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Abstract 

Influenza is a highly contagious, acute respiratory illness, which represents 

one of the main plagues worldwide. Even though some antiviral drugs are 

available, the alarming increase of virus strains resistant to them, highlights the 

need to find new antiviral compounds. The high mutation rate of the RNA 

genome of the influenza virus, combined with assortment of its multiple 

genomic segments, promotes antigenic diversity and new subtypes, allowing the 

virus to evade vaccines and become resistant to antiviral drugs. Thus, there is a 

continuing need for new anti-influenza therapy using novel targets and creative 

strategies.  

On the basis of the above considerations, an ideal target for therapy should 

be a viral component, whose function is essential for virus infection.  

In this contest, the influenza A virus hemagglutinin (HA) represents a very 

promising target. 

 

Keywords: Influenza, virus, drug, resistance, therapy, hemagglutinin. 

 

Abbreviations 

IAVs, Influenza A virus; ORFs, open reading frames, HA, hemagglutinin; 

NA, neuraminidase; M2, matrix 2; M1, matrix 1; NEP, nuclear export 

protein; NS2, nonstructural protein 2; RNP, ribonucleoprotein; NP, 

nucleoprotein; HEF, hemagglutinin-esterase-fusion protein; NLSs, nuclear 

localization signals; cRNA, complementary RNA; NAIs, neuraminidase 

inhibitors; DANA, 2-deoxy-2,3-didehydro- N-acetyl neuraminic acid; 

FANA, 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid.  
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1.1. Introduction  

 

Influenza is a contagious respiratory infection and it is considered to be one 

of the life-threatening infectious diseases.[1] It is a viral infection, associated 

with seasonal outbreaks of respiratory illness during the winter months in 

regions with temperate climates and during rainy seasons in tropical regions.  

In some countries seasonal influenza affects annually up to 40% of the 

population and 500 million people die from it worldwide every year.[2-4] 

The reasons for seasonal epidemics of influenza are not definitely known. 

They probably involve a combination of environmental factors such as low 

humidity and low temperature and social behaviors that facilitate person-to-

person transmission of influenza virus. At unpredictable intervals, influenza 

pandemics occur with very high attack rates and severe disease. In the 

population, influenza follows the general pattern that now appears to 

characterize essentially all respiratory infections. It can be particularly 

hazardous to individuals with poor immunity such as children and the elderly, 

and those with pulmonary, cardiovascular or other complications. Because of a 

lack of prior immunity, humans can be highly susceptible to infection and 

disease from these subtypes.  

Influenza in otherwise healthy persons is characterized predominantly by 

fever, myalgias, cough and other respiratory symptoms, and malaise. In most 

persons, recovery from these symptoms occurs in 5 to 7 days, but even in 

healthy persons symptoms of fatigue and malaise may not completely resolve 

for several weeks.  

Influenza may cause more severe pulmonary symptoms through direct 

invasion of the lung (leading to primary viral pneumonia) or by altering lung 

defense mechanisms in a variety of ways that lead to bacterial superinfection. 

This superinfection, which may occur simultaneously with influenza or follow 

it by days to weeks, may be responsible for much of the disease burden 
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associated with influenza. Although the primary target and clinically relevant 

tissue in influenza virus infection is the respiratory epithelium,[2] facultative 

infection of other organs, such as the cardiac or skeletal muscle, is possible and 

has occasionally been documented in cell culture and experimental animal 

infections.[5-9] 

 

1.2 Influenza viruses 

 

Influenza viruses, belonging to the Orthomyxoviridae family, are 

enveloped negative-strand RNA viruses with segmented genomes containing 

seven to eight gene segments.[4] 

One genus includes influenza A and B viruses, and the other comprises 

influenza C viruses. The three virus types differ in host range and pathogenicity. 

[10] Type B and C influenza viruses are isolated almost exclusively from humans, 

although influenza B viruses have been isolated from seals and influenza C 

viruses have been isolated from pigs and dogs.[11-12] 

Influenza A viruses, however, infect a wide variety of warm-blooded 

animals, including birds, swine, horses, humans, and other mammals. Influenza 

A and B viruses have a similar structure, whereas influenza C is more divergent. 

Influenza A- and B-type viruses contain eight discrete single-stranded RNA 

gene segments, each encoding at least one protein. Only Influenza A virus 

(IAVs) pose a significant risk of zoonotic infection, host switch, and the 

generation of pandemic IAVs. IAVs are enveloped with a host cell-derived lipid 

membrane. The eight gene segments encode at least 11 open reading frames 

(ORFs) (Figure 1.1).  
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Figure 1.1 Diagrammatic representation of an Influenza A Virus, the two major surface 

glycoproteins, hemagglutinin (HA) and neuraminidase (NA), along with small numbers 

of the matrix 2 (M2) ion channel protein, are embedded in a lipid bilayer (according 

to Ludwig et al. 2003). Adapted from “Antiviral agents targeting the influenza virus: a 

review and publication analysis,” by L. Eyer and K. Hruska, 2013, Veterinarni 

Medicina, 58, 113-185. 

 

The envelope bilayer harbors the two spike glycoproteins, hemagglutinin 

(HA) and neuraminidase (NA), and the M2 proton channel. HA is a glycosylated 

type I integral membrane protein with functions both as the viral receptor-

binding protein and fusion protein. NA cleaves glycosidic bonds with terminal 

SA facilitating the release of budding virions from the cell. There are 16 known 

HA (H1 to H16) and 9 NA (N1 to N9) subtypes in influenza A,[4, 13] leading to 

the current HxNy nomenclature. Routine human infections of seasonal influenza 

are mainly due to H1N1, H1N2 and influenza B; however, H3N2 is gradually 

becoming more abundant.[14] The small protein M2 is a proton channel 

necessary for viral replication. 
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1.2.1 Virion structure and organization 

 

Influenza A and B viruses are virtually indistinguishable by electron 

microscopy. They are spherical or filamentous in shape, with the spherical 

forms on the order of 100 nm in diameter and the filamentous forms often in 

excess of 300 nm in length. The influenza A virion is studded with glycoprotein 

spikes of HA and NA, in a ratio of approximately four to one, projecting from 

a host cell–derived lipid membrane.[4] 

A smaller number of matrix ion channels (M2) traverse the lipid envelope, 

with an M2:HA ratio on the order of one M2 channel per 101-102 HA 

molecules.[15] The envelope and its three integral membrane proteins HA, NA, 

and M2 overlay a matrix of M1 protein, which encloses the virion core. Internal 

to the M1 matrix are found the nuclear export protein (NEP; also called 

nonstructural protein 2, NS2) and the ribonucleoprotein (RNP) complex, which 

consists of the viral RNA segments coated with nucleoprotein (NP) and the 

heterotrimeric RNAdependent RNA polymerase, composed of two “polymerase 

basic” and one “polymerase acidic” subunits (PB1, PB2, and PA). The 

organization of the influenza B virion is similar, with four envelope proteins: 

HA, NA, and, instead of M2, NB and BM2. Influenza C virions are structurally 

distinct from those of the A and B viruses; on infected cell surfaces, they can 

form long cordlike structures on the order of 500 μm. However, influenza C 

virions are compositionally similar, with a glycoprotein-studded lipid envelope 

overlying a protein matrix and the RNP complex. The influenza C viruses have 

only one major surface glycoprotein, the hemagglutinin-esterase-fusion (HEF) 

protein, which corresponds functionally to the HA and NA of influenza A and 

B viruses, and one minor envelope protein, CM2.[4] 
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1.2.2 The influenza virus replication cycle 

 

1.2.2.1 Virus attachment 

Influenza viruses recognize N-acetylneuraminic (sialic) acid on the host cell 

surface. Sialic acids are nine-carbon acidic monosaccharides commonly found 

at the termini of many glycoconjugates. The sialic acid moiety is recognized and 

bound by the HA spikes on the surface of influenza viruses.[16] 

 

 

Figure 1.2 Cellular targets for anti-influenza drugs in the context of the replication 

cycle of influenza virus. Stages of influenza A virus replication are in green. Cellular 

pathways shown by siRNA screens to be essential for completion of the viral replication 

cycle are shown in red. Adapted from “Cellular targets for influenza drugs,” by J. Min 

and K. Subbarao, 2010, Nature Biotechnology, 28, 239-240. 
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1.2.2.2 Virus Entry 

Following attachment of the influenza virus HA to sialic acid, the virus is 

endocytosed. The acidity of the endosomal compartment is crucial to influenza 

virus uncoating in two ways. First, low pH triggers a conformational change in 

the HA, exposing a fusion peptide that mediates the merging of the viral 

envelope with the endosomal membrane, thus opening a pore through which the 

viral RNP’s are released into the host cell cytoplasm.[17, 18] Second, hydrogen 

ions from the endosome are pumped into the virus particle via the M2 ion 

channel. The M2 protein, a transmembrane ion channel found only in influenza 

A virus, has portions external to the viral envelope, along with the HA and 

NA.[19, 20] Internal acidification of the influenza virion via the M2 channel 

disrupts internal protein-protein interactions, allowing viral RNPs to be released 

from the viral matrix into the cellular cytoplasm.[21] 

 

1.2.2.3 Synthesis of Viral RNA 

Once liberated from the virion, RNPs are trafficked to the host cell nucleus 

by means of viral proteins’ nuclear localization signals (NLSs), which direct 

cellular proteins to import the RNPs and other viral proteins into the host cell 

nucleus.[22] The nucleus is the location of all influenza virus RNA synthesis. The 

viral RNAdependent RNA polymerase – a component of the RNPs imported 

into the nucleus – uses the negative-sense vRNA as a template to synthesize two 

positive-sense RNA species: mRNA templates for viral protein synthesis, and 

complementary RNA (cRNA) intermediates from which the RNA polymerase 

subsequently transcribes more copies of negative-sense, genomic vRNA. 

Nuclear export of vRNA segments, however, is mediated by the viral proteins 

M1 and NEP/NS2.[22] M1 interacts with both vRNA and NP and it also 

associates with the nuclear export protein NEP, which mediates the M1-RNP 

export via nucleoporins into the cytoplasm. 
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1.2.2.4 Virus Budding and Release 

Influenza virus budding occurs at the cell membrane, probably initiated by 

an accumulation of M1 matrix protein at the cytoplasmic side of the lipid 

bilayer. When budding is complete, HA spikes continue to bind the virions to 

the sialic acid on the cell surface until virus particles are actively released by the 

sialidase activity of the NA protein. The NA is a mushroom-shaped tetramer, 

anchored to the viral envelope by a transmembrane domain.[23, 24] It possesses 

receptor destroying activity, cleaving terminal sialic acid residues from cell-

surface glycoproteins and gangliosides to release progeny virus from the host 

cell. In viruses with inactive or absent NA, or in the presence of neuraminidase 

inhibitors, virus particles clump at the cell surface and infectivity is 

consequently reduced. The NA also removes sialic acid residues from the virus 

envelope itself, which prevents viral particle aggregation to enhance 

infectivity.[25, 26] The NA is also thought to aid virus infectivity by breaking 

down the mucins in respiratory tract secretions and allowing the virus to 

penetrate through to the respiratory epithelium, and it may play a role in virus 

entry into respiratory epithelial cells.[27] Host antibodies to the NA, as well as 

neuraminidase inhibitors, prevent virus release from infected cells and thus 

inhibit viral replication. 

 

1.3 Anti-influenza therapy  

 

1.3.1 Vaccine 

 

The vaccination represent the main strategy for preventing infections. 

However, the vaccines are not able to follow the rapid virus antigenic drift, so 

that vaccine antigen composition needs to be updated annually based on global 

influenza surveillance. Efforts to influenza prevention by vaccination are made 

difficult by the virus ability to rapidly mutate and recombine into antigenically 
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new viral particles, sometimes leading to the emergence of a totally new virus. 

For this reason, at present, the development of antiviral drugs represents a 

crucial strategy in the control and prevention of seasonal and pandemic 

influenza infections.[28] Antiviral drugs can overcome the limitations of 

vaccination strategies, such as the time-consuming vaccine design, insufficient 

protection for immunocompromised patients and the unpredictable antigenic 

changes in influenza strains which render vaccination ineffective.  

The anti-influenza drugs are usually classified according to their target in the 

viral life-cycle, which is schematically depicted in Figure 1.2. Antiviral 

molecules are particularly used as inhibitors of the following processes: 

attachment of the virus to host cell receptors, endocytosis and fusion of viral 

and cell membranes, replication and transcription of the viral genome, synthesis 

of viral proteins, assembly of the viral progeny and release of the new virions 

into the outside environment. Two classes of antiviral drugs, the adamantane 

derivatives (amantadine and rimantadine) and neuraminidase inhibitors (NAIs; 

zanamivir and oseltamivir), have been approved for treatment and prophylaxis 

of influenza.[4, 29, 30]
 

 

1.3.2 M2 ion channel blockers 

 

M2 ion channel is a transmembrane viral protein (Figure 1.1) that mediates 

the selective transport of protons into the interior of the influenza virion. 

Conductance of protons acidifies the internal space of the viral particle and 

facilitates the haemagglutinin-mediated membrane fusion, which in turn results 

in the uncoating of the influenza nucleocapsid and import of the viral genome 

into the nucleus.[31] Adamantanes are potent M2 channel blockers, which are 

known as the first synthetic anti-influenza drugs described in the mid-1960s.[32] 

Two adamantane derivatives, amantadine and rimantadine (Figure 1.3), have 

been licensed for influenza control and are commercially available under the 
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trademarks Symmetrel® and Flumadine®, respectively.[33] The adamantanes 

are relatively cheap, highly stable in storage and show strong anti-influenza 

activity at micromolar concentrations. At present, the application of 

adamantanes for prevention and treatment of influenza infections is, however, 

not recommended because of the rapid emergence of drug-resistant virus 

variants that retain full virulence and transmissibility.[34, 35] 

 

 

Figure 1.3 Structure of M2 ion channel inhibitors:  

amantadine (1) and rimantadine (2). 

 

1.3.3 Inhibitors of neuraminidase 

 

Neuraminidase, also referred to as sialidase, is an antigenic glycoprotein 

anchored in the surface envelope of the influenza virions, which hydrolytically 

cleaves the terminal sialic acid from the host cell receptors (Figure 1.2). Thus, 

it plays a crucial role in the release of viral progeny from the membranes of 

infected cells, prevents self-aggregation of virions and facilitates the movement 

of the infectious viral particles in the mucus of the respiratory epithelia.[27, 36] 

Influenza neuraminidase has been established as a key drug target for the 

prophylaxis and treatment of influenza infections, predominantly for the 

following reasons: firstly, the structure of the influenza neuraminidase active 

site is highly conserved between influenza A and B strains, making 

neuraminidase an attractive target for the development of broad-spectrum 

inhibitors.[37] Secondly, resistance to neuraminidase inhibitors develops less 
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commonly than to other anti-influenza drugs. Nevertheless, the intensive 

application of neuraminidase inhibitors for influenza treatment results in a 

permanently increasing number of drug-resistant strains.[38] Thirdly, in contrast 

to adamantanes, neuraminidase inhibitors are mostly well tolerated in patients 

under therapy.[39] Finally, neuraminidase protein is a freely accessible target for 

antiviral molecules with an extracellular mode of action. The development of 

neuraminidase inhibitors started in the middle 1970s, when the first structural 

analogues of sialic acid were described and denoted as DANA (2-deoxy-2,3-

didehydro- N-acetyl neuraminic acid) and its trifluoroacetyl derivative FANA 

(2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid).[40] At present, several 

licensed anti-influenza medications are available on the market, most notably 

the inhalant zanamivir with the trademark Releza®, and the orally administered 

oseltamivir (Tamiflu®) having excellent bioavailability and relatively long half-

life in vivo (Figure 1.4).[41, 42] 

 

 

Figure 1.4 Structure of neuraminidase inhibitors:  

zanamivir (1) and oseltamivir (2). 

 

In response to the emergence of some oseltamivir-resistant influenza strains, 

peramivir and laninamivir have been recently developed (Figure 1.5).[43, 44] 
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Figure 1.5 Structure of peramivir (1) and laninamivir (2). 

 

New-generation neuraminidase inhibitors are currently under investigation, 

e.g., multimeric forms of zanamivir,[45] dual-targeted bifunctional antivirals[46] 

and several herbal remedies, such as flavonols, alkaloids and saponins.[47]  

 

1.4 Influenza drug resistance 

 

The propagation of viruses in the presence of antiviral drugs increases the 

selection pressure for mutations in the viral target proteins, which results in the 

induction of virus drug resistance. As an example, adamantane resistant strains 

are typically characterised by a single substitution in the transmembrane region 

of the M2 ion channel.[48, 49] On the other hand, resistance to neuraminidase 

inhibitors can result from mutations in the neuraminidase active cavity, but also 

from amino acid substitutions on the molecular surface of the neuraminidase 

protein.[37, 50] It is noteworthy that resistance to adamantanes is acquired rapidly 

and by a high number of virus strains,[34] while neuraminidase inhibitor 

resistance has developed over a longer time period and occurs with a relatively 

lower frequency.[38] This may be due to the fact that some mutations 

significantly affect viral infectivity and ability to replicate in the host cell.  

Therefore, the capability of viruses to mutate the target proteins represents 

an obstacle for efficient treatment with these drugs. On the basis of the above it 
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is apparent the need to provide for new compounds against influenza virus able 

to overcome the disadvantages of the known therapies.[51, 52]  

Therefore, the identification of new target for therapy of influenza virus 

infection and development of new therapeutic agents are the global public health 

priority.  

 

1.5 Hemagglutinin: a new promising target  

 

An attractive antiviral strategy is the blocking of influenza virus entry into 

the host cell. This process is mediated by the viral hemagglutinin (HA), a 

glycosylated type I integral membrane protein. HA is responsible for the binding 

of the virus to the target cell and, after virus uptake into endosomes, fusion of 

the virus with the cell membranes.[53] 

The crystal structure of the HA molecule is a trimer with two structurally 

distinct regions: a stem, comprising a triple-stranded coiled-coil of alpha-

helices, and a globular head of antiparallel beta-sheet, positioned atop the 

stem.[54]  

The head contains the sialic acid receptor binding site, which is surrounded 

by the predicted variable antigenic determinants, designated A, B, C, and D in 

the H3 subtype[55] and Sa, Sb, Ca1, Ca2, and Cb in the H1 subtype (Figure 

1.6).[4] 
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Figure 1.6 Ribbon diagram of an uncleaved hemagglutinin monomer from an influenza 

A virus (H1N1). The head contains the sialic acid receptor-binding site, which is 

surrounded by the five predicted antigenic sites (Sa, Sb, Ca1, Ca2, and Cb). The stem 

comprises helices A and B and the fusion peptide, as shown. Adapted from “The biology 

of influenza viruses,” by N. M. Bouvier and P. Palese, 2008, Vaccine, 26, 1-10. 

 

During virus replication, the HA protein is cleaved by serine proteases into 

HA1 and HA2; this post-translational modification is necessary for virus 

infectivity. The HA2 portion is thought to mediate the fusion of virus envelope 

with cell membranes, while the HA1 portion contains the receptor binding and 

antigenic sites.[56] Antibodies to HA neutralize virus infectivity, so virus strains 

evolve frequent amino acid changes at the antigenic sites; however, the stem-

head configuration of the HA molecule remains conserved among strains and 

subtypes. These relatively minor changes accumulate in a process called 

antigenic drift. Eventually, mutations in multiple antigenic sites result in a virus 

strain that is no longer effectively neutralized by host antibodies to the parental 

virus, and the host becomes susceptible again to productive infection by the 

drifted strain. 

Hemagglutinin has been chosen since it is the major surface protein of the 

Influenza A virus and is essential to the entry process so representing an 
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attractive target for antiviral therapy. An initial attachment of HA to specific 

receptors on the host cell surface and a membrane fusion of HA matured by 

protease digestion are required for virus infection. As a matter of fact, 

neutralizing compounds targeting HA represent a useful tool in neutralizing 

viral infection, clearing virus, and suppressing viral spread. 
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Abstract 

Bovine lactoferrin (bLf) is a multifunctional glycoprotein that plays an 

important role in innate immunity against infections, including influenza.  

Therefore, bLf was considered a novel drug target for the inhibition of 

influenza virus infection. Previously, it was shown that inhibition of influenza 

virus hemagglutination and cell infection is entirely attributable to the C-lobe 

and that all major virus subtypes, including H1N1 and H3N2, are inhibited. By 

far-western blotting and sequencing studies, bLf was shown to bind to the HA2 

subunit, an HA region which is known to contain the universally conserved HA 

epitope. Moreover, molecular docking studies have identified some C-lobe 

fragments which inhibited virus hemagglutination and infection at picomolar 

concentration range. 

Besides contributing to explain the broad anti-influenza activity of bLf, these 

findings lay the foundations for exploiting bLf fragments as source of potential 

anti-influenza therapeutics. 

 

Keywords: Influenza, Bovine lactoferrin, C-lobe, Peptides, Antiviral. 

 

Abbreviations 

LF, lactoferrin; BLf, bovine lactoferrin; HI, hemagglutination inhibition 

assay; SI, selectivity index; HA, hemagglutinin. 
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2.1 Introduction 

 

Lactoferrin (LF) is a non-haem iron-binding protein that is part of the 

transferrin protein family, whose function is to transport iron in blood 

serum.[1, 2] 

Lactoferrin was first isolated by Sorensen and Sorensen from bovine milk in 

1939. In 1960 it was concurrently determined to be the main iron binding 

protein in human milk by three independent laboratories.[3-5] 

LF  is commonly found in various secretory fluids, such as saliva, tears, nasal 

secretions, seminal and vaginal fluids, and in granules of polymorphonuclear 

leukocytes[6] of different mammalian species, including humans, cows, 

goats, horses, dogs, and several rodents.[7, 8]  

It is also found in considerable amounts in secondary neutrophil granules 

(15µg/106 neutrophils),[9] where it plays a significant physiological role. LF 

is an essential player of the natural immunity. LF possesses a greater iron-

binding affinity and is the only transferrin with the ability to retain this metal 

over a wide pH range,[10] including extremely acidic pH. It also exhibits a 

greater resistance to proteolysis. In addition to these differences, LF’s net 

positive charge and its distribution in various tissues make it a 

multifunctional protein. It is involved in several physiological functions, 

including: regulation of iron absorption in the bowel; immune response; 

antioxidant, anticarcinogenic and anti-inflammatory properties; protection 

against microbial infection, which is the most widely studied function to 

date; and inhibiting activity towards different pathogens.[7, 11-13] 

In particular, bLf has been recognized as potent inhibitor of different 

enveloped viruses, such as human cytomegalovirus,[14] herpes simplex 

viruses types 1 and 2,[15-18] human immunodeficiency virus,[19] human 



Chapter II: Bovine lactoferrin: a novel drug target for the inhibition of influenza virus 

infection 

 

- 29 - 

 

hepatitis C virus,[20] hantavirus,[21] hepatitis B virus,[22] respiratory syncytial 

virus,[23] flavivirus,[24] alphavirus,[25] and phlebovirus.[26] 

 

2.2 Structure and properties 

 

Bovine lactoferrin (bLf) is a glycoprotein consisting of a single 

polypeptide chain of 689 amino acidic residues, with a molecular mass of 76 

kDa, which binds two iron atoms with very high affinity.[27] 

 BLf, like lactoferrin of other mammalian species, is folded in two 

symmetric and globular lobes: N-lobe (residues 1-333) and C-lobe (residues 

345-676) which are highly homologous with one another (33–41% 

homology). It is made up of α-helix and β-pleated sheet structures, which 

create two domains for each lobe (domains I and II). In bovine lactoferrin, 

the N1 stands for the sequences 1-90 and 251-333, N2 for 91-250, C1 for 

345-431 and 593-676, and C2 for 432-592.[28, 29] These two lobes are linked 

by a three-turn connecting helix, residues 334 and 344, which provide 

additional flexibility to the molecule (Figure 2.1).[28] Each lobe can bind a 

metal atom in synergy with the carbonate ion (CO3 
2−). The metals that it 

binds are the Fe2+ or Fe3+ ions, but it has also been observed bound to Cu2+, 

Zn2+ and Mn2+ ions.[7] 
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Figure 2.1 Schematic diagram of the bovine lactoferrin molecule. The N1 and N2 

domains are colored in yellow and pink, respectively, while the C1 and C2 domains 

are colored in green and blue, respectively. The interconnecting helix between the 

lobes is colored in orange. The two iron atoms are shown as red spheres. Adapted 

from “C-Lobe of Lactoferrin: The whole story of the half-molecule,” by S. 

Sharma, M. Sinha, S. Kaushik, P. Kaur and T. P. Singh, 2013, Biochemistry 

Research International, 2013, 1-8. 

 

Because of its ability to reversibly bind Fe3+, LF can exist free of Fe3+ 

(apo-LF) or associated with it (holo-LF),[30] and it has a different three-

dimensional conformation depending on whether it is binding Fe3+.[31] Apo-

LF has an open conformation, whilst holo-LF is a closed molecule with 

greater resistance to proteolysis (Figura 2.2).[8] 

 

https://www.hindawi.com/28326845/
https://www.hindawi.com/28326845/
https://www.hindawi.com/34504061/
https://www.hindawi.com/50715076/
https://www.hindawi.com/26276079/
https://www.hindawi.com/56438691/
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Figure 2.2 Structure of the iron-bound (holo) form (A) and iron-free (apo) form 

(B) of Lf. Adapted from “A structural framework for understanding the 

multifunctional character of lactoferrin,” by E. N. Baker and H. M. Baker, 2009, 

Biochimie, 91, 3–10. 

 

The iron-binding site is situated inside the interdomain cleft in each lobe. 

The iron-binding site consists of four residues: 2 tyrosines, 1 aspartate, and 

1 histidine. The iron-binding residues in N-lobe are Asp 60, Tyr 92, Tyr 192, 

and His 253 while the corresponding iron-binding residues in C-lobe are Asp 

395, Tyr 433, Tyr 526, and His 595. The iron-binding residues are 

coordinated to the ferric ion and a synergistic bidentate carbonate anion 

(Figura 2.3).[31] LF is a basic, positively charged protein with an isoelectric 

point of 8.0–8.5.[7] 
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Figure 2.3 Schematic figure of the iron-binding site of lactoferrin. The iron atom 

is shown as a red sphere, while the interacting amino acid residues of lactoferrin 

are in yellow. The residue numbers correspond to N-lobe, while the corresponding 

residues of C-lobe are in brackets. Adapted from “C-Lobe of Lactoferrin: The 

whole story of the half-molecule,” by S. Sharma, M. Sinha, S. Kaushik, P. 

Kaur and T. P. Singh, 2013, Biochemistry Research International, 2013, 1-8. 

 

2.3 Biological functions of lactoferrin 

 

Several functions have been attributed to LF. It is considered a key 

component in the host’s first line of defence, as it has the ability to respond 

to a variety of physiological and environmental changes.[32] The structural 

characteristics of LF provide functionality in addition to the Fe3+ 

homeostasis function common to all transferrins: strong antimicrobial 

activity against a broad spectrum of bacteria, fungi, yeasts, viruses[33] and 

parasites;[34] anti-inflammatory and anticarcinogenic activities;[32] several 

enzymatic functions[35] and anti-influenza activity.[36] 

 

 

 

https://www.hindawi.com/28326845/
https://www.hindawi.com/34504061/
https://www.hindawi.com/50715076/
https://www.hindawi.com/26276079/
https://www.hindawi.com/26276079/
https://www.hindawi.com/56438691/
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2.4 Scientific background 

 

Previously, Superti et al. have demonstrated that bLf binds to viral HA 

and inhibits hemagglutination and infection of all major virus subtypes, 

including H1N1 and H3N2.[37] 

In particular, by far-western blotting and sequencing studies, it 

demonstrated that lactoferrin binds to the HA2 subunit of viral HA, 

particularly to the fusion peptide, the only universally conserved epitope in 

all influenza virus hemagglutinin.[38] This behaviour explains the broad 

specificity of bLf and its C-lobe anti-influenza activity.[37] 

Moreover, molecular docking studies have shown that the bLf C-lobe 

binding to HA was mediated, in most cases, by three surface-exposed loops 

characterized by the following amino acid sequences: SKHSSLDCVLRP 

(aa 418–429, 1), AGDDQGLDKCVPNSKEK (aa 506–522, 2) and 

NGESSADWAKN, (3) (Figure 2.4). 

 

 

Figure 2.4 Putative binding mode of bLf C-lobe (white ribbon) with the HA stm 

(light grey solid surface): (A) close to the fusion peptide (dark grey surface); (B) in 

the cleft between two monomers. Selected bLf sequences correspond to the 

numbered black loops of bLf C-lobe: (1) SKHSSLDCVLRP; (2) 
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AGDDQGLDKCVPNSKEK; (3) NGESSADWAKN. Adapted from “Bovine 

lactoferrin-derived peptides as novel broad-spectrum inhibitors of influenza 

virus,” by M. G. Ammendolia, M. Agamennone, A. Pietrantoni, F. Lannutti, R. A. 

Siciliano, B. De Giulio, C. Amici, F. Superti, 2012, Pathog. Glob. Health., 106, 12-

19.  

 

Therefore, each peptide, tested by HI, has shown to be able to inhibit HA 

activity of all tested virus strains at concentrations much lower than those 

shown by the C-lobe (Table 2.1).  

 

Table 2.1 Interaction of SKHSSLDCVLRP, AGDDQGLDKCVPNSKEK, and 

NGESSADWAKN peptides with viral HA. Adapted from “Bovine lactoferrin-

derived peptides as novel broad-spectrum inhibitors of influenza virus,” by M. G. 

Ammendolia, M. Agamennone, A. Pietrantoni, F. Lannutti, R. A. Siciliano, B. De 

Giulio, C. Amici, F. Superti, 2012, Pathog. Glob. Health., 106, 12-19.  

 

 

Similarly to HI data, bLf-derived peptides were better inhibitors than the 

entire protein, their selectivity index being about one or two order of 

magnitude higher, depending on virus strain (Table 2.2). 
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Table 2.2 In vitro antiviral activity of SKHSSLDCVLRP, 

AGDDQGLDKCVPNSKEK, and NGESSADWAKN peptides towards influenza 

virus infection. Adapted from “Bovine lactoferrin-derived peptides as novel broad-

spectrum inhibitors of influenza virus,” by M. G. Ammendolia, M. Agamennone, A. 

Pietrantoni, F. Lannutti, R. A. Siciliano, B. De Giulio, C. Amici, F. Superti, 

2012, Pathog. Glob. Health., 106, 12-19.  

 

*CC50 the reciprocal substance dilution at which 50%of cells were protected from 

substance toxicity; °EC50 the reciprocal substance dilution at which 50% of cells 

were protected from the virus induced killing;ˆSI (selectivity index) the ratio 

between CC50 and EC50. 

The mean values of three independent experiments with standard errors are shown. 

 

This is the first demonstration that viral hemagglutination can be 

inhibited by a specific interaction with the HA2 subunit. As a matter of fact, 

neutralizing antibodies against influenza virus have been found to act by two 

different mechanisms, mirroring the dual functions of hemagglutinin: (i) 

prevention of attachment to target cells, (ii) inhibition of entry (membrane 

fusion). 
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Abstract 

Bovine lactoferrin, more concretely its C-lobe, is able to prevent both 

influenza virus hemagglutination and cell infection.  

In this study, to deeper investigate the ability of lactoferrin derived peptides 

to inhibit influenza virus infection, we selected and synthesized new bovine 

lactoferrin C-lobe derived sequences that were assayed for their ability to 

prevent viral hemagglutination and cell infection.  

We identify three tetrapeptides endowed of broad anti-influenza activity and 

able to inhibit viral infection in a concentration range femto- to picomolar. Our 

data indicate that these peptides may constitute a non-toxic approach for 

potential applications as anti-influenza therapeutics. 

 

Keywords: Bovine lactoferrin; C-lobe; influenza virus; peptides; antivirals. 

 

Abbreviations 

Abbreviations used for amino acids and designation of peptides follow the 

rules of the IUPAC-IUB Commission of Biochemical Nomenclature in J. 

Biol. Chem. 1972, 247, 977-983. Amino acid symbols denote L-

configuration unless indicated otherwise. The following additional 

abbreviations are used: 

BLf, bovine lactoferrin; HA, hemagglutinin; HOBt, N-hydroxy-

benzotriazole; HBTU, 2-(1H-benzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluoro-phosphate; HOAt, 1-Hydroxy-7-

azabenzotriazole; DIEA, N,N-diisopropylethyl-amine; DMF, N,N-

dimethylformamide; DCM, dichloromethane; NMP, N-Methyl-2-

pyrrolidone; TIS, triisopropylsilane; TFA, trifluoroacetic acid; GRK2, G 

Protein-Coupled Receptor Kinase 2; MDCK, Madin-Darby canine kidney; 
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FCS, fetal calf serum; HI, hemagglutination inhibition assay; SI, selectivity 

index. 

 

3.1 Introduction 

 

Previously, Superti et al. have deeper investigated the mechanism of the 

anti-influenza virus effect of bLf and the role of its tryptic fragments (the N- 

and C-lobes) in the antiviral activity. In particular, they have evaluated the 

influence of bLf on hemagglutinin-mediated functions. Hemagglutinin has 

been chosen since it is the major surface protein of the Influenza A virus and 

is essential to the entry process so representing an attractive target for 

antiviral therapy. An initial attachment of HA to specific receptors on the 

host cell surface and a membrane fusion of HA matured by protease 

digestion are required for virus infection. As a matter of fact, neutralizing 

compounds targeting HA represent a useful tool in neutralizing viral 

infection.  

 

3.2 Aim of work  

 

By protein-protein docking calculations, it was demonstrated that the 

binding between bLf C-lobe and HA is mediated by specific C-lobe 

fragments (peptides 1, 2 and 3).[1] These peptides strongly inhibited viral 

hemagglutination and infection at low picomolar concentrations and were 

patented.[2] However, protein-protein docking calculations suggested the 

possible role of other loops of bLf C-lobe that can contribute to the binding 

to HA. Thus, to better analyze the molecular and structural requirements that 

determine the bLf C-lobe-HA interaction., firstly, we decided to perform a 

wider mapping of C-lobe domain by designing, synthesizing, and evaluating 
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a new library of bLf C-lobe derivatives, corresponding to the sequences 441-

454 (4), 478-500 (5), 552-563 (6), 619-630 (7), 633-638 (8), and 642-659 

(9) (Figure 3.1, in yellow). As observed in Figure 3.1, the peptides 1-9 (in 

purple and yellow) map almost the entire C-lobe domain.  

 

Figure 3.1 Cartoon representation of the bLf C-lobe. The patented sequences are 

depicted in purple and the newly synthesized sequences in yellow. 

 

3.3 Design, Results and Discussion 

 

3.3.1 Synthesis of C-lobe fragments (Peptides 4-9) 

 

The first part of the work focused the attention on different C-lobe bLf 

fragments (peptides 1, 4-9). These peptides were synthesized and tested in 

order to evaluate their effectiveness to inhibit the HA activity by influenza 

virus belonging to subtypes H1N1 and H3N2 (Table 3.1).  

 

3.3.1.1 Interaction with viral hemagglutinin 

The first step of influenza virus entry into susceptible cells depends on the 

interaction between the viral HA and a specific sialic acid-containing cell 

receptor. This interaction can be measured by agglutination of turkey 
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erythrocytes. Therefore, the binding between virus and bLf was tested by 

checking  the inhibition of viral hemagglutination activity. 

In this experiment, the following influenza A virus strains were used: 

A/RomaISS/02/08 H1N1 oseltamivir-sensitive virus, A/Parma/24/09 H1N1 

oseltamivir-resistant virus, and A/Parma/05/06 H3N2.  

 

Table 3.1 Sequence and HI titer of peptides 1-9. 

 

Frag 

 

 

Pep. 

 

Sequence 

HI titer (nM) 

A/Roma- 

ISS/02/08 

H1N1 

A/Parma/ 

24/09 

H1N1 

A/Parma/ 

05/06 

H3N2 
418-429 1 SKHSSLDCVLRP 0.0014 0.0014  0.0007  

506-522 2 AGDDQGLDKCVPNSKEK 0.0014 0.0014 0.0007 

553-563 3 NGESSADWAKN 0.7.10-6 0.3.10-6 0.0003 

441-454 4 KANEGLTWNSLKDK 12 3 12 

478-500 5 TGSCAFDEFFSQSCAPGADPKSR - - 97 

552-563 6 TNGESTADWAKN 0.7 

 

1.5 

 

0.3 

619-630 7 GKNGKNCPDKFC - - - 

633-638 8 KSETKN 1.5 

 

0.3 

 

3 

 642-659 9 NDNTECLAKLGGRPTYEE - 2.500 - 

 

As shown in Table 3.1, three out of six peptides were able to prevent HA 

activity of all tested viruses. Notwithstanding these peptides exerted a strong 

antiviral action (nanomolar), their activity was lower than that previously 

described by peptides 1-3 (low picomolar).[1] For example, the compound 

most potent of this series, dodecapeptide 6, having a sequence similar to 

undecapeptide 3 proves to be 3-4 orders of magnitude less potent than 

reference peptides.[1] 

According to these results, peptide 1 inhibits influenza virus 

hemagglutination at picomolar concentration, proving to be a potent 

antiviral peptide. During my PhD, I considered peptide 1 as a valuable 

starting point for the development of a novel class of antiviral drugs effective 

against influenza virus. 
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3.3.2 Design of peptides 10-17 

 

In order to optimize the inhibitory activity of the 418SKHSSLDCVLRP429 

fragment (1) and to identify more potent and selective compounds, two different 

approaches were used: i) addition of four amino acid residues at both the N- and 

C-terminals (compounds 10-12); ii) a truncation study, carried out via a 

systemic reduction of four residues at both the N- and C-terminals of the peptide 

1, to identify the shortest amino acid sequence needed for the peptide activity 

(compounds 13-17) (Table 3.2).  

 

3.3.2.1 Interaction with viral hemagglutinin 

As shown in Table 3.2, N-terminal truncation strategy led to the most 

interesting results. Thus, octapeptide 13 was the most effective fragment of this 

series to prevent HA activity of all tested viruses in a concentration range 0.15 

to 0.7 pM. 

C-terminal tetrapeptide of 1, peptide 14, lost activity on all strains used in the 

assay, indicating the importance of N-terminal residue of 1 for the 

hemagglutination inhibition activity, while the tetrapeptide 15 maintained the 

same inhibition level of 1 on Influenza A/Roma-ISS/02/08 H1N1 strain. Peptide 

15 showed a remarkable inhibitory selectivity against this strain (1000 fold) 

compared to the Parma strains. This selectivity was also observed with the 

compounds 16 and 17, derived from the C-terminal deletion on the lead 

sequence 418-429, which were 15-40 fold more potent against A/Roma strain 

than against the other strains. 

 

 

 

 



Chapter III: Lactoferrin-derived Peptides Active towards Influenza: Identification of 

Three Potent Tetrapeptide Inhibitors 

 

- 48 - 

 

Table 3.2 Sequence and HI titers of peptides 1, 10-17. 

 

Frag. 

 

 

Pep. 

 

 

Sequence 

 

HI titer (nM) 

A/Roma- 

ISS/02/08 

H1N1 

A/Parma 

/24/09 

H1N1 

A/Parma 

/05/06 

H3N2 

418-429 1 SKHSSLDCVLRP 0.0014 0.0014 0.0007 

414-433 10 NRKSSKHSSLDCVLRPTEGY 0.3 6 0.0014 

414-429 11 NRKSSKHSSLDCVLRP - 12 0.4 

418-433 12 SKHSSLDCVLRPTEGY 0.7 0.1 0.03 

422-429 13 SLDCVLRP 0.0007 0.00015 0.0004 

426-429 14 VLRP 0.7 0.15 1.5 

422-425 15 SLDC 0.0014 6 1.5 

418-425 16 SKHSSLDC 0.3 12 12 

418-421 17 SKHS 0.1 1.5 12 

The peptides 13-17 are acetylated and amidated at N-terminal and C-terminal, respectively. 

 

3.3.2.2 Neutralization of influenza virus  

Next, it has been examined whether, and to what extent, peptides most 

potent of first series (4, 6, 8) and fragments 13-17 derived from 1 could affect 

virus replication in Madin-Darby canine kidney cells (MDCK) by 

neutralization assay. 

The influenza A virus strains A/RomaISS/02/08 H1N1 oseltamivir-sensitive 

virus, A/Parma/24/09 H1N1 oseltamivir-resistant virus, and A/Parma/05/06 

H3N2, were used. 
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Table 3.3 In vitro antiviral activity of most potent peptides against influenza virus 

infection. 

Pep. Sequence 

A/Roma-ISS/02/08 

H1N1 

A/Parma/24/09 

H1N1 

A/Parma0/5/06 

H3N2 

EC50
a 

(pM) 
SI^ 

EC50
a  

(pM) 
SI^ 

EC50
a  

(pM) 
SI^ 

1 SKHSSLDCVLRP 4±0.37 >6.25.106 3.1±0.12 >8.106 5.8±0.7 >4.4.106 

4 KANEGLTWNSLKDK 1±0.15 >2.5.107 50.000±250 >5.102 1.000±360 >2.5.104 

6 TNGESTADWAKN 400±0.02 >6.25.104 50.000±230 >5.102 10.000±120 >2.5.103 

8 KSETKN 0.5±0.01 >5.107 500±0.46 >5.104 400.000±210 >0.65.102 

13 SLDCVLRP 0.3±0.5 >8.33.107 2.5±0.37 >1.107 300±0.2 >8.33.104 

14 VLRP 0.45±0.1 >5.55.107 1±0.05 >2.5.107 250±0.42 >1.105 

15 SLDC 0.5±0.001 >5.107 4.6±0.05 >5.4.106 4.3±0.03 >5.8.107 

16 SKHSSLDC 80±0.19 >3.125.105 0.1±0.001 >2.5.108 5.0±0.45 >5.106 

17 SKHS 3±0.61 >8.33.106 0.048±0.0012 >5.2.108 5.0±0.02 >5.106 

a EC50: the reciprocal substance dilution at which 50% of cells were protected from the virus induced 

killing; ^SI (selectivity index): the ratio between CC50 (the reciprocal substance dilution at which 50% 

of cells were protected from substance toxicity, corresponding to > 25 μM) and EC50; The mean values 

of 3 independent experiments with standard errors are shown.  
 

According to the results showed in Table 3.3, peptides 4, 6, and 8 were able 

to prevent infection of all tested viruses in a concentration range from about 

0.5 pM to 400 nM. At these concentrations, the peptides of the first series 

are the most toxic (SI ≈ 10-2/10-4). The octapeptide 13 (SLDCVLRP), the 

most active in the prevention of viral hemagglutination (HI titer 0.15-0.7 

pM, Table 3.2), conserved a good antiviral activity against the two A/Roma 

and A/Parma H1N1 strains, with EC50 values of 0.3 and 2.5 pM, 

respectively, but lost activity against H3N2 strain respect to 1 (≈50 fold, 

EC50 = 300 pM). 

Tetrapeptide 14, containing a net positive charge (Arg428), showed a similar 

activity profile to peptide 13, in particular, 14 was more active against both 

H1N1 strains compared to reference peptide 1. Tetrapeptide 15, with net 

charge opposite to 14 (Asp424), was strongly effective against 

A/Parma/05/06 H3N2 strain at 4.3 pM. Derivatives obtained by C-terminal 

truncation of 1, peptides 16 and 17, presented a different behaviour. 
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Octapeptide 16 was 30 and 10 fold more potent than 1 and 13, respectively, 

to prevent viral infection against A/Parma/24/09 H1N1 strain, while it was 

20 and 270 fold less active than these, against A/Roma- ISS/2/08 H1N1 

strain. Tetrapeptide 17, containing two positive residues (Lys419-Hys420) 

retrieves antiviral activity on this last strain, maintaining high antiviral 

activity at femto- and pico-molar concentration against both A/Parma H1N1 

and H3N2 strains, respectively. These results suggest that tetrapeptides 14, 

15, and, in particular 17 could be good starting point in the search for new 

peptidomimetics and small molecules candidates for influenza virus 

treatment as well as in the search of new peptide formulation with the same 

aim. 

 

3.3.3 Peptide 14 modifications (Peptides 18-23) 

 

Focused on peptide 14, we evaluated the importance of the net positive 

charge (Arg428) on the biological activity.  Arg at position 3 was replaced 

with positive charged amino acid, lysine (Lys) and ornithine (Orn), and 

aminoacid with net charge opposite, glutamic acid (Glu) and aspartic acid 

(Asp).  

We also synthesized peptides 22-23, obtained from N- and C- terminal 

deletions of peptide 14 (Table 3.4). 

 

3.3.3.1 Interaction with viral hemagglutinin 

As shown in Table 3.4, no compound generated through the substitution 

of Arg at position 3 with positive and negative charged amino acid and N- 

and C- terminal deletions, was able to inhibit HA in a greater extent of 

peptide 14. 



Chapter III: Lactoferrin-derived Peptides Active towards Influenza: Identification of 

Three Potent Tetrapeptide Inhibitors 

 

- 51 - 

 

The substitution of Arg with positive charged amino acid, Lys and Orn, 

determines an increase of the antiviral potency on influenza A/Roma-

ISS/2/08 A/H1N1 virus subtype and a dramatic loss or decrease of activity 

against the other two influenza Parma virus subtypes, respectively. 

In derivatives 20 and 21, the absence of positive charge by substitution of 

Arg3 with aminoacid with net charge opposite, Glu and Asp, induces a 

dramatic loss of activity against influenza H1N1 virus subtypes, increasing 

the antiviral potency on Parma H3N2 strain.  

Peptides 22 and 23, obtained by N- and C- terminal deletions, appear not 

inhibit notably HA activity compared to peptides 14. 

 

Table 3.4 Sequence and HI titers of peptides 14, 18-23. 

 

Pep. 

 

 

Sequence 

 

HI titer (nM) 

A/Roma- 

ISS/02/08 

H1N1 

A/Parma 

/24/09 

H1N1 

A/Parma 

/05/06 

H3N2 

14 VLRP 0.7 0.15 1.5 

18 VLKP 0.0031 - 8.6 

19 VLOP 0.0014 - 12 

20 VLEP - 6 0.1 

21 VLDP - 7.1 

 

0.6 

 22 VLR - 3 3000 

23 LRP 1.1 

 

3.9 

 
- 

All peptides are acetylated and amidated at N-terminal and C-terminal, respectively. 

 

3.3.4 Alanine scanning approach (Peptides 24-31) 

 

Through a truncation library, we identified the tetrapeptides 15 and 17, 

which were able to bind HA and inhibit cell infection. In order to generate 

peptides with improved biological activity, we decided to apply to peptides 

15 and 17 an Alanine scanning approach, a classical chemical tecnique to 

check the relevance of side chains of each aminoacidic residue in the 
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interaction with the target molecule (peptides 24-31, Table 3.5). This 

approach resulted in the generation of a panel of eight peptides, named 

peptide 24 to 31. All new derivatives were tested for the assessment of their 

ability to inhibit viral hemagglutination and cell infection. 

 

3.3.4.1 Interaction with viral hemagglutinin 

As shown in Table 3.5, the substitution of Ser1 and Leu2 with an alanine 

determines a significant increase of inhibitory potency of the corresponding 

analogues 24 and 25 compared to reference peptide 15. In derivative 26, the 

absence of negative charge by substitution of Asp3 with Ala induces a decrease 

of activity against all influenza strains. 

Peptide 30 loses the inhibitor potency on all influenza strains. It showed that 

Asp3 and Cys4 are important amino acids for inhibitory activity of all influenza 

virus subtypes. 

The data showed that Ser1, Lys2, and His3 of peptide 17 are key amino acids 

for the antiviral activity against all influenza strains used in the assay. The 

substitution of a hydroxyl chain (Ser 4) with a residue more lipophilic (Ala) 

determines a significant increase of inhibitory potency of the corresponding 

analogue 31 compared to reference peptide 17. In derivative 29, the absence of 

positive charge by substitution of Lys2 with Ala induces a dramatic loss of 

activity against influenza A/Roma-ISS/2/08 A/H1N1 virus subtype, increasing 

the antiviral potency on the other two influenza Parma virus subtypes. Peptide 

30 increases the inhibitor potency on Parma H1N1 strain, showing that His3 is 

important for inhibitory activity of influenza A/H3N2 virus subtype. 
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Table 3.5 Sequence and HI titers of peptides 15, 17, 24-31. 

 

Pep. 

 

 

Sequence 

 

HI titer (nM) 

A/Roma- 

ISS/02/08 

H1N1 

A/Parma 

/24/09 

H1N1 

A/Parma 

/05/06 

H3N2 

15 SLDC 0.0014 6 1.5 

24 ALDC 0.0023 

 

0.015 

 

0.8 

 25 SADC 0.0003 

 

0.25 

 

0.1 

 26 SLAC 1.7 8.3 

 

4 

 27 SLDA - - 3.7 

17 SKHS 0.1 1.5 12 

28 AKHS 0.6 

 

- 12 

29 SAHS - 0.005 0.023 

30 SKAS 0.1 

 

0.0015 - 

31 SKHA 0.047 0.0014 0.0003 

All peptides are acetylated and amidated at N-terminal and C-terminal, respectively. 

 

3.3.4.2 Neutralization of influenza virus  

We have examined the ability of peptides 24, 25 and 31derived from 15 and 

17 to affect virus replication in Madin-Darby canine kidney cells (MDCK) by 

neutralization assay. 

However, it has been demonstrated that no compound, generated through the 

Ala scan analysis, was able to inhibit virus replication in a greater extent of 

peptide 15 and 17. 
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Table 3.6 In vitro antiviral activity of most potent peptides against influenza virus 

infection. 

Pep. Sequence 

A/Roma-ISS/02/08 

H1N1 

A/Parma/24/09 

H1N1 

A/Parma0/5/06 

H3N2 

EC50
a 

(pM) 
SI^ EC50

a (pM) SI^ 
EC50

a 

(pM) 
SI^ 

15 SLDC 0.5±0.001 >5.107 4.6±0.05 >5.4.106 4.3±0.03 >5.8.107 

24 ALDC 5.6±0.41 >4.46.10
6

 6.13±0.67 >4.08.10
6

 7.9±1.01 >3.16.10
6

 

25 SADC 8.31±1.01 >3.01.10
6

 5.47±0.46 >4.57.10
6

 13.6±2.09 >1.84.10
6

 

17 SKHS 3±0.61 >8.33.106 0.048±0.0012 >5.2.108 5.0±0.02 >5.106 

31 SKHA 8.8±0.73 >2.84.10
6

 3.99±0.31 >6.27.10
6

 23±1.79 >1.09.10
6

 

a EC50: the reciprocal substance dilution at which 50% of cells were protected from the virus induced 

killing; ^SI (selectivity index): the ratio between CC50 (the reciprocal substance dilution at which 50% 

of cells were protected from substance toxicity, corresponding to > 25 μM) and EC50; The mean values 

of 3 independent experiments with standard errors are shown.  

 
 

3.3.5 Peptidomimetics 

 

The direct application of proteins and peptides as medicinal entities has 

some severe limitations, including high degradation by proteolytic enzymes 

and poor cell membrane permeability. Many of these problems could be 

avoided by an alternative, modular system with a basis set of "unnatural" 

monomers. Once an interesting compound has been identified from a library 

of such nonpeptide polymers, it can serve as a lead for drug discovery, 

further along the road to a metabolically stable drug. Optimized analogs of 

a lead compound could then be developed rapidly due to the modular 

synthetic nature of these compounds. 

 

3.3.6 Design of N-methyl peptides (Peptides 32-41) 

 

N-Methylation of the peptide backbone has been shown to be a valuable tool 

in structure-activity relationship studies.[3.5] 
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The replacement of natural amino acids for N-methyl amino acids in 

biologically active peptides has resulted in analogs with improved 

pharmacological properties, such as enzymatic stability,[6, 7] receptor 

selectivity,[8, 10] enhanced potency[11-13] and bioavailability.[14-17] The N-

methylation of backbone confers high affinity toward the targets, proteolytic 

stability, membrane permeability, and conformational rigidity to the peptides. 

Thus, in peptide chemistry N-methylation is considered as one of the most 

attractive and suitable modifications of a peptide structure.[18, 19] 

Hence, focused on tetrapeptides 15 and 17 we decided to synthesize the 

corresponding N-methyl peptides (peptides 32-41, Table 3.7). Every amide 

bond and, subsequently, the whole peptide backbone (compound 41, Figure 3.2) 

were replaced sequentially by the corresponding N-methylated unit.  

 

 

Figure 3.2 Structure of compound 41. 

 

With the synthesis of a series of ten N-methylated peptides we investigated if 

N-methylation of a single peptide bond and all peptide bonds in the lead 

structures 15 and 17 has similar positive effects on activity.  

 

3.3.6.1 Interaction with viral hemagglutinin 

The influence of this N-methylation scan on biological activity was 

investigated and revealed a significant increase of inhibitory potency of the 
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corresponding analogues 35 and 40 compared to reference peptides. The other 

peptides showed lower activities. 

 

Table 3.7 Sequence and HI titers of peptides 15, 17, 32-41. 

 

Pep. 

 

 

Sequence 

 

HI titer (nM) 

A/Roma- 

ISS/02/08 

H1N1 

A/Parma 

/24/09 

H1N1 

A/Parma 

/05/06 

H3N2 

15 SLDC 0.0014 6 1.5 

32 (N-Me)SLDC - 8.7 2.3 

33 S(N-Me)LDC 1.56 7.13 0.87 

34 SL(N-Me)DC 2.33 - - 

35 SLD(N-Me)C 0.0041 3.32 0.41 

36 (N-Me)[SLDC] 3.7 7.91 - 

17 SKHS 0.1 1.5 12 

37 (N-Me)SKHS 0.3 5.7 13.6 

38 S(N-Me)KHS 0.2 3.23 2.6 

39 SK(N-Me)HS 0.13 6.07 - 

40 SKH(N-Me)S 0.07 1.03 6.7 

41 (N-Me)[SKHS] 0.67 - 11.17 

All peptides are acetylated and amidated at N-terminal and C-terminal, respectively. 

 

3.3.6.2 Neutralization of influenza virus  

Next, we have examined the ability of peptides 35 and 40 to affect virus 

replication in Madin-Darby canine kidney (MDCK) by neutralization assay. 
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Table 3.8 In vitro antiviral activity of most potent peptides against influenza virus 

infection. 

Pep. Sequence 

A/Roma-ISS/02/08 

H1N1 

A/Parma/24/09 

H1N1 

A/Parma0/5/06 

H3N2 

EC50
a 

(pM) 
SI^ EC50

a (pM) SI^ 
EC50

a 

(pM) 
SI^ 

15 SLDC 0.5±0.001 >5.107 4.6±0.05 >5.4.106 4.3±0.03 >5.8.107 

35 SLD(N-Me)C 7.8±0.51 >3.21.10
6

 11±1.67 >2.27.10
6

 100±0.2 >2.50.10
5

 

17 SKHS 3±0.61 >8.33.106 0.048±0.0012 >5.2.108 5.0±0.02 >5.106 

40 SKH(N-Me)S 5.31±0.91 >4.71.10
6

 7.47±0.46 >3.35.10
6

 33.6±2.49 >7.44.10
5

 

a EC50: the reciprocal substance dilution at which 50% of cells were protected from the virus induced 

killing; ^SI (selectivity index): the ratio between CC50 (the reciprocal substance dilution at which 50% 

of cells were protected from substance toxicity, corresponding to > 25 μM) and EC50; The mean values 

of 3 independent experiments with standard errors are shown.  

 

However, these peptides have not shown increased antiviral activity 

compared to peptides 15 and 17. 

 

3.3.7 Design of peptoids (Compounds 42-51)  

 

Peptoids are peptidomimetic molecules that comprise of repeating poly-N-

substituted glycine units (NGS).[20] They are a readily accessible class of 

synthetic, non-natural peptide mimic of modular design into which a plethora 

of structural elements can be readily incorporated. In terms of structure, 

peptoids differ from peptides in that their side-chain functionality is bonded to 

the nitrogen of the poly-amide backbone, rather than the α-carbon, leading to an 

achiral, flexible oligomeric backbone devoid of hydrogen bond donors (Figure 

3.3). This repeating N-alkyl amide backbone motif affords peptoids with an 

increased stability towards proteolytic degradation compared to analogous 

peptides.[21] Compared to α-peptides, NSG’s have distinct secondary structures 

(e.g., helices) characterized by steric and electronic interactions that are stable 

over a wider range of solvent, ionic and thermal conditions.[22] Further, the NSG 

backbone is not a substrate for commonly encountered proteases, which leads 
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to backbone proteolytic stability. In addition, NSG’s can be more hydrophobic 

and they possess superior cellular permeability.[21-28] The schematic comparison 

of peptides and peptoids, provided in Figure 3.3, shows the similarities in the 

spacing of the side chains and the carbonyl groups, and the differences in the 

chirality of the two monomers.  

 

 

Figure 3.3 The comparision of (a) peptide and (b) peptoid 

 

Hence, focused on tetrapeptides 15 and 17 we decided to synthesize the peptoid 

analogues (compound 51, Figure 3.4). 

 

 

Figure 3.4 Structure of compound 51. 
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3.3.7.1 Interaction with viral hemagglutinin 

Peptoids (42-51) were tested to verify if they inhibit hemagglutinin activity. 

Here, it has been demonstrated that no compound was able to inhibit HA activity 

in a greater extent of peptides 15 and 17 (compounds 42-51, Table 3.9).  

 

Table 3.9 Sequence and HI titers of peptides 15, 17, 42-51. 

 

Pep. 

 

 

Sequence 

 

HI titer (nM) 

A/Roma- 

ISS/02/08 

H1N1 

A/Parma 

/24/09 

H1N1 

A/Parma 

/05/06 

H3N2 

15 SLDC 0.0014 6 1.5 

42 NhSerLeuAspCys 1.3 3.7 1.47 

43 SerNLeuAspCys 4.6 3.4 9.87 

44 SerLeuNAspCys 1.3 5.7 1.95 

45 SerLeuAspNhCys 0.87 4.5 - 

46 NhSerNLeuNAspNhCys 0.0023 2.17 0.36 

17 SKHS 0.1 1.5 12 

47 NhSerLysHisSer 1.47 3.3 - 

48 SerNLysHisSer 2.16 - 3.7 

49 SerLysNHisSer 4.1 0.19 - 

50 SerLysHisNhSer 0.67 3.66 5.7 

51 NhSerNLysNHisNhSer 0.067 0.13 1.23 

All peptides are acetylated and amidated at N-terminal and C-terminal, respectively. 

 

3.3.7.2 Neutralization of influenza virus  

Next, we have examined the ability of peptoids 46 and 51 to affect virus 

replication in Madin-Darby canine kidney cells (MDCK) by neutralization 

assay.  

As shown in Table 3.10, virus replication was inhibited by peptides 46 and 

51 at concentrations several logs lower than peptides 15 and 17.  
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Table 3.10 In vitro antiviral activity of most potent peptides against influenza virus 

infection. 

Pep. Sequence 

A/Roma-ISS/02/08 

H1N1 

A/Parma/24/09 

H1N1 

A/Parma0/5/06 

H3N2 

EC50
a 

(pM) 
SI^ EC50

a (pM) SI^ 
EC50

a 

(pM) 
SI^ 

15 SLDC 0.5±0.001 >5.107 4.6±0.05 >5.4.106 4.3±0.03 >5.8.107 

46 NhSerNLeuNAspNhCys 6.6±0.93 >3.79.10
6

 17±1.83 >1.47.10
6

 10.9±2.01 >2.29.10
6

 

17 SKHS 3±0.61 >8.33.106 0.048±0.0012 >5.2.108 5.0±0.02 >5.106 

51 NhSerNLysNHisNhSer 40±0.19 >6.25.10
5

 27±0.59 >9.26.10
5

 9.99±1.31 >2.50.10
6

 

a EC50: the reciprocal substance dilution at which 50% of cells were protected from the virus induced 

killing; ^SI (selectivity index): the ratio between CC50 (the reciprocal substance dilution at which 50% 

of cells were protected from substance toxicity, corresponding to > 25 μM) and EC50; The mean values 

of 3 independent experiments with standard errors are shown.  

 

3.4 NMR analysis of peptide 1 and 17.  

 

The solution-state structure (HFA/H2O) of the oligopeptide SKHSSLDCVLRP 

(1) was obtained by 2D NMR spectroscopy. In details, according to standard 

procedures,[29] the chemical shift assignments of the 1H resonances (Table S1) 

have been achieved by using DQF-COSY,[30] TOCSY[31] and NOESY[32] 

experiments. A set of 117 inter-proton distance restraints were collected from 

2D-NOESY NMR experiments (tmix = 400 ms) and used in simulated annealing 

protocol of the software CYANA 2.1.[33] The NMR structure bundle (Figure 3.5, 

left) of SKHSSLDCVLRP shows high structural agreement with RMSD of 0.29 

Å referenced to the backbone atoms. By means of PROMOTIF software,[34] the 

quantitative analysis of φ and ψ dihedral angles of the representative structures 

of SKHSSLDCVLRP was carried out, highlighting a global turn conformation. 

In particular, 1 contains four β-turns (type IV) formed by residues: 2-5, 4-7, 6-

9 and 7-10, (Table S3). It was also observed a γ-turn structure involving the 

residues Val9-Arg11 (Table S3).  
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Figure 3.5 On the left, superposition of backbone atoms of twenty NMR structures of 1 

(orange ribbons) generated by using CYANA 2.1. On the right, the average NMR 

derived structures of 1. The atoms are depicted in tube and colored by atom types (O, 

red; N, blue; S, yellow; polar hydrogen, white). The backbone C atoms of 1 are colored 

as for the ribbons and the side chain C atoms are in grey. The dashed lines indicate 

intramolecular H-bonds responsible of the global fold. 

 

The overall turn conformation observed for 1 is in line with spatial arrangement 

of the loop Ser418-Pro429 of C-terminal lobe of lactoferrin (PDB ID: 3IB0). In 

particular, we observed that the helix 310 formed by Cys425-Leu427 of protein 

loop is overlapped with the γ-turn of 1 centered on Val9-Arg11 (Figure 3.6a). 

Moreover, we observed a very good superimposition between 1 and the loop 

Ser418-Pro429 in the first four amino acids (SKHS, Figure 3.6b), suggesting 

this conformation as a structural requirement for the resulting peptide activity 

as shown by 17.  

 



Chapter III: Lactoferrin-derived Peptides Active towards Influenza: Identification of 

Three Potent Tetrapeptide Inhibitors 

 

- 62 - 

 

 

Figure 3.6 a) Superimposition of loop Ser418-Pro429 (yellow and blue ribbon) of 

lactoferrin (PDB ID: 3IB0) and 1 (orange and black ribbon). The blue and black 

portions indicate the helix 310 of Ser418-Pro429 and the γ-turn of 1, respectively. b) 

Superimposition of first four amino acids (SKHS) of 1 (cyan) and loop Ser418-Pro429 

(tan). The atoms are depicted in tube and colored by atom types (O, red; N, blue). The 

C atoms of 1 and loop Ser418-Pro429 are colored as for tube. 

 

Similarly to 1, we tried to assign the 1H resonances of tetrapeptide 17 (SKHS) 

in HFA/H2O, but most of resonances resulted overlapped. Thus, we assigned 

the 1H resonances in DMSO (Table S2).[35, 36] of tetrapeptide 17 (SKHS)  We 

also attempted to determine the solution structure of 17 by collecting interproton 

distance restraints from 2D-NOESY and 2D-ROESY[37] experiments at 

different mixing time, but the very low number of inter-residue NOE effects 

hampered this task. This was due to the expected high flexibility of the 

tetrapeptide in solution, nevertheless we can assume that the preferred 

conformation of 17 is similar to the spatial arrangement observed for 1 and the 

loop Ser418-Pro429 as highlighted by the biological activity of 17. 
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3.5 Chemistry 

 

3.5.1 General procedure for synthesis  

 

The synthesis of peptides (1, 8, 13-31) was performed according to the solid 

phase approach using standard Fmoc methodology in a manual reaction 

vessel.[38] The first amino acid was linked onto the Rink resin previously 

deprotected by a 25% piperidine solution in N, N-dimethylformamide (DMF) 

(1 × 5min and 1 × 25min). 

The following protected amino acids were then added stepwise. Each coupling 

reaction was accomplished using HBTU and HOBt as coupling reagents in the 

presence of DIPEA. The Nα-Fmoc protecting groups was removed by treating 

the protected peptide resin with a 25% solution of piperidine in DMF.  

In addition, after each step of deprotection and after each coupling step, Kaiser 

test was performed to confirm the complete removal of the Fmoc protecting 

group, respectively, and to verify that complete coupling has occurred on all the 

free amines on the resin.  

The N-terminal Fmoc group was removed as described above and the peptides 

were acetylated adding a solution of Ac2O/DCM (1:3) shaking for 30 min. 

Finally, the peptides were released from the resin with trifluoroacetic acid 

(TFA)/ triisopropylsilane (iPr3SiH) / H2O (90:5:5) for 3 h. The resin was 

removed by filtration, and the crude peptide was recovered by precipitation with 

cold anhydrous ethyl ether to give a white powder and then lyophilized (Scheme 

3.1). 
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Scheme 3.1 Synthesis of peptide 17. 
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3.5.2 Microwave peptide synthesis 

 

Microwave- assisted SPPS is a useful and reliable tool for the synthesis of 

long peptides and "difficult" sequence. Fast and precise heating by microwave 

irradiation during solid-phase peptide synthesis (SPPS) can reduce reaction 

times as well as provide better purities and greater yields for the synthesis of 

difficult peptides.[39] Therefore, we synthesized peptides 4-7, 9, 10-12 using an 

Automated Microwave Peptide Synthesizer from Biotage AB (Initiator + 

Alstra™) (Figure 3.7).  

 

 

Figure 3.7 The Biotage Initiator + Alstra™. 

 

Peptides were synthesized on a Wang-ChemMatrix. The first amino acid was 

linked on to the resin in the presence of DMAP, using as coupling reagent 

HBTU, HOAt and DIEA in N-methyl-2-pyrrolidone (NMP).[40] The Nα-Fmoc 

protecting groups were removed by treating the protected peptide resin with a 

25% solution of piperidine in DMF (1 × 3 min, 1 × 10 min) at room temperature. 

The following protected amino acids were then added on to the resin stepwise. 

Coupling reactions were performed using Nα-Fmoc amino acids, using as 
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coupling reagent HBTU, HOAt and DIEA in NMP. All couplings were achieved 

for 10 min at 75 ºC (2x) and 2x45 min at RT for histidine and cysteine couplings 

to avoid the epimerization. After each coupling step, the Fmoc protecting group 

was removed as described above. The resin was washed with DMF (4 × 4.5 ml) 

after each coupling and deprotection step. Finally, peptides were released as 

described above. 

 

3.5.3 Synthesis of N-methyl peptides  

 

In SPPS the coupling of N-methyl amino acids generally occurs in low yield 

and in many cases requires expensive coupling reagents and double coupling. 

Therefore, we decided to synthesize N-methyl peptides (32-41) using 

microwave (MW) irradiation.[41, 42] MW irradiation was provided by an 

Automated Microwave Peptide Synthesizer from Biotage AB (Initiator + 

Alstra™) (Figure 3.7). Fmoc-Rink amide resin was used as solid phase support 

(Scheme 3.2). Initially, the resin was deprotected with 20% piperidine/DMF. 

The protected amino acids were then coupled using HBTU and HOBt as 

coupling reagents in the presence of DIPEA and the mixture was irradiated for 

20 min with a maximum temperature of 35 °C. In addition, after each step of 

deprotection and after each coupling step, chloroanyl test was performed. [43] To 

ensure complete Nα-Fmoc protecting groups removal, we followed standard 

treatments with 20% piperidine in DMF solutions and two extra treatments of 5 

min with piperidine : DBU: toluene : DMF (5: 5 : 20 : 70, v/v) 

The N-terminal Fmoc group was removed and the peptides were acetylated as 

described above. Final peptides were cleaved from the resin with the following 

cleavage cocktails: TFA/DCM (95:5 v/v) for 90 min. Peptides were precipitated 

by addition of cold diethyl ether, the solution was decanted, and the solid was 
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triturated with cold diethyl ether, which was decanted again. This process was 

repeated twice (Scheme 3.2). 

 

 

Scheme 3.2 Synthesis of peptide 41. 

 

3.5.4 Synthesis of peptoids  

 

In the solid-phase synthesis of peptoid, two different approaches can be used 

to introduce an N-alkylglycine (peptoid residue) on the growing peptide chain: 

(i) the N-substituted glycine derivative, suitably protected at the tertiary 

nitrogen atom, can be separately prepared and directly utilized as building block 

in the solid phase procedure (monomer method),[44, 45] or (ii) the peptoid residue 

is built during the peptide chain elongation by a combination of two 

submonomers, an haloacetic acid and a primary amine (submonomer 

method).[20]  
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To speed up the synthesis of peptoid, we optimized a procedure based on the 

submonomer method, which makes possible a direct assembling of the 

functionalized peptoid residue starting from commercially available reagents.  

For the synthesis of compounds 42-51, the peptoid residue is built during the 

peptide chain elongation by a combination of two submonomers, an haloacetic 

acid and a primary amine (submonomer method).  

Initially the Rink resin was deprotected by a 25% piperidine solution in N, N-

dimethylformamide (DMF) for 30 min.  

Bromoacetic acid was then coupled to the NH2-peptide resin in the presence of 

N, N’-diisopropylcarbodiimide (DIC), and the halogen was displaced with a 

large excess of primary amine. Further elongation of the peptide chain was 

carried out according to the standard protocol, with the addition of Bromo acetic 

acid and the appropriate amine. The last N-alkylglycine residue was acetylated 

as described above. Simultaneous deprotection and cleavage of peptoids from 

the resin carried out. 

Typical cycle times for NSG oligomer synthesis are of the order of 150-180 

minutes for the completion of one monomeric residue addition at room 

temperature. Thus, we synthetized peptoids using continuous-flow (CF) 

technique. Through the application of a CF technique these compounds were 

synthetized in high yields and with low amino acid and solvent consumption. 

This approches offer an great number of advantages over conventional batch 

procedures, for example, the efficient mixing of substrates, faster heat and mass 

transfer, and shorter reaction times (Figure 3.8).[46-54]  
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Figure 3.8 Vapourtec Flow Chemistry 

 

The synthesis is illustrated in Scheme 3.3: 

 

 

Scheme 3.3 Synthesis of compound 51. 
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The crude compounds were purified by preparative RP-HPLC. Analytical 

HPLC indicated a purity  greater than 98%, and molecular weights were 

confirmed by  ESI-MS. 

 

3.6 Conclusions 

 

The present study describes the identification of three C-lobe bLf-derived 

tetrapeptides as the minimum fragments expressing the broad anti-influenza 

activity of bLf. Peptides 14 (VLRP), 15 (SLDC), and 17 (SKHS) were designed 

from the fragment 418-429 (1, SKHSSLDCVLRP), which is involved in the C-

lobe bLf-HA interaction. These tetrapeptides retain the inhibitory potency of 

the fragment 418-429 and inhibit the influenza virus hemagglutination and cell 

infection in a concentration range of femto- to picomolar. NMR spectroscopy 

analysis performed on compounds 1 showed a global turn conformation for this 

peptide and hypothesized the preferred bioactive conformation of our 

tetrapeptides. Our results strongly encourage the pursuit of this path for the 

development of a novel class of anti-influenza drugs. 

 

3.7 Experimental section 

 

Nα-Fmoc-protected amino acids, Wang resin, Rink amide-resin, 1-Hydroxy-7-

azabenzotriazole (HOAt), N-hydroxy-benzotriazole (HOBt), 2-(1H-

benzotriazole-1-yl)- 1, 1, 3, 3-tetramethyluronium hexafluoro-phosphate 

(HBTU), N, N-diisopropylethyl-amine (DIPEA), Piperidine and Trifluoroacetic 

acid were purchased from Iris Biotech (Germany). Wang-ChemMatrix and 

Rink-ChemMatrix resins were purchased from Biotage AB (Sweden). Peptide 

synthesis solvents, reagents, as well as CH3CN for high performance liquid 

chromatography (HPLC) were reagent grade and were acquired from 

http://www.sigmaaldrich.com/catalog/product/aldrich/445452
http://www.sigmaaldrich.com/catalog/product/aldrich/445452
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commercial sources and used without further purification unless otherwise 

noted. 

 

3.7.1 Synthesis of linear derivatives (peptides 1, 8, 13-31)  

 

The synthesis of bLf analogues (1, 8, 13-31) was performed according to the 

solid phase approach using standard Fmoc methodology in a manual reaction 

vessel.[55, 56] 

 The first amino acid, Nα-Fmoc-Xaa-OH (Xaa = Pro, Asn(Trt), Cys(Trt), 

Ser(tBu), Arg(Pbf), Ala), was linked on to the Rink resin (100–200 mesh, 1% 

DVB, 0.59 mmol/g) previously deprotected by a 25% piperidine solution in N, 

N-dimethylformamide (DMF) for 30 min.  

The following protected amino acids were then added stepwise: Nα-Fmoc-

Arg(Pbf)-OH, Nα-Fmoc-Leu-OH, Nα-Fmoc-Val-OH, Nα-Fmoc-Cys(Trt)-OH, 

Nα-Fmoc-Asp(OtBu)-OH, Nα-Fmoc-Ser(tBu)-OH, Nα-Fmoc- 

His(N(im)trityl(Trt))-OH, Nα-Fmoc-Lys(Boc)-OH, Nα-Fmoc-Thr(tBu)-OH, 

Nα-Fmoc-Glu(OtBu)-OH, Fmoc-Orn(Boc)-OH, Nα-Fmoc-Ala-OH. Each 

coupling reaction was accomplished using a 3-fold excess of amino acid with 

HBTU and HOBt in the presence of DIPEA (6 eq.). The Nα-Fmoc protecting 

groups were removed by treating the protected peptide resin with a 25% solution 

of piperidine in DMF (1 × 5 min and 1 × 25 min). The peptide resin was washed 

three times with DMF, and the next coupling step was initiated in a stepwise 

manner. The peptide resin was washed with DCM (3×), DMF (3×), and DCM 

(3×), and the deprotection protocol was repeated after each coupling step. In 

addition, after each step of deprotection and after each coupling step, Kaiser test 

was performed to confirm the complete removal of the Fmoc protecting group, 

respectively, and to verify that complete coupling has occurred on all the free 

amines on the resin. The N-terminal Fmoc group was removed as described 
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above, and the peptides were acetylated adding a solution of Ac2O/DCM (1:3) 

shaking for 30 min. Finally, the peptides were released from the resin with 

TFA/TIS/H2O (90:5:5) for 3 h. The resin was removed by filtration, and the 

crude peptide was recovered by precipitation with cold anhydrous ethyl ether to 

give a white powder and then lyophilized. 

 

3.7.2 Microwave peptide synthesis 

 

Peptides 4-7, 9-12 were synthesized using an Automated Microwave Peptide 

Synthesizer from Biotage AB (Initiator + Alstra™). Peptides were synthesized 

on a Wang-ChemMatrix resin (0.150 g, loading 0.3 mmol/g). The first amino 

acid was linked on to the resin in the presence of DMAP (2.4 eq.), using as 

coupling reagent HBTU (4eq, 0.6M), HOAt (4eq, 0.5M) and DIEA (8eq, 2M) 

in N-methyl-2-pyrrolidone (NMP).[57] The resin was then washed with DMF (4 

× 4.5ml). The Nα-Fmoc protecting groups were removed by treating the 

protected peptide resin with a 25% solution of piperidine in DMF (1 × 3 min, 1 

× 10 min) at room temperature. The following protected amino acids were then 

added on to the resin stepwise. 

Coupling reactions were performed using Nα-Fmoc amino acids (4.0 eq., 0.5 

M), using as coupling reagent HBTU (4eq, 0.6M), HOAt (4eq, 0.5M) and DIEA 

(8eq, 2M) in N-methyl-2-pyrrolidone (NMP). All couplings were achieved for 

10 min at 75 ºC (2x) and 2x45 min at RT for histidine and cysteine couplings to 

avoid the epimerization. After each coupling step, the Fmoc protecting group 

was removed as described above. The resin was washed with DMF (4 × 4.5 ml) 

after each coupling and deprotection step. Finally, peptides were released as 

described above. 
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3.7.3 Synthesis of N-methyl peptides (compound 32-41) 

 

Fmoc-Rink amide resin (100–200 mesh, 1% DVB, 0.75 mmol/g) was placed 

in a peptide synthesis vessel, swollen in DMF, and deprotected with 5 ml of 

20% piperidine/DMF for 4 min. Washings between the first deprotection, 

coupling, and subsequent deprotection steps were carried out with DMF (5 × 

0.5min) and DCM (5 × 0.5 min) using 10 ml of solvent/g of resin each time. 

Protected amino acid (3 eq.), HBTU (3 eq.) and HOBt (3 eq.) in DMF (1–3 ml/g 

resin) were sequentially added to the resin and the mixture was irradiated in a 

Automated Microwave Peptide Synthesizer from Biotage AB (Initiator + 

Alstra™) for 20 min with a maximum temperature of 35 °C.  

The following protected N-methyl amino acids were then added stepwise: 

Fmoc-N-Me-Lys(Boc)-OH, Fmoc-N-Me-His(Trt)-OH, Fmoc-N-Me-Leu-OH, 

Fmoc-N-Me-Asp(OtBu)-OH, Fmoc-N-Me-Cys(Trt)-OH, Fmoc-N-Me-

Ser(tBu)-OH. 

Two treatments with piperidine/DMF (2: 8, v/v) for 10 min, and two extra 5-

min treatments with piperidine/DBU/toluene/DMF (5 : 5 : 20 : 70, v/v) were 

used. In addition, after each step of deprotection and after each coupling step, 

chloroanyl test was performed to confirm the complete removal of the Fmoc 

protecting group, respectively, and to verify that complete coupling has 

occurred on all the free amines on the resin. 

The N-terminal Fmoc group was removed and the peptides were acetylated as 

described above. Final peptides were cleaved from the resin with the following 

cleavage cocktails: TFA/DCM (95:5 v/v) for 90 min (10 ml/g resin). Peptides 

were precipitated by addition of cold diethyl ether, the solution was decanted, 

and the solid was triturated with cold diethyl ether, which was decanted again. 

This process was repeated twice (Scheme 3.2). 
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3.7.4 Synthesis of peptoids (compound 42-51) 

 

For on-resin assembling of Nκ-protected N-aminoalkylglycine residue, a 2 M 

solution of bromoacetic acid in DMF (10 equiv) and DIC (10 equiv) was added 

to the deprotected Rink resin (100–200 mesh, 1% DVB, 0.59 mmol/g). The 

acylation reactions and nucleophilic displacement were carried out under 

optimized reaction conditions: 60 bar, 70 °C, 0.15 mLmin-1 flow rate. After 

washing in DMF, a 1 M solution of the selected amine in DMF was added.  

The following protected amine were then added stepwise: Tert-butyl 4-

(aminomethyl)-1H-imidazole-1-carboxylate, N-Boc-1,4-butanediamine, 2-

(tert-butoxy)ethan-1-amine, Glycine tert-butyl ester hydrochloride, 2-Methyl-2-

propanethiol, 2-methylpropan-1-amine. 

Then the beads were washed with DMF and prepared for the formation of the 

next residue. Cleavage of peptides from the resin and removal of the acid labile 

protecting groups were simultaneously achieved by treatment of the final 

peptoid resin with a TFA-H2O-triisopropylsilane (TIS) mixture (95:2.5:2.5 by 

volume) for 90-120 min at room temperature. Peptides were precipitated by 

addition of cold diethyl ether and dried overnight under vacuum. Crude peptides 

were obtained in 70-80% yield. 

 

3.7.5 Purification and characterization  

 

All crude peptides were purified by RP-HPLC on a preparative C18-bonded 

silica column (Phenomenex Kinetex AXIA 100Å, 100 x 21.20mm, 5µm) using 

a Shimadzu SPD 20A UV/VIS detector, with detection at 210 and 254 nm. The 

column was perfused at a flow rate of 15 ml/min with solvent A (10%, v/v, 

water in 0.1% aqueous TFA), and a linear gradient from 10 to 90% of solvent B 

(80%, v/v, acetonitrile in 0.1% aqueous TFA) over 40 min was adopted for 
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peptide elution. Analytical purity and retention time (tr) of each peptide were 

determined using HPLC conditions in the above solvent system (solvents A and 

B) programmed at a flow rate of 1.500 ml/min using a linear gradient from 10 

to 90% B over 10 min, fitted with C-18 column Phenomenex, Aeris XB-C18 

column (150 mm х 4.60, 3.6µm). All analogues showed >97% purity when 

monitored at 215 nm. Homogeneous fractions, as established using analytical 

HPLC, were pooled and lyophilized. Peptides molecular weights were 

determined by ESI mass spectrometry and LC-MS in a LC-MS 2010 instrument 

fitted with Phenomenex, Aeris XB-C18 column (150 mm х 4.60, 3.6µm), eluted 

with a linear gradient from 10% to 90% B over 15 min, at a flow rate of 1.000 

mL/min. ESI-MS analysis in positive ion mode, were made using a Finnigan 

LCQ Deca ion trap instrument, manufactured by Thermo Finnigan (San Jose, 

CA, USA), equipped with the Excalibur software for processing the data 

acquired. The sample was dissolved in a mixture of water and methanol (50/50) 

and injected directly into the electrospray source, using a syringe pump, which 

maintains constant flow at 5 ml/min. The temperature of the capillary was set at 

220°C. 

Peptide analytical data are reported in Table 3.11 and Table 3.12. 
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Table 3.11 Analytical data of peptides 1-31. 

Pep. Sequence 
HPLC 

k’a 
ESI-MS 

1 SKHSSLDCVLRP 9.73 1339.69 

4 KANEGLTWNSLKDK 9.56 1602.84 

5 TGSCAFDEFFSQSCAPGADPKSR 12.09 2407.01 

6 TNGESTADWAKN 6.19 1292.55 

7 GKNGKNCPDKFC 6.78 1309.58 

8 KSETKN 2.61 705.35 

9 NDNTECLAKLGGRPTYEE 9.78 2008.90 

10 NRKSSKHSSLDCVLRPTEGY 11.69 2276.12 

11 NRKSSKHSSLDCVLRP 11.13 1825.94 

12 SKHSSLDCVLRPTEGY 10.95 1790.85 

13 SLDCVLRP 4.48 942.48 

14 VLRP 3.67 524.33 

15 SLDC 3.13 477.17 

16 SKHSSLDC 4.63 916.39 

17 SKHS 2.33 498.24 

18 VLKP 3.17 496.32 

19 VLOP 3.06 482.36 

20 VLEP 3.56 497.27 

21 VLDP 3.51 483.25 

22 VLR 3.01 427.28 

23 LRP 3.06 425.26 

24 ALDC 3.27 461.18 

25 SADC 3.78 435.13 

26 SLAC 2.46 433.18 

27 SLDA 2.95 445.20 

28 AKHS 2.68 482.24 

29 SAHS 3.16 441.18 

30 SKAS 3.46 432.22 

31 SKHA 3.01 482.24 

a k’=[(peptide retention time-solvent retention time)/solvent retention time]. 
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Table 3.12 Analytical data of peptides 32-51. 

Pep. Sequence 
HPLC 

k’a 
ESI-MS 

32 (N-Me)SLDC 2.71 491,56 

33 S(N-Me)LDC 2.81 491,56 

34 SL(N-Me)DC 2.73 491,56 

35 SLD(N-Me)C 2.79 491,56 

36 (N-Me)[SLDC] 3.01 533,64 

37 (N-Me)SKHS 3.13 512,56 

38 S(N-Me)KHS 3.16 512,56 

39 SK(N-Me)HS 3.16 512,56 

40 SKH(N-Me)S 3.08 512,56 

41 (N-Me)[SKHS] 3.41 554,64 

42 NhSerLeuAspCys 4.07 505,59 

43 SerNLeuAspCys 4.01 505,59 

44 SerLeuNAspCys 4.17 505,59 

45 SerLeuAspNhCys 4.27 505,59 

46 NhSerNLeuNAspNhCys 5.23 505,59 

47 NhSerLysHisSer 5.13 526,59 

48 SerNLysHisSer 5.16 526,59 

49 SerLysNHisSer 5.24 526,59 

50 SerLysHisNhSer 5.18 526,59 

51 NhSerNLysNHisNhSer 5.67 526,59 

a k’=[(peptide retention time-solvent retention time)/solvent retention time]. 

 

 

Figure 3.9 HPLC profile of pure peptide 1. 
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3.7.6 Biological assay 

 

3.7.6.1 Virus strains  

The following influenza A virus strains were used: A/RomaISS/02/08 H1N1 

(Brisbane-like) oseltamivir-sensitive virus, A/Parma/24/09 H1N1 (Brisbane-

like) oseltamivir-resistant virus, and A/Parma/05/06 H3N2 (Wisconsin-like). 

Virus titers were determined by a hemagglutinin titration and/or plaque assay 

according to the standard procedures.[58, 59] 

 

3.7.6.2 Cells 

Madin-Darby canine kidney (MDCK, ATCC, CRL-2936) cells were grown 

at 37°C in minimal essential medium (MEM, Invitrogen, Paisley, UK) 

containing 1.2 g/l NaHCO3, and supplemented with 10% inactivated fetal calf 

serum (FCS, Invitrogen, Paisley, UK), 2 mM glutamine, nonessential amino 

acids, penicillin (100 IU/ml), and streptomycin (100 μg/ml).   

 

3.7.6.3 Cytotoxicity assay 

This procedure was performed as reported elsewhere.[60] Briefly, two-fold 

serial dilutions of each protein in culture medium were incubated at 37°C with 

confluent MDCK cells grown in 96-well tissue culture microplates (Nalge Nunc 

Europe Ltd, Neerijse, Belgium). After 24 hours, cell morphology, viability, and 

proliferation were evaluated. Protein dilutions that did not affect any of these 

parameters were considered as non cytotoxic concentrations and utilized for 

antiviral assays. 

 

3.7.6.4 Hemagglutination inhibition assay (HI)  

Virus in PBS was incubated for 1 hour at 4uC with serial dilutions of bLf or 

peptidic fragments in PBS. An equal volume of 0.5% turkey erythrocytes was 
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then added and allowed to agglutinate. Titers were expressed as the reciprocal 

of the protein dilutions giving 50% hemagglutination of erythrocytes by four 

virus-agglutinating units. 

 

3.7.6.5 Neutralization assay  

Neutralization was carried out by incubating serial twofold peptide fragment 

dilutions, starting from 12.5 µM, in culture medium with equal volumes of virus 

suspension containing 106 p.f.u. for 1 hour at 4 °C. In negative controls, culture 

medium was used instead of peptide fragments in the same volume. MDCK 

cells, grown in 96-well tissue culture microplates (Nalge Nunc Europe Ltd, 

Neerijse, Belgium), were infected with 100 μl/well (10 p.f.u./cell; in 

quadruplicate) of the virus-peptide mixtures. After adsorption, cells were rinsed 

thoroughly and incubated at 37°C for 24 hours. The viral cytopathic effect 

(c.p.e.) was measured by neutral red staining.[61] 

 

3.7.7 NMR experiments and structure calculation 

 

The NMR sample of 1 was obtained dissolving 1 mg of the oligopeptide in 

50% of hexafluoroacetone and 50% of H2O (10 mM of KH2PO4) and placed in 

a 3 mm NMR tube (200 μl). The compound 17 (3.4 mg) was dissolved in 200 

μl of [D6] DMSO. 

All NMR experiments were performed on a Bruker DRX 600 spectrometer 

equipped with a cryoprobe at T = 300 K. All spectra were acquired in the phase-

sensitive mode, and the TPPI method was used for quadrature detection in the 

ω1 dimension.[62] The residual water signal was suppressed by excitation 

sculpting with gradients. Data block sizes of 4096 in t2 and 512 equidistant t1 

values were used. Before Fourier transformation, the time domain data matrices 

were multiplied by shifted sine bell QSINE (SSB = 2) functions in both 
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dimensions. For 1, the DQF-COSY, 2D-TOCSY and 2D-NOESY experiments 

were executed with a number of 48 scans/t1 and a t1max value of 51.2 ms. For 17, 

the DQF-COSY, 2D-TOCSY and 2D-NOESY experiments were executed with 

16 scans/t1, 24 scans/t1 and 64 scans/t1, respectively, with a t1max value of 64.0 

ms. A mixing time of 80 ms was used for the 2D-TOCSY experiments. 2D-

NOESY and 2D-ROESY experiments were run with mixing times in the range 

of 100−550 ms. SPARKY software was used for qualitative and quantitative 

analyses of 2D spectra.[63] The obtained peak volumes were converted into 

upper distance bounds with the CALIBA routine from the CYANA software 

package. The pseudoatom corrections were applied for non-stereospecifically 

assigned protons of methylene and methyl groups. The experimentally derived 

constraints were used to generate an ensemble of 200 structures with the 

standard CYANA protocol of simulated annealing in the torsion angle space 

(using 50,000 steps). The best 20 structures that had low target function values 

and small residual violations were selected. All the 3D models were depicted 

using the Chimera 1.10.1[64] and Maestro 9.6.[65]  
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3.8 Supporting information 

 

Table S1. 1H chemical shifts (ppm) of peptide 1 in HFA/H2O (600 MHz, 300 K). 

Residue NH αH βH γH δH εH Others 

Ser1 7.83 4.12 3.63 - - - - 

Lys2 7.45 3.96 1.47 1.12 1.34 2.65 - 

   1.43 1.07    

His3 7.87 4.37 2.95 - 6.89 (2H) - - 

   2.84  8.08 (4H) - - 

Ser4 7.80 4.22 3.66 - - - - 

   3.54 - - - - 

Ser5 7.89 4.12 3.61     

Leu6 7.35 4.06 1.29 1.22 0.61 - - 

     0.51 - - 

Asp7 7.59 4.14 2.43 - - - - 

Cys8 7.40 4.06 2.69 - - - - 

   2.65     

Val9 7.25 3.76 1.81 0.61 - - - 

Leu10 7.31 3.99 1.30 1.22 0.53 - - 

     0.51   

Arg11 7.21 4.33 1.53 1.54 2.85  6.609 (NHE) 

   1.44  2.77  7.526 (NHZ) 

Pro12 - 4.04 1.93 1.61 3.39 - - 

   1.71  3.25   
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Table S2. 1H chemical shifts (ppm) of peptide 17 in [D6] DMSO (600 MHz, 300 K). 

Residue NH αH βH γH δH εH Others 

Acetyl - - - - - - 1.87 

Ser1 8.12 4.33 3.62 - - - - 

   3.57     

Lys2 8.34 4.17 1.65 1.27 1.51 2.73 - 

   1.51     

His3 8.06 4.41 2.96 - 6.82 (2H) 7.51 (4H) - 

   2.85     

Ser4 7.86 4.14 3.63 - - - - 

 

Table S3. Mean values of φ, ψ and χ1 angles and αC distances relative to the most 

representative conformers of peptide 1. 

Peptide Sequence 
i+1 i+2 αC distance 

φ ψ χ1 φ ψ χ1 i to i+2 i to i+3 

1 

Lys2- Ser5 -52.9 -29.7 -83.7 -138.1 -42.8 -140.3 - 4.8 

Ser4-Asp7 -76.3 166.1 -124.7 69.9 8.5 -67.0 - 6.2 

Leu6-Val9 -108.6 75.2 -95.6 64.6 27.2 -120.6 - 5.7 

Asp7-Leu10 64.6 27.2 -120.6 71.1 42.9 -164.2 - 5.3 

Val9-Arg11 -76.1 91.0 -147.5 - - - 5.9 - 
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Figure S1. 2D-NOESY spectrum of peptide 1 HFA/H2Osolution (600 MHz, 300 K, 

tmix = 400 ms). 
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Figure S2. NOE connectivities from 2D-NOESY spectra of peptide 1 in HFA/H2O 

(600 MHz, 300 K, tmix = 400 ms). 

 

 

Figure S3. Ramachandran plot of NMR derived bundle of peptide 1, calculated by 

PROCHECK1 software. 
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Figure S4. HPLC profile of crude peptide 32 synthesized at room temperature. 

 

 

Figure S5. HPLC profile of crude peptide 32 synthesized using microwave. 
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Figure S6. HPLC profile of pure peptide 32. 
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Abstract 

The preparation of lactam constrained cyclic peptide requires orthogonal 

protecting groups for side-chain amino and carboxylate functionalities involved 

in the cyclization process.  

In this study, starting from the synthesis of a lactam peptide, H-Ser-[Lys-His-

Ser-Ser-Leu-Asp]-Cys-Val-Leu-Arg-Pro-NH2, we report the identification of 

problematic stretches during the sequence assembly process. Sequence 

elongation was achieved with standard Fmoc peptide synthesis and an α-allyl-

protected aspartic acid residue was then coupled to the growing chain in order 

to allow the cyclization. Surprisingly, after the deprotection of aspartic acid 

Fmoc group, the formation of a mixture of desired compound, aspartimide and 

piperidinyl derivative was observed. Therefore, we studied this problem and 

described its resolution using β-2-phenylisopropyl ester as β-protecting group 

of aspartic acid. 

 

Keywords 

Cyclic peptide, aspartimide, allyl ester, side reactions. 

 

Abbreviations 

Abbreviations used for amino acids and designation of peptides follow the rules 

of the IUPAC-IUB Commission of Biochemical Nomenclature in J. Biol. Chem. 

1972, 247, 977-983. Amino acid symbols denote L-configuration unless 

indicated otherwise. The following additional abbreviations are used: HOBt, N-

hydroxy-benzotriazole; HBTU, 2-(1H-benzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluoro-phosphate; HOAt, 1-Hydroxy-7-

azabenzotriazole; DIEA, N,N-diisopropylethyl-amine; DMF, N,N-

dimethylformamide; DCM, dichloromethane; NMP, N-Methyl-2-pyrrolidone; 

TIS, triisopropylsilane; TFA, trifluoroacetic acid; Boc, tert-butoxycarbonyl; 
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ESI-MS, electro spray ionization mass spectrometry; Fmoc, 

fluorenylmethoxycarbonyl; Mmt, 4-methoxytrityl; SPPS, solid-phase peptide 

synthesis. 

 

4.1 Introduction 

 

Cyclic peptides, in contrast to linear peptides, have been considered to have 

greater potential as therapeutic agents due to their increased chemical and 

enzymatic stability, more defined structure, and improved pharmacodynamic 

properties.[1, 2] Specially, side-chain lactam bridges linking amino acid residues 

that are spaced several residues apart in the linear sequence offer a convenient 

and flexible method for introducing conformational constraints into a peptide 

structure.  

Solid phase peptide synthesis (SPPS) is the most convenient approach to 

prepare lactam constrained cyclic peptides. In particular, the preparation of 

these peptides generally require a pair of selectively cleavable protecting groups 

used for protection of the amine and carboxylic acid to be linked by solid-phase 

cyclization. Among these groups, the most used is the Allyl ester (OAll) for side 

chain carboxilyc acids, along with its urethane-based partner for side-chain 

amines, the allyloxycarbonyl group (Alloc). OAll-protecting group, stable to 

both acid and base, is reliably cleaved in good yield on solid supports using the 

Pd(0) catalyst.[3-5] Nevertheless side reactions can hamper the overall synthesis 

leading to decreased yields and/or quality. 

In particular, aspartimide (Asi) formation, a well-documented side reaction 

when allyl ester is used as a protection for the aspartic acid side chain, can be 

observed. Its formation, which can either be acid or base catalyzed, occurs while 

the piperidine-catalyzed Fmoc cleavage of peptides containing aspartic      

acid.[6-9] 
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The propensity of aspartimide formation mainly depends on the aspartate 

carboxyl neighboring residue.[10, 11] 

As a matter of fact, aspartimide is the result of an attack of an amidate species 

at the carbonyl carbon of the side chain carboxylate of aspartic acid. Subsequent 

hydrolysis of the aspartimide ring gives rise to a mixture of α- and β-aspartyl 

peptides. In addition, nucleophilic attack of the imide ring by piperidine results 

in the formation of α- and β-piperidides (Figure 4.1).  

 

 

 

Figure 4.1 Mechanism for aspartimide-related by-product formation. 

 

In recent years several strategies to avoid Asi formation have been 

developed.[2] Nevertheless, employing of these methods does not fully prevent 

Asi formation and may cause certain difficulties during synthesis, or may not be 

suitable for the ‘on-resin’ synthesis of cyclic or branched peptides.  
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In this work, we tried to stabilize of 3D structure of bLf C-lobe fragment 

418-429 through cyclization of the peptide backbone, H-Ser-[Lys-His-Ser-Ser-

Leu-Asp]-Cys-Val-Leu-Arg-Pro-NH2 (Figure 4.2). Sequence elongation was 

achieved with standard Fmoc peptide synthesis and an α-allyl-protected 

aspartic acid residue was then coupled to the growing chain in order to allow 

the cyclization. During the synthesis of this peptide, unfortunately, the major 

product obtained showed a mass difference of +67 Da respect to expected 

cyclic peptide.  

 

 

Figure 4.2 Stucture of peptide 71. 

 

Therefore, the synthesis and the gradual elongation of this peptide were 

monitored. The formation of side products was observed after the deprotection 

of the Fmoc group of aspartic acid. 

In particular, after the deprotection of aspartic acid Fmoc group by piperidine 

(25% v/v in DMF) for 30 min at room temperature, we observed a  removal of 

Asp allyl group. LC-MS analysis revealed a mixture of three compounds 

(Figure 4.3): desired compound (52), aspartimide (Asi, 53) and 4-(1-

Piperidinyl) aspartate derivative (54) (Table 4.1). 
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Table 4.1 Peptides obtained during the synthesis. 

Peptide Sequence 

52 

 

53 

 

54 

 

 

 

 

 

Figure 4.3 HPLC elution profile of mixture of compounds and ESI-MS spectrum. 

 

 

 

 

Time (min) m/z 680 720 760 

771.4 

772.3 

773.5 
741.4 

742.5 683.3 

54 

52 

53 

54 

52 
53 
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NMR analysis in DMSOd6 solution clearly demonstrated the presence of 

piperidinyl (pyp) derivative. 

 

 

Figure 4.4 Partial NOESY spectrum of compound 54. 

 

In the present study, we report the problem of Asi formation during Fmoc-

based SPPS of peptide containing a lactam bridge using Allyl group to protect 

β-carboxy side-chain group of Asp residue. 

Starting from these observations, during my PhD, I intended to identify the 

factors affecting Asi formation and thus to find a simple and efficient synthesis 

protocol to minimize the process Asi formation. 
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4.2 Chemistry 

 

4.2.1 Synthesis of peptides 

 

The synthesis of peptides (52-71) was performed according to the solid phase 

approach using standard Fmoc methodology in a manual reaction vessel.[12] 

Different resins were used: Rink-Amide, Fmoc-PAL-PEG-PG and 2-

chlorotrityl chloride resin. Rink-Amide and Fmoc-PAL-PEG-PG were 

deprotected by a 25% piperidine solution in N, N-dimethylformamide (DMF) 

for 30 min and the first amino acid was linked onto the resin. 

For 2-chlorotrityl chloride resin, the first Nα-Fmoc amino acid and DIPEA were 

dissolved in dry dichloromethane containing, if necessary, a small amount of 

dry DMF. This was added to the resin and stirred for 30-120 min.  

The following protected amino acids were then added stepwise. Each coupling 

reaction was accomplished using a 3-fold excess of amino acid with HBTU and 

HOBt in the presence of DIPEA. The Nα-Fmoc protecting groups was removed 

by treating the protected peptide resin with a 25% solution of piperidine in 

DMF.  

In addition, after each step of deprotection and after each coupling step, Kaiser 

test was performed to confirm the complete removal of the Fmoc protecting 

group, respectively, and to verify that complete coupling has occurred on all the 

free amines on the resin. [13] 

The preparation of cyclic peptides, through a side-chain-to-side-chain 

cyclization, was carried out after removal of the 2-PhiPr/Mmt protection with 

1% TFA/DCM. 

The N-terminal Fmoc group was removed as described above. Finally, the 

peptides were released from the resin with trifluoroacetic acid (TFA)/ 

triisopropylsilane (iPr3SiH) / H2O (90:5:5) for 3 h. The resin was removed by 
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filtration, and the crude peptide was recovered by precipitation with cold 

anhydrous ethyl ether to give a white powder and then lyophilized (Scheme 4.1). 

 

The crude peptides were purified by preparative RP-HPLC. Analytical HPLC 

indicated the degree of purity of the peptides and molecular weights were 

confirmed by ESI-MS. 
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Scheme 4.1 Synthesis and folding of peptide 71. 
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4.3 Results and discussion 

 

The preparation of the lactam peptide mentioned above requires orthogonal 

protecting groups for side-chain amino and carboxylate functionalities.[2, 14] Use 

of the allyl ester (OAll) group for this role in the protection of the aspartic acid 

side-chain resulted in the formation of unexpected side-products. [15, 16] 

To study this phenomenon and try to get the desired sequence in a good yield 

we used different approaches. We study the influence of resins, protecting 

groups, bases and  amino acid sequence on the formation of byproducts. 

To simulate deprotection conditions of prolonged synthesis, all peptides were 

incubated with piperidine (25%v/v in DMF) for 30 min, 1h, 2h, 3h, 6h, 12h and 

16h.  

 

4.3.1 Factors influencing aspartimide formation 

 

4.3.1.1 Solid support (peptides 52, 55 and 56) 

It has been observed that the resin/linker used as a solid support in solid phase 

synthesis may sometimes contribute to decreasing the formation of aspartimide. 

Therefore, to compare the extent of side reactions formation and factors that can 

affect it, we studied the effect of the polymer support. 

As a first resin we used a Rink Amide, a resin that releases amides rather than 

carboxylic acids, as required by the peptide sequence. This is a resin acid labile, 

thus the solution used for the cleavage of the peptide from the resin is at 90% of 

TFA in DCM. The synthesis did not have successful leading to the formation of 

the already mentioned side products.  

Albericio et al. used the hydrophilic resins.[17] The most commonly used are 

resins, polystyrene-based always, on which are grafted chains of polyethylene 

glycol (PEG). These chains move away from the functional groups of the resin 
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core for which the reaction conditions become more "solution-like". Therefore, 

we used the resin Fmoc-PAL-PEG-PS (Peptide Amide Linker-polyethylene 

glycol-polystyrene) to avoid the problems caused steric hindrance. In the 

literature, however, it is reported that the use of 2-chlorotrityl chloride resin, 

which offers the possibility of mild acidolysis of the peptide chain, prevents this 

undesired cyclization.[18, 19] 

Therefore, although it is used to acids peptides, we used this resin for the 

synthesis of our peptide to evaluate their effectiveness.  

Both approaches have not been successful (Table 4.2). 

 

Table 4.2 Influence of the solid support on aspartimide and piperidinyl derivatives 

formation. 

Pep. 
Protecting 

Group Asp 
Resin  

(16 h) base 

treatment 

α- β-piperidinyl 

peptide (%) 

52 All RINK-AMIDE 

 

100 

55 All 
Fmoc-PAL-

PEG-PS 

 

100 

56 All 
2-Chlorotrityl-

cloride 

 

100 

 

4.3.1.2 Base (peptides 52, 57-59)  

Piperidine, the standard secondary amine applied in the removal of Fmoc in 

solid-phase, gives rise to a considerably high percentage of Aspartimide, plus 

the additional presence of piperidides of the α- and β-peptide.[20] The 

concentration of the secondary amine also affects the amount and ratio of 

byproducts.[21, 22] We replaced the piperidine (pKa=11.12) with the milder base 

piperazine (pKa = 9.73) and morfoline (pKa = 8.3), that could reduce 
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aspartimide formation, however, at the cost of the reaction rate. It did not show 

a significant effect.  

N-hydroxylamine-based compounds and coupling reagents are widely used 

as amide bond-forming agents.[23-27] In addition, additives are beneficial in order 

to reduce the extent of racemization and guanidylation of the N-terminus of the 

growing peptide chain and to increase coupling efficiency.[28, 29] This substantial 

contribution to coupling strategies prompted their evaluation in the prevention 

of other non-coupling-derived side reactions. It was showed indeed that, in 

unwanted reactions, their addition can be advantageous. N-Hydroxylamine-

based additives also contribute to the wide arsenal of approaches to prevent the 

formation of Asi and derived byproducts. This beneficial effect is observed in 

base-catalyzed Asi cyclization, during coupling or Fmoc removal with 

secondary/tertiary amines. It is proposed that the unique acidic properties of N-

hydroxylamines used as additives in peptide synthesis (pKa = 2-10) are 

responsible for this behaviour.[30] The abstraction of the amide backbone proton 

is  the crucial step in the cyclization that leads to Asi. Thus, addition of a relative 

strong acid, such as HOBt, results in competition with the Asp-X amide 

backbone for the base present in the medium.[30] When HOBt is used as additive, 

conversion into its anion by the effect of the base would decrease the percentage 

of negatively charged amide backbone nitrogen, which is responsible for 

initiating Asi formation (Figure 4.5). 
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Figure 4.5 Competition between N-hydroxylamine and amide backbone proton 

abstraction. 

 

Consequently, we studied the suppression of aspartimide formation by 

adding small amounts of organic acids to the deprotection agent piperidine. 

However, under these conditions, treatment with piperidine containing 0.1 M of 

HOBt caused the complete formation of aspartimide and piperidinyl derivate. 

 

Table 4.3 Influence of the nature of the base on byproducts formation. 

Pep. 
Protecting 

Group Asp 

Deprotection  

reagent 
 

(16 h) base treatment 

By-products (%) 

52 All Piperidine 
 

100 

57 All Morfoline 
 

100 

58 All Piperazine 
 

100 

59 All 
Piperidine + 

HOBt 0.1 M   +   
100 

 

4.3.1.3 β-carboxyl protecting group (peptides 52, 60, 61) 

The nature of the β-carboxyl ester, acting as protecting group, markedly 

influences on the impact of the aspartimide side reaction.  
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Figure 4.6 Structures of Asp β-carboxyl protecting groups used. 

 

Initially, we used Asp(OAll) as protecting group of aspartic acid, but it gives 

rise to high percentages of aspartimide peptide and thus offers the poorest 

protection against this unwanted process. In order to minimize the nucleophilic 

attack of the preceding amide backbone nitrogen atom to Asp, ODmab [4-{N-

[1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methylbutyl]amino}benzyl], 

highly sterically hindered β-protecting group, was used. However, the β-

protection of Asp as ODmab does not result in improved prevention of the side 

reaction and is comparable to that achieved by β-allyl ester protection. 

Protection with the bulky tert-butyl ester has shown greater efficacy than the 

abovementioned strategies in preventing this side reaction in basic media.[10, 19, 

32] In fact, in classical Fmoc removal conditions, it not give rise to conversion 

into Asi residues. 
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Table 4.4 Influence of β-carboxyl protecting group on aspartimide and piperidinyl 

derivatives formation. 

Pep. 
Protecting 

Group Asp 

(16 h) base treatment 

α- β-piperidinyl peptide (%) 

52 All 100 

60 Dmab 100 

61 tBu - 

 

4.3.1.4 Sequence 

Undoubtedly, the nature of the neighbouring amino acid located at the C-

terminus of the aspartic acid (Asp-X) and the amino acidic sequence determine 

the degree of aspartimide formation, since the cyclization of Asp to Asi is 

initiated by attack of the amide backbone nitrogen of the preceding residue.[22] 

Two different approaches were used to evaluate the influence of amino acids β-

functional groups on aspartimide formation: i) L-Ala scanning analysis of 

peptide 52 (peptides 62-66); ii) scramble peptides (peptides 67-69). 

 

Alanine scanning approach (peptides 62-66) 

We decided to check the relevance of side chains of each aminoacidic residue 

in side products formation through L-Ala scanning analysis (peptides 62-66, 

Table 4.5). These changes did not show a significant effect to suppress 

aspartimide formation. 

 

Table 4.5 Peptides synthesized by alanine scanning approach. 

Pep. 
Protecting 

Group Asp 
Sequence 

(16 h) base treatment 

α- β-piperidinyl peptide (%) 

62 All DCVLRA 100 

63 All DCVLAP 100 

64 All DCVARP 100 

65 All DCALRP 100 

66 All DAVLRP 100 
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Scramble peptide (peptides 67-69) 

Finally, the scramble analogue peptides, constructed through permutation of 

the original peptide sequence, were synthesized to examine the sequence 

dependence on Asi and piperidide formation. These side-products were not 

observed in scramble peptides. 

Therefore, we hypothesized that the conversion of Asp into Asi units could be 

conformation-dependent. 

 

Table 4.6 Scramble peptides synthesized. 

Pep. 
Protecting 

Group Asp 
Sequence 

(16 h) base treatment 

α- β-piperidinyl peptide (%) 

67 All DLPRVC - 

68 All DVRPCL - 

69 All DPCVLR - 

 

4.3.2 β-(2-phenylisopropyl) ester to minimization of aspartimide formation 

 

Finally, in order to minimize the nucleophilic attack of the preceding amide 

backbone nitrogen atom to Asp, we used highly sterically hindered β-protecting 

group, as Asp [OPhiPr = β-(2-phenylisopropyl)]. An orthogonal protecting 

groups for side-chain of cysteine was used. 

In peptide 70, we used Asp(2-PhiPr) and Cys(tBu), it does not suppress the 

aspartimide formation.  

Moreover, in order to evaluate the influence of high bulkiness of trityl, β-

protecting group of cysteine, we synthetized peptide 71. It results in increased 

prevention of Asi. 
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Figure 4.7 Influence of cysteine β-protecting group on aspartimide formation.  

 

Table 4.7 Peptides synthesized. 

Pep. 
Protecting Group 

Asp 

Protecting Group 

Cys 

(16 h) base treatment 

α- β-piperidinyl peptide (%) 

70 
2-PhiPr 

tBu  100 

71 Trt - 

 

4.4 Conclusions 

 

The synthesis of lactam constrained cyclic peptide requires orthogonal 

protecting groups for side-chain amino and carboxylate functionalities. To 

synthesize a cyclic peptide, H-Ser[Lys-His-Ser-Ser-Leu-Asp]-Cys-Val-Leu-

Arg-Pro-NH2, we used the allyl ester (OAll) group for this role in the protection 

of the aspartic acid side-chain.  

Surprisingly, our approach to synthesize the peptide mentioned above, failed 

completely. In particular, after the deprotection of aspartic acid Fmoc group by 

piperidine (20% v/v in DMF) for 30 min at room temperature, the formation of 

unexpected side-products was observed. 

Therefore, we studied this phenomenon and tried to obtain the desidered 

sequence with different approaches. We hypothesized that the aspartimide and 

piperidinyl derivative formation is conformation-dependent. 
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Finally, we synthetized the desidered peptide, using as β-protecting group of 

aspartic acid and lysine, β-2-phenylisopropyl ester and methoxytrityl, 

respectively. LC-MS analysis confirmed the presence of the desired cyclic 

peptide. 

 

4.5 Experimental section 

 

Nα-Fmoc-protected amino acids, Rink amide-resin, Fmoc-PAL-PEG-PS resin, 

2-Chlorotrityl-cloride resin, N-hydroxy-benzotriazole (HOBt), 2-(1H-

benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluoro-phosphate 

(HBTU), N,N-diisopropylethyl-amine (DIPEA), piperidine, morpholine, 

piperazine and Trifluoroacetic acid were purchased from Iris Biotech 

(Germany). Peptide synthesis solvents, reagents, as well as CH3CN for high 

performance liquid chromatography (HPLC) were reagent grade and were 

acquired from commercial sources and used without further purification unless 

otherwise noted. 

 

4.5.1 Synthesis of peptides with Rink-Amide and Fmoc-PAL-PEG-PS resin 

 

The synthesis of peptides (52-55, 57-71) was performed according to the 

solid phase approach using standard Fmoc methodology in a manual reaction 

vessel.[33, 34] 

The first amino acid, Nα-Fmoc-Xaa-OH (Xaa = Pro, Cys(Trt), Arg(Pbf), Leu, 

Ala), was linked on to the Rink resin (100–200 mesh, 1% DVB, 0.59 mmol/g) 

and Fmoc-PAL-PEG-PS resin (100–200 mesh, 1% DVB, 0.22 mmol/g) 

previously deprotected by a 25% piperidine solution in N, N-

dimethylformamide (DMF) for 30 min.  
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The following protected amino acids were then added stepwise: Nα-Fmoc-Pro-

OH, Nα-Fmoc-Arg(Pbf)-OH, Nα-Fmoc-Leu-OH, Nα-Fmoc-Val-OH, Nα-Fmoc-

Cys(Trt)-OH, Nα-Fmoc-Cys(tBu)-OH, Nα-Fmoc-Asp(OtBu)-OH, Nα-Fmoc-

Ala-OH, Nα-Fmoc-Asp(OAll)-OH, Nα-Fmoc-Asp(OtBu)-OH, Nα-Fmoc-

Asp(ODmab)-OH, Nα-Fmoc-Asp(2-PhiPr)-OH. 

Each coupling reaction was accomplished using a 3-fold excess of amino acid 

with HBTU and HOBt in the presence of DIPEA (6 eq.). The Nα-Fmoc 

protecting groups were removed by treating the protected peptide resin with a 

25% solution of piperidine in DMF (1 × 5 min and 1 × 25 min). The peptide 

resin was washed three times with DMF, and the next coupling step was initiated 

in a stepwise manner. The peptide resin was washed with DCM (3×), DMF (3×), 

and DCM (3×), and the deprotection protocol was repeated after each coupling 

step. In addition, after each step of deprotection and after each coupling step, 

Kaiser test was performed to confirm the complete removal of the Fmoc 

protecting group, respectively, and to verify that complete coupling has 

occurred on all the free amines on the resin.  

 

4.5.2 Synthesis of peptides 56 with 2-Chlorotrityl-cloride resin 

 

The peptides 56 was synthetized using a 2-chlorotrityl chloride resin. The 

first Nα-Fmoc-Pro-OH, (0.6-1.2 equiv relative to the resin for 2-chlorotrityl 

resin) and DIPEA (4 equiv relative to amino acid) were dissolved in dry 

dichloromethane (DCM) (approx. 10 mL per gram of resin) containing, if 

necessary, a small amount of dry DMF (enough to facilitate dissolution of the 

acid). This was added to the resin and stirred for 30-120 min. After stirring, the 

resin was washed with 3×DCM/MeOH/DIPEA (17:2:1), 3×DCM, 2×DMF and 

2×DCM. Other Nα-Fmoc amino acids (4 equiv) were sequentially coupled as 

previously described.  
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4.5.3 Synthesis of lactam peptide (peptide 71) 

 

The corresponding linear peptide was synthetized as described above and the 

amino acids Nα-Fmoc-Asp(2-PhiPr)-OH and Nα-Fmoc-Lys(Mmt)-OH were 

used as lactam precursors. After linear assembly, the 2-PhiPr and the Mmt 

groups were removed according to the following procedure: 200 mg of peptide 

resin was washed with dichloromethane (DCM) and a solution of 1% 

TFA/DCM was added. The reaction was allowed to proceed for 30 min. The 

peptide resin was washed with DCM (3x), DMF (3x) and DCM (4x). The 

macrocyclic lactam ring formation was mediated by addition of HBTU (6 

equiv), HOBt (6 equiv) and DIPEA (12 equiv) under Ar for 2 h. The process 

was repeated if necessary (Kaiser test used to monitor completion).  

The N-terminal Fmoc group was removed as described above. Finally the 

peptides were released from the resin with TFA/TIS/H2O (90:5:5) for 3 h. The 

resin was removed by filtration, and the crude peptide was recovered by 

precipitation with cold anhydrous ethyl ether to give a white powder and then 

lyophilized. 

 

4.5.4 Purification and characterization  

 

All crude peptides were purified by RP-HPLC on a preparative C18-bonded 

silica column (Phenomenex Kinetex AXIA 100Å, 100 x 21.20mm, 5µm) using 

a Shimadzu SPD 20A UV/VIS detector, with detection at 210 and 254 nm. The 

column was perfused at a flow rate of 15 ml/min with solvent A (10%, v/v, 

water in 0.1% aqueous TFA), and a linear gradient from 10 to 90% of solvent B 

(80%, v/v, acetonitrile in 0.1% aqueous TFA) over 40 min was adopted for 

peptide elution. Analytical purity and retention time (tr) of each peptide were 

determined using HPLC conditions in the above solvent system (solvents A and 
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B) programmed at a flow rate of 1.500 ml/min using a linear gradient from 10 

to 90% B over 11 min, fitted with C-18 column Phenomenex, Aeris XB-C18 

column (150 mm х 4.60, 3.6µm). All analogues showed >97% purity when 

monitored at 215 nm. Homogeneous fractions, as established using analytical 

HPLC, were pooled and lyophilized. Peptides molecular weights were 

determined by ESI mass spectrometry and LC-MS in a LC-MS 2010 instrument 

fitted with Phenomenex, Aeris XB-C18 column (150 mm х 4.60, 3.6µm), eluted 

with a linear gradient from 10% to 60% B over 15 min, at a flow rate of 1.000 

mL/min. ESI-MS analysis in positive ion mode, were made using a Finnigan 

LCQ Deca ion trap instrument, manufactured by Thermo Finnigan (San Jose, 

CA, USA), equipped with the Excalibur software for processing the data 

acquired. The sample was dissolved in a mixture of water and methanol (50/50) 

and injected directly into the electrospray source, using a syringe pump, which 

maintains constant flow at 5 ml/min. The temperature of the capillary was set at 

220°C. 

Peptide analytical data are reported in Table 4.8. 
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Table 4.8 Analytical data of peptides 52-71. 

Peptide 
HPLC 

k’a 
ESI-MS 

52 9.93 740.91 

53 9.67 697.85 

54 6.72 767.98 

55 9.93 740.91 

56 9.96 741.90 

57 10.26 769.96 

58 10.21 768.97 

59 6.72 767.98 

60 9.81 700.85 

61 6.72 767.98 

62 9.97 741.95 

63 9.23 682.87 

64 9.89 725.90 

65 9.91 739.93 

66 9.90 735.92 

67 9.95 740.93 

68 9.96 740.95 

69 9.92 740.89 

70 6.72 767.91 

71 12.31 1321.54 

a k’=[(peptide retention time-solvent retention time)/solvent retention time]. 

 

 

Figure 4.8 HPLC profile of pure piperidinyl derivative. 
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Conclusions 

 

The present study describes the identification of three C-lobe bLf-derived 

tetrapeptides as the minimum fragments expressing the broad anti-influenza 

activity of bLf. Peptides 14 (VLRP), 15 (SLDC), and 17 (SKHS) were designed 

from the fragment 418-429 (1, SKHSSLDCVLRP), which is involved in the C-

lobe bLf-HA interaction. These tetrapeptides retain the inhibitory potency of 

the fragment 418-429 and inhibit the influenza virus hemagglutination and cell 

infection in a concentration range of femto- to picomolar. NMR spectroscopy 

analysis performed on compounds 1 showed a global turn conformation for this 

peptide and hypothesized the preferred bioactive conformation of our 

tetrapeptides. Our results strongly encourage the pursuit of this path for the 

development of a novel class of anti-influenza drugs. 

Moreover, based on conformational analysis, we tried to stabilize 3D 

structure of fragment 418-429, SKHSSLDCVLRP, through cyclization of the 

peptide backbone. 

The synthesis of lactam constrained cyclic peptide requires orthogonal 

protecting groups for side-chain amino and carboxylate functionalities. To 

synthesize this peptide, we used the allyl ester (OAll) group for this role in the 

protection of the aspartic acid side-chain.  

Surprisingly, our approach to synthesize the peptide mentioned above, failed 

completely. In particular, after the deprotection of aspartic acid Fmoc group by 

piperidine (20% v/v in DMF) for 30 min at room temperature, the formation of 

unexpected side-products was observed. 

Therefore, we studied this phenomenon and tried to obtain the desidered 

sequence with different approaches. We hypothesized that the aspartimide and 

piperidinyl derivative formation is conformation-dependent. 
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Finally, we synthetized the desidered peptide, using as β-protecting group of 

aspartic acid and lysine, β-2-phenylisopropyl ester and methoxytrityl, 

respectively. LC-MS analysis confirmed the presence of the desired cyclic 

peptide. 


