

48

ID Instance RCCP

n m l cycles non-trvl trvl Obj t(s) nodes
1 20 39 3 18.00 1.00 17.00 120.00 0.01 0.00
2 20 39 6 13.60 2.00 11.60 83.20 0.14 0.00
3 20 39 11 10.60 2.20 8.40 61.00 0.18 0.00
4 20 58 3 14.80 2.60 12.20 88.00 0.13 0.00
5 20 58 6 9.80 3.40 6.40 48.20 1.76 5.60
6 20 58 12 6.80 2.20 4.60 34.40 1.71 12.00
7 20 77 4 10.00 3.80 6.20 47.20 2.41 21.20
8 20 77 7 6.80 3.60 3.20 26.00 5.86 77.00
9 20 77 13 4.80 2.60 2.20 18.00 5.71 65.60
10 30 74 4 21.80 3.20 18.60 207.80 2.59 4.00
11 30 74 7 19.40 2.80 16.60 185.40 15.16 16.80
12 30 74 13 15.40 2.60 12.80 143.40 9.33 8.60
13 30 117 4 18.20 4.80 13.40 152.20 21.38 38.60
14 30 117 7 13.00 4.40 8.60 99.00 56.52 114.80
15 30 117 14 9.60 3.20 6.40 73.60 54.07 119.20
16 30 161 4 15.20 6.00 9.20 107.20 180.50 541.20
17 30 161 8 8.00 5.20 2.80 36.00 210.39 344.00
18 30 161 15 5.40 3.60 1.80 23.40 55.79 67.80
19 40 118 4 30.60 3.60 27.00 381.60 10.67 22.00
20 40 118 7 24.80 3.80 21.00 297.80 129.83 49.80
21 40 118 14 20.40 3.40 17.00 241.40 34.08 10.40
22 40 196 4 25.00 6.20 18.80 269.40 314.22 191.20
23 40 196 8 15.80 6.00 9.80 143.20 361.94 281.60
24 40 196 16 11.00 4.00 7.00 102.00 480.33 457.60
25 40 274 5 14.60 8.60 6.00 (2)92.60 5136.55 2894.00
26 40 274 9 8.80 6.20 2.60 (2)42.60 6420.92 2141.20
27 40 274 17 5.20 3.80 1.40 (1)23.40 3185.14 1119.20
28 50 173 4 35.80 5.60 30.20 519.00 526.10 42.00
29 50 173 8 30.40 5.40 25.00 430.40 1185.35 368.40
30 50 173 15 23.40 5.20 18.20 314.60 694.63 357.40
31 50 295 5 25.40 8.00 17.40 (1)303.80 7354.71 2027.80
32 50 295 9 18.40 7.20 11.20 (1)197.60 5558.08 1477.40
33 50 295 17 12.80 5.60 7.20 128.00 2695.05 756.20
34 50 418 5 19.80 10.20 9.60 (5)173.40 10800.00 1194.20
35 50 418 9 12.80 8.20 4.60 (5)86.40 10214.81 1130.00
36 50 418 18 6.60 4.40 2.20 (3)41.80 8954.48 1247.00

Table 3.1: Summary of computational results for the RCCP

49

The Rainbow Cycle Cover Problem

ID RCCP

Obj w(P) w(P1) w(P2) w(P3) w(P4) w(P5)
1 120.00 120.00 120.00 120.00 120.00 120.00 120.00
2 83.20 79.62 81.14 79.71 79.70 79.62 79.62
3 61.00 56.33 56.99 56.38 56.45 56.38 56.51
4 88.00 85.38 86.17 85.98 85.38 85.38 85.79
5 48.20 29.76 32.87 30.50 29.82 30.12 30.86
6 34.40 26.05 27.06 26.84 26.36 26.12 26.16
7 47.20 28.86 32.37 30.99 28.88 28.99 29.69
8 26.00 16.92 18.10 17.43 17.06 17.02 16.92
9 18.00 11.63 13.08 12.92 12.04 11.63 11.63
10 207.80 191.20 194.43 193.09 191.20 191.84 192.98
11 185.40 131.39 142.10 134.91 131.43 131.91 132.50
12 143.40 122.14 123.89 122.67 122.31 124.18 122.43
13 152.20 94.83 105.95 105.21 94.83 96.71 97.65
14 99.00 62.67 71.05 67.90 62.73 64.81 65.31
15 73.60 53.60 58.47 54.51 53.93 53.78 54.16
16 107.20 44.66 52.90 52.95 44.66 46.04 50.17
17 36.00 17.58 18.93 22.11 17.71 17.67 17.70
18 23.40 16.01 20.59 18.10 16.50 16.59 16.01
19 381.60 320.46 326.28 326.17 320.46 322.99 324.15
20 297.80 235.51 245.40 244.61 235.59 236.46 240.75
21 241.40 202.22 211.60 207.59 202.57 203.82 206.17
22 269.40 133.77 164.04 155.76 133.77 138.69 144.44
23 143.20 77.03 88.87 91.21 77.06 82.55 78.44
24 102.00 69.79 75.49 74.25 70.00 69.87 69.79
25 92.60 * 31.74 39.58 36.03 31.78 34.37 31.74
26 42.60 * 23.89 26.67 26.67 23.89 26.67 23.89
27 23.40 * 19.08 21.87 19.08 19.08 19.08 19.08
28 519.00 388.47 412.81 410.57 388.47 393.28 407.81
29 430.40 277.13 308.62 296.86 277.33 282.80 288.49
30 314.60 233.08 251.27 243.86 233.56 236.17 233.20
31 303.80 * 148.93 176.66 164.85 148.95 153.38 155.18
32 197.60 * 114.41 132.04 124.42 114.45 116.63 114.41
33 128.00 97.06 108.35 101.71 97.40 97.64 97.91
34 173.40 * 63.98 78.23 79.88 64.02 67.21 67.07
35 86.40 * 51.16 55.10 52.84 51.16 51.16 52.84
36 41.80 * 40.06 40.06 40.06 40.06 40.06 40.06

Table 3.2: Linear programming lower bounds for RCCP

50

ID RCCP

gP(%) gP1(%) gP2(%) gP3(%) gP4(%) gP5(%)
1 0.0 0.0 0.0 0.0 0.0 0.0
2 4.3 2.5 4.2 4.2 4.3 4.3
3 7.7 6.6 7.6 7.5 7.6 7.4
4 3.0 2.1 2.3 3.0 3.0 2.5
5 38.3 31.8 36.7 38.1 37.5 36.0
6 24.3 21.3 22.0 23.4 24.1 24.0
7 38.9 31.4 34.3 38.8 38.6 37.1
8 34.9 30.4 32.9 34.4 34.6 34.9
9 35.4 27.4 28.2 33.1 35.4 35.4
10 8.0 6.4 7.1 8.0 7.7 7.1
11 29.1 23.4 27.2 29.1 28.9 28.5
12 14.8 13.6 14.5 14.7 13.4 14.6
13 37.7 30.4 30.9 37.7 36.5 35.8
14 36.7 28.2 31.4 36.6 34.5 34.0
15 27.2 20.6 25.9 26.7 26.9 26.4
16 58.3 50.7 50.6 58.3 57.1 53.2
17 51.2 47.4 38.6 50.8 50.9 50.8
18 31.6 12.0 22.6 29.5 29.1 31.6
19 16.0 14.5 14.5 16.0 15.4 15.1
20 20.9 17.6 17.9 20.9 20.6 19.2
21 16.2 12.3 14.0 16.1 15.6 14.6
22 50.3 39.1 42.2 50.3 48.5 46.4
23 46.2 37.9 36.3 46.2 42.4 45.2
24 31.6 26.0 27.2 31.4 31.5 31.6
25 65.7 57.3 61.1 65.7 62.9 65.7
26 43.9 37.4 37.4 43.9 37.4 43.9
27 18.5 6.5 18.5 18.5 18.5 18.5
28 25.2 20.5 20.9 25.2 24.2 21.4
29 35.6 28.3 31.0 35.6 34.3 33.0
30 25.9 20.1 22.5 25.8 24.9 25.9
31 51.0 41.9 45.7 51.0 49.5 48.9
32 42.1 33.2 37.0 42.1 41.0 42.1
33 24.2 15.3 20.5 23.9 23.7 23.5
34 63.1 54.9 53.9 63.1 61.2 61.3
35 40.8 36.2 38.8 40.8 40.8 38.8
36 4.2 4.2 4.2 4.2 4.2 4.2

Table 3.3: Linear programming duality gap for RCCP

51

The Rainbow Cycle Cover Problem

value is an upper bound of the optimal solution value. The remaining columns
provide lower bounds w(P), w(P1), w(P2), w(P3), w(P4) and w(P5), where P
denotes the polytope obtained by relaxing the integrality constraints, while P1,
P2, P3, P4 and P5 denote the intersection of P with (3.27), (3.26), (3.24) – (3.25),
(3.36) and (3.32), respectively. Table 3.3 provide the duality gap obtained on the
six polytopes comparing with the optimal solution. From the tables we can observe
that the valid inequalities often help to improve the lower bound w(P) and that
the best lower bounds are provided by w(P1) and w(P2). However, it is interesting
to observe that for the hardest instances, the values of the gap are significantly
high. The presence of the constant M in the objective function affects the results,
but symmetry seems to remain the main problem.

52

Chapter 4

The Rainbow Spanning Forest
Problem

“ A falling tree makes more noise than a growing forest. ”
old saying

4.1 Introduction and Problem Description

The purpose of this chapter is to present The Rainbow Spanning Forest Problem
(RSFP), another example of spanning tree problem defined on a connected undi-
rected edge-colored graph.
Let G = (V,E, L) be a connected and undirected graph, where V is the set of n
vertices, E is the set of m edges and L a set of l colors. In addition, let ` : E → L

be a coloring function that assigns to each edge e ∈ E a color `(e) from the set L.
A rainbow spanning forest of G is a spanning forest F = (VF , EF , LF) of the graph
G, with VF = V , EF ⊆ E and LF ⊆ L, such that all components are rainbow. A
component of the forest is a connected acyclic graph, therefore a rainbow component
of F is a tree T = (VT , ET , LT), where VT ⊆ V and ET ⊆ EF , in which all edges
have different colors, i.e. |LT | = |`(ET)| = |ET |. Note that if F has c̄ rainbow com-
ponents T1, . . . , Tc̄, then VF = V = ∪c̄i=1VTi , EF = ∪c̄i=1ETi and LF = ∪c̄i=1LTi . The

53

The Rainbow Spanning Forest Problem

Rainbow Spanning Forest Problem (RSFP) consists of finding a rainbow spanning
forest with the least number of rainbow trees. The RSFP on general graphs is
known to be NP-hard [34]. The remainder of this chapter is organized as follows.
In Section 4.2 we prove that the RSFP is NP-hard on trees and we also provide an
alternative proof of the NP-hardness of the problem on general graphs. Moreover,
in Section 4.3 we introduce two new integer mathematical formulations (ILP1) and
(ILP2) and for the second one we propose valid inequalities. A greedy algorithm
and a multi-start scheme applied to the greedy algorithm to improve its results are
presented in Section 4.4. Section 4.5 contains the computational results.

4.2 Problem Complexity

In this section we provide an alternative proof of the NP-hardness of the problem
on general edge-colored graphs. Moreover, we prove that the RSFP is NP-hard on
edge-colored trees. To the best of our knowledge, no proof for the NP-hardness of
the RSFP on trees has ever been put forward. A brief subsection is dedicated to a
polynomial case.

The decision version of the RSFP, namely, the Bounded Rainbow Spanning
Forest Problem (BRSFP) is as follows:

Definition 4.1. BRSFP: Given a connected, undirected and edge-colored graph
G and a positive integer z: is there a rainbow spanning forest such that the number
of components is less than or equal to z?

Theorem 4.1. The BRSFP on general edge-colored graphs is NP-Complete.

Proof. We prove the theorem by reduction from the Minimum Set Covering Problem
(MSC). Let C = {c1, ..., cd} be a set of d elements, S = {S1, ..., Sk} be a family of k
subsets of C, i.e. Si ⊆ C, i = 1, ..., k, and s be a positive number. The decisional
version of MSC consists in selecting no more than s subsets in S that cover all the
elements of C.
We define, from the generic instance of MSC, a graph G = (V,E, L), with a coloring
function of the edges, where V = {c1, ..., cd, S1, ..., Sk} ∪ {vj : j = 1, ..., b}, with
b =

∑k
t=1 |St|. Moreover we define the set E in the following way:

54

(a) (b)

Figure 4.1: (a) A generic instance of the Minimum Set Covering Problem, and, (b) the corresponding
instance of the Bounded Rainbow Spanning Problem.

• (ch, St) ∈ E if and only if ch ∈ St. We associate to this edge the color ch;

• ∀St we build a path Pt = {St, vt1 , . . . , vt|St|
} of |St| edges. We associate to

the ith edge of the path Pt the color of the ith element of St.

Therefore in G there are d + k + b vertices and 2b edges. This construction can
be made in polynomial time (see the example in Figure 4.1). We want to show
that there exists a covering of C with at most s subsets if and only if there exists a
spanning forest of G with at most s+ k rainbow components.
Consider now a cover of C having size s, that is a selection of s ordered sets
{St1 , . . . , Sts} such that their union is C. We can define a spanning forest with at
most s+ k rainbow components by selecting the edges that connect the vertex Stj
to the vertices {cj1 , ..., cjq} if the elements cj1 , ..., cjq belong to the set Stj . If an
element ch is covered by more than one set Stj , we select only one of the edges
connecting ch. Moreover, if we suppose that cj1 , ..., cjq are considered in the order
in which they appear in the set Stj , to preserve the rainbow property, the path Ptj ,
or part of the path, has to be disconnected. Two components are therefore created.

55

The Rainbow Spanning Forest Problem

Since there are s vertices Stj that are connect to some vertex ch, having assumed
that there exists a covering of C with at most s subsets, then we disconnect s paths
thus obtaining 2s components. For the remaining k − s sets St, since they are not
used for the coverage of C, we do not select the edges that connect them to some
vertex ch and therefore we can select all the edges of the corresponding path Pt.
There are exactly k − s paths that are not disconnected. Overall, the number of
rainbow components is 2s+ (k − s) = s+ k.
Conversely, suppose there exists a spanning forest with s+ k rainbow components.
Of course the vertices S1, ..., Sk are in k different components, because they can
only be connected using edges of the same color. Moreover, if we denote by Ht the
component containing the vertex St, it is easy to observe that if Ht contains at
least one edge (ch, St), it cannot contain all the edges of the path Pt. Therefore,
besides Ht another component exists, which consists of a part of the path Pt or of
the entire path. Having assumed that there are s+ k rainbow components, then
the components containing at least one edge (ch, St) are s. This s components
identify a covering of C of size s.

Theorem 4.2. The RSFP on edge-colored trees is NP-Complete.

Proof. We prove the theorem by reduction from the 3-SAT Problem. Let φ be
our formula for 3-SAT, written in a conjunctive normal form, containing d literals
U = {u1, . . . , ud} and b clauses C = {c1, . . . , cb}. The decisional version of 3-SAT
consists in verifying whether there exists an assignment of values to U that makes
every clause true. We now define, from the generic instance of 3-SAT, an acyclic
graph T = (V,E, L), with a coloring function of the edges (see the example in
Figure 4.2). At the beginning let the set of the vertices be V = {r}, where r is the
root of the graph T , and let E be the empty set. To each ch ∈ C we associate a
vertex vch and define the edge (r, vch) ∈ E of color ch. Moreover, for each ch ∈ C
we define three vertices h1,ui , h2,uj and h3,uk , where ui, uj and uk are the literals of
clause ch, and three edges (vch , h1,ui), (vch , h2,uj), (vch , h3,uk) to which we associate
the same color h. Note that the edge (vch , hi,ut) is associated with the ith literal
of the clause ch. Furthermore for all hi,ut , we build in the graph T a path Phi,ut ,
whose first vertex is hi,ut , as follows:

• Phi,ut has length |Nt| if the clause ch contains ut

56

• Phi,ut has length |Yt| if the clause ch contains ¬ut,

where, for each ut ∈ U , if ut is in the position p̄ of a clause c̄, then the pair (p̄, c̄)

belongs to Yt. Otherwise, if ¬ut is in the position p̄ of a clause c̄, then the pair (p̄, c̄)

belongs to Nt. For instance, in Figure 4.2, for literal u1 we have Y1 = {(1, 1), (1, 2)}
and N1 = {(1, 3)}. More in detail, for each ut ∈ U and for each ((y1, y2), (n1, n2)),
i.e. (y1, y2) ∈ Yt and (n1, n2) ∈ Nt, we add an edge e to the path Py2

y1,ut
and an

edge f to the path Pn2
n1,ut

. To e and f we assign a color a, different from all the
colors used until now. Since |Y1| = 2 and |N1| = 1, we have two pairs associated
to u1: ((1, 1), (1, 3)) and ((1, 2), (1, 3)). For ((1, 1), (1, 3)), in Figure 4.2, we have
(11,u1 , w1) and (31,u1 , w2) in P11,u1

and P31,u1
, respectively, having color 4. Moreover,

for ((1, 2), (1, 3)) we have (21,u1 , w3) and (w2, w4) in P21,u1
and P31,u1

, respectively,
having color 5. Note that since in a same clause cannot be present a literal ut and
its negated ¬ut, each path Phi,ut is always rainbow. Therefore the set of vertices,
edges and colors of the tree T are the following:

• V = {r} ∪ {vch , h1,ui , h2,uj , h3,uk : h = 1, . . . , b} ∪ {wi : i = 1, . . . , 2q̄},

• E = {(r, vch), (vch , h1,ui), (vch , h2,uj), (vch , h3,uk) : h = 1, . . . , b} ∪ {ei : i =

1, . . . , 2q̄},

• L = {ch, h : h = 1, . . . , b} ∪ {i : i = 1, . . . , q̄},

where q̄ =
∑d

t=1 |Yt| × |Nt|. This construction can be accomplished in polynomial
time.
We want to show that there is an assignment of values to U that makes every clause
true if and only if exists a spanning forest of T using 2b+ 1 rainbow components.
Note that, in order to preserve the rainbow property, at most one of the three
edges (vch , h1,ui), (vch , h2,uj), (vch , h3,uk), associated with each clause ch, for all
h ∈ {1, . . . , b}, can appear in a rainbow spanning forest (the three edges are inci-
dent to the same vertex vch and have the same color h). Consider now an assignment
of values to U which makes every clause true. We can define a rainbow spanning
forest with 2b + 1 components by selecting the edges {(r, vch) : h ∈ {1, . . . , b}},
whose colors are all different. Furthermore, for each clause ch, among (vch , h1,ui),
(vch , h2,uj), (vch , h3,uk), we select the edge associated with the literal having value

57

The Rainbow Spanning Forest Problem

(a)

(b)

Figure 4.2: (a) A generic instance of the 3-SAT Problem, and, (b) the corresponding instance of
the Bounded Rainbow Spanning Forest Problem in Edge-Colored Trees.

true in ch. If more than one literal is true, we arbitrarily select only one of the
corresponding edges. Moreover, we select all the edges of the rainbow path Phi,ut ,
for all hi,ut . Note that two edges belonging to the rainbow paths have the same
color if and only if they are associated with pairs of literals (L1, L2) such that if
L1 = ut, then L2 = ¬ut, which surely cannot be simultaneously true. Therefore,
at least one of the two edges linking these paths to the vertices associated to the
clauses containing the literals, does not belong to the rainbow spanning forest.
This ensures that the two edges belong to different rainbow components. In total,
we do not select 2b edges and therefore we obtain a rainbow spanning forest with

58

2b+ 1 components.
Conversely, suppose that there exists a spanning forest with 2b+ 1 rainbow com-
ponents. As previously observed, edges (vch , h1,ui), (vch , h2,uj), and (vch , h3,uk),
h ∈ {1, . . . , b}, have the same color and are incident to the same vertex vch , there-
fore at most one of them can appear in the rainbow spanning forest. Moreover,
since we have supposed that exists a spanning forest with 2b+ 1 rainbow compo-
nents, we are sure that exactly one of them has to appear in the rainbow spanning
forest, otherwise it would be impossible to have the 2b+ 1 components. The ones
that appear in the rainbow spanning forest with 2b+ 1 components represent an
assignment of values to U , which makes every clause true.

4.2.1 Problem Complexity: A Polynomial Case

In this section we want to prove that the RSFP is polynomially solvable when the
optimal solution is a tree, namely when the graph contains a rainbow spanning tree.
Obviously, it is not possible to reach this goal by enumerating all the spanning
trees of G. This is because the algorithms that enumerate all the spanning tree of
G are pseudo-polynomial [29].

Given a spanning tree T of G, it is a maximum tree of G if and only if |LT | is
maximum. The following theorem holds [5]:

Theorem 4.3. The problem of finding a maximum tree T in G is solvable in
polynomial time.

In particular, the algorithm of Broersma and Li [5] computes the maximum
tree of G in O(n2m) time.

Theorem 4.4. RSFP is solvable in polynomial time if there exists in G a rainbow
spanning tree.

Proof. Given a graph G, let T ′ be the maximum tree of G computed by the
algorithm proposed by Broersma and Li. It is easy to see that if |LT ′| = n − 1,
then T ′ is a rainbow spanning tree of G.

59

The Rainbow Spanning Forest Problem

4.3 Mathematical Formulations

In this section we provide two different mathematical formulations for the RSFP.
The two formulations use the following proposition:

Proposition 4.1. Let G = (V,E) be a graph on n vertices, and let F = (V,EF)

be a spanning forest of G. Then, 0 ≤ |EF | ≤ n− 1. Furthermore, if |EF | = n− k,
then F has k components. In particular, F is a spanning tree if and only if it
contains n− 1 edges.

Therefore, it is easy to observe that given a graph G, a spanning forest of G
with the least number of rainbow components is a rainbow spanning forest with
the maximum number of edges.

4.3.1 First Mathematical Formulation

In this section we present a first integer linear mathematical formulation for the
RSFP. We introduce the set of binary variables αc, for c = 1, . . . , c̄, associated with
each component c of a rainbow spanning forest, whose value is equal to 1 if and
only if c contains at least one vertex. We define binary variables ycv equal to 1 if
and only if vertex v belongs to component c, and binary variables xce equal to 1

if and only if edge e belongs to component c. Note that the number of variables
depends on the number of possible components, so it is useful to have a good upper
bound on the optimal value. If we do not know an upper bound, we set c̄ = n− 1,
that is equal to the maximum number of rainbow components that we can identify.
In order to introduce constraints that can help prevent equivalent solutions, we
define an index set Iq = {1, . . . , q}, for an integer q, and the vertex set V = In.
The formulation (ILP1) is then as follows:

minimize z =
c̄∑
c=1

αc (4.1)

subject to ∑
v∈V

ycv ≤ (l + 1)αc c = 1, . . . , c̄ (4.2)

60

αc ≤
∑
v∈V

ycv c = 1, . . . , c̄ (4.3)

c̄∑
c=1

ycv = 1 v ∈ V (4.4)

xce ≤ ycv v ∈ V, e ∈ δ(v) (4.5)∑
e∈Ek

xce ≤ αc c = 1, . . . , c̄, k ∈ L (4.6)

c̄∑
c=1

∑
e∈E(S)

xce ≤ |S| − 1, S ⊆ V, |S| ≥ 2 (4.7)

∑
e∈E

xce =
∑
v∈V

ycv − αc c = 1, . . . , c̄ (4.8)

αc+1 ≤ αc c = 1, . . . , c̄− 1 (4.9)

y1
1 = 1 (4.10)

ycv ≤
∑
w<v

yc−1
w v ∈ V \ {1}, c = 3, . . . , c̄ (4.11)

αc ∈ {0, 1} c = 1, . . . , c̄ (4.12)

ycv ∈ {0, 1} v ∈ V, c = 1, . . . , c̄ (4.13)

xce ∈ {0, 1} e ∈ E, c = 1, . . . , c̄, (4.14)

where δ(v) denotes the set of edges incident to v in G and Ek = {e ∈ E : `(e) = k}.
The objective function (4.1) requires the minimization of the number of rainbow
components. Constraints (4.2) and (4.3) are logical constraints linking the binary
variables αc with the binary variables ycv. Note that the maximum number of
vertices that can belong to the same component is l + 1 since l is the number of
different colors of the graph. Constraints (4.4) ensure that each vertex belongs
to exactly one component. Constraints (4.5) impose that if a vertex is not in the
component c, then the edges incident to that vertex cannot belong to the same
tree. Constraints (4.6) impose that a component cannot contain two edges having
the same color, ensuring the rainbow property. Constraints (4.7) are the subtour
elimination constraints, introduced by Dantzig et al. [15], adapted to our variables.
Constraints (4.8) impose that each component is a tree. They guarantee solutions
with no more than one tree associated to each variable αc. Constraints (4.9), (4.10)

61

The Rainbow Spanning Forest Problem

and (4.11) help break symmetries. Constraints (4.9) mean that there will never
be a variable αc+1 equal to one if αc is equal to zero, for any c. The constraints
(4.10) and (4.11) are the symmetry breaking constraints introduced by Fischetti
et al. [18] in the context of the Vehicle Routing Problem. Vertex v can belong
to a component of index c if and only if at least one vertex w with a lower index
belongs to the component of index c− 1. For the resolution of the model we also
use the following constraints:

ycv ≤ αc v ∈ V, c = 1, . . . , c̄ (4.15)∑
e∈δk(v)

xce ≤ ycv v ∈ V, c = 1, . . . , c̄, k ∈ L (4.16)

c̄∑
c=1

{
xce +

∑
f∈{δk(u)∪δk(v)}

xcf

}
≤ 2 e = (v, u) ∈ E, k ∈ L \ {`(e)} (4.17)

proposed by Silvestri et al. [51] to solve the Rainbow Cycle Cover Problem, and
which are valid for the RSFP. Constraints (4.15) state that if a vertex belongs to a
component, then the variable representing that component must be used. The valid
inequalities (4.16) impose that if vertex v belongs to a tree c, then at most one
edge having color k and incident to v can be selected. Constraints (4.17) impose
that if edge e = (v, u) is selected, then at most one edge having color k 6= `(e) and
belonging to the set {δk(v) ∪ δk(u)} can be selected.

4.3.2 Second Mathematical Formulation

In this section we present a second integer linear mathematical formulation for the
RSFP. Let xe be a binary variable equal to 1 if and only if edge e ∈ E belongs to
the rainbow spanning forest. Before showing the formulation we need the following
proposition:

Proposition 4.2. Let Ek, k ∈ L, be the set of edges of the graph having color k,
i.e. Ek = {e ∈ E : `(e) = k}, then we can write E = ∪k∈LEk. Moreover, let nS be
the number of components in S, S ⊆ V , |S| ≥ 2, then it is easy to observe that∑

e∈Ek(S)

xe ≤ nS

62

where Ek(S) = Ek ∩ E(S), and

ns = |S| −
∑

e∈E(S)

xe

are valid for any rainbow spanning forest, and hence∑
e∈Ek(S)

xe ≤ |S| −
∑

e∈E(S)

xe

that is ∑
e∈Ek(S)

xe +
∑

e∈E(S)

xe ≤ |S| S ⊆ V, |S| ≥ 2, k ∈ L (4.18)

are valid for the RSPF and ensure the rainbow property.

The (ILP2) formulation is then as follows:

z = max
∑
e∈E

xe (4.19)

∑
e∈E

xe ≤ |S| − 1 S ⊆ V, |S| ≥ 2 (4.20)∑
e∈Ek(S)

xe +
∑

e∈E(S)

xe ≤ |S| S ⊆ V, |S| ≥ 2, k ∈ L (4.21)

xe ∈ {0, 1} e ∈ E. (4.22)

The objective function 4.19 requires the maximization of the edges selected which,
thanks to Proposition 4.1, ensures a rainbow spanning forest with the least number
of components. Constraints 4.20 are the subtour elimination constraints proposed
by Dantzig, Fulkerson and Johnson [15]. Constraints 4.21 ensure the rainbow
property, as shown in Proposition 4.2.
If a weight we is associated to the edges, the objective function (4.19) becomes

z = max
∑
e∈E

wexe. (4.23)

63

The Rainbow Spanning Forest Problem

Theorem 4.5. Constraints (4.21) and (4.22) define the set of feasible solutions
for the RSFP, i.e. constraints (4.20) are redundant.

Proof. By summing constraints (4.21) on all colors k ∈ L we obtain∑
e∈E(S)

xe + l
∑

e∈E(S)

xe ≤ l|S| S ⊆ V, |S| ≥ 2,

and with simple algebraic manipulations

∑
e∈E(S)

xe ≤ |S| −
1

l + 1
|S| S ⊆ V, |S| ≥ 2.

We distinguish two cases:

• if |S| > l + 1, then

|S| − 1

l + 1
|S| < |S| − 1

and hence ∑
e∈E(S)

xe ≤ |S| − 1 S ⊆ V, |S| > l + 1,

• if |S| ≤ l + 1, then

|S| − 1

l + 1
|S| = |S| − ε 0 < ε ≤ 1

but since
∑

e∈E(S) xe is a sum of integers, it is an integer, which implies that

∑
e∈E(S)

xe ≤b|S| − εc

and therefore∑
e∈E(S)

xe ≤ |S| − 1 S ⊆ V, |S| ≤ l + 1.

64

Note that if we ignore the integrality restrictions on variables xe, e ∈ E, Theorem
4.5 is no longer verified. Figure 4.3 provides an example of non-integer solution

Figure 4.3: Non-integer solution.

that does not verify the theorem. It is easy to see that for S = V , constraints
(4.21) are verified for all k ∈ L, while constraints (4.20) are not satisfied by the
non-integer solution.

4.3.2.1 Valid inequalities for ILP2

This section is dedicated to some valid inequalities for the RSFP.
Given a tree T = (VT , ET , LT), where VT ⊆ V , ET ⊆ E and LT ⊆ L, we can

write the set of edges ET as follows

ET = ETL ∪ ETI

where ETL = {(u, v) ∈ ET : |δT (u)| = 1 or |δT (v)| = 1} and ETI = {(u, v) ∈ ET :

|δT (u)| > 1 and |δT (v)| > 1}.

Proposition 4.3. Let T̄ be a tree of G such that

• ET̄I is rainbow,

• |`(ET̄L)| = 1,

65

The Rainbow Spanning Forest Problem

• `(ET̄I) ∩ `(ET̄L) = ∅,

then ∑
e∈ET̄

xe ≤ |VT̄ | − |ET̄L| (4.24)

is valid for the RSFP.

Proof. It is easy to observe that ET̄ = ET̄L ∪ET̄I and that |VT̄ | = |ET̄L|+ |ET̄I |+ 1,
therefore the (4.24) becomes∑

e∈ET̄L

xe +
∑
e∈ET̄I

xe ≤ |ET̄I |+ 1.

Let us suppose by contradiction that there exists a feasible solution x̄ and a tree T̄
such that ∑

e∈ET̄L

x̄e +
∑
e∈ET̄I

x̄e > |ET̄I |+ 1,

If we denote by β the term
∑

e∈ET̄ (I) x̄e, it is easy to observe that |ET̄I | + 1 − β
represents the number nRC of rainbow components that we obtain by selecting β
edges in the rainbow subtree (VT̄I , ET̄I , LT̄I). Therefore∑

e∈ET̄L

x̄e > |ET̄I (I)|+ 1− β = nRC

and then ∑
e∈ET̄L

x̄e > nRC

which is impossible because we have supposed that x̄ is a feasible solution for the
RSFP.

It is easy to see that the subgraph ({v}, δk(v), {k}), for a given vertex v and a
color k, is a tree (see Figure 4.4(a)) such that

66

• δk(v)I = ∅,

• |δk(v)L| = 1,

• `(δk(v)I) ∩ `(δk(v)L) = ∅ ∩ {k} = ∅,

therefore it satisfies all properties described in Proposition 4.3 and hence∑
e∈δk(v)

xe ≤ 1 v ∈ V, k ∈ L (4.25)

are a particular case of (4.24), valid for the RSFP. From now on, we will refer to
these as the star inequalities.

The constraints

xe +
∑

f∈{δh(v)∪δh(u)}

xf ≤ 2 e = (v, u) ∈ E, `(e) = k, h ∈ L \ {k} (4.26)

are another particular case of (4.24), valid for the RSFP. In particular (see Figure
4.4(b))

• e represents the internal rainbow set such that `(e) = k,

• h is the color of all the edges incident to leaf vertices,

• k 6= h and therefore {k} ∩ {h} = ∅.

From now on, we will refer to these as the flake inequalities.
Note that (4.25) and (4.26) are the same constraints proposed by Silvestri et al.
[51] to solve the Rainbow Cycle Cover Problem, adapted to the ILP2 formulation.

Proposition 4.4. Let R = (VR, ER, LR) be a rainbow cycle of cardinality three,
i.e. VR = {a, b, c}, ER = {eab, ebc, eca} and LR = {k1, k2, k3}, and let ∆h(a, b, c) =

{δh(a) ∪ δh(b) ∪ δh(c)}, h ∈ L. The constraints

xeab + xebc + xeca +
∑

f∈∆h(a,b,c)

xf ≤ 3 h /∈ LR (4.27)

67

The Rainbow Spanning Forest Problem

(a) (b)

Figure 4.4: (a) An example of valid inequalities 4.25, and, (b) an example of valid inequalities 4.26.

are valid for the RSFP.
Moreover, let h ∈ LR, we can suppose h = `(eab) = k1, then

2xeab + xebc + xeca +
∑

f∈∆k1
(a,b,c)\{eab}

xf ≤ 3 (4.28)

is valid for the RSFP.

Proof. Constraints (4.27) state that if at least one edge having color h /∈ LR is
selected, the cycle cannot be closed. Constraints (4.28) break the cycle because if
the three edges are selected the constraint is violated. Moreover, they impose that if
edge eab is selected, no more than one edge from the set ∆k1(a, b, c)\{eab}∪{ebc, eca}
can belong to the solution.

4.4 The Greedy Algorithm

In this section we introduce a greedy algorithm for the Rainbow Spanning Forest
Problem. Moreover, to further improve the results we embed it in a multi-start
scheme. As described below, the greedy algorithm uses three different selection
criteria in order to perform at each iteration the most promising choice. Given a
rainbow spanning forest F = (V,EF , LF), we denote by ÊF the set of feasible edges
in E \ EF , that is the set of edges whose endpoints belong to different components
of F and such that an edge and the two components to which the endpoints belong
to, do not have colors in common. Formally, ÊF = {(u, v) ∈ E \ EF : u ∈ Ti, v ∈
Tj, Ti 6= Tj, {`(Ti) ∩ `(Tj)} = ∅, {`(u, v)} ∩ {(`(Ti) ∪ `(Tj))} = ∅}, where Ti and

68

(a) (b)

Figure 4.5: (a) An example of valid inequalities 4.27, and, (b) an example of valid inequalities 4.28.

Tj are two generic components of F .
The greedy algorithm starts with the trivial feasible solution F0 = (V,EF0 , LF0),
with EF0 = LF0 = ∅, in which each vertex is an acyclic and rainbow component.
At iteration k the algorithm selects a feasible edge (u, v) ∈ ÊFk

, with u ∈ Ti and
v ∈ Tj, and builds the new rainbow spanning forest Fk+1 by adding the edge (u, v)

in Fk, that is Ek+1 = Ek ∪ {(u, v)} and Lk+1 = Lk ∪ {`(u, v)}. It is easy to see
that the solution Fk+1 contains a new larger tree, with respect to Fk, obtained by
joining Ti and Tj through (u, v). For this reason, at each iteration the number of
trees in the rainbow spanning forest decreases by one, while the number of edges
increases by one. The set of feasible edges ÊFk+1

is obtained by removing from ÊFk

all edges that are no longer feasible due to the insertion of (u, v). The algorithm
stops when there are no more feasible edges. Procedure 3 shows the pseudocode of
the greedy algorithm. A key point of the greedy algorithm is the selection of the
feasible edge at each iteration. To this end, we define the function w : ÊFk

→ R

that associates a weight to the feasible edges in ÊFk
(line 4). The weight w(u, v)

represents an estimate of the number of potential improvements that we lose by
adding edge (u, v) at iteration k. For this reason, the algorithm always selects the
edge of lowest weight (line 5). The details regarding the computation of the weights
are given below. Suppose that the graph depicted in Figure 4.6 is the rainbow
spanning forest Fk built by the greedy algorithm at iteration k. The dashed edges

69

The Rainbow Spanning Forest Problem

Algorithm 3: Greedy Algorithm
Input: graph G = (V,E, L).
Output: a rainbow spanning forest F of G.

1 Set the number of components z equal to n and k = 0

2 Fk trivial starting solution, ÊFk
= E

3 while ÊFk
is not empty do

4 update the weights of feasible edges e ∈ ÊFk

5 select feasible edge (u, v) ∈ ÊFk
with the min weight

6 Fk+1 ← Fk ∪ {(u, v)}
7 update the set of feasible edges ÊFk+1

8 update the number of components z = z − 1
9 k = k + 1

10 return Fk.

are the feasible edges connecting the four rainbow trees T1, T2, T3, T4. Let δk(Ti)
be the sets of feasible edges incident to the vertices belonging to Ti. Moreover,
let Nk(Ti) be the set of trees that can be connected to Ti in Fk through at least
one feasible edge. Formally, δk(Ti) = {(u, v) ∈ ÊFk

: u ∈ VTi or v ∈ VTi} and
Nk(Ti) = {Tj ∈ TFk

: ∃ (u, v) ∈ ÊFk
, u ∈ Ti, v ∈ Tj}. For instance, in Figure 4.6 we

have δk(T1) = {(v1, v5), (v2, v4), (v2, v8), (v3, v8), (v3, v11)} and Nk(T1) = {T2, T3, T4}.
The first information that we want to compute, for each tree Ti, is the “potential”
number of trees in TFk

that can be joined to Ti through feasible edges. We call
this number the joining number and we denote it by MTi . It is easy to see that
|Nk(Ti)| is a trivial upper bound to the value of MTi . We compute MTi by solving
the maximum matching problem on a bipartite graph Bi in which we define the
two sets of vertices V 1

Bi
and V 2

Bi
as follows:

• for each l ∈ `(δk(Ti)) we define vertex l i.e. l ∈ V 1
Bi
;

• for each Tj ∈ Nk(Ti) we define vertex Tj i.e. Tj ∈ V 2
Bi
.

Moreover, for each feasible edge (u, v) ∈ δk(Ti), with v ∈ Tj , a corresponding edge in
Bi between vertices `(u, v) and Tj is introduced. Figure 4.7(a) depicts the bipartite
graph B1 associated to the tree T1 of the Figure 4.6. Since `(δk(T1)) = {6, 8}
and Nk(Ti) = {T2, T3, T4} then the set of vertices V 1

B1
contains only two vertices,

70

Figure 4.6: Feasible rainbow spanning forest Fk with four components

V 1
B1

= {6, 8}, while the second set is composed of three vertices, V 2
B1

= {T2, T3, T4}.
Regarding the edges in Bi, since the edges with color 6 in δk(T1) connect T1 to T2

and to T4 then in the bipartite graph we connect node 6 with the vertices T2 and
T4, and so on. The maximum matching of B1 is equal to two (edges in bold) and
then MT1 = 2 that is tighter than |Nk(T1)| = 3. This means that T1 can be joined
with, at most, two trees in TFk

. The edges of the maximum matching “suggest”
which are the feasible edges to select. For instance, edge (8, T4) of the maximum
matching corresponds to the feasible edge (v3, v8) in ÊFk

and by joining the trees
T1 and T4 through (v3, v8), we obtain a larger tree, denoted by T1,4(v3, v8), and
the new solution Fk+1 shown in Figure 4.7(b). From now on, given a feasible edge
(u, v), with u ∈ Ti and v ∈ Tj, we denote by Ti,j(u, v) the tree obtained by joining
Ti and Tj through edge (u, v). Note that in Fk+1 it is possible to join the new
tree T1,4(v3, v8) with T2, through (v2, v4), performing, in this way, the two joinings
estimated by MT1 . However, the number of joinings carried out does not always

71

The Rainbow Spanning Forest Problem

(a) (b)

Figure 4.7: Feasible solution Fk+1 obtained by adding edge (v3, v8).

coincide with MTi because the choice of the feasible edge to select affects the final
result and when there are more maximum matchings in Bi there are also more
choices available. For instance, Figure 4.8(a) shows another maximum matching
of B1. By joining T1 and T3 in Fk through the feasible edge (v3, v11), as shown
in Figure 4.8(b), we obtain the tree T1,3(v3, v11) with δk+1(T1,3(v3, v11)) = ∅. In
this case we carried out a single joining compared to the two joinings estimated.
The previous example shows that it is necessary to select the feasible edges in an
accurate way. For this reason, we propose to first join the trees with lowest joining
number (first criterion). Indeed, there is a high probability that these trees will
remain isolated components if they are not joined as soon as possible because a
low value of joining number means less joining opportunities. For instance, in the
solution Fk, depicted in Figure 4.6, MT1 = MT2 = MT3 = 2 and MT4 = 1 hence T4

is the tree on which carry out the joining operation with one of its neighbor, T1 in
this case. Since this joining operation can be carried out through edges (v2, v8) or
(v3, v8), then we add another criterion to select the most promising edge. For each
edge (u, v) ∈ δk(T4), the greedy algorithm computes the joining number of the new

72

(a) (b)

Figure 4.8: Feasible solution Fk+1 obtained by adding edge (v3, v11).

tree T1,4(u, v), obtained by joining T1 and T4 through (u, v), and it selects the edge
(u, v) which value MT1,4(u,v) is the maximum one (second criterion).
As previously shown, by selecting edge (v3, v8) we obtain the new solution reported
in Figure 4.7 with MT1,4(v3,v8) = 1. Since also MT1,4(v2,v8) = 1 then we provide a
further selection criterion consisting of choosing the edge which color is less frequent
in the current solution (third criterion). In our example, `(v3, v8) = 8 and there
are no edges in EFk

with color 8 while the color 6 of edge (v2, v8) belongs to `(EFk
)

due to edge (v10, v11). For this reason, the greedy algorithm selects edge (v3, v8)

and, thanks to this choice, it finds the optimal solution.

Summarizing, to each feasible edge (u, v) of Êk, with u ∈ Ti and v ∈ Tj, we
associate a weight according to the following formula:

w(u, v) = n×min(MTi ,MTj)−MTi,j(u,v) +
|EFk

(`(u, v))|
z

, (4.29)

where EFk
(c) = {e ∈ EFk

: `(e) = c}. The factor min(MTi ,MTj) represents the first
selection criterion and is multiplied by the coefficient n to ensure that the priority

73

The Rainbow Spanning Forest Problem

is given to the trees with lowest joining number. The term MTi,j(u,v) represents the
second selection criterion and since we prefer higher values, this value is subtracted
from the first term. Finally, the last term represents the average number of the
color `(u, v) in Fk. The weights for the feasible edges of the solution in Figure 4.6
are the following:

w(v1, v5) = 10×min(2, 2)− 1 + 0 = 19

w(v2, v4) = 10×min(2, 2)− 1 +
1

4
= 19.25

w(v2, v8) = 10×min(2, 1)− 1 +
1

4
= 9.25

w(v3, v8) = 10×min(2, 1)− 1 + 0 = 9

w(v3, v11) = 10×min(2, 2)− 0 + 0 = 20

w(v6, v10) = 10×min(2, 2)− 0 +
1

4
= 20.25

w(v6, v11) = 10×min(2, 2)− 0 +
1

4
= 20.25

4.4.1 The multi-start scheme

The greedy algorithm starts from the trivial solution F0 and, at each step k, adds
a new edge from the set of feasible edges ÊFk

until ÊFk
is not empty. The selection

of edges is carried out according to their weights, that are dynamically updated
according to the choices performed in the previous steps. This means that a bad
choice carried out in the first steps can heavily affect the quality of the final solution
produced. We face this problem by embedding the greedy algorithm in a multi-start
scheme which, by performing a deeper exploration of the solution space, finds better
solutions. More specifically, the multi-start algorithm invokes the greedy algorithm
several times with different starting feasible solutions in which a first edge is fixed.
This first edge is chosen from a set of edges Ẽ that the multi-start algorithm builds
at the beginning of the computation. The key point is how the set Ẽ is built
because i) the effectiveness of the multi-start algorithm depends on the edges in this
set, and ii) the performance of the multi-start algorithm depends on the cardinality
of Ẽ, since the greedy algorithm is invoked |Ẽ| times. To build Ẽ, the multi-start
algorithm first computes the weight of all edges, according to equation (4.29), and

74

later, for each vertex v ∈ V , it inserts in Ẽ the edge of δ(v) with the lowest weight.
If this edge already belongs to Ẽ it is ignored and a new vertex is selected. This
construction ensures that the greedy algorithm will build each solution starting
from a different vertex. The selection of the most promising edge for each vertex
rather than the most promising at all, i.e. the edges with n lowest weights, allows
a better exploration of the solution space. Since the cardinality of Ẽ affects the
performance of the multi-start algorithm, we have to control the growth of this
cardinality as the instances size increases. This choice, on the one hand, preserves
the performance of the algorithm even on the larger instances and, on the other
hand, reduces the quality of solutions found on these instances. However, this
reduction does not have a major impact since fixing a single edge at beginning of
the computation does not significantly affect the final solution when the instance
size increases. For this reason, we bound the cardinality of Ẽ as follows:

|Ẽ| ≤ min

{⌊
10 +

500√
n

⌋
, n

}
. (4.30)

Finally, the multi-start algorithm invokes |Ẽ| times the greedy algorithm and
returns the best solution among the |Ẽ| solutions identified.

4.5 Computational results

In this section we present computational results obtained by solving the ILP1, the
greedy algorithm and the multi-start method. The greedy algorithm and the multi-
start scheme were coded in Java and computational experiments were performed
on a 64-bit GNU/Linux operating system, 96 GB of RAM and one processor Intel
Xeon X5675 running at 3.07 GHz. The mathematical model ILP1 was coded in
C and solved using IBM ILOG CPLEX 12.5 on the same machine. To the best
of our knowledge, there are no available benchmark instances for the RSFP and
we therefore used randomly generated instances. Some instances considered in the
current study were introduced by Silvestri et al. [51] for the Rainbow Cycle Cover
Problem. Here we create additional instances according to the procedure used in
[51], and described next.

75

The Rainbow Spanning Forest Problem

Each instance is characterized by the number of vertices n (size), the number of
edges m and the number of colors l. Given the number of vertices n, the number
of edges is set to m = dn(n−1)

2
× d + ne, with d ∈ {0.1, 0.2, 0.3}, and the number

of colors is set to d1
2

log(m)e, dlog(m)e and d2 log(m)e. Note that the number of
colors is always less than n, therefore the optimal solution cannot be a tree and
hence the instances are not polynomially solvable. The total number of different
scenarios is nine for each size. Each scenario is composed by five different instances
having the same number of vertices, edges and colors and the results reported in
each line of the tables are the average values computed over these five instances.
The combination of all these parameters allows us to verify how the effectiveness
and performance of our algorithms are affected by the number of vertices, the
density of the graph and the number of colors. The scenarios are divided into two
groups: the small scenarios, where the value of n ranges from 20 to 50 with a step
equal to 10, and the large scenarios, where the value of n ranges from 100 to 400
with a step equal to 100.

Note that the density of the generated instances is low (up to 0.3) in order
to obtain meaningful results. It is easy to see that for higher density values the
value of the optimal solution almost always coincides with the trivial lower bound
LB = d n

l+1
e. To explain this we need to introduce the definition of rainbow star.

Definition 4.2. Given an edge-colored tree T = (VT , ET , LT) with |VT | = k + 1,
this tree is a rainbow star if and only if

• each edge has a different color, i.e. |LT | = |ET | = k;

• k vertices are leaves, i.e. k vertices have degree equal to one in T , and one
vertex has degree k.

Note that, for any vertex v ∈ V , as the density increases the probability that
δ(v) contains a rainbow star increases. Therefore, for higher density is high the
probability of obtaining a trivial optimal solution with d n

l+1
e rainbow stars.

Table 4.1 reports the results of the mathematical model (ILP1), of the Greedy
(GA) and of the multi-start (MS) algorithms, on small scenarios. The first four
columns report the characteristics of each scenario: scenario ID, the number of
vertices (n), the number of edges (m), the number of colors (l), respectively. The

76

ID n m l ILP1 GA MS GAP

Value Seconds Value Seconds Value Seconds GA MS

1 20 39 3 6.6 2.94 8.0 0.01 7.0 0.10 1.4 0.4
2 6 4.2 3.74 5.0 0.02 4.8 0.10 0.8 0.6
3 11 2.2 1.10 3.0 0.02 2.8 0.13 0.8 0.6
4 20 58 3 5.6 3.90 6.4 0.02 6.4 0.13 0.8 0.8
5 6 3.2 2.14 4.4 0.03 3.6 0.15 1.2 0.4
6 12 2.0 1.21 2.2 0.04 2.0 0.05 0.2 0.0
7 20 77 4 4.0 2.30 4.8 0.03 4.4 0.11 0.8 0.4
8 7 3.0 1.63 3.2 0.05 3.0 0.07 0.2 0.0
9 13 2.0 1.63 2.0 0.06 2.0 0.06 0.0 0.0

10 30 74 4 8.4 129.42 8.8 0.03 8.8 0.20 0.4 0.4
11 7 5.0 204.63 6.2 0.03 5.4 0.25 1.2 0.4
12 13 3.0 8.02 3.6 0.06 3.4 0.16 0.6 0.4
13 30 117 4 6.8(1) 2199.73 8.4 0.04 7.4 0.33 1.6 0.6
14 7 4.2 16.72 4.8 0.07 4.4 0.27 0.6 0.2
15 14 2.6 51.51 3.2 0.09 3.0 0.49 0.6 0.4
16 30 161 4 6.4 36.88 8.0 0.07 6.4 0.32 1.6 0.0
17 8 4.0 17.27 4.6 0.09 4.0 0.12 0.6 0.0
18 15 2.0 18.84 3.0 0.12 2.2 0.39 1.0 0.2

19 40 118 4 10.2 2283.43 12.6 0.03 12.0 0.29 2.4 1.8
20 7 6.4(2) 4711.31 8.2 0.06 7.4 0.41 1.8 1.0
21 14 3.4(2) 4348.36 5.0 0.08 4.0 0.51 1.6 0.6
22 40 196 4 8.8 2336.74 11.0 0.08 9.8 0.48 2.2 1.0
23 8 5.0 121.37 6.2 0.10 5.2 0.43 1.2 0.2
24 16 3.0 82.75 3.8 0.14 3.2 0.33 0.8 0.2
25 40 274 5 7.0 89.99 7.8 0.11 7.0 0.22 0.8 0.0
26 9 4.0 86.37 5.0 0.14 5.0 1.00 1.0 1.0
27 17 3.0 139.92 3.2 0.18 3.0 0.21 0.2 0.0

28 50 173 4 12.6(4) 8994.51 16.0 0.06 14.6 0.35 3.4 2.0
29 8 9.0(4) 10652.42 10.4 0.08 9.2 0.46 1.4 0.2
30 15 4.8(3) 6536.58 5.4 0.12 5.4 0.54 0.6 0.6
31 50 295 5 9.0 618.57 11.0 0.10 9.8 0.55 2.0 0.8
32 9 5.2(1) 2318.95 6.6 0.14 6.0 0.84 1.4 0.8
33 17 3.0 1009.18 4.4 0.17 4.0 1.11 1.4 1.0
34 50 418 5 9.0 294.84 9.4 0.14 9.0 0.59 0.4 0.0
35 9 5.0 295.96 6.0 0.20 6.0 1.19 1.0 1.0
36 18 3.0 337.71 4.0 0.28 3.2 0.67 1.0 0.2

Table 4.1: Test results of ILP1 model, GA and MS algorithms on the small scenarios.

77

The Rainbow Spanning Forest Problem

columns ILP1, GA and MS are divided into two subcolumns (Value and Seconds)
reporting the solution value and the computing time in seconds, respectively. We
have imposed a time limit of 10, 800 seconds. Whenever α instances of a scenario
were not solved to optimality by ILP1, within the time limit, we report (α) close to
the solution value, therefore the value reported is an upper bound on the optimal
solution value. In this cases we say that a ILP1 failure occurs and we refer to
the solutions with the symbol (α) as the best bound solutions. The last column
(GAP) reports the gaps between the solution computed by ILP1 and the solutions
found by GA and by MS, respectively. We mark in bold the gaps equal to zero to
highlights the scenarios where the algorithms find an optimal solution.

The results of Table 4.1 show that ILP1 finds an optimal solution on 29 out of
36 scenarios and that the hardest scenarios to solve are those with lowest density
(d = 0.1). Indeed, five of the seven ILP1 failures occur on scenarios with density
0.1 (ID n◦ 20, 21, 28, 29 and 30). The remaining two failures occur on scenarios
with density 0.2 (ID n◦ 13 and 32). Finally, on the scenarios with density 0.3

ILP1 always finds the optimal solution and the CPU time is always lower than
six minutes. These results highlight the good performance of our mathematical
model that almost always finds the optimal solution for the instances with a density
greater than or equal to 0.2. The worst results are obtained on the scenarios
with density 0.1 which from now on we denote as the critical scenarios. This is
probably due to the low number of optimal solutions available. Indeed, as the
density decreases, the number of equivalent feasible solutions decreases. Therefore
there may be a really small number of optimal solutions, and then it results harder
to find one of them.

It is interesting to observe that for the greedy and the multi-start algorithms
the critical scenarios are also the hardest to solve. Indeed, the highest gap values
occur on these scenarios and on the critical scenario n◦ 28, the peak (the maximum
gap value) of GA and MS occurs. This peak is equal to 3.4 for GA and 2.0 for MS.

Regarding the effectiveness of the two algorithms, as expected the results of MS
are much better than those of GA. MS finds the optimal solution on eight out of 29
scenarios where the optimal solution is known while GA finds the optimal solution
only one time (n◦ 9). Moreover, the gap value of MS is lower than or equal to one
on 34 out of 36 scenarios while for GA this condition holds only 21 times.

78

(a) (b) (c)

Figure 4.9: The AvgGap of GA and MS algorithms on the larger scenarios.

From the gap values it is evident that the density of the graph is the main
parameter affecting the effectiveness of GA and MS. In order to analyze the trend of
these two algorithms on the scenarios with the same density but with an increasing
number of vertices, we introduce another measure, the AvgGap. This measure
represents the average gap values computed on the scenarios with the same number
of vertices and edges. For instance, for n = 20 and m = 39, the AvgGap of MS is
equal to (0.4 + 0.6 + 0.6)/3 = 0.53.

In Figure 4.9 the AvgGap of GA (in red) and MS (in blue) are plotted for the
small scenarios with d = 0.1, d = 0.2 and d = 0.3, respectively. Here on the x -axis
and y-axis the number of vertices and the AvgGap are reported, respectively.

The graphic in Figure 4.9 shows that the two algorithms have a similar growth
but the AvgGaps of MS are nearly half of the AvgGaps of GA. Again, the highest
values for the AvgGap are obtained when d = 0.1 (Figure 4.9(a)). Despite that,
the AvgGap of GA is always lower than two while the AvgGap of MS is always
lower than 1.2. On the scenarios with d = 0.2 (Figure 4.9(b)) the growth is more
regular for both the algorithms, even if it is slower for MS. Indeed, the AvgGap of
MS ranges from 0.40 for n = 20 to 0.87 for n = 50 while the AvgGap of GA ranges
from 0.73 for n = 20 to 1.60 for n = 50. It is interesting to observe that even on
these small scenarios the AvgGap between the two algorithm can be significantly
different. For instance, for n = 40 the AvgGap of GA is three times greater than the
AvgGap of MS. Finally, for d = 0.3 (Figure 4.9(c)) the results of both algorithms
improve, with a maximum AvgGap equal to 1.07 for GA and 0.40 for MS. Even
in this case, the AvgGap of MS is always the half of AvgGap of GA and, on the
scenarios with n = 30, the difference grows up to one. By observing the three

79

The Rainbow Spanning Forest Problem

graphics of Figure 4.9 it is evident that our algorithms are more effective when the
density grows.

Regarding the performance, both the algorithms are very fast with a negligible
running time because it is rarely greater than one second.

Table 4.2 shows the results obtained by GA and MS algorithms on the large
scenarios. Since the solutions of the ILP1 are not available for these scenarios, we
compare the solution values produced by GA and MS and we compute the GAP
on these values.

Despite the negligible computational times on the small scenarios, here the
performance of the two algorithms are much different. In particular, GA is one
order of magnitude faster than MS, often its running time is lower than one minute
and, in the worst case (n◦ 71) it requires 77 seconds. More computational time is
required by MS that in the worst case (n◦ 71) spends 857 seconds (n◦ 71). Anyway,
most of the scenarios are solved by MS in less than five minutes. It is clear that
the significant performance difference on the large scenarios is due to the fact that
MS invokes several times the GA algorithm. The trend of the running times for
both algorithms shows that the performance are mainly affected by the density of
the scenarios. As the density increases as the computation time grows.

If, on the one hand, the MS algorithm is slower than GA, on the other hand it
results more effective as shown in the GAP column. Indeed, on all the scenarios
MS finds solution always better than GA. In particular, the GAP value is greater
than or equal to one on 20 out of 36 scenarios and in six cases this GAP is greater
than two. We observe also a GAP equal to 21.4 on the scenario n◦ 67 where the
solution of GA is very poor.

It is interesting to observe that the lowest GAP values occur on the scenarios
with d = 0.3 on which the two algorithms require more computational time. Our
conjecture is that, since these scenarios contains more edges, there are more local
minimums with a good solution value. As a consequence, when GA is trapped into
a local minimum the value found is good and the GAP from MS low. Instead, the
situation changes on the scenarios with fewer edges (d = 0.1 and d = 0.2) where
the number of good local minimums is lower. In this case, there are more chances
that GA is trapped into a poor local minimum producing a solution value far from
the solution value of MS.

80

ID n m l GA MS GAP

Value Seconds Value Seconds

37 100 595 5 26.6 0.18 24.8 0.73 1.8
38 10 12.8 0.25 11.8 1.15 1.0
39 19 8.2 0.33 7.2 1.45 1.0
40 100 1090 6 17.0 0.39 15.6 1.52 1.4
41 11 10.6 0.54 10.2 2.00 0.4
42 21 7.2 0.57 6.2 2.64 1.0
43 100 1585 6 15.8 0.71 15.2 1.27 0.6
44 11 10.0 0.92 9.2 2.11 0.8
45 22 6.0 0.96 5.6 4.50 0.4

46 200 2190 6 46.0 0.77 43.6 3.47 2.4
47 12 20.0 1.09 18.6 5.05 1.4
48 23 13.8 1.39 13.2 7.62 0.6
49 200 4180 7 30.0 2.46 27.0 12.63 3.0
50 13 17.6 2.17 16.6 16.96 1.0
51 25 11.8 2.57 10.4 23.29 1.4
52 200 6170 7 26.2 2.77 26.2 25.26 0.0
53 13 16.0 3.71 15.2 25.50 0.8
54 26 9.4 4.50 9.0 45.37 0.4

55 300 4785 7 58.2 1.72 54.8 12.32 3.4
56 13 27.8 2.23 26.4 19.26 1.4
57 25 19.6 2.97 18.0 28.99 1.6
58 300 9270 7 47.0 4.81 41.8 50.44 5.2
59 14 22.2 7.14 22.0 82.13 0.2
60 27 15.0 8.98 14.2 96.14 0.8
61 300 13755 7 39.4 11.58 39.2 125.62 0.2
62 14 21.4 18.83 21.0 203.72 0.4
63 28 12.4 18.63 11.8 177.91 0.6

64 400 8380 7 86.0 4.37 79.2 43.33 6.8
65 14 33.0 6.51 31.8 69.59 1.2
66 27 25.0 8.78 22.8 97.05 2.2
67 400 16360 7 82.0 16.29 60.6 176.52 21.4
68 14 29.0 25.31 28.4 279.07 0.6
69 28 18.4 27.01 17.0 306.68 1.4
70 400 24340 8 46.6 43.30 45.2 247.19 1.4
71 15 26.4 77.16 26.0 857.59 0.4
72 30 15.2 61.59 14.4 718.85 0.8

Table 4.2: Test results of GA and MS on the large scenarios.

81

Chapter 5

A Branch-and-Cut Algorithm for
the Minimum Branch Vertices
Spanning Tree Problem

“ All religions, arts and sciences are branches of the same
tree. ”

Albert Einstein

5.1 Introduction

In Chapter 2 we made a brief overview of some problems known in the combinatorial
optimization literature, concerning spanning tree and cycle cover. The Minimum
Branch Vertices Problem belongs to the class of NP-hard spanning tree problems. A
slightly different version of this chapter was submitted to Computers & Operations
Research.

Let G = (V,E) be a connected undirected graph, with n = |V | vertices and
m = |E| edges, the Minimum Branch Vertices Problem (MBVP) looks for a
spanning tree T of G with the minimum number of branch vertices, i.e. vertices
having a degree greater than or equal to three. For the input graph given on the

82

Figure 5.1: For a given graph on the left, two spanning trees with one and two branch vertices.

left of Figure 5.1, we depict two spanning trees with different numbers of branch
vertices. The spanning tree in the middle has one branch vertex and the one on
the right has two. There is no spanning tree without branch vertices, therefore the
one in the middle is the optimal solution.
The MBVP finds application in the context of optical networks. In such networks,
the aim is to send an optical signal from a source node to all the nodes of the
network. The optical signal has to be split whenever it enters a node having
degree greater than two and to split the signal is necessary to locate an appropriate
network switch at all the branch vertices. These switches can significantly increase
the cost of the network.
The MBVP was introduced by Gargano et al. [22], who proved it to be NP-hard.
Since then, the problem has been extensively investigated by several authors [6],
[7], [10], [37], [39], [49], [50], [52]. Carrabs et al. [6] consider four IP formulations.
The first formulation contains the subtour elimination constraints introduced by
Dantzig et al. [15]. Due to the exponential number of constraints, the authors
consider this formulation not suitable to be tested on instances of significant size,
but they solve it in a Lagrangian relaxation fashion. The second formulation is the
most studied. It guarantees connectivity by sending from a source vertex one unit
of flow to every other vertex of the graph. The third formulation is based on a multi-
commodity flow. The fourth formulation makes use of the Miller-Tucker-Zemlin
subtour elimination constraints [40]. Finally, Marín [37] presents a branch-and-cut
algorithm based on a strengthened single commodity flow formulation. The author
also provides a two-stage heuristic to reduce the computational time and to produce
good feasible solutions when the optimum cannot be found within a reasonable
time.
The purpose of this chapter is to develop new integer linear formulations and a

83

Minimum Branch Vertices

polyhedral-based exact branch-and-cut algorithm for the MBVP. The remainder of
the chapter is organized as follows. In Section 5.2, we formulate the problem as
an integer linear program with variables associated with the edges of G. In this
section, we also investigate some properties of the problem. In Section 5.3, the
dimension of the polyhedron is derived as well as some facet related results, and
some valid inequalities are introduced. In Section 5.4, we present a directed graph
reformulation and we adapt to this formulation some properties of the problem and
some valid inequalities to yield a hybrid formulation. The branch-and-cut algorithm
is described in Section 5.5. Comparative computational results are presented in
Section 5.6.

5.2 Undirected formulation, properties and bounds

The MBVP can be formulated as an integer linear program (ILP) with undirected
variables as follows. Let xe be a binary variable equal to 1 if and only if edge e ∈ E
belongs to the spanning tree T . For the sake of simplicity, in the following we will
refer to variables xe, which are variables associated to the edges of the undirected
graph G, as undirected variables. Moreover, let yv be a binary variable equal to
1 if and only if vertex v ∈ V is a branch vertex, i.e. v has degree greater than or
equal to 3 in T . In addition, for S ⊂ V , define E(S) = {e = (v, u) ∈ E : v, u ∈ S}
and δ(S) = {e = (v, u) ∈ E : v ∈ S, u ∈ V \ S}. If S = {v}, we simply write δ(v)

instead of δ({v}). We write δG′(v) to denote the set of edges incident to v in a
subgraph G′ of G. The ILP formulation is then

minimize z =
∑
v∈V

yv (5.1)

subject to ∑
e∈E(S)

xe ≤ |S| − 1 S ⊂ V, |S| ≥ 3 (5.2)

∑
e∈E

xe = n− 1 (5.3)

84

∑
e∈δ(v)

xe − 2 ≤ (|δ(v)| − 2)yv v ∈ V (5.4)

xe ∈ {0, 1} e ∈ E (5.5)

yv ∈ {0, 1} v ∈ V. (5.6)

In this formulation, constraints (5.2) are the well-known Dantzig, Fulkerson and
Johnson [15] subtour elimination constraints. They guarantee that the optimal
solution contains no cycles. Constraint (5.3) forces the selection of exactly n− 1

edges, which together with constraints (5.2) ensure that the optimal solution is a
tree. Constraints (5.4) are logical constraints linking the binary variables xe with
the binary variables yv. They guarantee that a vertex v is branch whenever at
least three edges incident to it are selected. Even if they do not explicitly force
yv = 0 when

∑
e∈δ(v) xe ≤ 2 holds, due to the objective function used, this condition

is satisfied for any optimal solution. The objective function (5.1) requires the
minimization of the number of branch vertices. This formulation is already known
(see Melo et. al [38]) and represents a stronger version of one of the mathematical
formulations proposed by Carrabs et al. [6]. Note that in order to make variables
yv represent exactly a set of branch vertices, we need the additional constraints

2yv ≤
∑
e∈δ(v)

xe − 1 v ∈ V. (5.7)

Constraints (5.7) together with constraints (5.4) guarantee that yv, v ∈ V , is equal
to 1 if and only if vertex v is branch. Let PL denotes the polytope obtained by the
linear relaxation of (5.5) and (5.6), plus constraints (5.2)−(5.4) and (5.7).

5.2.1 Spanning tree properties

This subsection is devoted to the description of some properties that a spanning
tree must satisfy. We will also do some observations that will allow us to preprocess
the instances. For a given vertex v, we can write the set of incident edges δ(v) as

δ(v) = δL(v) ∪ δI(v), (5.8)

85

Minimum Branch Vertices

where δL(v) = {(v, u) ∈ δ(v) : |δ(u)| = 1} and δI(v) = {(v, u) ∈ δ(v) : |δ(u)| > 1}.
As Marín [37] observed, each edge belonging to the set δL(v), for a given vertex v,
must belong to an optimal tree T :

xe = 1 v ∈ V, e ∈ δL(v). (5.9)

Moreover,

yv = 0 v ∈ V : |δ(v)| ≤ 2 (5.10)

yv = 1 v ∈ V : |δL(v)| ≥ 2. (5.11)

Note that for each vertex v such that |δL(v)| = 1, constraints (5.4) and (5.7) become
respectively∑

e∈δI(v)

xe − 1 ≤ (|δI(v)| − 1)yv v ∈ V : |δL(v)| = 1 (5.12)

yv ≤
∑

e∈δI(v)

xe − 1 v ∈ V : |δL(v)| = 1. (5.13)

To ensure the connectivity property, the inequalities∑
e∈δI(v)

xe ≥ 1 v ∈ V : |δI(v)| > 0 (5.14)

must be satisfied.
Marín [37] defines a bridge as an edge e ∈ E such that the graph (V,E \ {e})
becomes disconnected and defines 2-cocycle a set of two edges {e, f} ⊂ E such that
the graph (V,E \ {e, f}) becomes disconnected, but e and f are not bridges. An
easy observation is that all bridges of a connected graph must belong to the edge
set of any spanning tree:

xe = 1 e ∈ E : (V,E \ {e}) is disconnected. (5.15)

86

Moreover, at least one of the edges of a 2-cocycle set must belong to any feasible
solution:

xe + xf ≥ 1 e, f ∈ E : {e, f} is a 2-cocycle. (5.16)

Note that all edges belonging to the set
⋃
v∈V δ

L(v) are particular bridges. Removing
any one of them isolates a vertex. To identify the bridges and the 2-cocycle sets
Marín [37] uses an algorithm proposed by Schmidt [47].
In graph theory [2] a cut vertex is a vertex v ∈ V such that the graph G \ v =

(V \{v}, E\δ(v)) is disconnected. Let c̄v be the number of connected components of
the graph G\v and let Ci(v) = (VCi

(v), ECi
(v)), i = 1, . . . , c̄v, be the corresponding

connected components, such that
⋃c̄v
i=1 VCi

(v) = V \{v} and
⋃c̄v
i=1 ECi

(v) = E \δ(v).
For a given cut vertex v, we can write the set of incident edges δ(v) as

δ(v) =
c̄v⋃
i=1

δi(v), (5.17)

where δi(v) = {(v, u) ∈ δ(v) : u ∈ VCi
(v)}. Gargano et al. [22] observed that any

cut vertex v such that G \ v becomes disconnected in at least three connected
components is necessarily a branch vertex in any spanning tree of G. Therefore, if
we denote VB the set of cut vertices, it is easy to see that

yv = 1 v ∈ VB : c̄v ≥ 3. (5.18)

Moreover, it is easy to see that the following inequalities hold true:∑
e∈δi(v)

xe − 1 ≤ (|δi(v)| − 1)yv v ∈ VB : c̄v = 2, i = 1, 2 (5.19)

∑
e∈δi(v)

xe ≥ 1 v ∈ VB, i = 1, . . . , c̄v. (5.20)

Note that inequalities (5.19) and (5.20) are a restricted version of (5.4) and (5.14)
respectively. A connected graph G is 2-connected if G contains no cut vertex. In
this work we call 2-disconnected a connected graph G such that G contains no
cut vertex v such that G \ v is disconnected into more than two components. For

87

Minimum Branch Vertices

Figure 5.2: For a given graph on the left, v is a cut vertex u is not a cut vertex.

the input graph given on the left of Figure 5.2 we depict two examples. Given
the graph on the left, the graph in the middle is obtained by removing the gray
vertex v and the set of incident edges δ(v). The graph G \ v results disconnected,
therefore vertex v is a cut vertex. Moreover, it is easy to observe that G \ v is
disconnected into three components, i.e. c̄v = 3, and hence v is branch and the
graph G is not 2-disconnected. The graph on the right is obtained by removing
the gray vertex u and the set of incident edges δ(u). G \ u is not disconnected,
therefore u is not a cut vertex. Note that if all the vertices of a connected graph
are cut vertices or have degree equal to one, the graph is a tree. For this reason, in
the remainder of this section we assume that G contains at least one cycle.

Lemma 5.1. Let G = (V,E) be a 2-disconnected graph. Then, for any v ∈ V ,
there exists a spanning tree T in G such that v is not a branch vertex in T .

Proof. Since G is 2-disconnected, G \ v can be connected or disconnected into two
components. If it is connected, there exists a spanning tree Tv in G \ v, therefore
T = Tv ∪ {e} is a spanning tree in G, for any e ∈ δ(v), such that |δT (v)| = 1. If
G \ v is disconnected, there exist two spanning trees T1 and T2 in C1(v) and C2(v),
respectively. Hence, for an arbitrary e1 ∈ δ1(v) and e2 ∈ δ2(v), T = T1∪T2∪{e1, e2}
is a spanning tree in G such that |δT (v)| = 2.

5.3 Polyhedral analysis of the undirected formula-

tion

In this section we derive some polyhedral results for the MBVP. We assume that
G = (V,E) is a 2-disconnected graph containing cycles. Let P be

P = conv
{

(x, y) ∈ R|E|+|V | : (x, y) satisfies (5.2)− (5.6)
}
. (5.21)

88

Note that we define P as the convex hull of the solutions satisfying (5.2)− (5.6),
namely solutions such that y does not necessarily represent exactly a set of branch
vertices. The assumptions on G are not a real restriction for studying P . If G
is a connected acyclic graph, G is already a tree. Moreover, assume G is not
2-disconnected and let v ∈ V be a vertex such that G \ v becomes disconnected
into s ≥ 3 connected components, this means that v is going to be a branch
vertex in any spanning tree of G. Melo et al. [38], propose a obligatory branches
based decomposition and a cut edges based decomposition which, starting from
G = (V,E), build a new graph G′0 = (V

′
0 , E

′
0) that becomes disconnected if at least

one compulsory branch or one cut edge is encountered. Moreover, they provide the
following proposition

Proposition 5.1. An optimal solution to the minimum branch vertices problem
can be obtained from the solutions of the s connected components of G′0 and its
optimal value is

z = |L0|+
s∑
i=1

zi, (5.22)

where L0 represents the set of compulsory vertices, i.e. vertices that are branch in
any spanning tree of G, and zi, i = 1, . . . , s, the optimal value obtained for the ith

connected component.

It is easy to observe that Proposition 5.1 holds true even if only the com-
pulsory branch decomposition is applied and this prove that if the graph is not
2-disconnected, the problem can be decomposed into separate subproblems. There-
fore for the rest of this section, we assume G is 2-disconnected. In order to provide
our polyhedral results, we need some preliminary results.

Definition 5.1. A polyhedron S = {x ∈ Rk : Ax ≤ b} is full-dimensional if
dim(S) = k, where (A, b) is an h× (k + 1) matrix.

Let M = {1, . . . , h}, M= = {i ∈ M : aix = bi for all x ∈ S} and M≤ = {i ∈
M : aix < bi for some x ∈ S} = M \M=, where ai represents the ith row of A. Let
(A=, b=) and (A≤, b≤) the corresponding rows of (A, b). According to this notation,
the following theorem holds true (see Chapter 3, Theorem 3.17 of Conforti et al.
[12]):

89

Minimum Branch Vertices

Theorem 5.1. Let S = {x ∈ Rk : Ax ≤ b} be a nonempty polyhedron. Then

aff(S) = {x ∈ Rk : A=x = b=} = {x ∈ Rk : A=x ≤ b=}. (5.23)

Furthermore, dim(S) = k − rank(A=).

We represent subsets of vertices and edges by their characteristic vectors y ∈ Bn

and x ∈ Bm, respectively. Therefore, V ′ ⊆ V is represented by the vector yV ′ ,
where yV ′v = 1 if v ∈ V ′ and yV ′v = 0 otherwise, and E ′ ⊆ E is represented by the
vector xE′ , where xE′e = 1 if e ∈ E ′ and xE′e = 0 otherwise. Moreover 0 and 1 are
the vectors of all zeros and all ones, respectively.

Proposition 5.2. The affine hull of P is given by

aff(P) =

{
(x, y) ∈ R|E|+|V | :

∑
e∈E

xe = n− 1

}
(5.24)

Proof. Let
ptx+ qty = r (5.25)

be an equality that is satisfied by all points in P .

• Due to Lemma 5.1, for any v ∈ V there is a spanning tree T = (V,ET) in G
such that v is not branch, therefore (xET , 1 \ y{v}) belongs to P . Moreover, it
is easy to see that (xET , 1) also belongs to P . This implies qv = 0.

• Let T1 = (V,ET1) and T2 = (V,ET2) be two spanning trees in G such that
ET2 = ET1 \ {e} ∪ {f}. Such trees exist because G contains cycles. Hence
pe = pf holds, for any e, f ∈ E. Let ξ denote the value pe, e ∈ E.

We obtain r = ξ(n − 1) and therefore the equality (5.25) must be a multiple of∑
e∈E xe = n− 1.

Corollary 5.1. The dimension of P is dim(P) = |V |+ |E| − 1.

The following theorem is useful to establish whether a valid inequality is a facet
(see Theorem 3.6 of Nemhauser and Wolsey [42]).

90

Theorem 5.2. Let (A=, b=) be the equality set of S ⊆ Rk and let F = {x ∈ S :

πx = π0} be a proper face of S. The following two statements are equivalent:

• F is a facet of S.

• If λx = λ0 for all x ∈ F then

(λ, λ0) = (απ + uA=, απ0 + ub=) for some α ∈ R and some u ∈ R|M
=|.

(5.26)

Proposition 5.3. For v ∈ V , yv ≤ 1 defines a facet of P .

Proof. We prove the result by showing that the conditions of Theorem 5.2 hold.
Consider a fixed vertex v ∈ V . Without loss of generality, we can assume that
v = v1, where V = {v1, . . . , vn}. We can therefore write the valid inequality yv ≤ 1

as

(0, . . . , 0)xT + (1, 0, . . . , 0)yT ≤ 1, (5.27)

and hence F y
0 = {(x, y) ∈ P : (0, . . . , 0)xT + (1, 0, . . . , 0)yT = 1}. It is easy to

see that F y
0 is a proper face. Therefore in order to prove that F y

0 represents a
facet of P , from Theorem 5.2, it is sufficient to show that if λ(x, y)T = λ0 for
all (x, y) ∈ F y

0 , then (λ, λ0) can be expressed as (απ + uA=, απ0 + ub=), for some
α ∈ R, u ∈ R|M

=|. As shown above, in our case (π, π0) = (0, . . . , 0, 1, 0, . . . , 0, 1),
(A=, b=) = (1, . . . , 1, 0, . . . , 0, n− 1) and |M=| = 1. For convenience, we represent
(λ, λ0) as

(λ, λ0) = (s1, . . . , sm, t1, . . . , tn, λ0).

Let Tw = (V,ETw) be a spanning tree of G such that w is not branch in Tw, where
w ∈ V , w 6= v. It is easy to see that (xETw , 1\y{w}) and (xETw , 1) belong to F y

0 , and
therefore satisfy λ(x, y)T = λ0. Consequently, λ(xETw , 1 \ y{w})T − λ(xETw , 1)T = 0

and hence tw = 0. This implies that tw = 0 for any w ∈ V \ {v}.
Let T1 = (V,ET1) and T2 = (V,ET2) be two spanning trees of G such that ET2 =

ET1 \ ({e} ∪ {f}). Such trees exist because G contains cycles. Note that (xET1 , 1)

and (xET2 , 1) belong to F y
0 , therefore λ(xET1 , 1)T − λ(xET2 , 1)T = 0 and hence,

91

Minimum Branch Vertices

through simple algebraic manipulations, we obtain se = sf . Since T1 is a generic
spanning tree, we can conclude that s1 = . . . = sm. From now on, we will denote
this coefficient vector as s.
From these observations λ(x, y)T = λ0 becomes

s
∑
e∈E

xe + t1v1 = λ0. (5.28)

Moreover for any (x, y) ∈ F y
0 ,
∑

e∈E xe = n − 1 and yv = 1, and hence λ0 =

s(n− 1) + t1. Therefore we obtain

(λ, λ0) = (s, . . . , s, t1, 0, . . . , 0, s(n− 1) + t1). (5.29)

Note that

(απ + uA=, απ0 + ub=) = (u, . . . , u, α, 0, . . . , 0, α + u(n− 1)).

Hence, setting α = t1 and u = s completes the proof.

Proposition 5.4. For v ∈ V , if all components of G \ v are 2-disconnected, yv ≥ 0

defines a facet of P .

Proof. We prove the result by showing that the conditions of Theorem 5.2 hold.
Consider a fixed vertex v ∈ V . Without loss of generality, we can assume that
v = v1, where V = {v1, . . . , vn}. We can therefore write the valid inequality yv ≥ 0

as

(0, . . . , 0)xT + (1, 0, . . . , 0)yT ≥ 0, (5.30)

and hence F y
1 = {(x, y) ∈ P : (0, . . . , 0)xT + (1, 0, . . . , 0)yT = 0}. It is easy to

see that F y
1 is a proper face. Therefore in order to prove that F y

1 represents a
facet of P , from Theorem 5.2, it is sufficient to show that if λ(x, y)T = λ0 for
all (x, y) ∈ F y

1 , then (λ, λ0) can be expressed as (απ + uA=, απ0 + ub=), for some
α ∈ R, u ∈ R|M

=|. As showed above, in our case (π, π0) = (0, . . . , 0, 1, 0, . . . , 0, 0),
(A=, b=) = (1, . . . , 1, 0, . . . , 0, n− 1) and |M=| = 1. For convenience, we represent

92

(λ, λ0) as

(λ, λ0) = (s1, . . . , sm, t1, . . . , tn, λ0).

Before proceeding with the proof, we need the following remark.

Remark 5.1. As observed above, since G is 2-disconnected, the graph G \ v can
be connected or disconnected into two components. Suppose G \ v is connected, we
can distinguish two cases:

i. |δ(v)| > 1 in G. Due to Lemma 5.1, for any w ∈ V \ {v} there exists a
spanning tree Tw = (V \{v}, ETw) in G\v such that w is not branch, therefore
there exists a spanning tree Tv,w = (V,ETv,w) in G such that ETv,w = ETw∪{e},
where e ∈ δ(v), e 6= (v, w). Tv,w is a spanning tree of G such that w and v
are not branch.

ii. |δ(v)| = 1 in G. Let δ(v) = {(v, u)}. For any w ∈ V \ {v, u} by the same
argument as in i. there exists a spanning tree Tv,w of G such that w and
v are not branch. For any spanning tree Tu in G \ v such that u is not
branch, the degree of u in the spanning tree Tv,u = (V,ETv,u) in G such that
ETv,u = ETu ∪ {(v, u)} is |δTv,u(u)| = |δTu(u)| + 1, therefore if |δTu(u)| = 1,
u is not branch in Tv,u, otherwise w is branch in Tv,u. Suppose there is no
spanning tree T̄u in G \ v such that |δT̄u(u)| = 1, this implies that u is branch
in G which yields a contradiction. Therefore there is a spanning tree Tv,u of
G such that u and v are not branch.

If G \ v is disconnected in 2 components we can apply the same reasoning as above
on each component, by distinguishing for each component Ci(v), i = 1, 2, the cases
|δi(v)| > 1 and |δi(v)| = 1. Therefore, for any w ∈ V \ {v} there is a spanning tree
Tv,w of G such that w and v are not branch.

Due to Remark 5.1, for any w ∈ V \ {v} there exists a spanning tree Tw,v =

(V,ETw,v) in G such that v and w are not branch, therefore (xETw,v , 1 \ y{v,w}) and
(xETv , 1\y{v}) belong to F y

1 , and therefore they satisfy λ(x, y)T = λ0. Consequently,
λ(xETw,v , 1 \ y{v,w})T − λ(xETw,v , 1 \ y{v})T = 0. This implies tw = 0 for any
w ∈ V \ {v}.

93

Minimum Branch Vertices

Let T1 = (V,ET1) and T2 = (V,ET2) be two spanning trees of G such that ET2 =

ET1 \ {e} ∪ {f} and v is not branch in the two trees. Such trees exist because
G contains cycles. Note that (xET1 , 1 \ y{v}) and (xET2 , 1 \ y{v}) belong to F y

1 ,
therefore λ(xET1 , 1 \ y{v})T − λ(xET2 , 1 \ y{v})T = 0 and hence, through simple
algebraic manipulations, we obtain se = sf . Since T1 is a generic spanning tree,
we can conclude that s1 = . . . = sm. From now on, we will denote this coefficient
vector as s.
Due to these observations λ(x, y)T = λ0 becomes

s
∑
e∈E

xe + t1v1 = λ0. (5.31)

Moreover for any (x, y) ∈ F ,
∑

e∈E xe = n− 1 and yv = 0, and hence λ0 = s(n− 1).
Therefore we obtain

(λ, λ0) = (s, . . . , s, t1, 0, . . . , 0, s(n− 1)). (5.32)

Note that

(απ + uA=, απ0 + ub=) = (u, . . . , u, α, 0, . . . , 0, α + u(n− 1)).

Hence, setting α = 0 and u = s completes the proof.

Proposition 5.5. For e ∈ E, if e is not a bridge edge in G, xe ≤ 1 defines a facet
of P .

Proof. We prove the result by showing that the conditions of Theorem 5.2 hold.
Consider a fixed edge e ∈ E. Without loss of generality, we can assume that e = e1,
where E = {e1, . . . , em}. We can therefore write the valid inequality xe ≤ 1 as

(1, . . . , 0)xT + (0, 0, . . . , 0)yT ≤ 1, (5.33)

and hence F x
1 = {(x, y) ∈ P : (1, . . . , 0)xT + (0, 0, . . . , 0)yT = 1}. Since e is not a

bridge edge in G, F x
1 is a proper face, therefore in order to prove that F x

1 represents
a facet of P , from Theorem 5.2, it is sufficient to show that if λ(x, y)T = λ0 for

94

all (x, y) ∈ F x
1 , then (λ, λ0) can be expressed as (απ + uA=, απ0 + ub=), for some

α ∈ R, u ∈ R|M
=|. As showed above, in our case (π, π0) = (1, 0, . . . , 0, 0, . . . , 0, 1),

(A=, b=) = (1, . . . , 1, 0, . . . , 0, n− 1) and |M=| = 1. For convenience, we represent
(λ, λ0) as

(λ, λ0) = (s1, . . . , sm, t1, . . . , tn, λ0).

Let T = (V,ET) be a spanning tree of G such that w is not branch in Tw, where
w ∈ V , and e belongs to T . It is easy to see that (xET , 1 \ y{w}) and (xETw , 1)

belong to F x
1 , and therefore they satisfy λ(x, y)T = λ0. Consequently, λ(xET , 1 \

y{w})T − λ(xET , 1)T = 0 and hence tw = 0. This implies tw = 0 for any w ∈ V .
Let Tf = (V,ETf) and Tg = (V,ETg) be two spanning trees of G such that
e ∈ ETf and ETg = ETf \ {f} ∪ {g}, with f 6= e. Such trees exist because
G contains cycles. Note that (xETf , 1) and (xETg , 1) belong to F x

1 , therefore
λ(xETf , 1)T − λ(xETg , 1)T = 0 and hence, through simple algebraic manipulations,
we obtain sf = sg, for all f, g 6= e. From now on, we will denote this coefficients as
s.
Due to these observations λ(x, y)T = λ0 becomes

s1xe + s
∑

f∈E\{e}

xf = λ0. (5.34)

Moreover for any (x, y) ∈ F ,
∑

f∈E xf = n− 1. Since we are assuming xe = 1, then∑
f∈E\{e} xf = n− 2 and hence λ0 = s(n− 2) + s1. Therefore we obtain

(λ, λ0) = (s1, s, . . . , s, 0, . . . , 0, s(n− 2) + s1). (5.35)

Note that

(απ + uA=, απ0 + ub=) = (α + u, u, . . . , u, 0, . . . , 0, α + u(n− 1)).

Hence, setting α = s1 − s and u = s completes the proof.

95

Minimum Branch Vertices

Proposition 5.6. For v ∈ V and S ⊆ δ(v) with |S| ≥ 3,∑
e∈S

xe − 2 ≤ (|S| − 2)yv (5.36)

is valid for P .

Proof. It is easy to see that for any subset S of δ(v), if more than two edges belong
to the optimal solution, then vertex v has to be branch. Note that, for S = δ(v)

we obtain constraints (5.4), therefore (5.36) represent a generalized version.

Proposition 5.7. For any cut vertex v ∈ VB with c̄v = 2, for Ci(v), i = 1, 2 such
that |VCi

(v)| ≥ 2, for D ⊆ δi(v) with |D| = 2,∑
e∈D

xe ≤ 1 + yv (5.37)

is valid for P .

Proof. Note that, v being a cut vertex with c̄v = 2, as stated above, at least one
edge connecting v with Ci(v) for i = 1, 2, has to be selected. As soon as a second
edge connecting v with one of the two components is selected, vertex v becomes a
branch vertex and yv has to be activated.

Proposition 5.8. For v ∈ V and Q ⊂ δ(v) such that |Q| = |V | − 2

yv ≤
∑
e∈Q

xe (5.38)

is valid for P .

Proof. This inequality means that if there exists at least one Q ⊂ δ(v) such that
all the edges in Q do not belong to the spanning tree, then vertex v cannot be
branch.

Proposition 5.9. Let R = (VR, ER) be a cycle of cardinality three, i.e. VR =

{a, b, c} and ER = {fab, fac, fbc}. For v ∈ VR such that |δ(v)| = 3, without loss of
generality assume that v = a,

ya + xfbc ≤ 1 (5.39)

96

is valid for P . Moreover, if there exist at least two vertices a and b in the cycle
having degree 3 in the graph, then

ya + yb ≤ xfab (5.40)

is valid for P . Finally, if the three vertices all have degree 3, then

ya + yb + yc ≤ 1. (5.41)

Proof. Constraints (5.39) state that if a is branch, then the edge fbc cannot be
selected for otherwise the solution would contain a cycle. Conversely, if edge fbc
belongs to the solution, then a will not be a branch vertex. Constraints (5.40)
impose that only one vertex between a and b can be branch whenever edge fab is
selected. If the three vertices have degree 3, then constraints (5.41) state that at
most one of them can be a branch vertex.

5.4 Directed and hybrid reformulations

In the combinatorial optimization literature, problems originally defined over
undirected graphs are often reformulated over corresponding directed graphs. In
this section we consider a directed integer programming reformulation (DILP) of
MBVP as a spanning arborescence problem. To develop a model for this directed
version of the problem, we fix an arbitrary vertex r ∈ V as the root vertex and we
consider the directed graph D = (V,A) obtained by replacing each edge (v, u) ∈ E
by arcs (v, u) and (u, v) in A. In addition to the previously defined variables yv,
v ∈ V , for each arc a ∈ A, we define za as a binary variable equal to 1 if and only if
arc a belongs to the spanning arborescence. In association with graph D, we define
δ+(w) = {(v, u) ∈ A : v = w} and δ−(w) = {(v, u) ∈ A : u = w}. Note that, from
the definition of A, it follows that |δ+(v)| = |δ−(v)| = |δ(v)|, v ∈ V . The DILP
formulation is then

minimize z =
∑
v∈V

yv (5.42)

97

Minimum Branch Vertices

subject to ∑
e∈A(S)

za ≤ |S| − 1 S ⊂ V, |S| > 2 (5.43)

∑
a∈A

za = n− 1 (5.44)∑
a∈δ−(v)

za = 1 v ∈ V \ {r} (5.45)

∑
a∈δ+(v)

za − 1 ≤ (|δ(v)| − 2)yv v ∈ V \ {r} (5.46)

∑
a∈δ+(r)

za − 2 ≤ (|δ(r)| − 2)yr (5.47)

2yv ≤
∑

a∈δ+(v)

za v ∈ V \ {r} (5.48)

2yr ≤
∑

a∈δ+(r)

za − 1 (5.49)

za ∈ {0, 1} a ∈ A (5.50)

yv ∈ {0, 1} v ∈ V. (5.51)

Constraints (5.43), (5.44) and (5.50) characterize the spanning arborescence poly-
tope. Note that the inequalities (5.4) and (5.7), for the undirected graph formulation,
are split into inequalities (5.46), (5.47) and (5.48), (5.49), respectively, for the
directed graph reformulation. Also observe that due to (5.45), one unit is subtracted
in the left-hand side of (5.46) instead of two units in the corresponding inequalities
(5.4).
It is easy to see that several of the properties described for the undirected formula-
tion are easily adaptable to the directed case. Moreover, with the only exception
of the root vertex r, no more than one outwards pointing arc may be incident to a
no branch vertex. Hence the inequalities∑

a∈W

za − 1 ≤ (|W | − 1)yv v ∈ V \ {r}, W ⊂ δ+(v) : |W | ≥ 2 (5.52)

are clearly valid for the directed formulation. Now, let PSTP denote the spanning
tree polytope, that is the linear relaxation of (5.5) plus constraints (5.2) and (5.3)

98

and let DSTP denote the polytope defined by the linear relaxation of (5.50 plus
constraints (5.43)−(5.45) and

xe = zvu + zuv e = (v, u) ∈ E, (5.53)

in the x-space. Moreover, let DL denote the polytope defined by the intersection
of DSTP with the linear relaxation of (5.51) plus (5.46)−(5.49), in the x-space.

Proposition 5.10. The undirected and the directed formulation for the Minimum
Branch Vertex Spanning Tree Problem are equivalent if constraints (5.53) are
introduced in the DILP model.

Proof. DSTP yields an alternative description of the spanning tree polytope PSTP ,
hence PSTP = DSTP (see [36] for the details). Note that summing up (5.45) and
(5.46) we obtain (5.4), and summing up (5.45) and (5.48) we obtain (5.7). Therefore,
DL ⊆ PL. Conversely, suppose (x̄, ȳ) is feasible in PL, then x̄ satisfies (5.2) and
(5.3), therefore there exists z̄ that satisfies (5.43)− (5.45), for an arbitrary r ∈ V .
For any v 6= r we can rewrite (5.4) and (5.7) as follows:∑

a∈δ+(v)

za +
∑

a∈δ−(v)

za − 2 ≤ (|δ(v)| − 2)yv v ∈ V \ {r} (5.54)

2yv ≤
∑

a∈δ+(v)

za +
∑

a∈δ−(v)

za − 1 v ∈ V \ {r} (5.55)

Note that (5.54) and (5.45) imply (5.46), and that (5.55) and (5.45) imply (5.48).
Then (x̄, ȳ, z̄) is feasible in DL, and hence PL = DL.

The set defined by constraints (5.2)−(5.7), (5.45)−(5.47), (5.50) and (5.53)
define the set of feasible solutions for the MBVP. We refer to it as the hybrid
reformulation (HILP). Note that we keep constraints (5.4) in this formulation
even if they are redundant in the presence of constraints (5.45)−(5.47), (5.50) and
(5.53). However the formulation is still correct and test results show that this choice
helps CPLEX to find an optimal solutions faster. Let HL denote the polytope
obtained by the linear relaxation of (5.5), (5.6) and (5.50) plus (5.2)−(5.4),(5.7),
(5.45)−(5.47) and (5.53).

99

Minimum Branch Vertices

5.5 Branch-and-cut algorithm

We solve the MBVP by means of a branch-and-cut algorithm which is summarized
in Algorithm 4. Before executing the algorithm we reduce the graph in a prepro-
cessing phase by exploiting the properties introduced in Section 5.2.1. In line 1, an
initial feasible solution is identified by searching a minimum spanning tree using
Prim’s algorithm [45]. With any edge e = (v, u) we associate weight we = n if
min{|δ(v)|, |δ(u)|} ≤ 2, otherwise we = n−max{|δ(v)|, |δ(u)|}. In line 3, the first

Algorithm 4: Branch-and-cut algorithm
Input: integer program P .
Output: an optimal solution of P .

1 Identify initial feasible solution T0. Get number b0 of branch vertices in T0

2 ub← b0, L = ∅
3 Define a first subproblem and insert it in the list L
4 while L is not empty do
5 chose the subproblem and remove it from L
6 solve the subproblem to obtain the lower bound lb
7 if lb < ub then
8 if the solution is integer then
9 if the solution is feasible then

10 ub← lb
11 update incumbent solution

12 else
13 search and add SEC on integer solutions

14 else
15 search violated constraints
16 if root node then
17 search SEC on non-integer solutions

18 if violated constraints are identified then
19 add them to the model

20 else
21 branch on a variable and add the corresponding subproblems

in L

subproblem is obtained by relaxing the subtour elimination constraints (5.2), except

100

for the case where |S| = 3, as well as the integrality constraints on the variables.
We also identify all the bridges, the cocycles and the cut vertices of the graph and
we add the correspondent constraints (5.16), (5.19) and (5.20). In line 13, a search
for violated constraints (5.2) is performed on the integer solutions by identifying the
connected components and by adding the subtour elimination constraints induced
by the subsets of vertices of all the components containing at least one cycle. In
line 17, at a non-integer solution, constraints (5.2) are separated using the max-flow
algorithm proposed by Padberg and Wolsey [44]. The max-flow obtained with this
algorithm is f = |S̄| −

∑
e∈E(S̄) xe + C, where {S̄, V \ S̄} represents the cut-set

associated to the max-flow and C is a constant value depending on the vertex set V ,
therefore a constraint is violated if f −C is less than 1. Since we are not interested
in constraints with a small violation, a constraint is generated whenever f − C
is less than 1 − ε, for a fixed ε depending on the instances. For the non-integer
solutions, we run the max-flow procedure only on the root node.
The branch-and-cut algorithm was applied to both undirected and hybrid formu-
lations. In the first case, in line 15, a search for violated inequalities (5.36) and
(5.37) is performed. Valid inequalities (5.38), (5.39), (5.40) and (5.41) turned out
to be ineffective and were not considered. A subset of the most violated inequalities
(5.37) is added to the cut-pool. The separation procedure used for inequalities
(5.36) is that of Lucena et al. ([35]). Let (x̄, ȳ) be a feasible solution for the linear
programming relaxation, and for every v ∈ V such that |δ(v)| ≥ 3, order the
elements in {x̄e : e ∈ δ(v)} in decreasing value. Then, for (x̄, ȳ), v ∈ V , and every
k ∈ {3, . . . , |δ(v)| − 1}, compute

∑k
1 x̄ek − (k− 2)ȳv. This procedure identifies a set

S of cardinality k with the largest value for the left-hand side of (5.36) for vertex
v. If this value is greater than 2, it has identified the most violated inequality,
otherwise, no violated inequality (5.36) exists for v. For any vertex v ∈ V , having
|δ(v)| ≥ 3, we first consider all S ⊆ δ(v) such that |S| = 3 and we add a subset
of the most violated inequalities (5.36) by the current relaxed solution. Moreover,
we run the procedure previously described for k ∈ {4, . . . , |δ(v)| − 1} and we add
at most one violated constraint for each value of k. In line 19 all the violated
constraints identified are added to the model. In the implementation for the hybrid
formulation, in line 15, a search for violated inequalities (5.52) is also performed.
The separation procedure is the same described for inequalities (5.36). As for the

101

Minimum Branch Vertices

previous case, we first look for all subsets W ⊂ δ+(v) such that |W | = 2 and a
subset of the most violated inequalities is added to the cut-pool, then the separation
procedure is performed for k ≥ 3. In line 21, branching takes place in priority on
the yv variables.

5.6 Computational results

The branch-and-cut algorithm was coded in C and solved using IBM ILOG CPLEX
12.5.1. The computational experiments were performed on a 64-bit GNU/Linux
operating system, 96 GB of RAM and one processor Intel Xeon X5675 running at
3.07 GHz.
In our tests the MIPEmphasis parameter is set on the best bound value and the
others parameters as default. For all the instances the constant ε introduced to
identify violated constrains (5.2) on the non-integer solutions is set equal to 0.7.
Experiments for the MBVP were conducted on benchmark instances. Carrabs et al.
[6] generated instances with n between 20 and 1000 and different densities. Note
that dense graphs often can contain a Hamiltonian path, therefore the authors
generated sparse graphs. These instances were also used by Marín [37]. In his
paper the author divides the instances into two groups: medium instances (with
n ≤ 500) and large instances (with n ≥ 600). Here we call small the instances with
n ≤ 200, medium those with 250 ≤ n ≤ 500 and large those with n ≥ 600.
Table 5.1 and 5.2 report the results for the undirected formulation applied to the

small and medium instances. In the tables each line represents an average over five
instances having the same number of vertices and of edges. In both tables the first
two columns represent the instances, columns ub, opt and sec report the average
of the upper bounds found with Prim’s algorithm [45], the average of the optimal
solution values and the average of the computational time needed to compute them.
Moreover, whenever α instances of a group are not solved to optimality within
the time limit of one hour, we write (α) appears close to the solution value. The
numbers of bridges, cocycles and cut vertices are also reported. Columns nodes
and cuts represent the number of nodes in the search tree and the number of cuts
added.
Results for small, medium and large instances for the hybrid formulation are

102

n m ub opt bridge cocycle cut vertex nodes cuts sec

20 27 4.6 2.4 6.2 5.6 4.2 0.0 3.2 0.0
20 34 5.4 1.2 2.4 5.0 2.2 0.0 5.2 0.0
20 42 3.6 0.2 0.8 2.2 0.8 0.0 0.0 0.0
20 49 3.6 0.0 0.0 1.2 0.0 0.0 0.4 0.0
20 57 3.0 0.0 0.2 0.0 0.2 0.0 1.8 0.0

40 50 12.2 7.4 16.2 13.4 9.2 0.0 15.8 0.0
40 60 9.2 3.4 7.4 13.6 5.6 0.4 22.2 0.0
40 71 10.8 1.6 5.2 7.4 4.6 0.0 18.2 0.0
40 81 8.4 0.8 2.2 6.6 2.2 0.0 19.4 0.0
40 92 8.2 0.6 2.2 4.4 2.2 0.0 13.8 0.0

60 71 19.6 13.0 28.4 27.6 15.6 0.0 16.0 0.0
60 83 18.0 8.2 17.8 21.0 11.6 1.8 56.0 0.1
60 95 15.4 5.4 12.0 18.8 9.8 25.0 189.8 0.4
60 107 15.6 3.4 7.2 13.2 6.4 1.0 126.4 0.2
60 119 12.8 1.6 4.8 11.6 4.8 7.6 151.6 0.3

80 93 24.0 16.4 40.8 35.0 21.2 1.6 27.0 0.1
80 106 23.6 12.0 27.4 30.0 17.4 7.0 77.8 0.1
80 120 22.4 8.8 19.4 23.4 13.8 36.4 195.4 0.5
80 133 21.0 5.6 12.4 25.0 10.6 12.8 186.6 0.8
80 147 18.6 3.4 9.8 19.2 8.4 17.2 199.6 0.4

100 114 31.6 23.8 56.8 38.6 27.4 4.2 25.4 0.1
100 129 32.0 16.4 38.6 35.6 22.4 8.0 109.2 0.5
100 144 29.8 11.8 26.2 32.2 18.0 18.8 189.2 0.6
100 159 27.4 8.4 18.6 32.4 14.8 47.4 334.2 1.1
100 174 24.4 6.2 15.4 25.2 11.8 4937.0 2220.6 126.9

120 136 39.6 29.6 69.8 45.6 33.4 10.4 36.4 0.1
120 152 38.8 21.8 48.4 48.4 27.8 19.2 124.4 0.4
120 169 34.6 16.0 36.4 38.4 23.2 28.6 214.4 0.8
120 185 33.2 11.6 25.4 41.4 18.2 162.0 455.4 1.8
120 202 31.8 8.6 20.4 34.6 15.0 93.4 442.8 2.3

140 157 45.4 34.2 79.8 71.0 38.6 14.0 64.0 0.3
140 175 43.6 25.8 59.0 57.6 33.4 15.4 141.6 0.7
140 193 40.6 18.8 41.6 52.8 28.4 124.8 329.8 1.8
140 211 39.2 15.2 35.6 41.2 24.0 128.2 466.4 1.9
140 229 36.0 10.6 23.8 43.0 19.2 253.0 750.4 4.8

160 179 52.6 39.8 94.0 64.6 44.8 0.0 28.8 0.2
160 198 49.4 31.2 69.2 68.2 37.8 45.6 179.8 1.1
160 218 47.2 23.4 50.2 62.8 31.2 112.6 359.2 1.9
160 237 44.6 17.4 39.4 50.8 27.4 198.0 542.6 2.9
160 257 44.0 13.4 32.2 43.0 24.8 248.4 799.0 6.6

180 200 58.6 46.4 111.6 76.4 51.4 12.0 52.4 0.4
180 221 55.6 35.0 79.8 67.0 44.2 99.6 215.0 1.5
180 242 54.2 25.4 58.8 69.6 37.0 204.4 491.2 3.7
180 263 53.2 21.0 46.6 61.0 32.4 805.0 905.8 14.5
180 284 47.6 17.6 39.4 56.0 29.6 528.2 1100.8 11.9

200 222 63.6 50.6 127.8 74.8 57.0 14.6 69.4 0.6
200 244 62.0 39.4 92.4 77.8 49.6 49.8 174.0 1.3
200 267 59.4 30.4 69.0 72.0 40.2 130.8 390.0 3.7
200 289 56.4 24.8 56.8 68.8 38.4 2166.4 1185.8 56.6
200 312 57.2 (1)25.8 42.2 57.6 30.2 5464.6 3942.2 732.5

Table 5.1: Undirected formulation: computational results for small instances

103

Minimum Branch Vertices

n m ub opt bridge cocycle cut vertex nodes cuts sec

250 273 81.4 66.0 164.4 100.2 71.4 1.4 51.0 0.8
250 297 78.6 53.0 120.8 110.8 60.8 312.0 318.8 5.0
250 321 75.8 43.4 101.8 93.8 57.6 277.4 514.8 7.4
250 345 74.6 34.4 76.2 90.0 47.8 1616.2 930.2 47.9
250 369 70.8 26.2 60.0 85.2 40.2 732.4 1352.8 42.7

300 326 97.4 81.0 203.0 121.8 87.4 30.2 127.2 1.9
300 353 95.0 67.8 160.2 116.4 78.6 171.4 323.6 6.2
300 380 92.6 54.6 124.8 114.0 69.0 572.4 785.4 21.9
300 407 89.6 46.2 104.6 103.4 61.8 1808.0 1619.6 75.9
300 434 85.0 37.2 86.4 89.4 56.2 1657.2 1933.0 143.8

350 378 113.4 94.6 238.8 143.2 102.8 70.2 152.6 5.0
350 406 111.6 80.6 190.0 145.6 93.6 452.4 476.8 10.1
350 435 108.0 65.6 151.0 150.8 84.4 2016.2 1379.4 85.6
350 463 107.2 56.6 124.2 128.4 75.8 11731.0 1945.2 663.4
350 492 102.6 45.4 103.6 123.8 67.2 5569.6 2322.0 444.0

400 429 130.8 111.8 282.6 167.2 119.6 56.2 123.6 3.9
400 459 128.0 94.0 226.4 165.0 109.4 851.6 782.6 21.0
400 489 126.2 (1)88.4 184.8 152.4 99.0 2315.8 5068.8 742.9
400 519 122.2 68.4 154.2 154.4 88.4 9878.8 2517.8 979.4
400 549 118.4 56.0 131.2 141.2 80.2 3204.6 2962.6 350.2

450 482 148.6 125.8 318.6 177.8 135.4 33.6 116.0 4.8
450 515 146.0 107.4 250.6 202.8 121.6 1298.6 846.2 75.4
450 548 140.0 90.4 208.8 184.2 110.4 3686.0 4059.0 835.4
450 581 139.2 (1)77.6 176.6 167.8 100.4 12719.2 2901.4 1363.9
450 614 133.2 (3)66.4 151.8 153.8 93.8 17717.4 3686.4 2766.6

500 534 164.6 141.6 361.0 191.2 150.6 70.4 149.2 10.2
500 568 160.8 120.8 294.2 187.0 137.2 948.6 770.0 53.8
500 603 158.2 105.6 246.0 198.4 126.8 3089.4 1981.2 260.3
500 637 151.6 (2)117.2 210.6 181.2 116.8 4850.8 6615.4 1902.9
500 672 148.4 (5)122.8 170.0 194.6 104.4 13407.2 11163.8 3600.0

Table 5.2: Undirected formulation: computational results for medium instances

n m ub opt bridge cocycle cut vertex nodes cuts sec

20 41.8 4.0 0.8 1.9 2.8 1.5 0.0 1.8 0.0
40 70.8 9.8 2.8 6.6 9.1 4.8 0.2 33.6 0.1
60 95.0 16.3 6.3 14.0 18.4 9.6 0.0 67.4 0.5
80 119.8 21.9 9.2 22.0 26.5 14.3 1.0 83.9 0.7
100 144.0 29.0 13.3 31.1 32.8 18.9 1.7 108.7 1.0

120 168.8 35.6 17.5 40.1 41.7 23.5 2.6 135.0 1.1
140 193.0 41.0 20.9 48.0 53.1 28.7 6.2 178.8 2.0
160 217.8 47.6 25.0 57.0 57.9 33.2 2.8 165.6 1.9
180 242.0 53.8 29.1 67.2 66.0 38.9 9.0 212.3 2.5
200 266.8 59.7 32.6 77.6 70.2 43.1 6.8 213.4 3.1

250 321.0 76.2 44.6 104.6 96.0 55.6 5.8 209.8 3.1
300 380.0 91.9 57.4 135.8 109.0 70.6 6.0 230.2 4.2
350 434.8 108.6 68.6 161.5 138.4 84.8 7.9 298.8 6.9
400 489.0 125.1 81.8 195.8 156.0 99.3 21.0 355.2 9.1
450 548.0 141.4 93.4 221.3 177.3 112.3 17.5 333.7 9.5
500 602.8 156.7 106.7 256.4 190.5 127.2 10.3 332.0 9.8

Table 5.3: Hybrid formulation: computational results for small and medium instances

104

n m ub opt bridge cocycle cut vertex nodes cuts sec

600 637 197.6 183.8 493.6 68.8 188.0 0.0 74.0 3.2
600 674 192.6 167.2 437.4 71.6 176.4 0.0 148.8 8.7
600 712 188.0 150.6 394.4 68.6 168.6 1.6 229.0 10.3
600 749 182.2 138.8 363.4 55.6 161.0 21.2 335.6 17.6
600 787 173.8 125.8 333.6 49.4 153.2 18.2 333.8 16.2

700 740 232.0 214.4 576.8 91.4 218.6 0.0 100.4 8.7
700 780 224.8 198.0 518.4 89.2 206.8 2.6 176.6 11.0
700 821 218.0 180.0 470.2 79.4 198.2 0.6 257.2 12.5
700 861 212.4 164.0 436.6 62.8 191.4 3.2 291.0 17.4
700 902 205.0 154.2 403.2 63.6 183.2 1.0 293.6 14.7

800 843 265.4 245.6 666.8 90.6 252.2 0.0 102.0 10.3
800 886 256.8 227.6 599.4 98.8 237.4 1.8 169.0 11.2
800 930 253.6 208.4 546.6 89.2 228.8 10.2 321.6 22.7
800 973 245.2 194.2 505.8 82.0 221.4 72.4 658.4 48.8
800 1017 232.2 176.2 468.2 71.4 212.8 23.8 479.8 37.1

900 944 300.6 279.6 756.4 105.4 284.8 0.0 118.4 12.6
900 989 290.0 259.2 685.6 110.4 271.4 188.8 339.6 66.2
900 1034 286.6 240.6 633.0 105.0 262.2 28.2 405.4 30.2
900 1079 281.4 223.2 583.6 98.0 251.2 12.6 489.8 90.5
900 1124 269.0 206.0 547.6 83.2 242.4 2.0 372.0 30.7

1000 1047 332.6 312.0 849.6 110.2 317.0 8.4 148.8 26.2
1000 1095 323.2 290.0 767.0 121.0 303.2 0.0 209.2 17.0
1000 1143 318.6 271.2 705.0 121.2 290.2 74.2 613.4 57.1
1000 1191 310.4 251.0 657.6 109.8 279.8 53.6 621.2 75.4
1000 1239 303.8 235.2 609.8 105.6 268.4 45.8 735.4 62.6

Table 5.4: Hybrid formulation: computational results for large instances

reported in Table 5.3 and Table 5.4. In Table 5.3 each line represent an average
over 25 instances having the same number of vertices. The table reports the results
for both small and medium instances. In Table 5.4 each line represents an average
over five instances having the same number of vertices and edges. The two tables
have the same structure described above. Note that in this case, all the instances
were solved optimally. Our experimental results show that the hybrid formulation
is more efficient and faster. It allows us to solve all the small and medium instances
within less than 10 seconds, while the undirected formulation could not find an
optimal solution on 13 instances after one hour. Moreover, we can solve all the
large instances, up to n = 1000 within an average time of 90.5 seconds. Finally,
note that the number of nodes in the search tree is relatively small and all families
of cuts are useful.

105

Minimum Branch Vertices

5.6.1 LP lower bounds and duality gaps

The purpose of this subsection is to present the LP lower bounds obtained by
adding one valid inequality each time to the hybrid formulation.

In Table 5.5 each line is an average over 25 instances, while in Table 5.6 the

n m opt w(HL) w(H1
L) w(H2

L) w(H3
L) w(H4

L) w(H5
L)

20 41.8 0.8 0.59 0.65 0.64 0.60 0.61 0.62
40 70.8 2.8 2.16 2.31 2.29 2.21 2.23 2.25
60 95.0 6.3 5.18 5.64 5.56 5.33 5.42 5.44
80 119.8 9.2 7.79 8.44 8.25 8.05 8.19 8.10
100 144.0 13.3 11.75 12.47 12.28 12.06 12.23 12.16

120 168.8 17.5 15.60 16.46 16.24 16.02 16.20 16.14
140 193.0 20.9 18.64 19.64 19.36 19.18 19.47 19.17
160 217.8 25.0 22.74 23.75 23.55 23.25 23.55 23.31
180 242.0 29.1 26.39 27.62 27.30 27.08 27.41 27.06
200 266.8 32.6 30.00 31.22 30.91 30.55 30.94 30.68

250 321.0 44.6 41.72 43.06 42.68 42.43 42.96 42.42
300 380.0 57.4 53.74 55.55 54.93 54.73 55.23 54.51
350 434.8 68.6 63.96 65.93 65.36 65.40 66.16 65.00
400 489.0 81.8 77.31 79.33 78.68 78.96 79.62 78.21
450 548.0 93.4 88.32 90.66 89.75 90.04 90.79 89.29
500 602.8 106.7 101.75 104.26 103.43 103.48 104.16 102.86

Table 5.5: Hybrid formulation: lower bounds for MBVP on small and medium instances

average is computed over five instances. In both the tables the first two columns
represent the instances and the third one the optimal solution. The next columns
provide lower bounds w(HL), w(H1

L), w(H2
L), w(H3

L), w(H4
L) and w(H5

L), where
HL denotes the polytope obtained by relaxing the integrality constraints in the
hybrid formulation, while H1

L and H2
L denote the intersection of HL with (5.52) for

W ⊂ δ+(v) such that |W | = 2 and |W | ≥ 3, respectively. Moreover, H3
L denotes

the intersection of HL with (5.37), while H4
L and H5

L with (5.36) for S ⊆ δ(v) such
that |S| = 3 and |S| ≥ 4, respectively. It is easy to see from the tables that all the
cuts help improve the lower bound, in particular w(H1) and w(H4) seem to yield
the best lower bounds in most cases. Inequalities (5.52) for W ⊂ δ+(v) such that
|W | = 2 and (5.36) for S ⊆ δ(v) such that |S| = 3 are the most useful cuts. This
is evident in Table 5.7 and 5.8 which provide the duality gap with respect to the
optimal solution on the six polytopes.

106

n m opt w(HL) w(H1
L) w(H2

L) w(H3
L) w(H4

L) w(H5
L)

600 637 183.8 180.40 180.94 180.70 182.03 182.79 180.63
600 674 167.2 163.83 164.63 164.47 164.97 166.11 164.45
600 712 150.6 147.24 148.31 147.99 148.10 148.96 147.73
600 749 138.8 136.09 136.97 136.82 136.50 136.83 136.75
600 787 125.8 123.87 124.66 124.66 124.17 124.46 124.85

700 740 214.4 211.03 211.56 211.30 212.89 213.68 211.08
700 780 198.0 193.67 194.79 194.56 195.11 196.52 194.30
700 821 180.0 175.72 177.14 176.91 177.11 178.28 176.56
700 861 164.0 160.81 161.82 161.73 161.29 161.87 161.77
700 902 154.2 151.16 152.43 152.42 151.71 152.17 152.50

800 843 245.6 242.02 242.55 242.25 244.04 245.08 242.17
800 886 227.6 223.44 224.24 224.15 224.82 226.47 223.67
800 930 208.4 204.26 205.36 205.26 205.55 206.92 204.82
800 973 194.2 189.87 191.48 191.15 190.73 191.68 191.12
800 1017 176.2 172.37 173.72 173.63 172.99 173.49 173.79

900 944 279.6 275.15 275.76 275.33 277.72 278.88 275.17
900 989 259.2 253.97 255.29 254.81 256.15 257.71 254.26
900 1034 240.6 235.66 236.88 236.84 237.38 239.09 236.37
900 1079 223.2 218.02 219.98 219.59 219.52 220.61 219.09
900 1124 206.0 202.19 203.78 203.50 202.87 203.41 203.47

1000 1047 312.0 307.48 308.28 307.97 310.08 311.33 307.63
1000 1095 290.0 283.03 284.62 284.23 286.72 288.50 283.78
1000 1143 271.2 265.37 266.94 266.76 267.40 269.43 266.37
1000 1191 251.0 244.99 246.92 246.68 246.82 248.22 246.29
1000 1239 235.2 230.27 232.16 231.90 231.10 231.92 231.74

Table 5.6: Hybrid formulation: lower bounds for MBVP on large instances

n m opt GHL
(%) GH1

L
(%) GH2

L
(%) GH3

L
(%) GH4

L
(%) GH5

L
(%)

20 41.8 0.8 29.1 16.8 17.9 26.4 25.6 23.3
40 70.8 2.8 28.0 19.5 20.7 24.8 23.9 22.4
60 95.0 6.3 22.1 12.1 13.6 18.5 16.6 16.3
80 119.8 9.2 18.6 9.5 11.9 14.7 12.9 14.1
100 144.0 13.3 13.4 6.8 8.5 10.4 8.9 9.5

120 168.8 17.5 12.3 6.4 7.9 9.4 8.2 8.6
140 193.0 20.9 12.3 6.5 8.1 9.1 7.5 9.1
160 217.8 25.0 10.1 5.4 6.3 7.7 6.3 7.4
180 242.0 29.1 10.2 5.3 6.5 7.4 6.1 7.5
200 266.8 32.6 8.8 4.5 5.6 6.8 5.5 6.4

250 321.0 44.6 6.9 3.6 4.5 5.1 3.8 5.1
300 380.0 57.4 6.7 3.3 4.4 4.8 3.9 5.2
350 434.8 68.6 7.2 4.0 4.9 4.8 3.6 5.5
400 489.0 81.8 5.9 3.2 4.0 3.6 2.8 4.6
450 548.0 93.4 5.7 3.0 4.0 3.7 2.8 4.6
500 602.8 106.7 4.9 2.4 3.2 3.1 2.5 3.8

Table 5.7: Hybrid formulation: duality gap on small and medium instances

107

Minimum Branch Vertices

n m opt GHL
(%) GH1

L
(%) GH2

L
(%) GH3

L
(%) GH4

L
(%) GH5

L
(%)

600 637 183.8 1.9 1.6 1.7 1.0 0.6 1.8
600 674 167.2 2.1 1.6 1.7 1.4 0.7 1.7
600 712 150.6 2.3 1.5 1.8 1.7 1.1 1.9
600 749 138.8 2.0 1.3 1.4 1.7 1.4 1.5
600 787 125.8 1.6 0.9 0.9 1.3 1.1 0.8

700 740 214.4 1.6 1.3 1.5 0.7 0.3 1.6
700 780 198.0 2.2 1.6 1.8 1.5 0.8 1.9
700 821 180.0 2.4 1.6 1.7 1.6 1.0 1.9
700 861 164.0 2.0 1.3 1.4 1.7 1.3 1.4
700 902 154.2 2.0 1.2 1.2 1.6 1.3 1.1

800 843 245.6 1.5 1.3 1.4 0.6 0.2 1.4
800 886 227.6 1.9 1.5 1.5 1.2 0.5 1.8
800 930 208.4 2.0 1.5 1.5 1.4 0.7 1.7
800 973 194.2 2.3 1.4 1.6 1.8 1.3 1.6
800 1017 176.2 2.2 1.4 1.5 1.9 1.6 1.4

900 944 279.6 1.6 1.4 1.6 0.7 0.3 1.6
900 989 259.2 2.1 1.5 1.7 1.2 0.6 1.9
900 1034 240.6 2.1 1.6 1.6 1.4 0.6 1.8
900 1079 223.2 2.4 1.5 1.6 1.7 1.2 1.9
900 1124 206.0 1.9 1.1 1.2 1.5 1.3 1.2

1000 1047 312.0 1.5 1.2 1.3 0.6 0.2 1.4
1000 1095 290.0 2.5 1.9 2.0 1.1 0.5 2.2
1000 1143 271.2 2.2 1.6 1.7 1.4 0.7 1.8
1000 1191 251.0 2.5 1.7 1.8 1.7 1.1 1.9
1000 1239 235.2 2.1 1.3 1.4 1.8 1.4 1.5

Table 5.8: Hybrid formulation: duality gap on large instances

108

Conclusions and Future Work

In this thesis we have modeled and solved three combinatorial optimization prob-
lems defined on graphs. The Rainbow Cycle Cover Problem and the Rainbow
Spanning Forest Problem are defined on edge-colored graph and the objective is
partitioning the edges of the input graph in the minimum number of rainbow cycles
and trees, respectively. The Minimum Branch Vertices Spanning Tree Problem
belongs to the class of NP-hard spanning tree problems. The main contributions
can be summarized as follows.

The Rainbow Cycle Cover Problem (Chapter 3)

We have proposed a mathematical formulation of the Rainbow Cycle Cover
Problem, some properties that a rainbow cycle cover must satisfied and some valid
inequalities used to solve the RCCP within a branch-and-cut algorithm. Compu-
tational experiments were conducted on randomly generated instances. Results
show that the branch-and-cut algorithm is able to solve instances having between
20 and 50 vertices, and between 3 and 18 colors. The presence of a constant
M in the objective function and the symmetry of the problem affect the final
results and the effectiveness of the algorithm, mainly on instances with a large
number of edges and a small number of colors when the number of vertices increases.

The Rainbow Spanning Forest Problem (Chapter 4)

We have proved that the Rainbow Spanning Forest Problem is NP-complete
on acyclic graphs and we have provided a polynomial case. Furthermore, we
have proposed two mathematical formulations of the problem, (ILP1) and (ILP2),

109

Conclusions and Future Works

and some valid inequalities for the second one. To solve large instances a greedy
algorithm and a multi-start scheme were introduced. Computational experiments
were conducted on randomly generated instances on the first formulation, the
greedy algorithm and the multi-start scheme. The 80% of the small scenarios were
solved by ILP1, within the time limit, and this percentage is close to 92% for
the small scenarios with a density at least equal to 0.2. Moreover, the running
time of ILP1 decreases as the density increases. Indeed, all the scenarios with
d = 0.3 are solved within less than 340 seconds by ILP1. Thanks to the optimal
solutions provided by the mathematical model on the small scenarios, we certified
the effectiveness of GA and MS algorithms. This last algorithm is the most effec-
tive with eight optimal solutions found and a gap from the best known solution
only two times greater than one. The negligible running time of both algorithms
make them particularly suitable to be embedded in exact approaches where it
is often required to quickly generate good solutions. On the large scenarios the
MS algorithm results slower than the GA algorithm but its solution are much better.

The Minimum Branch Vertices Spanning Tree Problem (Chapter 5)

We have modeled and solved the Minimum Branch Vertices Spanning Tree
Problem. We have provided two mathematical formulations based on an undi-
rected and on a directed graph, respectively, and a hybrid formulation obtained
by merging the first two models. Moreover, we have derived some properties and
some valid inequalities for the problem. A branch-and-cut approach was proposed
on the undirected and on the hybrid formulations. Results show that the hybrid
formulation is superior to the undirected formulation and that our branch-and-cut
algorithm applied to it solves all benchmark instances to optimality.

Future research should be conducted to extend our results. Given the hardness
of the Rainbow Cycle Cover Problem and its symmetry, the exact approach has
proved to be naturally limited in the size of the instances on which it can be
applied, therefore a further effort in this direction could be to study heuristic
approaches to solve the problem. A possible direction for future work on the
Rainbow Spanning Forest Problem could be the development of metaheuristics that

110

are faster and more efficient than MS. Moreover, a branch-and-cut algorithm on
the second mathematical formulation, where to use the valid inequalities proposed,
could be implemented and a polyhedral analysis to derive polyhedral results could
be conducted.

111

References

[1] R. Bhatia, S. Khuller, R. Pless, and Y. Sussmann. The full degree spanning
tree problem. Networks, 36:203–209, 200.

[2] J. A. Bondy and U. S. R. Murty. Graph theory with applications, volume 290.
Macmillan, London, 1976.

[3] I.M. Branco and J. D. Coelho. The hamiltonian p-median problem. European
Journal of Operational Research, 47:86–95, 1990.

[4] H. Broersma and X. Li. Spanning trees with many or few colors in edge-colored
graphs. Discussiones Mathematicae Graph Theory, 17:259–269, 1997.

[5] H. Broersma and X. Li. Spanning trees with many or few colors in edge-colored
graphs. Graph Theory, 17:259–269, 1997.

[6] F. Carrabs, R. Cerulli, M. Gaudioso, and M. Gentili. Lower and upper
bounds for the spanning tree with minimum branch vertices. Computational
Optimization and Applications, 56:405–438, 2013.

[7] C. Cerrone, R. Cerulli, and A. Raiconi. Relations, models and a memetic
approach for three degree-dependent spanning tree problems. European Journal
of Operational Research, 232:442–453, 2014.

[8] R. Cerulli, P. Dell’Olmo, M. Gentili, and A. Raiconi. Heuristic approaches
for the minimum labelling hamiltonian cycle problem. Electronic notes in
Discrete Mathematics, 25:131–138, 2006.

[9] R. Cerulli, A. Fink, M. Gentili, and A. Raiconi. The k -labeled spanning forest
problem. Procedia-Social and Behavioral Sciences, 108:153–163, 2014.

112

REFERENCES

[10] R. Cerulli, M. Gentili, and A. Iossa. Bounded-degree spanning tree problems:
models and new algorithms. Computational Optimization and Applications,
42:353–370, 2009.

[11] R.S. Chang and S.J. Leu. The minimum labeling spanning trees. Information
Processing Letters, 63:277–282, 1997.

[12] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer programming. Springer,
Berlin, 2014.

[13] A. S. da Cunha, L. Simonetti, A. Lucena, and B. Gendron. Formulations and
exact solution approaches for the degree preserving spanning tree problem.
Networks, 2015.

[14] R. J. Dakin. A tree-search algorithm for mixed integer programming problems.
The Computer Journal, 8:250–255, 1965.

[15] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the Operations Research Society of
America, 2:393–410, 1954.

[16] J. Edmonds. Submodular functions, matroids, and certain polyhedra. Combi-
natorial Structures and Their Applications, pages 69–87, 1970.

[17] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
Academiae Scientiarum Imperialis Petropolitanae, 8:128–140, 1736.

[18] M. Fischetti, J.-J. Salazar González, and P. Toth. Experiments with a multi-
commodity formulation for the symmetric capacitated vehicle routing problem.
In Proceedings of the 3rd Meeting of the EURO Working Group on Transporta-
tion, pages 169–173, 1995.

[19] T. Fujie. The maximum-leaf spanning tree problem: Formulations and facets.
Networks, 43:212–223, 2004.

[20] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing
steiner minimal trees. SIAM Journal on Applied Mathematics, 32:835–859,
1977.

113

REFERENCES

[21] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to
the theory of NP-Completeness. W. H. Freeman, New York, 1979.

[22] L. Gargano, P. Hell, L. Stacho, and U. Vaccaro. Spanning trees with bounded
number of branch vertices. In Automata, Languages and Programming, pages
355–365. Springer Berlin Heidelberg, 2002.

[23] E.N. Gilbert and H.O. Pollak. Steiner minimal trees. SIAM Journal on Applied
Mathematics, 16:1–29, 1968.

[24] R. E. Gomory. An algorithm for integer solutions to linear programs. Recent
Advances in Mathematical Programming, 64:269–302, 1963.

[25] I. Gribkovskaia, Ø. Halskau, and G. Laporte. The bridges of Königsberg—a
historical perspective. Networks, 49:199–203, 2007.

[26] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem.
North-Holland, Amsterdam, 1992.

[27] N. Jozefowiez, G. Laporte, and F. Semet. A branch-and-cut algorithm for the
minimum labeling hamiltonian cycle problem and two variants. Computers &
Operations Research, 38:1534–1542, 2011.

[28] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In M.O.
Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors, Network
Models, volume 7 of Handbooks in Operations Research and Management
Science, pages 225–330. Elsevier, North-Holland, Amsterdam, 1995.

[29] S. Kapoor and H. Ramesh. Algorithms for enumerating all spanning trees of
undirected and weighted graphs. SIAM Journal on Computing, 24:247–265,
1995.

[30] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7:48–50,
1956.

114

REFERENCES

[31] A. H. Land and A. G. Doig. An automatic method of solving discrete pro-
gramming problems. Econometrica: Journal of the Econometric Society, pages
497–520, 1960.

[32] G. Laporte. The traveling salesman problem: An overview of exact and
approximate algorithms. European Journal of Operational Research, 59:231–
247, 1992.

[33] G. Laporte. The vehicle routing problem: An overview of exact and approx-
imate algorithms. European Journal of Operational Research, 59:345–358,
1992.

[34] X. Li and X.Y. Zhang. On the minimum monochromatic or multicolored
subgraph partition problems. Theoretical Computer Science, 385:1–10, 2007.

[35] A. Lucena, N. Maculan, and L. Simonetti. Reformulations and solution
algorithms for the maximum leaf spanning tree problem. Computational
Management Science, 7:289–311, 2010.

[36] T. L. Magnanti and L. A. Wolsey. Optimal trees. In M. O. Ball, T.L. Magnanti,
C.L. Monma, and G.L. Nemhauser, editors, Network Models, Handbooks in
Operations Research and Management Science 6, pages 503–615. North-Holland,
Amsterdam, 1995.

[37] A. Marín. Exact and heuristic solutions for the minimum number of branch
vertices spanning tree problem. European Journal of Operational Research,
245:680–689, 2015.

[38] R. A. Melo, P. Samer, and S. Urrutia. An effective decomposition approach and
heuristics to generate spanning trees with a small number of branch vertices.
arXiv preprint arXiv:1509.06562, 2015.

[39] M. Merabet, S. Durand, and M. Molnar. Minimization of branching in the
optical trees with constraints on the degree of nodes. In ICN’12: The Eleventh
International Conference on Networks, pages 235–240, Saint-Gilles, Réunion
Island, 2012.

115

REFERENCES

[40] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation
of traveling salesman problems. Journal of the Association for Computing
Machinery, 7:326–329, 1960.

[41] J. E. Mitchell. Branch-and-cut algorithms for combinatorial optimization
problems. Handbook of Applied Optimization, pages 65–77, 2002.

[42] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley, New York, 2014.

[43] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM Review, 33:60–100,
1991.

[44] M. W. Padberg and L. A. Wolsey. Trees and cuts. In Combinatorial Mathe-
matics, Annals of Discrete Mathematics 17, pages 511–517. North-Holland,
Amsterdam, 1983.

[45] R. C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36:1389–1401, 1957.

[46] J.-J. Salazar-Gonzalez. The steiner cycle polytope. European Journal of
Operational Research, 147:671–679, 2003.

[47] J. M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Information
Processing Letters, 113:241–244, 2013.

[48] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York,
1998.

[49] D. M. Silva, R. M. A. Silva, G. R. Mateus, J. F. Gonçalves, M. G. C. Resende,
and P. Festa. An iterative refinement algorithm for the minimum branch
vertices problem. In Experimental Algorithms, pages 421–433. Springer, Berlin
Heidelberg, 2011.

[50] R. M. A. Silva, D. M. Silva, M. G. C. Resende, G. R. Mateus, J. F. Gonçalves,
and P. Festa. An edge-swap heuristic for generating spanning trees with
minimum number of branch vertices. Optimization Letters, 8:1225–1243, 2014.

116

REFERENCES

[51] S. Silvestri, G. Laporte, and R. Cerulli. The rainbow cycle colver problem.
Technical Report CIRRELT-2015-40, Interuniversity Research Centre on En-
terprise Networks, Logistics and Transportation (CIRRELT), August 2015.

[52] S. Sundar, A. Singh, and A. Rossi. New heuristics for two bounded-degree
spanning tree problems. Information Sciences, 195:226–240, 2012.

[53] J. W Suurballe and R. E. Tarjan. A quick method for finding shortest pairs of
disjoint paths. Networks, 14:325–336, 1984.

[54] J.W. Suurballe. Disjoint paths in a network. Networks, 4:125–145, 1974.

[55] L. A. Wolsey. Integer Programming. Wiley, Hoboken, New Jersey, 1998.

[56] Y. Xiong, B.L. Golden, and E.A. Wasil. The colorful traveling salesman
problem. In Extending the Horizons: Advances in Computing, Optimization,
and Decision Technologies, pages 115–123. Boston: Springer, 2007.

117

	List of Figures
	List of Tables
	Introduction
	General concepts: a brief overview
	Integer and Combinatorial Optimization
	Computational complexity
	Graph theory
	Polyhedral theory
	Branch-and-Cut Algorithm

	Spanning Tree and Cycle Cover
	Introduction
	Spanning Trees
	Spanning Tree on edge-labeled graphs

	Cycle Cover Overview
	Cycle Cover on edge-labeled graphs

	The Rainbow Cycle Cover Problem
	Introduction and Problem Description
	Mathematical formulation and Properties
	Properties of a Rainbow Cycle Cover

	Valid inequalities
	Branch-and-cut algorithm
	Computational results
	LP lower bounds and duality gaps

	The Rainbow Spanning Forest Problem
	Introduction and Problem Description
	Problem Complexity
	Problem Complexity: A Polynomial Case

	Mathematical Formulations
	First Mathematical Formulation
	Second Mathematical Formulation
	Valid inequalities for ILP2

	The Greedy Algorithm
	The multi-start scheme

	Computational results

	A Branch-and-Cut Algorithm for the Minimum Branch Vertices Spanning Tree Problem
	Introduction
	Undirected formulation, properties and bounds
	Spanning tree properties

	Polyhedral analysis of the undirected formulation
	Directed and hybrid reformulations
	Branch-and-cut algorithm
	Computational results
	LP lower bounds and duality gaps

	Conclusions and Future Works
	References
	Nomenclature

