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Preface 

My three-year PhD course in Drug Discovery and Development at the Department 

of Pharmacy of Salerno University started in 2014 under the supervision of Prof. 

Ines Bruno. My research project was mainly focused on the design, synthesis and 

biological evaluation of small molecules as new modulators of novel emerging 

targets involved in cancer processes. Specifically, my research activity was focused 

on the investigation of two major targets: 

 the epigenetic family of Macrodomain proteins, in particular, the hydrolases 

MacroD1 and MacroD2; 

 the Bcl-2 associated athanogene 3, BAG3. 

The entire work was carried out under the direct supervision of Prof. Ines Bruno 

and Dr. Stefania Terracciano. The Computational guided design of compounds was 

performed in collaboration with Prof. Giuseppe Bifulco’s research group. 

Biological screenings were performed in collaboration with Dr. Jon Elkins of the 

Structural Genomics Consortium (Oxford University), in the case of Macrodomain 

proteins project, whereas with Dr. Maria Carmela Vaccaro and Prof. Alessandra 

Rosati, in the case of BAG-3.  

Furthermore, to improve my knowledge on Macrodomain proteins, in 2016 I joined 

Dr. Jon Elkins’ research group at the Structural Genomics Consortium where I spent 

five months. During that period, my research was carried out under the supervision 

of Dr. Romain Talon and was addressed to the expression, purification and 

crystallization of human MacroD1 protein, in order to perform a fragment 

screening, X-ray crystallography based, on the target of interest.  
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Abstract 

Cancer development is a complex pathological process that exploits a variety of 

biological actors. The identification of new molecular entities able to interfere with 

new biological targets involved in tumorigenesis is strongly needed, both for the 

development of new promising drug candidates, and as chemical probes useful to 

further investigate less understood biological aspects. Two main targets, involved 

at different levels in cancer development, have been thoroughly investigated: the 

epigenetic Macrodomain proteins, MacroD1 and MacroD2, and the Bcl-2 

associated athanogene 3, BAG3 protein. The results obtained are summarized in the 

two main sections, reported below according to the target of interest: 

a) Discovery of new modulators of human Macrodomain proteins, MacroD1 

and MacroD2, by structure-based and X-ray crystallography based 

approaches. 

 MacroD1 and MacroD2 are two orthologue members of the epigenetic family of 

the Macrodomain containing proteins which have been recently identified as 

attractive targets for the treatment of cancer, due to their well-established 

overexpression in several human tumors.1-2 These proteins can act as erasers of the 

histone code ADP-rybosilation, a post-translational modification involved in the 

modulation of gene expression and chromatin remodelling.3 With the aim of 

identifying new modulators of these high related proteins, we carried out two 

different drug discovery approaches: a computer aided structure based drug design 

on the MacroD2 crystal structure (PDB: 4IQY) and a Fragment screening, based on 

X-ray crystallography, on the protein MacroD1. Concerning the first approach, 

starting from the crystal structure of MacroD2 protein in complex with ADP-ribose, 

its natural ligand, we performed a preliminary virtual screening on a Database of 

16 million of 1,4 disubstituted triazoles. Results analysis allowed us to select the 

most promising molecules in terms of docking score and shape similarity. The next 

step consisted in the synthesis of the most promising molecules basing on a versatile 

and suitable synthetic strategy. The synthetized molecules were, then, tested in 

collaboration with the Structural Genomics Consortium of Oxford, to evaluate their 

ability to bind the target protein with Alpha Screen, Biolayer interferometry and 
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Isothermal titration calorimetry. These biophysical methods allowed us to disclose 

compound SP2 as a real binder of the protein MacroD2, with a dissociation constant 

of 2.54±1.1 M. This promising molecule will be further investigated on MCF-7 

cancer cells, overexpressing the protein, to assess its potential antitumoral activity.  

Concerning the study of MacroD1 protein, a fragment screening based on X-ray 

crystallography technique has been carried out, during my stage experience at the 

University of Oxford; this advanced method allowed the identification of three 

fragments co-crystallized with the protein MacroD1. Since in the Surface Plasmon 

Resonance (SPR) assay the binding to the protein was confirmed for two of the 

three fragments, we decided to start to investigate, in silico, the binding mode of 

the most promising one, compound 3, in order to develop a collection of high 

affinity binders for the target protein. These new molecules have been synthesized 

and then tested again by SPR, against the protein MacroD1 and, in line with the 

computational predictions, four of them showed to bind the target protein with 

higher affinity, compared to the lead compound; these results are of great interest 

since so far no Macrodomain binder has been yet disclosed, hence they can open 

the way to the discovery of new chemical platforms able to modulate the protein 

MacroD1, as new attractive candidates for drug development. 

b) Design, synthesis and biological evaluation of the first BAG3 modulator as 

an attractive candidate for the development of a new class of 

chemotherapeutics. 

BAG3 (Bcl-2-associated athanogene 3) is a multidomain protein which, through its 

BAG domain, is able to interact with several partners, modulating, thus, key 

signalling pathways involved in physiological and pathological processes.4 Indeed, 

BAG3 has been shown to sustain cell survival and to induce resistance to 

chemotherapy in human cancers, hence, it is recently emerged as a  therapeutic 

target of human malignancies.5 With the aim of exploring BAG3 protein, basing on 

a combined approach of structure-based drug design and biophysical methods, we 

screened a huge library of commercially available molecules against the target of 

interest. Starting from the virtual screening and SPR results, we selected a 2,4 
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thiazolidinedione based molecule (7), as a promising BAG3 activity modulator. 

This compound, indeed, showed to bind with a good affinity both to the full length 

protein (KD: 5.2±3.8 nM) and to its isolated BAG domain (KD: 3.51±2.7 nM), 

moreover it did not show any binding for two other members of BAG proteins 

tested, BAG1 and BAG4. Hence, we decided to evaluate the potential 

antiproliferative activity of the disclosed hit on A375 melanoma cancer cells, which 

are known to overexpress the BAG3 protein; compound 7 resulted to have a good 

cytotoxicity (25±1.5 M) against the cell line tested, in line with our predictions. 

Starting from these promising outcomes, we developed a collection of synthetic 

2,4-thiazolidindiones, as derivatives of the lead compound, in order to expand the 

chemical diversity around the scaffold and we succeeded to identify a promising 

molecule (LK-4); this compound, indeed, was able to selectively bind BAG domain 

of  BAG3 protein, with high affinity (KD: 6.4±2.2 nM), interfering with BAG3-

Hsp70 protein-protein interaction. LK-4 showed a high cytotoxicity (IC50: 16±1.5 

M) against A375 melanoma cancer cells, and at the same time, a good selectivity; 

moreover, it did not affect the cell viability of PMBC human normal cells. A co-

immunoprecipitation assay confirmed that LK-4 interfere with BAG3-Hsp70 

complex formation in cell and in a time-dependent manner, representing a valuable 

chemical probe to further investigate BAG3 protein in the attempt to develop new 

attractive protein modulators.
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1.1. Drug discovery in cancer therapy 
 

"Cancer" is a generic term used to describe a large group of related diseases that 

involve an abnormal cell growth with the potential to spread to other parts of the 

body. According to the World Health Organization (WHO), more than one hundred 

types of cancer have been disclosed so far, and owing to the great variety of 

histological types, and, overall, to its multifactorial etiology, it is a particularly 

difficult disease to treat. The challenge for a medicinal chemistry project is to design 

new drugs able to selectively target cancer cells, while avoiding multidrug 

resistance pathways. In the last decades, the many efforts lavished in this research 

area provided valuable insights into cancer physiopathology with the disclosure of 

strategic biological targets which can be of great help for the development of potent 

and selective chemotherapeutics. These achievements have been made possible 

thanks to multifaceted approaches requiring the synergistic contribution of several 

scientific figures, e.g., clinicians, biologists, medicinal and synthetic organic 

chemists, X-ray crystallographers and other structural biologists, 

chembioinformaticians, computational experts, and logicians, among others. This 

tireless joint research provided a great improvement of the technological tools 

employed in drug discovery programs (Figure 1.1). For example, once the 

molecular target has been selected, the advanced computer-aided approaches 

provide a fast and cost-efficient lead identification. Moreover, such computational 

programs are useful also to predict whether the designed molecules are likely to 

display the desired ADMET (absorption, distribution, metabolism, excretion, and 

toxicity) properties. In addition, on one side, the progress made in Organic synthesis 

provides synthetic procedures that allow to rapidly generate a wide structural 

variety of products, on the other side, the introduction of innovative biophysical and 

biological techniques enables the rapid screening of a great number of compounds, 

supplying information useful to outline a SAR profile of the most promising 

molecules. Basing on these premises, my PhD research project has been focused on 

the development of new modulators of novel biological targets involved in 

tumorigenesis. In particular, in the frame of the research lines carried out by the 

Organic Chemistry group of the Department of Pharmacy, University of Salerno, I 

decided to investigate two interesting targets such as: the human Macrodomain 
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proteins MacroD1 and MacroD1 and the Bcl2-associated athanogene 3 (BAG3). 

The MacroD family proteins are considered epigenetic enzymes whose 

overexpression, in various cell lines, has been shown to protect against multiple 

apoptotic signals such as: chemical, biological or physical stimuli. After DNA 

damage, Macrodomain proteins can inhibit apoptosis by modulating chromatin 

remodeling activity, through protein ADP-rybosilation, and facilitate DNA repair 

within a chromatin context.6 The other target under investigation is the BAG3 

protein, a member of BAG family, recently emerged as a key regulator of important 

physiological processes including cell survival, apoptosis, cytoskeleton 

organization, and autophagy7; through its well conserved domain, BAG3 has also 

been shown to collaborate with Hsp70 in regulating cancer development through 

multiple pathways.8 

Moreover, during my PhD research project, I had the opportunity to go to spend a 

research period at the Structural Genomics Consortium, in Oxford, where I 

experienced the innovative technologies of the synchrotron of the Diamond Light 

Source which allowed to expand my knowledge in the protein crystallization and 

fragment screening processes. 
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Figure 1.1 Flow chart of the Drug discovery process 

 

1.2.Epigenetics 
 

Epigenetics is a genomic branch defined as the study of the structural adaptation of 

chromatin to exogenous signals; in more detail, it includes all the chromosomal 

modifications associated with both, DNA repair, or cell-cycle phases, and stable 

changes maintained across multiple cell generations. In simple words we can say 

that the epigenetic mechanisms are all the inheritable changes in gene expression 

with no alterations in DNA sequences.9 The term epigenetics was first introduced 

by Conrad Waddington, however many further definitions have been given from 

1942 to date. Chemical modifications of DNA and histones are dynamically laid 

down and removed by chromatin-modifying enzymes in a highly regulated manner 

(Figure 1.2). Four different DNA modifications10 and 16 classes of histone 

modifications have been at least well elucidated.11,12 These modifications can alter 

chromatin structure by modifying noncovalent interactions within and between the 

nucleosomes. They also serve as docking sites for specialized proteins with unique 
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domains, the so called “chromatin readers”, that specifically recognize these 

modifications, and recruit additional chromatin modifiers and remodeling enzymes, 

which, in turn, act as the effectors of the modification. The information conveyed 

by the epigenetic modifications plays a critical role in the regulation of all DNA-

based processes, such as transcription, DNA repair, and replication. Consequently, 

abnormal expression patterns or genomic alterations in chromatin regulators can 

have profound effects and can lead to the induction and maintenance of various 

cancers. Hence, disruption of the epigenome is a well-recognized fundamental 

mechanism in cancer, and several epigenetic drugs have been proven to modulate 

cell survival and to be less toxic than conventional chemotherapy.13 The great 

interest evoked by this research area prompted many investigations in the attempt 

of understanding and clarifying several issues, however, although significant 

advances have been done in this field, many questions remain still unsolved. 

 

 

 

 

Figure 1.2 Epigenetic enzymes involved in regulation of gene expression  

 

 

DNA methylation  

 

DNA methylation is a widespread modification in bacteria, plants and mammals; 

this covalent modification is natural in DNA; it is produced during DNA replication 

and it is considered as a stable gene-silencing mechanism. In eukaryotic cells DNA 

methylation takes place at the 5' end of the cytosine nucleotide followed by a 
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guanine nucleotide (CpG dinucleotide), and requires S-adenosyl-methionine as 

methyl donor. This reaction is catalyzed by the DNA methyltransferase enzymes 

family (DNMT family), including DNMT1, DNMT3A and DNMT3B. Cancer-

associated DNA hypomethylation is as prevalent as cancer-linked 

hypermethylation, however, these two types of epigenetic abnormalities, usually, 

seem to affect different DNA sequences. It has been suggested that tumor-

associated DNA hypermethylation contributes to carcinogenesis separately from 

aberrant DNA hypomethylation14, and it has been proved to silence tumor 

suppressor genes; this kind of aberration has been mostly found in CpG-rich 5’ gene 

regions.15,16 However, the understanding of cellular consequences of normal and 

aberrant DNA methylation remains a key area of interest, nevertheless, so far, 

hypomethylating agents represent one of the few epigenetic therapies that have 

gained FDA approval for routine clinical use.17 

 

Histone modifications 

 

Histones including H2A, H2B, H3 and H4 form, together, the histone octamer that 

is the basic structure of the nucleosome components.18 Chromatin or histone 

components are prone to a wide variety of covalent, reversible, post translational 

modifications, such as acetylation, mono-, di-, and trimethylation on lysine 

residues, symmetric or asymmetric mono- and dimethylation on arginine residues, 

phosphorylation on serine and threonine residues, ubiquitination, biotinylation, and 

SUMOylation (Small Ubiquitin-like Modifier or SUMO) on lysine residues, and 

finally mono-ADP-ribosylation on arginine and glutamate residues (Table 1.1).  

Although many examples of modifications within the central domains of histones 

have been identified, the majority of these post-translational modifications occur on 

the lysine amino-tails, due to their protruding position from the nucleosome core. 

These modifications, individually or in combination, are able to influence 

inheritable epigenetic programs that encode distinct nucleosome functions, such as 

gene transcription, X-chromosome inactivation, heterochromatin formation, 

mitosis, and DNA repair and replication.19,19b Mechanistically, these functions are 

exerted either directly, by altering nucleosome interactions with chromatin, or 
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indirectly, by recruiting effector proteins that, with specific modules, recognize 

particular histone modifications in a sequence-dependent manner. In addition to 

their catalytic functions, many chromatin modifying factors also possess ‘‘reader’’ 

domains, allowing them to bind to specific regions of the genome and respond to 

the information conveyed by upstream signaling cascades. The amino-acidic 

residues that line the binding pocket of the reader domains can dictate a particular 

preference for specific modification states, whereas, residues outside the binding 

pocket, contribute to determining the histone sequence specificity. The basis 

underlying these epigenetic codes resides in the substrate specificity both, of the 

enzymes that catalyze the several covalent modifications, and of the enzymes that 

remove these marks to reverse the modifications. Given that chromatin is the 

physiological template for all DNA-mediated processes, it is not surprising that 

histone modifications represent an essential component in controlling the structure 

and/or function of the chromatin, with different modifications yielding distinct 

functional consequences. Indeed, site-specific histone modifications have shown to 

correlate with particular biological functions such as gene transcription, chromatin 

remodeling and apoptosis regulation (Figure 1.3).20 

 

 

Table 1.1 Principal Histone modification 



                                                                                                       Introduction 

  - 10 - 
 

 

1.3. Main histone modifications 
 

Histone methylation 

 

Lysine methylation of histones H3 and H4 is implicated in both transcriptional 

activation and repression, depending on the methylation site, while, arginine 

methylation promotes transcriptional activation. Lysines can be either mono-, di- 

or tri-methylated, providing functional diversity to each site of methylation. The 

most extensively studied histone methylation sites include histone H3 lysine 4 

(H3K4), H3K9, H3K27, H3K36, H3K79 and H4K2021, but there are also arginine 

sites of methylation including H3R2, H3R8, H3R17, H3R26 and H4R3. Several 

studies demonstrated that histone methylation plays an important role at different 

levels of the transcriptional regulation, through the recruitment of cell-specific 

transcription factors and the interaction with initiation and elongation factors.22 

 

Histone acetylation 

 

Histone acetylation is an epigenetic mark often associated with an open chromatin 

structure. This makes chromatin accessible to transcription factors and can 

significantly increase gene expression. Histone acetylation is largely present at 

DNA promoter regions. For example, acetylation of K9 and K27 on histone H3 

(H3K9ac and H3K27ac) is normally associated with an increase of active genes. 

However, acetylation low levels are also found throughout transcriptionally active 

genes, and for this reason, this issue is still under debate. Histone acetyltransferases 

(HAT) and Histone deacetylases (HDACs) are the enzymes responsible for writing 

and erasing the acetylation tag on the histone tails. This mechanism has shown to 

regulate the dynamic chromatin plasticity, and actually, lysine residues within 

histone H3 and H4 showed to be the preferential targets for HAT complexes.23 
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Histone phosphorylation 

 

Phosphorylation of histone cores is a critical intermediate step in chromosome 

condensation during cell division, in transcriptional regulation, and in DNA damage 

repair processes.  Unlike acetylation and methylation, histone phosphorylation 

seems to function by establishing interactions between other histone modifications 

and serving as a platform for effector proteins, leading to a downstream cascade of 

events. Phosphorylation of histone H3 at S10 (H3phosphoS10) and histone H2A on 

T120 are mitotic markers: these modifications, in fact, are involved in chromatin 

compaction and in chromatin function regulation during mitosis. Phosphorylation 

of H2AX at S139 (resulting in γH2AX) has been identified as one of the earliest 

events occurring after DNA double-strand breaking and serves as a recruiting point 

for DNA damage repair proteins.24 Actually, histone phosphorylation plays a wide 

range of roles: H2B phosphorylation, that have been the focus of extensive 

investigations, for example, facilitates apoptosis-related chromatin condensation, 

DNA fragmentation, and cell death.25 

 

1.4. ADP-Rybosilation 
 

ADP- rybosilation, firstly described in 1960’, is a reversible post-translational 

modification (PTM) of proteins, resulting in the covalent attachment of a single 

ADP-ribose unit [i.e., mono(ADP-ribose) (MAR)] or polymers of ADP-ribose units 

[i.e., poly(ADP-ribose) (PAR)] on a variety of amino acid residues on target 

proteins.26 ADP-ribosylation reactions are phylogenetically ancient and can be 

divided into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, 

ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. When this 

modification occurs, an ADP-ribose moiety of NAD is transferred to a specific 

amino acid of an acceptor protein on the histone tails with the consequent release 

of nicotinamide.27,28 The reaction can occur through both enzymatic and non-

enzymatic mechanisms.29 The enzymatic type is mediated by diverse groups of 

ADP-ribosyl transferase (ADPRT) enzymes, which use ADP-ribose units, derived 

from β-nicotinamide adenine dinucleotide (NAD+), to catalyze the ADP-
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ribosylation reaction. To date there are 22 human gene products possessing ADP-

ribosyltransferase activity; these enzymes include bacterial ADPRTs (e.g., cholera 

toxin and diphtheria toxin) as well as members of three different protein families in 

yeast and animals: (1) arginine-specific ecto-enzymes (ARTCs), (2) sirtuins, and 

(3) PAR polymerases (PARPs).30 This modification has been shown to regulate 

several cellular functions via different mechanisms. For example, rybosilation of 

protein substrates can affect protein-protein interactions, the factors repairing 

recruitment to DNA damage sites, DNA repair processes, moreover, rybosilation 

of target proteins can also facilitate their ubiquitination, promoting protein 

degradation via proteasomal pathways. Basing on these considerations and on other 

growing mass of evidences, ADP-related pathways have been recognized to be 

implicated in a wide range of cellular processes like transcription, chromatin 

remodeling, cell proliferation, apoptosis and cancerogenesis.31,32 

 

 

 
 

Figure 1.3 Histone modifications on the histones cores 33 
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Mono-ADP-rybosilation 

 

Mono-ADP-ribosylation is a post-translational modification originally identified as 

the pathogenic mechanism of several bacterial toxins. This modification is 

catalyzed by mono-ADP-ribose-protein transferases (MARTs),  whereas, mono-

ADP-ribose-protein hydrolases (MARHs), are the enzymes able to reverse the 

reaction by hydrolyzing the protein-ADP-ribose bond.34,35 The simultaneous 

presence of both mono-ADP-ribosyltransferase and mono-ADP-ribose-protein 

hydrolase activities, in the same cell, suggests that the reversible protein mono-

ADP-ribosylation represents a regulatory mechanism for the protein substrates.36 It 

is known that mono-ADP-ribosylation occurs at different amino acid residues 

levels, according to the specificity of the individual MARTs. ADP-ribosylation of 

histones is thought to be linked to DNA repair processes and cell proliferation. 

When cells are exposed to damage by OH radicals or methylating/alkylating agents, 

the total covalent mono-ADP-ribosylation of histones increases by a factor from 2 

to 12, while the levels of histone H1-ADP-ribosylated are even more higher (more 

than 30-fold).37,38 Mono-ADP-ribosylation on H4 seems to occur preferentially 

when H4 is hyperacetylated39, suggesting a potential cross talk of histone mono-

ADP-ribosylation and histone acetylation. The amino acid residues of the acceptor 

proteins that are modified by the specific MARTs include arginine, asparagine, 

glutamate, aspartate and cysteine.34,40 Conversely, mono-ADP-ribosylation of 

cellular proteins through non-enzymatic mechanisms mainly occurs on lysine or 

cysteine residues.41Amino acid-mono-ADP-ribose-specific MARHs cleave the 

ribose unit, leading to the release of free mono-ADP-ribose and to the restoring of 

the free reactive group on the corresponding amino acid residue.42 Many evidences 

suggest that mono-ADP-ribosylation, along with other modifications of histone 

tails, may regulate several steps in DNA damage response pathways: for example 

mono-ADP-ribosylation could act, in cooperation with acetylation and 

phosphorylation, as a DNA damage signal to recruit additional signaling factors and 

chromatin modifiers. 
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Poly-ADP-rybosilation 

 

Poly-ADP-ribosylation, as enzymatic reaction, is known since the early sixties of 

the last century.43 In the following 20 years, this post-translational modification has 

been related to several nuclear functions, i.e. histone modification44, 

differentiation44, cell death45, transcriptional regulation46 and DNA repair/genome 

stability. In the enzymatic reaction NAD+ is cleaved into nicotinamide and ADP-

ribose, with the latter attached to glutamate or aspartate via an ester bond47, or to 

lysine, forming a ketoamine by a first Schiff-Base formation, followed by an 

Amadori rearrangement.48 After attachment of the first ADP-ribose moiety, further 

units are rapidly added via α-gylcosidic bonds, branches can originate from the 

growing chain, depending on the synthesizing enzyme and the interaction partners. 

These reactions are catalyzed by Poly-ADP-rybosil-transferases enzymes 

(PARPS); this enzymes family consists of 17 members with distinct cellular 

localizations and functions.26 As well as for Mono-ADP-rybosilation, also Poly-

ADP-rybosilation is a reversible mechanism, indeed, PAR polymers turn over 

rapidly in the cell49. The enzymes that act as “erasers” of this epigenetic mark have 

evolved to remove covalently linked ADP-ribose and PAR from proteins (Figure 

1.4). These enzymes include PAR glycohydrolase (PARG), TARG/C6orf13050, 

MacroD1 and MacroD251,51b and the NUDIX family of hydrolases.52 Many of these 

enzymes contain a macrodomain fold that allows them to interact with ADP-

ribosylated substrates. Based on the large size of poly-ADP-ribose, this 

modification seems to play a direct role in the “histone code”. In addition, poly-

ADP-ribosylation was suggested to indirectly contribute to the “histone code” by 

dictating the levels of local chromatin compaction. 
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Figure 1.4 Representative scheme of Mono and Poly-ADP-rybosilation 

 

 

 

1.5. Macrodomain containing proteins 
 

As previously mentioned, several enzymes are involved in the regulation of the 

ADP-rybosilation cellular pathway. Depending on their activity, these enzymes can 

be classified as writers (e.g. if the enzyme adds an ADP-ribose moiety), erasers 

(e.g. if the enzyme removes an ADP-ribose group) or readers (if the enzyme is able 

to “read or detect” the presence or the absence of the ADP-ribose mark) (Table 

1.2). Despite these different functions, all these proteins are characterized by the 

presence of an evolutionarily conserved structural domain of 130-190 a.a. and they 

are not only found in vertebrates but also in many bacteria, viruses and plants, 

suggesting their evolutionary conservation.53 The first macrodomain was identified, 

through genomic sequencing (initially termed X domain), as “a domain of 

considerable conservation” within the genomes of the murine hepatitis virus 

(MHV) and infectious bronchitis virus.54 Shortly thereafter, a homologous domain 

was identified as part of the rat MacroH2A protein, a histone variant that consists 

of a fusion between histone H2A and a domain of unknown function.55 Because 

MacroH2A was the largest histone variant, the novel domain was defined 

macrodomain. In contrast to many other modification recognition domains, which 
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are adapted to recognize a single or a small number of modification types, 

macrodomains can recognize ADP-ribose (ADPr) in both its free and protein-linked 

forms, in related ligands, such as O-acyl-ADP-ribose (AAR), and even in ligands 

unrelated to ADPr.56 The macrodomain containing proteins exert regulatory 

influence on inter- and intracellular signalling, transcription, DNA repair pathways, 

maintenance of genomic stability, telomere dynamics, cell differentiation and 

proliferation, as well as on necrosis and apoptosis.57 
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Table 1.2 ADP-rybose signaling proteins 
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Humans contain 10 genes encoding for 11 members of the macrodomain family, 

which includes macroH2A (and its various isoforms including 

macroH2A1/macroH2A2), MACROD1 (LRP16), MACROD2 (C20orf133), 

C6orf130, MACROD3 (GDAP2), ALC1 (CHD1L, CHDL), and macroPARPs 

(PARP-9; PARP-14; PARP-15)6 (Figure 1.5). All of these proteins contain a macro 

domain near their N-terminus or C-terminus domains, except for macro-PARPs in 

which 2–3 macro domains are linked. In addition to the conserved macrodomain, 

these proteins also contain a variety of additional domains, which allow them to 

interact with specific target proteins or target them to specific chromatin structure 

regions. For example, macroPARPs also contain a PARP catalytic domain and are 

the only described proteins with both a PARP-like domain and a macrodomain. 

Basing on an accurate analysis of the topology of macrodomain proteins, composed 

by diverse domains ecompassed by N- and C-terminal tails, it is possible to grasp 

the important and intricate role of these proteins in the regulation of diverse cellular 

functions. The macrodomain proteins might be viewed as molecular bridges that 

bring together the target proteins, via interactions with the variable domains, and 

the metabolites of NAD+, including PAR, via binding to the conserved macro 

domain.58 

 

 
 

Figure 1.5 Human Macrodomain proteins 
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1.6. Macrodomains structure and functions 
 

Three-dimensional (3D) structures of the ADP-ribose (ADPr) binding fragments of 

macrodomains have been recently solved; this allowed a comparison with the 

previously published structures of members of the macrodomain family, providing 

additional evidence of the high structural similarity inside this protein class.58 As 

revealed by structure determination, macrodomains adopt a globular α/β/α 

sandwich fold composed of a central six-stranded mixed β-sheets, flanked by five 

α-helices (Figure 1.6a)3,58, while the substrate binding occurs via a deep cleft on 

the crest of the domain. The macrodomain fold shares some resemblance to the 

DNA-binding domain of leucine aminopeptidases, as well as to the P-loop 

nucleotide hydrolase. The stable interaction between the ligand and the 

macrodomain can trigger a variety of downstream effects, including recruitment to 

DNA damage sites (hot spots of PAR generation) or formation of protein 

complexes.59 Although there is a relatively high degree of sequence similarity 

(approximately 30–40%) among the macrodomain proteins family members6, the 

small sequence variation between the domains is probably responsible for the 

selectivity of the different macrodomains for specific binding partners. Indeed, 

further structural and biochemical characterization showed that ADPr and its 

derivatives can be accommodated within the cleft (Figure 1.6 b-c).60 The 

interaction between ligand and macrodomain is stabilized by several conserved 

interactions within the binding pocket: (a) the adenosine moiety readily undergoes 

π-π stacking with a conserved aromatic residue, whereas its N6 nitrogen is further 

coordinated by an aspartate residue;56,61 (b) the central part of the cleft stabilizes the 

substrate binding by several side-chain/backbone-pyrophosphate contacts, which 

induce a more closed conformation of the macrodomain;32 (c) The pyrophosphate 

and the distal ribose are accommodated between two substrate-binding loops 

(termed loop 1 and 2). Although both loops contribute to substrate specificity, loop 

1 harbors the catalytic residues of most macrodomains, exhibiting hydrolase 

activity (for this reason it has been also termed catalytic loop). Loop 2 provides 

further coordination of the pyrophosphate and it is also described as the 

diphosphate-binding loop48,62 (Figure 1.6c). 
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Figure 1.6 (a) Topological representation of the macrodomain shows the organization of the 

central six-stranded β-sheet (red) flanked on both sides by five α-helices (green); (b) MacroD2, 

PDB 4IQY, (green) coordinates ADPr in a strained conformation owing to the presence of a 

structural water molecule (dark blue) and Tyr190 (loop 2). The catalytic residues Asn92 and 

Asp102 (loop 1) interact electrostatically with the distal ribose; (c) The magnification shows the 

coordination of the adenosine moiety by a conserved phenylalanine and/or asparagine residue as 

well as by the substrate-binding loops 1 and 2 (red) 

 

Macrodomain proteins are ubiquitously expressed in adult tissues, however, the 

physiological role of these proteins is not yet completely understood. Among the 

mammalian macrodomain proteins, only the potential role, in human 

embryogenesis, of macroH2A and the macroPARPs have been investigated. The 

role of macroH2A in fetal development is better characterized than that of other 

macrodomain proteins, actually because macroH2A was the first of these proteins 

to be described and the most intensively studied.63 A driving factor for the role 

played by macrodomains in evolution may lie in the key role of NAD 

signaling/consumption processes, regulating DNA repair, redox defense, chromatin 

architecture, protein acylation, and response to viral infection, among others.64,65 It 

has been well demonstrated that macrodomain proteins regulate PARylation, 

whereas it is emerging that other proteins control MARylation. PAR recognition 

is a well-established ability of several macrodomains. In particular, PARylation, 

in response to DNA damage, is sensed by several macrodomains which serve as 

recruitment modules for proteins involved in DNA repair. In contrast to the 

binding modules that have been well characterized for PAR, it remains to address 



Introduction  
 

- 21 - 
 

whether macrodomains are also involved in reading and processing 

MARylation.66 

 
 Macrodomains as readers of Protein ADP-Ribosylation 

 

Macrodomains are key players in the complex network of NAD-dependent 

signaling. This is a consequence of their ability to interpret, not only protein ADP-

ribosylation and PARP-dependent signaling, but also second messengers such as 

ADPr and its derivatives, which can be released apart from PARP activity (e.g., 

through sirtuin activation). According to their multiple activities, humans’ reader 

macrodomains only occur in multidomain proteins combining, thus, signals 

recognition and effector domains in a single polypeptide, as discussed below. 

Among the macrodomain proteins that recognize and bind ADPr, there is 

macroH2A, ALC1 and MacroPARPS. Because a single ADPr fits into a 

macrodomain cleft, it has been suggested that macrodomains specifically bind 

MARylated proteins, even if they can also interact with the PARylated ones, and 

that the backbone sequence around the MARylation site may determine the 

substrate specificity of macrodomains, as in the case of bromodomains that interact 

with acetylated proteins.67 Among the main readers of the ADPr pathway there are: 

macroH2A, that has been associated with several cellular processes, including cell 

differentiation and proliferation, transcription repression, and DNA repair. 

Moreover, a reduced macroH2A expression was observed in several cancer types, 

including breast and lung cancer, and has been associated with an increased tumor 

proliferation and metastatic potential. ALC1 is frequently amplified in certain 

cancer types like hepatocellular carcinoma and bladder cancer, as well as 

macroPARPs.68 Three human members of the PARP family contain multiple 

macrodomains able to recognize ADPr, in addition to their PARP catalytic domain. 

A dysregulation of both PARP9 and PARP14 are often associated with cancer, as 

well as with lymphoma.48 
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Macrodomains as Erasers of Protein ADP-Ribosylation 

 

Like other signal transduction pathways, ADPr-dependent signaling is a reversible 

modification, therefore it requires both recognition and removal of the mark. Basing 

on this point, it may not be surprising that macrodomains, in addition to their 

reader’s activity, have acquired the ability to reverse cellular ADP-ribosylation. 

The catalyzed signal termination reactions include the hydrolysis of mono- and 

poly-ADP-ribosylated substrates, as well as degradation of NAD+- derived second 

messengers, such as O-acetyl-ADP-ribose (AAR).53,69 PARGs (Poly-ADP-Ribosyl-

Glycohydrolases) are enzymes able only to breakdown Poly-ADP-ribose chains, 

however, they are unable to remove the final ADP-ribose moiety from the protein. 

Few years ago, Jankevicius et al51a succeed to identify, through biochemical, 

structural and modeling analysis, some macrodomain proteins members able to 

reverse mono-ADP-rybosilation cellular glutamate. These two proteins, called 

MacroD1 and MacroD2, are orthologues of MacroD-type proteins and can be found 

in all living organisms. In vertebrates a duplication of the ancestral MacroD-type 

gene gave rise to MacroD1 and MacroD2 proteins.51a MacroD1 and MacroD2 act 

as mono-(ADP-ribosyl) hydrolases that reverse protein mono-(ADP-ribosylation) 

and catalyze the cleavage of the terminal ADPr moiety, e.g., from proteins after 

PARG-mediated polymer degradation.51a In addition, both enzymes can hydrolyze 

AAR3. Although their catalytic activities have been established in vitro, their exact 

protein targets and biological roles remain largely unknown. There is a high degree 

of sequence similarity between the catalytic domains of MacroD1 and MacroD2, 

however, their primary subcellular localizations are different (MacroD1 in 

mitochondria and MacroD2 in the cytoplasm), implying, thus, distinct functions.51a 

 

 MacroD1 and MacroD2 as Mono-ADP-Ribosyl-Hydrolases 

 

To date, only two classes of macrodomains have been shown to contain mono-

ADP-ribosyl-hydrolases activities: the MacroD-type class and the ALC1-like class. 

Biochemical and structural studies on MacroD1, MacroD2 and TARG1, the 
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members found in humans, revealed that these classes utilize different catalytic 

mechanisms.20 

In MacroD1/2, the distal ribose is bound in a constrained conformation, oriented 

toward the α-phosphate group (Figure 1.6b). This orientation is maintained through 

the presence of a highly conserved aromatic residue that is part of the bipartite 

MacroD-type structure: two glycine-rich loops (loop 1, 97-GGGGV-101 and loop 

2, 188-GIYG-191)51a. The major difference between the reading and erasing 

domains is the presence of a groove, in the pyrophosphate-binding site, in which 

there is a structural coordinated water molecule. Indeed, thanks to the analysis of 

site specific mutants of protein MacroD1 and MacroD2, it has been possible to 

disclose the high conserved amino acids that are crucial for the catalytic 

mechanism; in particular the key residues are: Asn-171, Asn-174, Asp-184 and His-

188 for MacroD1, whereas Asn 92, Asp 102 and His 106 for MacroD2. Basing on 

these data, two models for the catalytic mechanism have been proposed. Even if the 

exact process is still unclear, according to a first hypothesis, a water molecule, 

located in the cleft between loop 1 and 2 and held by hydrogen bonds between the 

distal ribose and the neighboring ADPR α-phosphate, becomes activated through 

the α-phosphate group and carries out a nucleophilic attack on the protein-ADPr 

ester bond. In this frame, the constrained conformation of the substrate appears to 

be crucial for the catalysis, however, is still debated if the pKa of the α-phosphate 

is sufficient to activate the water molecule.51a Another hypothesis suggests that a 

conserved aspartate residue, in the active site, acts as a general base for the 

activation of a water molecule, which, in turn, carries out a nucleophilic attack on 

the C1 atom of the distal ribose (Figure 1.7).51b In contrast to the MacroD-type 

enzymes, the reaction catalyzed by TARG1 is triggered by a conserved lysine 

residue (Lys84 in human TARG1).                             
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Figure 1.7 Supposed catalytic mechanism of MacroD proteins 

 

1.7. Human MacroD1 and MacroD2 proteins 
 

MacroD1 protein, also known as Leukemia-related protein 16 (LRP16), is a 

member of the macro domain superfamily characterized by only a single stand-

alone macro module harbored at its C-terminal region.70 Biochemical analysis 

revealed that MacroD1 can bind ADP-ribose metabolites, including both mono-

ADP-ribose and PAR, by its macro domain module. Similarly to other macro 

domain proteins, MacroD1 can be recruited to the DNA damage sites thanks to its 

capacity to bind PAR.48 The crystal structure of MacroD1 protein (PDB 2X47) was 

firstly solved in 2011 by Chen et al;3 it shows a fairly simple structure of 325 amino 

acids with only one macrodomain at its C-terminus (amino acids 151-322) that 

exhibits the canonical macrodomain fold.  

This core fold consists of a three-layered -- sandwich, with a central six-

stranded -sheet. The N-terminal region (residues 91-136 in orange) is arranged in 

an elongated chain of helical segments and a short -strand (Figure 1.8a).71 It has 

been deeply investigated that this protein might harbor a catalytic activity toward 

AAR, the direct product of the NAD+ dependent deacetylation reaction of sirtuins. 

The catalytic activity of MacroD1 was confirmed by mutation experiments where, 

the 270 conserved glycine residue, was mutated to glutamate, and the mutated 

MacroD1 lacked completely AAR deacetylation activity. 
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Moreover, ADPr docked in the putative binding site of human MacroD1 showed 

that ADPr may be tightly bound to MacroD1, in line with the observations on the 

activity of this enzyme. It should be noted that, in this model of ADPr bound to 

MacroD, a steric clash occurs between the adenine ring and the side chain of Phe-

306 (Figure 1.8b). However, the homologous residues in other macrodomain 

proteins (e.g. Tyr-159 of E. coli YmdB) are rotated to a position that relieves the 

steric clash and provides a favorable stacking interaction with the adenine ring, 

therefore it is likely that Phe-306 of MacroD1 assumes a similar conformation in 

the ADPr-bound state. Moreover, MacroD1 has been demonstrated to remove 

ADP-ribose from glutamate residues in proteins bearing a single ADP-ribose 

moiety, and to be inactive towards proteins bearing poly-ADP-ribose.72 Regarding 

its biological implications, it acts as a transcriptional co-activator of several nuclear 

hormone receptors, in particular the estrogen receptor (ER) and the androgen 

receptor (AR).73 Although the precise mechanisms of its transcriptional cooperation 

are still unknown, it has been speculated that it involves remodeling of DNA 

structure.74 On the other hand, transcription of MacroD1 itself is stimulated by 

estrogen and androgen, resulting in a feed-forward loop which may play a role in 

estrogen-responsive breast cancer cells. 

Recent results also imply MacroD1 in invasion, metastasis and prognosis of gastric 

cancer.75 Moreover, different expression degrees of this protein has been found in 

several tissues, including ovary, testicle, prostate, small intestine, spleen, thymus 

and stomach. Recently, MacroD1 has been identified as a novel interactor of NF-

κB component p65 NF-κB-associated pathways, which have been widely 

implicated in oncogenesis and tumor progression by stimulating cell proliferation, 

inhibiting apoptosis, and promoting metastasis and angiogenesis.1 
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Figure 1.8 a) MacroD1 conserved macrodomain is depicted in green, and the N-terminal is in 

orange. b) 2D and 3D modeling ADPr on the structure of MacroD1.  
c) overlay of MacroD1 (green/orange) on the structures of other macrodomains: Feline 

Sarcoma virus (purple), E. coli YmdB (blue), human PARP15 (cyan), and histone macroH2A1.1 
(red) 

 

MacroD2 is the paralog of MacroD1 protein hydrolase. Like its homologous, this 

protein is involved in removing ADP-ribose from mono-ADP-ribosylated proteins. 

The encoded protein has been shown to translocate from the nucleus to the 

cytoplasm, upon DNA damage, and to remove ADP-ribose from glutamate residues 

in proteins bearing a single ADP-ribose moiety. It has also been reported its 

inactivity towards proteins bearing poly-ADP-ribose. Indeed, because glutamate-

linked proximal ADPr units, in mono-ADP-ribosylated proteins like PARP1, are 

chemically related to AAR, these MacroD proteins, able to reverse and antagonize 

cellular glutamate-linked mono-ADP-ribosylation, have been shown to be inactive 

towards lysine- and arginine-linked mono-ADP-ribose. In vivo studies showed also 

that MacroD2 recruitment to DNA-damage sites can interfere with PARP1-

mediated functions. In particular, MacroD2 is able to reverse ADP-ribosylation on 

rybosilated-PARP1 protein, suggesting that it could suppress PARP1 activation by 

removing the related mono-ADP-ribosylated species at DNA level. For this reason, 
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inhibitors targeting macrodomain-like proteins might probably alter PARP1 

signaling and could be therapeutically useful for cancer treatment.6 

The three dimensional structure of MacroD2 (Figure 1.9a) was modeled by using 

the X-ray structure of MacroD1. Except for their flexible loops, the human 

MacroD1 and MacroD2 protein structures are highly similar. The crystal structure 

of MacroD2-ADPr complex (PDB 4IQY) was solved in 2013.51a This protein is 

expressed in the cytoplasm and catalyzes the same ADP-ribosyl hydrolysis reaction 

of MacroD1. It is composed by 448 amino acids and the macrodomain region, 

encompassing amino acids 60-240, exhibits the canonical macrodomain fold. 

Recent studies showed that MacroD2 binding sites become available through two 

different mechanisms during DNA damage. The first phase of recruitment is 

probably the result of the initial DNA damage-inducing-mono-ADP-rybosilation, 

whereas, the second phase, may represent the MacroD2’s binding to mono-ADP-

rybosilated species generated by PARG activity.20 
 

 

 
Figure 1.9 a) Structure of MacroD2 modeled on the basis of the PDB 2X47 crystal structure of 

MacroD1. The primary macrodomain binding-site loops are marked in violet 
b) 3D Structure of the human MacroD2 (PDB: 4IQY) 

c) Overlay of the MacroD1 (yellow), MacroD2 (green) and C6orf130 (grey structures with  
the ADP-ribose product in the binding pocket). 

d) Structural model of MacroD2 with the mutated residues highlighted 
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1.8. Macrodomains in Cancer 
 

Several studies have well demonstrated that various members of the macrodomain 

protein family are overexpressed in a wide range of human tumors and, in addition, 

high levels of these proteins have shown to correlate with a poor prognosis and/or 

drug resistance. There are many examples testifying a direct link between 

macrodomain amplification and tumor biology; these include: ALC1, whose 

overexpression inhibits apoptosis; MacroD1, which is the family member most 

widely expressed in human cancers with particularly high level of expression in 

endometrial, gastric, colorectal and breast carcinoma;76,74,77 MacroD2, inducing 

tamoxifen resistance in estrogen receptor–positive breast cancer cells 2, and, finally, 

PARP9, which can increase tumor cell migration.78  

 

As already mentioned before, MacroD1 appears to be the family member most 

widely overexpressed in human cancers, with high levels of expression observed in 

endometrial carcinoma, gastric carcinoma, colorectal carcinoma, and breast 

carcinoma.6 Moreover, its overexpression in endometrial cancer cell lines has been 

shown to increase the invasiveness of these cells in tissue cultures, whereas, on the 

other hand, MacroD1 knockdown in prostate cancer cell lines resulted in decreasing 

cell proliferation in vitro.79 A recent study reported that MacroD1 acts as a cofactor, 

modulating estrogen and androgen receptor signaling, in particular, its expression 

is induced by estrogen/estrogen receptor alpha (ERα) signaling in ERα-positive 

breast cancer cell lines.80,81 Overexpression of the estrogen receptor and an 

activated ERα signaling is observed in certain breast cancer subtypes where, a  

sustained activation of ERα signaling, stimulates proliferation of mammary cells 

which could lead to tumor formation. 82,74 MacroD1 has been shown to interact with 

ERα, acting in a positive feedback-loop as a co-activator of ERα-dependent 

transcription, enhancing the expression of several ERα target genes, and resulting, 

thus, in an increase of cell proliferation.80,74 Similarly, MacroD1 stimulates the 

transcriptional activity of the androgen receptor in AR responsive prostate cancer 

cells, thereby it means that MacroD1 is needed for cell proliferation stimulated by 

testosterone.74 Moreover, MacroD2, the related MacroD1 orthologue, has recently 
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been found to be amplified and overexpressed in a subset of breast cancers leading 

to tamoxifen resistance and estrogen independent growth. In particular, a high level 

of this protein has been detected in MCF-7 cell lines and its overexpression was 

even detected in samples of patients with breast cancer tamoxifen-resistant; as 

double check, it has been demonstrated that MacroD2 gene knockdown sensitizes 

tamoxifen resistant cells to tamoxifen treatment, and reduces tumor formation in a 

xenograft model.2 This study shows that MacroD2, in the case of ER-positive breast 

cancers treated with tamoxifen, resulted amplified, so that drug resistant clones can 

emerge. Moreover, the metastatic sites of disease display a higher frequency of 

MacroD2 overexpression and, patients with primary breast cancers with 

overexpression/amplification of this enzyme, resulted to have a worse survival. All 

these data suggest that MacroD2 could become an important molecular target in 

this type of breast cancer and, hence, this enzyme may be considered as a new and 

relevant “druggable” protein for cancer treatment.  

 

According to all the evidences collected on the important role played by 

macrodomain proteins in cancer development and progression, several new 

strategies can be explored in order to design new promising anticancer agents 

targeting these enzymes. Actually, this can be considered a challenging task owing 

to the many processes modulated by these protein family members and, overall, to 

the lack of clear structural requirements for an optimal interaction with the protein 

counterpart, since, to date, no inhibitor has been disclosed yet. Therefore, a starting 

point in terms of drug design can be offered by the several mutagenesis studies that 

have been accomplished on these proteins, indicating that the binding of ADPr to 

the macrodomain is due to a limited number of aminoacids. It is worth to consider 

that the availability of agents targeting the macrodomain proteins can be of great 

value in terms of anticancer therapy, and, moreover, they can represent molecular 

probes useful to interrogate the proteins and to investigate their related specific 

cellular processes.83,84 In any case the increasing numbers of available 

macrodomain structures, together with advancements in structure-guided drug 

design approaches, may be considered as useful and potent tools to accelerate the 
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process and to be successful in discovering potential macrodomain proteins 

inhibitors as new attractive drug candidates.  
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BAG3 (Bcl-2-associated athanogene 3) 

antiapoptotic protein 
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2.1. BAG (Bcl-2 associated athanogene) proteins family 
 

Bcl-2 is an oncogene and the most representative member of a whole family of 

genes. To date a total of 25 genes are included in the bcl-2 family, encoding for 

evolutionary conserved proapoptotic proteins (e.g., Bax, BAD, Bak, and Bok) and 

antiapoptotic proteins (including Bcl-2, Bcl-xL, and Bcl-w, and others).85,86 In 

addition to the Bcl-2 gene family, also Bcl-2-associated athanogenes (BAGs) have 

been described so far. Initially, a novel Bcl-2 binding protein was cloned, called 

BAG1, which shared no significant homology with Bcl-2 or Bcl-2 family members. 

Later on, the research team of John Reed identified ‘a family of BAG1-related 

proteins’ from humans, the proteins: BAG2, BAG3, BAG4, and BAG5, and to date 

also another isoform, BAG6 has been identified.87 The BAG (Bcl-2 associated 

athanogene) proteins are a family of chaperone regulators that interact with the 

ATPase domain of the heat shock protein Hsp70 and its constitutive isoform, 

Hsc70, through a common conserved region located near the C terminus, termed 

the BAG domain (BD) (110-124 amino acids).88 Members of this protein family 

have been found throughout organisms evolution, in yeast (Saccharromyces 

cerevisiae, Schizosaccharromyces pombe)88, invertebrates (Caenorhabditis elegans, 

Ciona intestinalis, Drosophila) amphibians (Xenopus laevis)89, mammals (humans, 

mice)90 and plants (Oryza sativa, Arabidopsis thaliana)91, suggesting a fundamental 

biological role of these co-chaperones. Moreover, recently, seven BAG protein 

homologs in the Arabidopsis thaliana genome sequence have been identified, four 

of which have domain organization similar to their animal counterparts, underlining 

the fundamental biological role of these proteins.92  

The human BAG protein family includes six family members (BAG1-6) that 

function as molecular chaperone regulators and all these proteins are constituted by 

a common domain, the BAG domain, which interacts with the molecular chaperone 

Hsp70.93 BAG proteins showed to regulate both positively and negatively, the 

function of Hsp70/Hsc70, and to form complexes with a range of transcription 

factors, modulating various physiological processes such as apoptosis, 

tumorigenesis, neuronal differentiation, stress responses, and the cell cycle.86 All 

these protein family members, in addition to the conserved BD, are characterized 
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by several other domains that are likely able to interfere with several other factors 

involved in prominent multiple signaling pathways. 

 

2.2. Human BAG Proteins: BAG1, BAG2, BAG4, BAG5, and BAG6 
 

The six human BAG proteins identified so far are BAG-1 (RAP46/HAP46), BAG-

2, BAG-3 (CAIR stressed-1, CAIR-1/B), BAG-4 (SODD), BAG-5, and BAG-6 

(BAT3/Scythe) (Figure 2.1). 

 
 

Figure2.1 Human BAG protein family members 

 

All these proteins share the common architecture of the BAG Domain (BD) near 

the C-terminal end, with the exception of BAG 5, which contains four of such 

domains. Crystallography studies suggested that BAG domain contains 110 – 124 

amino acids and consists of three anti-parallel helices of 30 –40 amino acids each.94 

The second and third helices represent the binding sites for the ATPase domain of 

Hsp70/Hsc707, whereas, their N terminus is the region that affects the specificity 

towards particular proteins and pathways. Very recently, depth studies, employing 

different deletion mutants and pull-down assays, showed that the human BAG 

domain (of BAG3 protein) is exactly composed by 78 amino acids, ranging from 

amino acids 421 to 498 (Figure 2.2). 95 
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Figure2.2 Crystal structure of a BAG domain in complex with 

the Hsc70 ATPase domain (PDB 1HX1) 

 

BAG1 is the first member of this family, occurring as four human isoforms 

structurally differing in their N-terminus, which are designated as  BAG-1L p50, 

BAG-1M p46, BAG-1S p36, and p29, with molecular masses of 50, 46, 36, and 29 

kDa, respectively (Figure 2.1).93 The 36-kDa isoform is often referred to BAG-1 

and it is generally the most abundant isoform expressed in cells, followed by BAG-

1L and BAG-1M. The 29-kDa isoform is expressed at low levels and cannot be 

consistently detected.96 In cellular studies showed that BAG1 exerts several 

functions and is able to bind to Hsc/Hsp70, driving the nucleotide exchange at the 

chaperone complex and stimulating the substrate release.97,98 However, the exact 

molecular mechanism of BAG1 is still controversial, indeed, it was demonstrated 

that various BAG1 isoforms regulate Hsp70 in different ways. BAG-1M was found 

to inhibit the refolding of denatured substrates98, while BAG-1S was shown to 

initially inhibit protein refolding 99, however in a recent study, this last showed to 

have a stimulating effect.100 BAG1 protein is also a binding partner for a wide range 

of signaling molecules, such as, steroid hormone receptors101,102 and the Raf-1 

protein kinase.103 

BAG2 protein was identified as a substrate for MAPK-activated protein 

(MAPKAP) kinase 2, which is known to mediate p38 MAPKdependent 

functions;104 it carries a single BAG domain and it was identified as a specific 

inhibitor of the protein CHIP (C-terminus of the Hsc70-interacting protein).105 Via 

CHIP inhibition, BAG2 can influence the balance of Hsc/Hsp70-controlled protein 

folding and degradation of substrate proteins. The effect of BAG2 on protein 

degradation, as part of cellular protein quality control, potentially links BAG2 to 
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those neurodegenerative disorders that are associated with misfolded and 

aggregated proteins.106 

BAG4, also known as silencer of death domains (SODD), can bind to the so-called 

death domains that are found in members of the tumor necrosis factor (TNF) 

receptor family, including TNF receptor 1 and the death receptor. It has a similar 

domain organization as BAG2 and was also identified in a screen for Hsp70- 

interacting proteins.88 Structurally, the helices in the BAG4 BAG domain (BD), are 

three to four turns shorter than in BAG1, and they likely constitute the minimal 

functional fragments able to bind and regulate Hsp70. While BAG4 has only one 

BAG domain, BAG5 is the only member of BAG proteins family having four 

putative BAG domains. The functions of BAG5 are not well known but, 

interestingly, it has been also implicated in the pathogenesis of Parkinson disease, 

and, in an in vivo study, BAG5 acts as driver of neuronal cell death by enhancing 

the degeneration of the dopaminergic neurons.107 Finally, BAG6, also known as 

BAT3, is constituted by 1229 amino acids and represents the largest human BAG 

member. The inclusion of BAG6 into the BAG family is due to its sequence 

homology with the other BAG domains and its apparent Hsc70-regulating activity, 

however it is not very clear yet if this BAG domain is a real one. BAG6 has been 

also demonstrated to bind the protein Reaper, a central apoptotic regulator in D. 

melanogaster and to inhibit Hsp70-mediated protein refolding.108 

 

2.3. BAG3 protein 
 

BAG3 is a 74 kDa protein, originally identified by a screening on  two-hybrid 

yeasts, using the ATPase domain of the heat shock protein Hsp70 as a bait.109 BAG3 

protein is evolutionarily highly conserved in mammals and BAG3 orthologues in 

mouse, rat and human show a significant homology not only at protein level, but 

also at gene level.110 Two BAG3 isoforms have been described so far: one is the 

full-length product of the bag3 gene with an apparent mass of 74 kDa, the other one 

is a shorter BAG3 protein, 40kDa, and it is found to be mainly expressed in 

synaptosomes (Figure 2.3). The BAG3 full-length protein is localized in the 

cytoplasm, mainly concentrated in the rough endoplasmic reticulum; a nuclear 
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localization of a small BAG3 isoform could be observed in some cell types, such 

as glial cells or pancreatic carcinoma cells. Indeed, under acute stress or upon viral 

infection, BAG3 alters its subcellular distribution and the co-chaperone moves into 

the nucleus.111  

 

 
 

Figure 2.3 Schematic representation of the full-length BAG3 protein  

and the shorter isoform, a 40kD BAG3 protein 

 

BAG3 is constitutively expressed in myocytes and in cancer cells derived from 

myeloid leukemias, neuroblastomas, prostate carcinomas, ovary and breast cancer, 

glioblastoma, and other tumor tissues.7,112,113,114 In other non-transformed cells 

(e.g., epithelial and retinal cells) BAG3 expression can be induced by a variety of  

exogenous stressors, such as heavy metals, drugs or HIV infection.95 Moreover, the 

bag3 gene promoter activity is regulated by the heat shock transcription factors 

HSFs115,115b, suggesting again a role of this protein in tumor formation, since, as it 

has been established, the expression of stress-responsive genes is regulated by the 

heat shock transcription factors, including HSF1, that is required for tumor 

initiation and maintenance in a variety of cancer models. An increased cellular 

BAG3 level was found during cellular aging in neuronal cells as well as in lung 

fibroblasts.116 Furthermore, in several types of cell lines, BAG3 protein expression 

can be induced by many chemotherapeutics, like fludarabine or etoposide, showing 

an important role of the protein in chemoresistance mechanisms. Indeed, silencing 

bag3 gene, allow to sensitize cancer cells to the drugs, leading cells to 

apoptosis.117,118,119,120 In addition to the pathological role of BAG3, in rat and 

human cardiomyocytes it appears to be expressed during differentiation from 

cardiomyoblasts and to sustain myogenin expression.121 These findings indicate an 

involvement of BAG3 protein in late heart development and are in line with the 
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described role of BAG3 in the survival and myofibrillar integrity in cardiocytes and, 

in general, in muscle cells.122 

 

BAG3 domains structure 

 

Like BAG1 and BAG2 proteins, BAG3 is characterized by a multi-modular domain 

structure that allows a wide range of protein–protein interactions in addition to the 

recognition of Bcl-2 protein.123 Like the other members of the BAG protein family, 

BAG3 protein exhibits a highly conserved BAG domain in its C-terminal 

region.88,124 Via this 78 aminoacids domain, BAG3 is able to bind the ATPase 

domain of the Hsc/Hsp70 chaperone, but also, as recently found, the heat shock 

factor HSF1. 94,125 ,126 For the human BAG3 protein (575 a.a), additional aminoacid 

sequence motifs and domains have been identified, including a WW domain, a 

PXXP region, and two conserved IPV (isoleucine–proline–valine) motifs, one 

located centrally in the protein structure, and the other one closer to the N-terminal 

domain (Figure 2.4). 

 

 
 

Figure 2.4 Schematic representation of the BAG3 protein domains 

 and their interactions 
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The WW domain is able to interact with proline-rich repeats of proteins, such as the 

guanine nucleotide exchange factor 2 (PDZGEF2), the adenovirus (Ad) penton base 

protein, the synaptopodin-2 (SYNPO2), and the tuberous sclerosis 1 (TSC1) 

protein.127,128,129 Two conserved IPV motifs were identified at N-terminus and in 

the middle of BAG3 and mediate the binding of the protein to the small heat shock 

proteins HspB8 (Hsp22), HspB6 (Hsp20) and, to some extent, also to HspB5 (aB-

crystallin) and HspB1 (Hsp7).130,131,132 The PXXP motif of BAG3 represents a 

binding site for proteins containing a SH3 (Src homology 3) domain, like 

phospholipase C gamma (PLC-g).4,133 Between its two conserved IPV motifs, 

BAG3 possesses two phospho-serine-containing the 14-3-3 binding motifs 

(RSQS136 and RSQS173) which are crucial for its interaction with the 14-3-3 

proteins.134 Furthermore, a conserved caspase cleavage site is located in the PXXP 

region (344KEVD) of BAG3 and in its C-terminal region.135 Besides these highly 

structured domains and motifs, BAG3 protein exhibits several disordered regions 

that, however, are not functionless, indeed, they were shown not only to be “linker” 

segments between structured protein domains, but also to be subjected to post-

translational modifications and to mediate protein–protein interactions.136 Due to 

its complex structural organization, BAG3 protein has a high number of already 

identified different interactors and this suggests its pivotal role in many key cellular 

processes, including apoptosis, cell proliferation, cytoskeleton arrangement, cell 

adhesion and motility, viral replication, and selective macroautophagy. Other 

functions of BAG-3 are related to Hsp70-dependent proteins degradation by means 

of the ubiquitin-mediated proteasome machinery.  

 

2.4. BAG3 in normal cells 
 

The BAG3 anti-apoptotic activity, in normal cells, was first disclosed in primary 

peripheral blood mononuclear cells (PBMC) treated with the glutathione depletor 

diethyl maleate (DEM). When PBMC were cultured with DEM, alone or in 

combination with bag3- directed phosphorothioate oligodeoxynucleotides (ODN), 

apoptosis induced by DEM was increased by the addition of oligo RNA interference 

(RNAi) that blocked BAG3 activity.137 Recent studies have also demonstrated the 
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involvement of BAG3 in autophagy. Autophagy is the evolutionary conserved 

degradation process that targets cytoplasmic materials, including cytosol, 

macromolecules and organelles, and contributes to the cellular adaptation to stress; 

it plays a key role in several phases of cancer progression and in the metastatic 

process, and its deregulation is implicated in degenerative disorders of brain, 

muscle and other tissues. The role played by BAG3 in cytoskeleton remodeling and 

membrane trafficking suggests the possibility that it might be involved in 

autophagy. There is, indeed, a chaperone-mediated autophagy (CMA), selective for 

cytosolic proteins containing a pentapeptide motif: this motif is recognized by the 

chaperone heat shock cognate 70 (Hsc70), which transfers protein substrates to 

lysosomes. Since BAG3 is an Hsc/Hsp 70 co-chaperone, it is plausible to imagine 

its involvement in CMA138, but it has been also speculated about a role in the other 

two types of autophagy. Indeed, BAG3 participates, along with HspB8, a member 

of the HspB family of molecular chaperones, in the degradation of misfolded and 

aggregated proteins via macroautophagy; in more details, protein binding to HspB8 

is mediated by two conserved IPV (Ile-Pro-Val) motifs located between the WW- 

and the Pro-rich- domains of the co-chaperone (Figure 2.5).139 Hence, BAG3 can 

be considered as an additional auxiliary factor and assistant protein, regulating the 

degradation of age-and disease-associated intracellular protein aggregates. 
 

 
 

Figure 2.5 Putative mechanism of Aggresome formation and induction of  

BAG3-mediated selective macro-autophagy 
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Another physiological role of BAG3 is related to its constitutive expression in 

skeletal muscle and cardiac myocytes. Indeed, this protein appears in 

cardiomyoblasts during their differentiation and modulates the expression of the 

transcription factor myogenin, that coordinates myogenesis.121 Moreover, BAG3 

protein sustains myocyte homeostasis and myofibrillar integrity during mechanical, 

proteotoxic and other types of stress; such property is related both to BAG3 anti-

apoptotic activity and its role in macroautophagy; moreover, BAG3 exerts also a 

structural role in myofibrils, where it maintains the structural integrity of the Z-disk 

by binding with CapZ.140 As an additional mechanism, BAG3 may also have a 

regulatory effect on contractility and on calcium homeostasis, by directly 

interacting with 1 adrenergic receptors and with Ca2+ channels in ventricular 

myocytes.141 In cardiac muscle, BAG3, through association with the sarcomeric Z-

disk, maintains the integrity and contractility of heart muscle, on the contrary, a 

BAG3 defect can result in impairing myocyte survival, in inadeguate contractility 

and in heart and/or muscle myopathies.142 Moreover, the expression of bag3 gene 

is detectable in neurons, where BAG3 protein appears to be involved in neuronal 

migration and differentiation;143 synaptosomes selectively contain a smaller BAG3 

of about 40 kDa, possibly reflecting a specialized activity in modulating synaptic 

response to stressful stimuli.144 Recently, some neuropathies have been documented 

in patients with BAG3 mutations, in association with myopathies and 

cardiomyopathies, indicating a role for BAG3 also in neurophysiopathology.145 

 

2.5. BAG3 in cancer cells 
 

BAG3 in apoptosis 

 

The first evidence of the anti-apoptotic role of BAG3 in tumor cells was obtained 

in primary acute and chronic leukemia, where, a down-modulation of BAG3 levels 

resulted in inducing spontaneous apoptosis. Another proof of evidence of its 

antiapoptotic mechanism is represented by the fact that, the increase of BAG3 

binding to Hsp70 was shown to weaken Hsp70 interaction with some anti-apoptotic 

proteins whose delivery to proteasome resulted inhibited. As a consequence of the 
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increased levels of such anti-apoptotic factors, tumor cell survival and growth are 

promoted. These anti-apoptotic proteins include, in diverse tumor types, Akt146, the 

gamma component of the IKK (IκB kinase) complex 114, BRAF147, Mcl-1148, Bcl-2 

and Bcl-XL149, and others. Moreover, many studies in tumor cell lines have 

demonstrated that bag3 silencing is related to an enhancement of spontaneous or 

drug induced apoptosis, whereas, conversely, an activation of BAG3 expression 

resulted in opposite effects.94,118,150 BAG3 influences cell survival by its interaction 

with different molecular partners, through the activation of multiple pathways. The 

main mechanism of BAG3 anti-apoptotic activity is mediated by its role, as a co-

chaperone, in proteins delivery to proteasome. Indeed, while BAG1 positively 

cooperates with Hsp70 and CHIP  to direct, through its ubiquitin-like domain, client 

proteins to proteasome, BAG3 can interfere with this process by competing with 

BAG1.151,152 For example, in osteosarcoma and melanoma cells BAG3 protects 

kinase IKKgamma from proteasome delivery and that results in a sustained NF-kB 

activation and in cell survival.153 (Figure 2.6) 

 

 
 

Figure 2.6 BAG1-BAG3 switch in expression and function. The BAG1 and BAG3 expression 

levels are reciprocally regulated during cellular aging and under acute stress. Under 

physiological conditions, a high BAG1 expression, but a low BAG3 expression could be detected; 

under pathophysiological conditions, the BAG3 level is elevated and the BAG1 level is decreased 

 

In addition, a different mechanism has been observed in glioblastoma cells, where 

BAG3 retains BAX protein in the cytosol, preventing its mitochondrial 

translocation.154 Actually, both these mechanisms rely on the interaction between 

BAG3 and Hsp70. It is also believed that, through its binding to Hsp70, BAG3 

might also positively or negatively modulate the folding of other apoptosis- 
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regulating proteins, and for this reason, the scientific community is very interested 

in studying more deeply the very complex regulative mechanism mediated by this 

protein (Figure 2.7.). However, a BAG3 anti-apoptotic activity independent of 

Hsp70 interaction has been suggested; that can be due to the binding to other client 

proteins through its WW- or PXXP domain, directly influencing their stability, 

localization or activity.155 Another mechanism related to the BAG3 anti-apoptotic 

activity, is its caspase-dependent cleavage. Notably, cellular decrease of BAG3 

protein was associated with the appearance of a BAG3 fragment, of approximately 

40 kDa, which appeared to be caspase-dependent and resulted in facilitating 

apoptosis in sensitive cells. Moreover, it has been recently demonstrated that BAG3 

is also induced by proteasome inhibitors, at the transcriptional level, and, the 

consequent induction, of BAG3 levels, results in an antiapoptotic mechanism; 

indeed, the related increase of BAG3 protein caused cellular protection against 

Staurosporine (STS)-induced apoptosis and, in contrast, silencing BAG3 

augmented STS-mediated apoptosis.156 Together, these data confirm that BAG3 

functions as a pro-survival protein, the presence of which is regulated by caspase 

cleavage followed by ubiquitination and proteasomal degradation and, impaired 

BAG3 degradation, is central in the protection of cancer cells against intrinsic 

apoptotic pathway stress.  
 

 
 

Figure 2.7.  Hsp70-BAG3 mediated pathways 
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BAG3 in cell adhesion  

 

BAG3 is also involved in the regulation of cell adhesion and motility, and this 

protein function is mediated by the different domains of the protein. Actually, bag3 

gene silencing reduces adhesion and motility in epithelial (breast, prostate) tumor 

cell157,158,159 and in MDA435 human breast cancer cells. Whereas, conversely, 

BAG3 protein over-expression resulted in an increasing of molecules migration and 

adhesion to the matrix, involving the BAG3 proline-rich (PXXP) domain through 

the interaction with a SH3 domain- containing protein.160 In addition, BAG3 can 

regulate cell adhesion through the binding to guanine nucleotide exchange factor 2 

(PDZGEF2); in more detail, the PDZ motif at the C-terminus of PDZGEF2 was 

shown to bind to the WW domain of BAG3 and to induce the activation of Rap 1 

(Ras-proximate-1) a modulator of cell-cell junctions.161 Moreover, recently, has 

been reported that BAG3, through its interaction with the cytosolic chaperonin CCT 

(Chaperonin Containing TCP-1), regulates actin folding and cytoskeleton 

organization, possibly influencing not only cell survival and migration, but also 

membrane trafficking and organelles dynamics. 

 

BAG3 in human tumors 

 

BAG3 overexpression has been detected in many human cancers of various origins 

for instance in pancreatic ductal adenocarcinomas (PDACs) 162,163, melanomas 
164,165, hepatocellular carcinomas166, lung cancers167, colorectal carcinomas168, 

astrocytomas and glioblastomas154, leukemias169, thyroid carcinomas118, ovarian 

carcinomas 170, breast cancers 171, prostate cancers 172, endometrioid endometrial 

adenocarcinomas173 (Table 2.1). BAG3 promotes the survival, the growth and the 

invasiveness of primary tumors and provides resistance to chemotherapy. As 

previously mentioned, its anti-apoptotic activity depends on its ability to bind 

numerous factors. For instance, in pancreatic adenocarcinoma it was recently found 

that BAG3 binds and activates macrophages, leading, thus, to the secretion of 

further cancer promoting factors. Macrophages activation occurs via its binding to 

the receptor IFITM-2 (interferon-induced transmembrane protein 2).174 The BAG3-
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mediated activation of macrophages occurs through the PI3K and the p38 MAPK 

signaling pathways and results in secretion of further cell proliferation stimulating 

factors, proposing a role of extracellular BAG3 in tumor development. In breast 

cancer cells an association of oxidative stress resistance with the expression of the 

estrogen receptor and BAG3 has been found;171 in more details, CXCR4 receptor 

has been suggested to be a target of BAG3 protein and a crucial mediator of BAG3’s 

role in promoting breast cancer. CXCR4 is the most common chemokine receptor 

detected in cell population of some tumors including breast cancer;175 this study 

demonstrated that BAG3 stabilized CXCR4 transcription, acting at post-

transcriptional level. A different mechanism operates in human glioblastoma cells 

where BAG3 binds to BAX in cell cytosol and prevents its translocation to 

mitochondria, thereby protecting cells from apoptosis in response to 

chemotherapeutic drugs. In prostate cancer (CaP) BAG3 has an essential role in 

promoting the emergence of metastatic castration-resistant growth.176 In lung 

cancer cells BAG3 down-regulation induces cell apoptosis and impairs tumor 

growth also in small cell lung cancer (SCLC) cells. The molecular mechanisms and 

the proteins involved in BAG3 pro-survival function in SCLCs are still unknown 

and require further studies; however, recent reports indicate a relevant role for the 

tyrosine-protein kinase MET signaling pathway.167 Resistance to chemotherapy is 

also the consequence of BAG3 over-expression in a subset of small cell lung cancer, 

moreover, high levels of the protein are responsible of resistance to apoptosis in 

therapy-induced senescent cells. In addition to its effects in sustaining tumor cells 

survival and resistance to therapy, BAG3 also promotes cancer invasiveness.157, 177 

This is accomplished by two distinct mechanisms: the first one includes direct or 

indirect effects of BAG3 activity on proteins involved in adhesion or in actin-

cytoskeleton dynamics, such as FAK 160, Rac1157 or the PDZGEF2 (PDZ domain- 

containing guanine nucleotide exchange factor 2);128 the second one is related to 

the regulation of cell ability to degrade components of the extracellular matrix, 

through enhancement of metalloproteinases expression and activity.178 Recent 

findings show that BAG3 protein can also support tumor neoangiogenesis, by 

inducing VEGF expression in cancer cells and by regulating ERK/DUSP6 

interaction in cycling endothelial cells.166 
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Tumor % positivity 
Poor 

prognosis 
Resistance to 

treatment 
References 

Acute lymphoblastic 
leukaemia (ALL) 

ND ND ND Romano,2003 

B-cell chronic 
lymphocytic 

leukemia (B-CLL) 
ND ND ND 

Romano,2003, Chen 
2010, Zhu 2014 

Thyroid carcinomas 0,96 ND ND Chiappetta 2010 

Prostate carcinomas ND ND ND Staibano 2010 

Astrocytomas 20-50% ND ND Festa 2011 

Melanomas 67-70% YES ND 
Franco 2012, 

Guerriero 2014 

Colorectal 
carcinomas 

ND YES ND Yang, 2013 

Ovarian carcinomas ND YES ND 
Aust, 2013, Sugio, 

2014, Nymoen, 
2015 

Lung cancer 62-100% ND ND Chiappetta, 2014 

Liver cancer 1 YES YES Xiao, 2014 

Breast cancer ND ND ND 
Nourashrafeddi, 

2015 

Endometrial cancer 1 ND ND Esposito, 2016 

Pancreatic ductal 
carcinoma 

1 YES ND 
Liao 2001, Rosati 

2012 

 

Table 2.1 Human tumors showing BAG3 protein overexpression 

 

 

BAG3 in Melanoma 

 

BAG3 protein has been deeply investigated for its antiapoptotic role in melanoma 

cells and, its expression in melanoma metastatic lymphnodes, was correlated to the 

aggressiveness of the tumor.153 In melanoma cells, indeed, BAG3 acts as modulator 

of the Hsp70- mediated delivery of the IKKγ subunit of IKK complex to 

proteasome, thereby sustaining NF-κB activation and inhibiting cell apoptosis. IKK 

(IκB kinase) is an enzyme complex that is involved in propagating the cellular 

response to inflammation and is part of the upstream NF-κB signal transduction 

cascade. In particular, a double effect of BAG3 on IKKγ was investigated, indeed, 
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although BAG3 initially releases the kinase from the complex with Hsp70, 

increasing its availability in the cell, it also causes an increased IKKγ stabilization; 

this second effect is attributable to the inhibition of Hsp70-dependent delivery to 

the proteasome. In a melanoma in vivo study bag3 silencing resulted in a significant 

reduction of tumor growth with a subsequent prolonged animal’s survival.114 On 

the other hand, in this tumor BAG3 resulted overexpressed by comparing BAG3 

levels in human melanomas from skin or eye. Another very recent study 

investigated BAG3 protein level in the human choroidal melanoma tissue, detecting 

an upregulation of the protein if compared to that in normal retinochoroidal tissue. 

Furthermore, in the same tumor also the expression levels of heat shock factor 1 

(HSF1) and Hsp70 resulted upregulated; this data is in line with the previously 

reported results that linked BAG3-Hsp70 interaction with the anti-apoptotic 

function of BAG3 in melanoma cancer cells.179 All together these results 

consolidate the eminent role, played by BAG3, in tumorigenesis and progression 

and provide a new attractive target for cancer therapy. 

 

2.6.Targeting Hsp70-BAG3 interaction  
 

As already mentioned in the previous paragraph, one of the principal mechanisms 

behind the antiapoptotic activity of BAG3 is the interaction, through its BAG 

domain, with the chaperone Hsp70. Even if this chaperone is known to collaborate 

with several co-chaperones, its interaction with BAG3 protein plays a key role in 

cancer pathologies since its expression resulted co-elevated with BAG3 in many 

tumor types.180 Several findings point to the cytoprotective role of the complex 

Hsp70-BAG3 (HB), indeed, it has been shown to detect the building up of aberrant 

proteins due to proteasome decline and to activate several protective responses. In 

line with these observations, blocking the Hsp70-Bag3 interaction, by using 

mutations or gene knockdown, may result in a selective anti-proliferative activity 

in cancer cells4, suggesting that the inhibition of Hsp70-BAG3 protein-protein 

interaction (PPI) might be one non-canonical way to interrupt Hsp70 or BAG3 

mediated pathways. The Hsp70-Bag3 interaction occurs with relatively tight 

affinity (~30 nM) and involves a comparatively large surface of contact.13,96 These 
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considerations, along with the difficulty of targeting directly the site of Hsp70, since 

it is located in a deep groove in its nucleotide binding domain, drove the scientific 

community to the identification of allosteric inhibitors of the protein, in order to 

weaken the Hsp70-Bag3 interaction in vitro and in cells. It is well known that the 

affinity of the Hsp70–Bag3 interaction is significantly weakened (13-fold) in the 

presence of ADP181, suggesting that the ADP-bound state stabilization of Hsp70 

might represent a way of blocking the Hsp70–Bag3 contact. Following this 

approach, two Hsp70 inhibitors have been identified so far, YM-01 and JG-98 

(Figure 2.8.), that bind to Hsp70 and stabilizes it in the ADP-bound form.182  

 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Chemical structures of YM-01 and JG98 Hsp70 inhibitors and 

Supposed mechanism of action of JG-98 

 

These molecules, thus, destabilizes Hsp70–Bag3 interaction; in particular, it was 

found that, inoculating YM-1 in vivo on a xenograft model, the tumor growth was 

strongly reduced. The structural related derivative JG98 showed a variable 

antiproliferative activity across a range of cancer cells (EC50 ∼ 0.3 to 4 μmol/L) and 

resulted to be relatively less toxic in healthy mouse fibroblasts (EC50 ∼ 4.5 μmol/L). 

       

JG98                    
        

YM-01                    
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JG-98 also disrupted the FoxM1 cell-cycle pathway, according to the block of the 

Hsp70–Bag3 interaction. Although JG-98 was not orally bioavailable, it was well 

tolerated in mice when delivered intraperitoneally and it suppressed tumor growth 

in two xenograft models.183 However, despite the many efforts so far invested in 

this research area, the development of strategies able to selectively inhibit the 

pathological role of Hsp70, without interfering with its important physiological 

activity, results to be quite challenging (Figure 2.9).184  

 

 
Figure 2.9 Multiple effects of HSP70 on apoptosis control 

 

In addition to all these issues,  Hsp70 has a relatively tight affinity (mid-nanomolar) 

for nucleotide 300-fold higher than Hsp90 and that makes even more difficult to 

target it.185 Therefore, a feasible way may be to block the interactions between 

Hsp70 and its co-chaperone, selectively targeting BAG3 protein. Indeed, several 

findings suggest that disruption of the specific Hsp70-BAG protein contacts might 

be beneficial in disease. Basing on all these considerations, a part of my PhD project 

has been focused on targeting BAG3 protein and in particular its BD domain, with 

the aim of inhibiting its interaction with the co-chaperone Hsp70 and of reversing 

the related antiapoptic and proliferative effects. In more detail, basing on a 
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computational study, performed on a large library of commercially available 

compounds, we succeeded to identify a small collection of molecules that were 

screened against BAG3 full length protein and its isolated BD3 domain, by SPR 

technology. Thereby we discovered a potent and selective BAG3-Hsp70 complex 

modulator that represented our lead compound to design and synthesize a collection 

of structural analogues that have been subjected to a thorough biological screening. 

The details of this work will be deeply described in chapter 5.  

 

2.7. The workflow of the projects 
 

As above mentioned, the main focus of my PhD research program has been the 

design, synthesis, biochemical and biological evaluation of new promising 

anticancer agents targeting the proteins of interest. The general workflow followed 

for the investigation of these two targets can be described through these main steps: 

 

1) In silico design of potential inhibitors of the target protein by means 

of fragment based design, structure-based design and ligand-based 

design approaches. 

2)  Chemical synthesis of the compounds selected by computational 

analysis. 

3)  Biochemical and biological evaluation and identification of 

possible hits or lead compounds. 

4)  Rationalization of ligand/protein interaction by crystallographic or 

computational methods. 

5) Structural optimization of the identified lead compound in order to 

improve its biological profile. 
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CHAPTER 3 

 

 

Discovery of new modulators of the human 

Macrodomain protein MacroD2 by a structure-

based-drug design approach 
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3.1. Targeting MacroD2 protein 
 

 Aim of the work 

 

A part of my PhD project has been dedicated to the identification of potential 

modulators of the Macrodomain proteins MacroD1 and MacroD2. As mentioned in 

the introductive section, these two proteins are particularly hard to investigate; 

indeed, since they have recently emerged as epigenetic enzymes involved in the 

carcinogenesis process, so far no inhibitor has been yet disclosed. For this reason, 

lacking detailed information about the structural requirements for protein 

interaction, two different drug discovery approaches have been employed. In 

particular, in this section, a classic structure based drug design approach will be 

discussed. Starting from the deposited crystal structure of MacroD2 protein, in 

complex with its natural ligand (PDB: 4IQY)51a, the ADP-ribose, a virtual screening 

has been performed, considering the key interactions of the natural ligand in the 

binding pocket of MacroD2 protein; this preliminary computational screening 

allowed to develop a collection of triazole molecules potentially able to bind the 

target enzyme. Concerning the other approach employed to study MacroD1 protein, 

it will be deeply described in the next section. 

 

3.2.Structure based virtual screening 
 

For the virtual screening campaign, the ZIN Click Database, a novel library 

containing over 16 million of 1,2,3- triazoles186, which can be easily prepared 

starting from commercially available products, was selected. Moreover, most of the 

molecules in this database are new and patentable and should be rapidly prepared 

starting from commercially available azides and alkynes, enabling tests of the 

docking hypotheses.187 The 1,2,3-triazole scaffold was chosen as template for the 

the rational design, since this five member heterocycle is well known to represent 

a privileged scaffold in medicinal chemistry due to its good pharmacological and 

pharmacokinetic properties and for its easy synthetic accessibility.  



Results and discussion 
 

- 55 - 
 

Indeed, a literature survey revealed that triazole derivatives possess a variety of 

biological properties including antimicrobial, antifungal, antileishmanial, antiviral, 

antitubercular, anticancer, antioxidant, anticholinesterase, anti-inflammatory, 

antidepressant, antianxiety and anticonvulsant activities.188 

 

In this virtual screening campaign docking calculations were performed using Glide 

software (HTVS, SP and XP mode, according to the Glide Virtual Screening 

Workflow).189 Docking experiments were performed generating a receptor grid 

focused on the MacroD2 protein binding site (considering the co-crystallized ligand 

ADP-ribose as reference structure, PDB code: 4IQY). In more details, a first round 

of docking experiments was performed setting the High-Throughput Virtual 

Screening (HTVS) precision mode of Glide. The 30% top-ranked poses, using 

docking score as selection parameter, were then saved and submitted to a second 

set of docking experiments, using the Standard Precision (SP) Glide mode. The 

selected poses were then submitted to a third docking round, setting in this case the 

Extra-Precision (XP) Glide mode that outperforms the SP mode for both sampling 

and scoring. Again, the 30% top-ranked poses were filtered and subsequently 

carefully analyzed for selecting new putative MacroD2 binders. Once the virtual 

screening process was completed, the binding mode of the selected compounds was 

carefully analyzed by selecting the docking poses establishing specific sets of 

interactions and showing a favorable accommodation in the binding sites after 

visual inspection. The analysis of the predicted in silico binding energies allowed 

us to select a first collection of the best molecules in terms of docking score and 

shape similarity (Table 3.1); in particular, only the triazoles which showed a shape 

similarity lower than 0.8 were chosen for the synthesis, hence the optimization of 

the synthetic strategy was accomplished. 
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Entry 
Docking score 

(kcal/mol) Entry 
Docking score 

(kcal/mol) 

SP1 -7.772 SP7 -9.408 

SP2 -7.185 SP8 -9.777 

SP3 -9.546 SP9 -8.876 

SP4 -5.096 SP10 -7.066 

SP5 -7.032 SP11 -10.062 

SP6 -8.493 SP12 -8.493 

    

Table 3.1 Docking scores values of the in silico selected triazoles SP1-SP12 
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3.3. Synthesis and biochemical evaluation 
 

The compounds selected from the virtual screening protocol can be classified in 

two different groups: the first one composed of 1,2,3-1,4-disubstituted triazoles ((1-

(benzo[d]thiazol-6-yl)-1H-1,2,3-triazol-4-yl)methyl esters) (SP1-SP6) and the 

second one of 1,2,3,-1,4,5-trisubstituted triazoles ((5-methyl-1-(thiazol-2-yl)-1H-

1,2,3-triazol-4-yl)methyl esters) (SP7-SP12) (Figure 3.1). 

 

 

        

Figure 3.1 Chemical structures of the triazoles SP1-SP12  

selected from the virtual screening 

 

All these molecules have been synthesized by a multi-steps protocol. In particular, 

the first step includes the synthesis of aryl or heteroaryl-azides in order to obtain 

the precursors for the Click chemistry reaction. The regioselective Cu-I-catalyzed 

azide/alkyne 1,4- cycloaddition (CuAAC) between the obtained azides and 

propargyl alcohol, as terminal alkyne, has been used to obtain the 1,2,3-1,4-

disubstituted-triazole scaffold;190 conversely, for the 1,4,5 trisubstituted triazoles a 

different strategy using ethyl acetoacetate in sodium methoxide, was selected.191 

Then, the desired final compounds were synthesized employing a Steglich 
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esterification procedure, a mild reaction which allows the conversion of sterically 

demanding and acid labile substrates in the respective esters.192 

 

Synthesis of compounds SP1-SP12 

The synthesis of compounds SP1-SP6 was accomplished by means of two different 

steps. Concerning the first one, the 6-azidobenzo[d]thiazole (1a) was obtained from 

the corresponding benzo[d]thiazol-6-amine (1) with tert-butyl nitrite (t-BuONO) 

and azidotrimethylsilane (TMSN3), under mild conditions. These azides, indeed, 

are commonly prepared from the corresponding amines via their respective 

diazonium salts, which may sometimes be problematic for the presence of 

incompatible functional groups. The one-pot procedure chosen consisted in a 

sequential procedure where, the amine, dissolved in acetonitrile, was treated with 

t-BuONO and TMSN3 at 0 °C, and then warming to room temperature. The reaction 

proceeded smoothly and rapidly to afford, in high yields, the 6-

azidobenzo[d]thiazole (1a). Then, after complete consumption of the starting 

material, a catalytic amount of CuSO4, sodium ascorbate and propargyl alcohol 

were directly added, at room temperature, to the reaction mixture, without any 

workup procedure. The desired product (2) was obtained in excellent yields and 

without need for isolation of the intermediate azide, after an overnight time reaction 

(Scheme 3.1).191  

 

 

Scheme 3.1. General procedure for the synthesis of compound 2: 

Reagents and conditions: i) t-BuONO, TMSN3 

CH3CN, 0°C, rt, 2h; ii) Propargyl alcohol, aq CuSO4 

sodium ascorbate, rt, 16h 
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The next step consisted in the functionalization of the hydroxymethyl 

group, in position -4 of the triazole scaffold, with different aromatic 

carboxylic acids (Scheme 3.2). The Steglich esterification was 

accomplished in presence of the Steglich catalyst, 4-

dimethylaminopyridine (DMAP), and N,N′-Diisopropylcarbodiimide 

(DIC) as dehydrating agent.192 Once the reaction was completed, soluble N, 

N’-diisopropylurea was removed through liquid-liquid extraction, and, the 

desired compounds (SP1-SP6), endowed with different aromatic ester 

moieties, were obtained (Table 3.2). 
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Scheme 3.2. General procedure for the synthesis of compounds SP1-SP6: 

Reagents and conditions: iii) DIC, DMAP, DCM, room temperature overnight 

 

 

 

 

 

 
 

Table 3.2 Chemical structures of compounds SP1-SP6 
 

Compound R Yield (%) 

  
SP1 

 
 

 
63 

 
SP2 

 
 

 
  62.5 

 
SP3 

 

 
60 

 
SP4 

 

 

 
90 

 
SP5 

 

 

           

 
60 

SP6                                            

 

87 
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Concerning the second group of selected triazoles, compounds SP7- SP12, 

they have been synthesized through four consecutive steps. In more details, 

the intermediate azide (5) was obtained starting from the 2-amino-1,3-

thiazole (4). Because of the structural peculiarities of 2-amino-1,3-

thiazoles, there are not many examples of this class of compounds used in 

the diazotization reaction. Indeed, the availability of the amino group in 2-

amino-1,3-thiazoles is linked to its tautomeric equilibrium (Figure 3.2). 

The data reported in literature shows that the predominance of the 2-

(amino)-thiazoline tautomer depends, in solutions, on the nature of the 

solvent.191 

 

Figure 3.2. 2-amino-1,3-thiazoles tautomeric equilibrium 

For this reason, according to the procedure reported in literature, we 

performed the diazotization reaction of 2-aminothiazole (4) in concentrated 

HCl as solvent, which allowed to obtain the azide (5), with 36% yield 

(Scheme 3.3A);191 unfortunately, despite the efforts lavished in the 

optimization of the reaction conditions, like exploring either different 

reaction times or different temperatures, some quantity of the aminothiazole 

remained always unreacted after the diazotization reaction. The second step 

consisted in the triazole core synthesis, however, using the classical 

Huisgen 1,3-dipolar cycloaddition, the reduction of the azido moiety to the 

amino group, instead of the triazole formation, took place (especially in the 

case of azides with electron-withdrawing substituents). For this reason to 

circumvent the problem we decided to carry out an alternative reaction with 

-ketoesters in basic conditions.191 The reaction was accomplished by the 

use of the azido thiazole and ethyl acetoacetate at room temperature. Using 

this strategy, the 2-azidothiazole rapidly reacted and was converted into the 

product (7), in good yields, after the addition in situ of sodium hydroxide, 

to hydrolyze the ethyl ester group (Scheme 3.3B). 
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Scheme 3.3. General procedure for the synthesis of compounds 5 and 7: 

Reagents and conditions: iv) NaN3, NaNO2, HCl conc.  

2h, 0° then room temperature; v) MeO- Na+, 2h, 0°  

then NaOH 2 N, 1 hour, reflux 

 

Afterwards, the reduction of the carboxylic group in position -4 of the triazole 

scaffold to hydroxymethyl group was accomplished. For this aim 1-

hydroxybenzotriazole (HOBt)/carbodiimide, as coupling agents were used, to 

furnish a highly reactive benzotriazole ester that could be reduced under mild 

reaction conditions193 in presence of sodiumborohydride (NaBH4) and THF as 

solvent, at 0° for 30 minutes (Scheme 3.4.A). This step allowed to obtain compound 

8 in good yields; this last was finally subjected to Steglich esterification reaction 

with different carboxylic acids (a-g) (Scheme 3.4.B) in order to obtain the desired 

products SP7-SP12 (Table 3.3) (see also Scheme 3.2).  
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Scheme 3.4. General procedure for the synthesis of compounds SP7-SP12: 

Reagents and conditions: vi) HOBt, DIC, DCM, 

30 min, room temperature; then NaBH4, THF, 30 min, 0°; 

 vii) DIC, DMAP, DCM, room temperature overnight 
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Table 3.3 Chemical structures of compounds SP7-SP12  

 
 

Biochemical evaluation 

 

All the synthesized compounds have been screened with AlphaScreen technology, 

in collaboration with Dr. Jon Elkins of the Structural Genomics Consortium 

(Oxford University), against a small panel of different macrodomain containing 

proteins, in order to evaluate their potential inhibition toward the enzymes. 

AlphaScreen technology is routinely utilized in high throughput screening assays, 

to quantify analyte accumulation or depletion, biomolecular interactions, and post-

Compound R Yield (%) 

 
SP7 

 
 

 
60.3 

 
SP8 

 
 

 
75.3 

 
SP9 

 

 
56 

 
SP10 

 

 

 
93.3 

 
SP11 

 
 

 

 

 
86.4 

 
SP12 

 

 
95.5 
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translational modifications. In the epigenetic field this approach has recently been 

described as a useful tool that makes use of peptides with dissociation constants in 

the low micromolar range.194 In the current case the AlphaScreen peptide binds, via 

its biotinylated lysine, to streptavidin coated donor beads, whereas, the 

macrodomain protein binds to Ni2+- chelated acceptor beads, by its hexahistidine 

tag. The use of donor beads coated with streptavidin allowed the conjugation to 

terminally-biotinylated peptide, while, the acceptor beads coated with a nickel 

chelator, allowed the conjugation to His-tagged macrodomain proteins (Figure 

3.3). Laser excitation (680 nm) of a photosensitizer within the donor bead converts 

ambient oxygen to singlet oxygen. The binding of the macrodomain to the ADP-

ribose of the fragment peptide enables an energy transfer from the donor to the 

acceptor bead, which results in a measurable AlphaScreen signal; ADP-ribose was 

used as positive control. If the beads are brought within ~200 nm apart, by a binding 

interaction between the macrodomain and histone peptide, the singlet oxygen 

initiates a chemiluminescent reaction in the acceptor bead, which emits light in the 

520 to 620 nm range. If there is no interaction between the proteins and histone 

peptide, the singlet oxygen returns to its ground state and no signal is detected. Due 

to the multiplicity of binding sites on the AlphaScreen beads, binding partners 

appear to have a higher affinity for each other, amplifying the signal and, thereby, 

making the technology suitable for screening assays with binding partners that 

interact in the low micromolar range.  

 

 

Figure 3.3. AlphaScreen protocol set up for macrodomain proteins  
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All the compounds have been tested at 12 different concentrations, with two-fold 

dilutions, spanning from 0.02 M to 50 M as top concentration. As showed in 

Table 3.4 all the synthesized compounds have been evaluated against the 

Macrodomain proteins MacroD1, MacroD2 and PARP14, whereas “hypothetical 

protein” LOC221443A56 was used as counterscreen. These data showed a good 

percentage of inhibition of the protein MacroD2, binded to the ADPr, for five 

compounds SP2, SP3, SP7, SP10 and SP12 highlighted in red in the Table 3.4.  

 

Percentage of Inhibition at 50M    
Compound LOC221443A MACROD1A MACROD2A PARP14A 

SP1 n.d. 25 30.2 n.d. 

SP2 38.26 14.34 80.02 -3.8 

SP3 92.54 65.55 99.5 43.58 

SP4 -5.06 -6.63 32.59 -9.45 

SP5 n.d. n.d. n.d. n.d. 

SP6 n.d. n.d. n.d. n.d. 

SP7 16.19 3.54 85.63 6.05 

SP8 38.75 11.76 41.09 53.95 

SP9 5.39 4.67 55.61 -1.88 

SP10 22.6 2.52 79.61 -6.48 

SP11 61.84 20.8 66.05 87.8 

SP12 3.67 6.69 80.08 -2.11 

 

Table 3.4 Percentages of inhibition calculated for compounds SP1-SP12 
by AlphaScreen technology against a panel of Macrodomain proteins 

 

In particular, all these molecules showed a good percentage of protein inhibition, 

in the range of 80-99%, and at the same time, a good selectivity, except from 

compound SP3 which showed to interfere with the ADPr recognition of the other 

tested proteins, in different percentages (Table 3.4). The IC50 values of these five 

compounds were then calculated. In more detail, compounds SP2 and SP10 showed 

the lowest IC50 values, (SP2: 10.58 ± 0.02 µM and, SP10: 32.27 ± 0.1 µM), 

whereas, for compounds SP7 and SP12, higher values of IC50 were measured (SP7: 
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70.98 ± 0.06 µM, SP12: 88.39 ± 0.09 µM). Finally, for compound SP3, which 

showed to inhibit MacroD2, PARP14A protein and the counterscreen 

LOC221443a, an IC50 of 6.27 ± 0.05µM for MacroD2, an IC50 of 14.31 ± 0.03µM 

for PARP14A and an IC50 of 21.43 ± 0.03 µM for LOC221443A, respectively, were 

calculated, showing, thus, an aspecific activity on the tested proteins (Table 3.5). 

 

    

Table 3.5. IC50 values calculated for compounds SP2, SP3, SP7, SP10 and SP12 by AlphaScreen 

technology, against a panel of Macrodomain proteins 

 

Basing on these preliminary results we decided to design a new collection of 1,2,3-

triazoles, combining the ester moieties in position -4 of the triazole core of the most 

promising compounds, SP2 and SP10, with different benzyl halides, in position-1, 

in order to explore a larger chemical space. In particular, the piperonylic function 

of compound SP2 and the 3-nitro benzoic moiety of compound SP10 were 

combined with several benzyl-halides; the new collection of compounds thereby 

obtained (Figure 3.4) has been submitted to the same virtual screening protocol 

previously described. 

 

 

 

IC
50

± SD Values 
    

Compound LOC221443A MACROD1A MACROD2A PARP14A 

 SP2 n.d  n.d  10.58 ± 0.02 µM n.d 

 SP3 21.43±0.03M n.d  6.27 ± 0.05µM  14.31 ± 0.03µM  

SP7 n.d  n.d  70.98 ± 0.06 µM n.d 

 SP10 n.d  n.d  32.27 ± 0.1 µM n.d 

 SP12 n.d  n.d  88.39 ± 0.09 µM n.d 
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Figure 3.4 Chemical structures of the triazoles designed on the basis of the                          

AlphaScreen results 

 

The analysis of the binding mode of these new compounds and the related docking 

score values allowed us to select a new group of variously substituted triazoles that 

have been successfully synthesized (Figure 3.5). 
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Figure 3.5 Chemical structures of the selected compounds SP13-SP20 

 

Synthesis of compounds SP13-SP20 

These 1,2,3-triazol-4-yl-methyl esters (SP13-SP20) have been obtained through a 

three steps synthetic approach. The synthesis of the different benzyl azides was 

realized through the classic nucleophilic substitution reaction of alkyl halides with 

inorganic azides. Water was used as reaction medium, as a safer experimental 

procedure, in order to prevent the potential explosion danger of azidation in an 

halogenated solvent.195 In more details the benzyl halides and the sodium azide 

were dissolved in a mixture of water/acetone and the reaction was conducted at 

reflux; after 3 hours compounds (11h-n) have been obtained in good yields. 

(Scheme 3.5.A). The second step consisted of a click reaction between the benzyl-

azides (11h-n) and the propargyl alcohol as terminal alkyne. This regioselective 1,4 

Huigsen cycloaddition allowed to obtain the 1,4-disubstituted 1,2,3-triazoles.196 

The reaction was accomplished in the presence of sodium ascorbate, as reducing 

agent, and copper (II) sulfate, as catalyst, in a mixture of water and tert-butyl 

alcohol. This step afforded the 1,4-disubstituted triazoles (13h-13n) (Table 3.6), in 

high yields, after stirring overnight at room temperature (Scheme 3.5.B). 
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Scheme 3.5. General procedure for the synthesis of compounds 11h-n and 13h-n: 

Reagents and conditions: viii) NaN3, H2O/CH3COCH3, reflux, 3h; 

 ix) CuSO4
.5H2O, sodium ascorbate, H2O/TBA, r.t., overnight 

 

Compound R1 Yield (%) 
 

13h 

 

 
50 

 
13i  

 
72 
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Table 3.6 Chemical structures of compounds 13h-13n 

 

The last step was the esterification reaction in position -4 of the triazole scaffold 

(Scheme 3.7) that afforded the desired products SP13-SP20 (Table 3.6), in good 

yields (see also Scheme 3.2).  

 

 

 

 

Scheme 3.6. General procedure for the synthesis of compounds SP13-20: 

Reagents and conditions: x) DIC, DMAP, DCM,  

room temperature overnight 

 

 
13l 

 
 

 
65.2 

 
13m 

 

54 
 

 
13n                                           

 

70 
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Table 3.7 Chemical structures of compounds SP13-SP20 
 
 

Compound R1 R2 Yield ( %) 
 

SP13 

 
 

 
45 

 
SP14 

 
 

 
40 

 
SP15  

 
 
 

 
60 

 
SP16 

 
 

 

 
87.2 

 
SP17 

ON

N

N

  

70.2 
 

 
SP18 

  

 
82.2 

 
SP19 

 
 

 

 
89.1 

 
SP20                                           

  

75.1 
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Biological evaluation 

 

All these new synthesized compounds have been tested, similarly to the previous 

ones, by means of Alpha Screen technology. Compounds SP13-SP20 have been 

screened against the same panel of macrodomain proteins, at 12 different 

concentrations ranging from 0.02 to 50 M (Table 3.8). 

Percentage of Inhibition at 50M   

Compound LOC221443A MACROD1A MACROD2A PARP14A 

SP13 n.d  n.d  n.d  n.d  

SP14 n.d  n.d  91.62 58.85 

SP15 -11.54 24.08 -3.95 -2.3 

SP16 n.d. n.d. -5.92 -9.39 

SP17 n.d  n.d  99.76 7.05 

SP18 n.d  n.d 99.49 -0.37 

SP19 n.d  n.d  99.61 0.81 

SP20 n.d  n.d  84.46 60.26 

 

Table 3.8 Percentages of inhibition against a panel of Macrodomain proteins, calculated for 
compounds SP13-SP20, by AlphaScreen technology 

 
 

These new results allowed to disclose compounds SP17-SP20, with a good 

percentage of protein inhibition, in the range of 84-99 %, as shown in Table 3.8. 

These compounds showed also a good selectivity against the MacroD2 protein, 

indeed, no inhibition was detected for the other tested proteins. At this point, for the 

best compounds the IC50 values have been calculated (Table 3.9). 
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   IC50± SD Values 

 
Table 3.9 IC50 values calculated for compounds SP14, SP17, SP18, SP19 and SP20 

By AlphaScreen technology, against a panel of Macrodomain proteins 
 

Compounds SP17, SP18 and SP19, which showed the lowest IC50 values and the 

best selectivity, have been subjected, together with SP2, disclosed in the previous 

Alpha Screen assay, to a further binding affinity evaluation.  

Basing on these results, in order to better investigate the potential binding to the 

target protein MacroD2, compounds SP2, SP17, SP18 and SP19 have been tested, 

in collaboration with the Structural Genomics Consortium, using the Biolayer 

interferometry technology (BLI). BLI method, based on the optical interferometry 

principle, is an optical technique that represents a useful tool for measuring 

macromolecular interactions, by analyzing interference patterns of white light 

reflected from the surface of a biosensor tip. BLI experiments are used to determine 

the kinetics and the affinity of molecular interactions; in more details, in a BLI 

experiment one molecule is immobilized to a Dip and Read Biosensor and the 

binding to a second molecule is measured. A change in the number of molecules, 

bound to the end of the biosensor tip, causes a shift in the interference pattern that 

is measured in real-time (Figure 3.6.). 

 

 

Figure 3.6. BioLayer Interferometry (BLI) technology assay principle 

Compound LOC221443A MACROD1A MACROD2A PARP14A 

SP14 n.d  n.d  73.33 ± 0.03 µM 12.5±2.1 

SP17 n.d  n.d  6.16 ± 0.02 µM n.d  

 SP18 n.d  n.d  11.99 ± 0.05 µM n.d  

SP19 n.d  n.d  11.22 ± 0.02 µM n.d  

SP20 n.d  n.d  17.1 ± 0.02 µM 40.47 ± 3.2 µM 
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The experiment was carried out on MacroD2 protein bound to superstreptavidin 

(SSA) sensors. Compound SP2, SP17, SP18 and SP19 were dissolved at different 

concentrations, 100μM, 50μM, 25μM, 12.50μM, 6.25μM, 3.12μM, 1.56μM and 

various solutions of the samples were dispensed in the wells of a black microtiter 

plate. As shown in the sensorgrams (Figures 3.7-3.10), compounds SP2 and SP18 

showed a good binding affinity against the protein with a measured dissociation 

constant KD of 4.2 ± 1.1 M, for compound SP2, and of 14.5 ± 2.8 M for 

compound SP18, respectively. Unfortunately, for compounds SP17 and SP19 a real 

KD value was not possible to measure for technical problems. Indeed, these 

molecules showed to stick on the BLI sensor tips of the instrument, also in the 

absence of the protein, probably due to an aggregation occurring at higher 

concentrations or to the presence of nitro groups in both the molecules.  
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Figure 3.7. BLI sensorgram                                                      Figure 3.8. BLI sensorgram                 
acquired for compound  SP2                                                         acquired for compound  SP18 

interacting with MacroD2 protein                                                 interacting with MacroD2 protein 
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  Figure 3.9. BLI sensorgram                                                   Figure 3.10. BLI sensorgram 
  acquired for compound SP17                                                    acquired for compound SP19                                                       
interacting with MacroD2 protein                                          interacting with MacroD2 protein 

 

Basing on these new outcomes, we decided to stand on compound SP2 which 

showed a good value of IC50 (10.58 ± 0.02 M), in the AlphaScreen experiment, 

and at the same time, the best value of the dissociation constant in the BLI 

experiment. In particular, an isothermal titration calorimetry experiment (ITC) was 

performed to definitely confirm the binding of this molecule to the target protein 

MacroD2. This label-free method measures the binding between any pair of 

molecules that release or absorb heat upon binding. ITC technique allows to 

measure the thermodynamic parameters of biomolecular interactions, including 

affinity (Ka), enthalpy (ΔH), entropy (ΔS), and stoichiometry (n) (Figure 3.11).  
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Figure 3.11.  Isothermal titration calorimetry (ITC) assay principle. 

 

To perform the experiment, the sample cell is filled with the protein and the 

injection syringe is loaded with the ligand. The syringe is inserted into the sample 

cell and series of small aliquots of ligand are injected into the sample 

solution, while stirring. If there is a binding of the ligand to the sample, heat changes 

of a few millionths of Celsius degree are detected and measured. This method, 

endowed with a very high accuracy, allows to record protein–ligand complex 

formation, ranging approximately from low-micromolar to double-digit nanomolar 

of binders concentration. The experiment was carried out on a MicroCal VP-

ITCVP-ITC instrument, titrations were carried out in 50 mM of HEPES pH 7.5, 

300 mM NaCl, 0.5 mM TCEP (at 4°C). The protein was in the syringe with a final 

concentration of 400 µM, whereas compound SP2 was in the cell in a concentration 

of 40 µM. The first 2 µL injection was then followed by 27 x 10 µL injections. The 

resulted curve revealed a binding affinity (K) of 3.94 ×105 M-1, a dissociation 

constant (KD) of 2.54± 1.1 M, an enthalpy (ΔH) of binding of 408 cal/mol and a 

stoichiometry of binding (N) of 2.0±0.05 (Figure 3.12). Interestingly, the measured 

dissociation constant in the low micromolar range definitively confirmed, for 

compound SP2, the high binding affinity for MacroD2 protein.                  
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Figure 3.12.  Isothermal titration calorimetry (ITC) experiment  

performed on compound SP-2 showing raw injection heats for titrations of protein into compound 

 

 

Finally, to gather more information about the binding mode of this very promising 

molecule, SP2 was docked on the crystal structure of MacroD2, in complex with 

the ADP-ribose (PDB code: 4IQY1).51a Like other macrodomains, MacroD2 binds 

ADPr in a deep cleft, but the distal ribose unit, lined by two glycine-rich loops (loop 

1, 97-GGGGV-101 and loop 2, 188-GIYG-191), is especially tightly coordinated. 

Besides forming van der Waals contacts, mediated by Ile189 and Tyr190, this 

ribose unit establishes hydrogen-bonds with several residues, maintaining an 

orientation in which the 1′′- and 3′′-OH groups point toward solvent, while the 2′′-

OH is shielded, forming hydrogen bonds with Asn92 and Asn102. The 1′′-OH is 

positioned to accommodate mono-ADP-ribosyl-protein substrates (Figure 3.13A). 

In line with our experimental results, SP2 compound showed to occupy the same 

region of the ADP-ribose, establishing a similar pattern of H-bonds between the 
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nitrogens of the triazole scaffold and Ile 189 and Ser186, while the piperonylic 

moiety is involved in a - stacking interaction with Phe 224 and a cation- 

interaction with Cyt222. Moreover, the benzothiazole establishes H-bond contacts 

with Gly99, whereas the methyl-acetate group is involved in several hydrogen 

bonds with the receptor counterpart, including Tyr187, Val223 and Asp102 (Figure 

3.13B). The analysis of this set of interactions, by means of molecular docking, 

allow to rationalize the results obtained from the different biophysical techniques 

employed. These promising outcomes led us to the identification of compound SP2, 

the most promising of the series, as the first disclosed real binder of MacroD2 

protein. 

 

 

Figure 3.13 A) Close-up view of the 1.5-Å-resolution X-ray structure of the MacroD2 

macrodomain in complex with ADPr (gray), focusing on the distal ribose unit of ADPr. Residues 

in the vicinity of the distal ribose are shown in stick representation (purple). Hydrogen bonds 

between protein and ligand are indicated by dashed lines (blue); B) Binding mode of compound 

SP2 in the MacroD2 binding pocket; the π-π stacking interactions are indicated as light blue 

dotted lines, and H-bonds are reported as dotted green lines 

 

To expand the current project and to be able to assess the potential antitumor 

activity of this interesting molecule, further biological investigations have been 

planned, including a cell-viability assay on MCF7, breast cancer cell lines, since 

these cells have been shown to overexpress MacroD2 protein; this condition has 

been proved to lead to a worst prognosis of patients and, at the same time, to the 

induction to Tamoxifen resistance.2 
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CHAPTER 4 

 

 

Discovery of new modulators of human 

Macrodomain protein MacroD1 by a fragment 

screening X-ray crystallography based approach 
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4.1. Targeting MacroD1 protein 
 

Aim of the work  

 

In this section I will deeply describe a new and high-throughput method, the 

Fragment screening based on X-ray crystallography, which I had the chance to learn 

and perform during the research period I spent at the Structural Genomics 

Consortium (SGC), University of Oxford, under the supervision of Dr. Jon Elkins. 

This approach exploits a great number of crystals of the target protein to soak them 

with libraries of hundreds of fragments. Libraries containing hundreds of thousands 

of compounds achieve similar coverage of chemical space as the millions required for 

traditional high throughput screening (HTS) campaigns. As a result, this method is 

considerably more affordable as a hit-finding method and has gained a widespread 

success in both academia and industry. Thanks to this advanced approach, we 

succeeded to identify a fragment hit compound, bound to the protein, which 

represents our starting point for the design and development of more potent 

compounds able to bind MacroD1 protein.  

 

4.2. MacroD1 overexpression in E. coli 
 

The expression of MacroD1 protein has been optimized at SGC and it was carried 

out in order to obtain a huge amount of purified protein for the crystallization 

process. The His6 tagged human MacroD1 (His6-MACROD1A) has been 

overexpressed in BL21(DE3) competent cells197, transformed with His6-

MACROD1A pNH-TrxTC-terminal His vector, a pET expression vector with 

His6–Trx (E. coli thioredoxin) in a 128- a.a. N-terminal fusion peptide, with TEV 

protease cleavage site (Figure 4.1). 
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Figure 4.1 Full Sequence Map for pNH-TrxT expression vector 
 

BL21-(DE3)-R3-pRARE (a phage-resistant derivative of Rosetta2) competent cells 

were transformed with the vector, and an initial expression screening was carried 

out by inoculating a glycerol stock in 10mL starter culture containing Terrific broth 

(TB) media and growing it overnight at 37°C, then MacroD1 overexpression was 

scaled-up in 1L TB/Kanamycin inoculated with 3 ml of the starter culture. Cells 

were grown at 37°C until an appropriate value of optical density was reached 

(OD600= 0.6-0.8), afterwards temperature was cooled to 18 °C and protein 

expression was induced with the addition of -D-1-thiogalactopyranoside (IPTG). 

Cells continued to grow overnight and were subsequently harvested by 

centrifugation and lysed by sonication. His6-MacroD1 protein was purified from 

the whole cell extract through an immobilized metal ion affinity chromatography 

on a chelating Sepharose column charged with Ni2+. The supernatant following 

centrifugation was loaded on the nickel column and all the His6-MacroD1 was 

retained on the column, while the unspecifically bound proteins were removed by 

a wash step of imidazole 60 mM. The pure MacroD1 protein was then eluted by the 

addition of imidazole 250 mM and, all fractions containing the protein, were then 

pooled togheter and treated with (Tobacco Etch Virus nuclear-inclusion-

endopeptidase) TEV protease, for the His-tag cleavage. After an overnight dialysis, 

fractions were loaded on a Ni-sepharose column and pure protein was then eluted 

by Gel Filtration buffer; finally the flow -through fraction was purified through a 

size exclusion chromatography on a Superdex S75 column, and the pure protein 
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was analyzed by Comassie-staining SDS-PAGE gels (Figure 4.2a). A 26,000 kDa 

purified protein was identified, and its molecular weight was calculated from its 

electrophoretic mobility relative to standards used for SDS-PAGE gel. The purified 

protein was identified as MacroD1 by mass spectrometry which revealed a peak at 

26535.9, corresponding to the molecular weight of the desired construct (Figure 

4.2 b). The mass of the protein, following cleavage of the tag by TEV, indicated 

that the protein was lacking in 25 a.a. downstream of the TEV protease cleavage 

site, resulting in a fragment encompassing a.a. 82-325 of MacroD1 (Figure 4.2c). 

The obtained yield was of 34 mg/ml of purified protein per 1 liter of expression 

culture.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4.2 a) SDS-PAGE from large scale purification of MacroD1a. b) Mass reconstruction 
of +TOF MS from purified MacroD1a. c) Protein sequence without TAG 

 

4.3.MacroD1 protein crystallization 
  
MacroD1 crystals were grown using the sitting drop method; the fresh protein 37 

mg/ml in GF buffer was mixed with different ratios of a reservoir solution 

containing malic acid (DL-) and PEG3350; 96- well sitting drop plates were set up, 

pipetting 20 L of the screen into the sitting-drop crystallization plates (SWISSCI 

3-drop plates). Then, with the help of the Mosquito robot, (Figure 4.3a) the sitting 

drops were set up with different ratios: 2:1, 1:1, 1:2, with a total drop volume of 

150 nL. The plates were sealed and stored in the Minstrel HT UV, an ultraviolet 

and visible crystal imaging and protein crystal monitoring system, at 4 °C and 20 

°C (Figure 4.3b).  

Macro

a b c 
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Crystals appeared overnight from sitting drop plates at 4°C and MacroD1 

crystallized in a P212121 space group with typical unit cell dimensions of a=60Å, 

b=92Å, c=24Å, corresponding to one MacroD1 molecule in the asymmetric unit, 

with a X-ray diffraction of 2.1 Å (Figure 4.3b-c). MacroD1 protein crystallization 

experiments were repeated several times until one hundred crystals, for each 

crystallization plate, were approximately obtained. 

  

 

Figure 4.3 a) TTP Labtech Mosquito liquid handler; Minstrel HT UV imaging system 
 b) MacroD1a crystals; c) 2.1 Å spots seen in the corner of MACROD1 

 
 
4.4.X-ray crystallography based fragment screening on MacroD1 protein 
 
Fragment-based screening is now well-established as a powerful approach to drug 

discovery. Among the many suitable biophysical techniques, X-ray crystallography 

was one of the first to be used and is the most directly informative;198 however, the 

experimental overheads have historically been too high for it to be widely used for 

primary screening. At the beamline I04-1 of the Diamond Light Source (Didcot) 

the full X-ray screening experiment has now been implemented as a highly 

streamlined process, allowing to screen up to 1000 compounds individually in less 
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than a week. The process covers soaking, harvesting, automatic data collection and 

data analysis; the fragment libraries are available, even though the users can bring 

their own.  

The workflow of an ideal experiment is characterized by four steps (Figure 4.4) 

that are iterative and require a few dozen crystals, and in difficult cases even several 

Lab Visits. The final "Full run" soaking and harvesting will be scheduled once the 

soaking protocol is confirmed.  The data analysis is realized on the existing 

automatic data processing, and with the help of innovative tools, to streamline 

density interpretation and refinement (PanDDA and XChemExplorer). 

 

 
Figure 4.4 Overview of a fragment screening experiment 

 

MacroD1 crystallization experiments were repeated several times, until we 

obtained approximately one hundred crystals for each crystallization plate. The 

solvent characterization and the crystal soaking were performed through the 

XChem user program at the synchrotron of the Diamond Light Source. Crystal 

soaking is the process of taking pre-grown crystals and soaking them with the small 

molecules of interest. The potential ligand can access the binding sites by diffusing 

through solvent channels within the crystal lattice, as long as the sites are not 

involved in crystal packing or otherwise obscured.199 A common obstacle is the low 
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solubility of many compounds in aqueous solutions, requiring organic solvents such 

as dimethylsulfoxide (DMSO) for solubilization199, which, however, alter the 

chemistry of the crystal drop and tend to affect the integrity of the crystal. Thus, 

one of the basic challenge of crystal soaking is how to introduce the compound to 

the crystal without destroying the crystal. Acoustic droplet ejection is a recent 

liquid-handling approach that relies on ultrasound pulses focused towards the 

surface of a liquid, thereby ejecting nanolitre or smaller volume droplets.200 The 

precision and volume scales of acoustic transfer have enabled new developments in 

protein crystallography, such as crystal-based fragment screening. Fragment-based 

methods involve the screening of a protein target against a library of small 

molecules typically under 300 Da in size. The Echo operates by moving a 

transducer below the stationary compound-library plate (source plate) and focusing 

sound pulses at the meniscus of the solution in the requested well, resulting in 

solvent droplets being ejected upwards (red dots in Figure 4.5a). The fixed-

frequency sound pulse, from the transducer in the Echo 550, (Figure 4.5b) produces 

a fixed-sized 2.5 nl droplet, and larger transfer volumes, are achieved by dispensing 

multiple drops of 2.5 nl at a rate of 200 Hz. The inverted sitting-drop crystallization 

plate (destination plate) is moved above the compound-library plate (origin plate), 

to position the requested target above the stream of the solvent droplets; the relevant 

wells need to be uncovered during this process. 

 

 

Figure 4.5 a) Schematic representation of acoustic droplet ejection for crystal soaking using the 

Labcyte Echo; b) ECHO (Labcyte) acoustic liquid handler 
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In order to build a list of targeted locations, the crystallization plates were imaged 

during incubation(Rigaku Minstrel) and the images were analysed with 

TeXRank.201 TeXRank is a useful tool to rank drops by the likelihood of containing 

a crystal, which greatly facilitates drop selection by ranking the most interesting 

drops at the beginning of the inspection list; additionally, TeXRank identifies the 

center of each drop, providing the precise physical location of the well to be targeted 

by the Echo dispensing. The pixel-to-micrometer scale is also calibrated for the 

plate imager. All the information related to each plate can be easily exported from 

TeXRank (Figure 4.6).  

 

 

 

Figure 4.6 TeXRank interface showing a crystallization drop containing a single protein crystal.  

Clicking a location, records the acoustic dispensing target for compound-containing solvents. 

The yellow ‘X’ and xy coordinates have been added for clarity.  The expanded section shows the 

ranked plot of crystal images. 

 

To test our crystals tolerance in organic solvents we performed a solvent 

characterization by soaking, with Echo Liquid Handler, a small amount of MacroD1 

protein crystals with different percentages of DMSO and Ethylen glycol (EG) since 

the fragment libraries we were going to use were dissolved in these solvents. The 

52 crystals were soaked for 2 hours with different percentage of DMSO and EG: 

0%, 5%, 10%, 15%, 20%, 25%, 30%. Then we mounted them with Shifter, a 

microscope x-y stage that also handles the unsealing and the resealing processes as 

well as the automatic samples tracking (Figure 4.7); afterwards the crystals were 

stored in a Robot Dewar in the beamline I04-1 at the Diamond Light Source for the 

next data collection. The diffraction data, luckily, showed that our crystals survived 



Results and discussion 
 

- 89 - 
 

quite well after 1 hour soaking in 25% DMSO, with good diffraction resolutions (2-

4 Å). 

 

 

 

Figure 4.7 The Shifter: a microscope x-y stage that also handles the unsealing and 

 the resealing as well as the automatically samples tracking  

 

Concerning the compounds soaking, for the fragments screening, we used the 

Diamond and SGC Poised Fragment Library 1.0 (DSPL1) composed by a subset of 

406 compounds, ensuring diversity, of chemotype and poised classification.202 The 

compounds used were dissolved in DMSO at 200 mM concentration and placed in 

Labcyte 1536-well source plates, the supernatant of compounds, which did not fully 

dissolve, was used as a saturated solution. The solutions were soaked into protein 

crystals in crystal buffer in a 1:1 volume ratio to give an approximate final 

compound concentration of 100 mM. All the 406 fragments in DSPL1 were soaked 

into MacroD1 crystals and the plates were resealed and incubated for at least 1 hour 

at 4°C, before the crystals were mounted in nylon loops and immediately flash 

frozen in liquid nitrogen. In this phase, almost 700 crystals were mounted, which 

led to the analysis of 276 workable data sets (Table 4.1). 

All datasets were collected on beamline I04-1 at the Diamond Light Source. Data 

were integrated and scaled with Xia2203, which is part of the Diamond Light Source 

autoprocessing pipeline. Electron-density maps were generated using 

XChemExplorer204 via DIMPLE. Ligand restraints were generated with AceDRG 
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205 and ligand binding was detected with PanDDA204, with ligands built into 

PanDDA event maps. Once a hit was identified, further rounds of refinement and 

manual model correction was performed using REFMAC206 and manual rebuilding 

with Coot207 were carried out. The quality of the final models was validated with 

MOLPROBITY. 

   

 

 
 

 

 

Mounted Crystal ID XDS Domain XDS Resolution (Scaled) XDS Type XDS Outcome Mounted Crystal ID XDS Domain XDS Resolution (Scaled) XDS Type-XDS Outcome
MACROD1A-x0083 10,42 3dii-runP212121 Success - model created MACROD1A-x0222 6,57 3d-runP212121 Success - model created
MACROD1A-x0085 14,85 fast_dp Success - model created MACROD1A-x0223 9,57 dials-runP212121 Success - model created
MACROD1A-x0086 11 dials-runP212121 Success - model created MACROD1A-x0226 10,42 dials-runP212121 Success - model created
MACROD1A-x0087 10,69 3dii-run Success - model created MACROD1A-x0230 7,16 3d-runP212121 Success - model created
MACROD1A-x0088 8,81 3dii-runP212121 Success - model created MACROD1A-x0231 5,05 dials-runP212121 Success - model created
MACROD1A-x0089 7,39 autoPROC Success - model created MACROD1A-x0233 7,56 3dii-runP212121 Success - model created
MACROD1A-x0092 9,79 3dii-runP212121 Success - model created MACROD1A-x0234 16,99 3dii-runP212121 Success - model created
MACROD1A-x0095 6,02 autoPROC Success - model created MACROD1A-x0235 6,8 3d-run Success - model created
MACROD1A-x0099 12,38 fast_dp Success - model created MACROD1A-x0236 9,62 3dii-runP212121 Success - model created
MACROD1A-x0100 12,57 3d-runP212121 Success - model created MACROD1A-x0237 6,98 3d-runP212121 Success - model created
MACROD1A-x0102 11,31 3dii-runP212121 Success - model created MACROD1A-x0239 10,51 dials-run Success - model created
MACROD1A-x0104 7,51 3d-run Success - model created MACROD1A-x0241 8,36 3dii-run Success - model created
MACROD1A-x0108 9,21 dials-runP212121 Success - model created MACROD1A-x0243 9,62 3d-runP212121 Success - model created
MACROD1A-x0110 10,51 3dii-runP212121 Success - model created MACROD1A-x0244 7,71 autoPROC Success - model created
MACROD1A-x0114 10,1 autoPROC Success - model created MACROD1A-x0245 6,98 dials-runP212121 Success - model created
MACROD1A-x0115 8,32 3dii-runP212121 Success - model created MACROD1A-x0246 11 3dii-runP212121 Success - model created
MACROD1A-x0118 5,68 autoPROC Success - model created MACROD1A-x0247 7,56 dials-run Success - model created
MACROD1A-x0121 6,21 autoPROC Success - model created MACROD1A-x0248 14,62 dials-runP212121 Success - model created
MACROD1A-x0122 8,86 3d-run Success - model created MACROD1A-x0249 10,02 3dii-runP212121 Success - model created
MACROD1A-x0125 8,94 3dii-runP212121 Success - model created MACROD1A-x0250 9,3 3d-run Success - model created
MACROD1A-x0126 8,03 autoPROC Success - model created MACROD1A-x0252 8,01 3d-runP212121 Success - model created
MACROD1A-x0127 10,33 3dii-run Success - model created MACROD1A-x0254 6,88 autoPROC Success - model created
MACROD1A-x0130 7,47 3d-runP212121 Success - model created MACROD1A-x0255 8,36 3d-runP212121 Success - model created
MACROD1A-x0132 7,38 3d-runP212121 Success - model created MACROD1A-x0257 9,08 3d-run Success - model created
MACROD1A-x0138 11,78 fast_dp Success - model created MACROD1A-x0261 9,39 3dii-runP212121 Success - model created
MACROD1A-x0139 11,18 3dii-runP212121 Success - model created MACROD1A-x0262 6,89 3d-run Success - model created
MACROD1A-x0140 7,5 autoPROC Success - model created MACROD1A-x0264 7,16 3d-run Success - model created
MACROD1A-x0143 7,24 3d-run Success - model created MACROD1A-x0266 11,09 3dii-runP212121 Success - model created
MACROD1A-x0144 6,53 3d-run Success - model created MACROD1A-x0268 7,16 3d-run Success - model created
MACROD1A-x0145 5,84 autoPROC Success - model created MACROD1A-x0269 5,99 3d-run Success - model created
MACROD1A-x0146 9,48 dials-run Success - model created MACROD1A-x0271 9,84 3dii-runP212121 Success - model created
MACROD1A-x0151 10,11 3dii-runP212121 Success - model created MACROD1A-x0272 8,63 dials-runP212121 Success - model created
MACROD1A-x0154 9,3 dials-run Success - model created MACROD1A-x0273 7,96 3dii-runP212121 Success - model created
MACROD1A-x0155 16,73 dials-runP212121 Success - model created MACROD1A-x0274 9,62 3dii-runP212121 Success - model created
MACROD1A-x0156 5,43 3dii-runP212121 Success - model created MACROD1A-x0275 6,8 3d-runP212121 Success - model created
MACROD1A-x0160 8,01 dials-run Success - model created MACROD1A-x0276 6,75 3d-run Success - model created
MACROD1A-x0161 9,3 3dii-runP212121 Success - model created MACROD1A-x0279 6,62 3d-runP212121 Success - model created
MACROD1A-x0164 6,89 3dii-runP212121 Success - model created MACROD1A-x0280 8,01 3dii-runP212121 Success - model created
MACROD1A-x0165 7,74 dials-runP212121 Success - model created MACROD1A-x0281 7,38 3dii-run Success - model created
MACROD1A-x0166 8,94 3dii-runP212121 Success - model created MACROD1A-x0282 6,13 3d-runP212121 Success - model created
MACROD1A-x0167 8,99 3d-run Success - model created MACROD1A-x0283 10,47 3dii-runP212121 Success - model created
MACROD1A-x0168 7,16 3dii-run Success - model created MACROD1A-x0284 6,98 3d-run Success - model created
MACROD1A-x0170 11,28 fast_dp Success - model created MACROD1A-x0285 6,98 3dii-run Success - model created
MACROD1A-x0172 6,27 autoPROC Success - model created MACROD1A-x0286 11,94 dials-runP212121 Success - model created
MACROD1A-x0173 14,85 3dii-runP212121 Success - model created MACROD1A-x0287 8,14 3d-runP212121 Success - model created
MACROD1A-x0175 13,37 3dii-runP212121 Success - model created MACROD1A-x0288 9,62 dials-runP212121 Success - model created
MACROD1A-x0177 6,26 3d-run Success - model created MACROD1A-x0289 7,16 3d-runP212121 Success - model created
MACROD1A-x0178 6,31 3dii-runP212121 Success - model created MACROD1A-x0290 7,96 3d-run Success - model created
MACROD1A-x0184 12,88 3dii-runP212121 Success - model created MACROD1A-x0291 7,47 3d-run Success - model created
MACROD1A-x0187 5,12 autoPROC Success - model created MACROD1A-x0292 6,75 3d-runP212121 Success - model created
MACROD1A-x0188 6,4 3dii-run Success - model created MACROD1A-x0295 7,74 3dii-run Success - model created
MACROD1A-x0190 8,45 3dii-run Success - model created MACROD1A-x0297 7,92 3d-run Success - model created
MACROD1A-x0194 8,14 3dii-run Success - model created MACROD1A-x0298 13,46 3d-runP212121 Success - model created
MACROD1A-x0197 14,18 dials-runP212121 Success - model created MACROD1A-x0299 7,25 3dii-runP212121 Success - model created
MACROD1A-x0204 8,85 dials-run Success - model created MACROD1A-x0301 8,45 3dii-runP212121 Success - model created
MACROD1A-x0206 6,4 3dii-runP212121 Success - model created MACROD1A-x0302 7,65 3dii-run Success - model created
MACROD1A-x0207 7,92 dials-runP212121 Success - model created MACROD1A-x0303 6,22 dials-runP212121 Success - model created
MACROD1A-x0209 9,62 3d-runP212121 Success - model created MACROD1A-x0304 11,25 fast_dp Success - model created
MACROD1A-x0210 12,82 fast_dp Success - model created MACROD1A-x0305 6,62 3d-runP212121 Success - model created
MACROD1A-x0211 7,92 dials-runP212121 Success - model created MACROD1A-x0306 8,5 3dii-run Success - model created
MACROD1A-x0213 8,14 fast_dp Success - model created MACROD1A-x0307 8,77 3dii-run Success - model created
MACROD1A-x0214 9,7 3dii-runP212121 Success - model created MACROD1A-x0308 10,87 3dii-runP212121 Success - model created
MACROD1A-x0215 7,51 dials-run Success - model created MACROD1A-x0310 13,24 dials-run Success - model created
MACROD1A-x0219 6,75 3d-run Success - model created MACROD1A-x0312 8,32 3dii-run Success - model created
MACROD1A-x0221 6,29 autoPROC Success - model created MACROD1A-x0314 12,2 fast_dp Success - model created
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Table 4.1 Summary of X-ray diffraction data processing statistics for MacroD1 crystals soaked at 

various DMSO concentrations (final DMSO % (v/v)), after acoustic transfer of solvent.  
In yellow are highlighted the three identified crystals co-crystallized with the fragment hits 

 

 

After the long refinement process the structures were solved and the crystals 

MACROD1A-x0219, MACROD1A-x0484, and MACROD1A-x0619 were 

found to be bound to compounds 1–3 (1.2% hit rate). In particular, the analysis of 

the crystal structures showed that one promising fragment, compound 3, was bound 

in a macrodomain pocket very proximate to the kinase binding site. In addition, two 

Mounted Crystal ID XDS Domain XDS Resolution (Scaled) XDS Type- XDS Outcome Mounted Crystal ID XDS Domain XDS Resolution (Scaled) XDS Type- XDS Outcome
MACROD1A-x0316 10,15 3dii-runP212121 Success - model created MACROD1A-x0495 8,86 3dii-runP212121 Success - model created
MACROD1A-x0317 7,74 3dii-runP212121 Success - model created MACROD1A-x0497 9,26 dials-runP212121 Success - model created
MACROD1A-x0318 12,92 3dii-runP212121 Success - model created MACROD1A-x0499 13,69 3dii-runP212121 Success - model created
MACROD1A-x0319 11,9 3dii-runP212121 Success - model created MACROD1A-x0503 11,18 fast_dp Success - model created
MACROD1A-x0320 14,81 dials-runP212121 Success - model created MACROD1A-x0505 13,42 dials-run Success - model created
MACROD1A-x0321 9,48 dials-runP212121 Success - model created MACROD1A-x0506 11,23 dials-runP212121 Success - model created
MACROD1A-x0322 8,14 3dii-runP212121 Success - model created MACROD1A-x0508 7,24 3dii-run Success - model created
MACROD1A-x0324 8,94 3dii-runP212121 Success - model created MACROD1A-x0512 9,97 3dii-run Success - model created
MACROD1A-x0326 8,86 dials-run Success - model created MACROD1A-x0516 8,41 3dii-runP212121 Success - model created
MACROD1A-x0327 10,38 3dii-runP212121 Success - model created MACROD1A-x0517 10,29 dials-run Success - model created
MACROD1A-x0328 11,4 3dii-run Success - model created MACROD1A-x0523 6,89 3d-runP212121 Success - model created
MACROD1A-x0329 7,65 3dii-run Success - model created MACROD1A-x0524 11 dials-runP212121 Success - model created
MACROD1A-x0335 9,66 dials-runP212121 Success - model created MACROD1A-x0545 7,94 autoPROC Success - model created
MACROD1A-x0336 7,24 dials-run Success - model created MACROD1A-x0555 12,08 dials-runP212121 Success - model created
MACROD1A-x0337 7,69 3dii-run Success - model created MACROD1A-x0560 11,72 3dii-runP212121 Success - model created
MACROD1A-x0338 6,53 3dii-run Success - model created MACROD1A-x0561 11,52 fast_dp Success - model created
MACROD1A-x0339 11,9 dials-runP212121 Success - model created MACROD1A-x0575 13,78 3dii-runP212121 Success - model created
MACROD1A-x0340 16,32 dials-runP212121 Success - model created MACROD1A-x0581 9,62 3dii-runP212121 Success - model created
MACROD1A-x0341 15,47 dials-runP212121 Success - model created MACROD1A-x0582 8,54 3dii-run Success - model created
MACROD1A-x0343 8,9 3d-runP212121 Success - model created MACROD1A-x0600 7,07 3dii-runP212121 Success - model created
MACROD1A-x0344 16,82 dials-runP212121 Success - model created MACROD1A-x0601 5,99 autoPROC Success - model created
MACROD1A-x0352 7,56 3dii-runP212121 Success - model created MACROD1A-x0602 7,87 3d-runP212121 Success - model created
MACROD1A-x0353 7,2 autoPROC Success - model created MACROD1A-x0604 6,44 3dii-run Success - model created
MACROD1A-x0357 10,46 dials-run Success - model created MACROD1A-x0605 7,69 3d-runP212121 Success - model created
MACROD1A-x0361 7,07 3dii-runP212121 Success - model created MACROD1A-x0606 5,64 3dii-run Success - model created
MACROD1A-x0366 7,51 3d-run Success - model created MACROD1A-x0608 7,87 3dii-runP212121 Success - model created
MACROD1A-x0369 5,24 autoPROC Success - model created MACROD1A-x0609 7,24 3d-run Success - model created
MACROD1A-x0373 8,5 3dii-run Success - model created MACROD1A-x0611 8,54 3dii-runP212121 Success - model created
MACROD1A-x0374 7,02 3dii-run Success - model created MACROD1A-x0613 6,93 3d-runP212121 Success - model created
MACROD1A-x0375 11,32 3dii-runP212121 Success - model created MACROD1A-x0614 6,08 dials-runP212121 Success - model created
MACROD1A-x0377 6,98 autoPROC Success - model created MACROD1A-x0615 7,87 3dii-runP212121 Success - model created
MACROD1A-x0385 8,5 fast_dp Success - model created MACROD1A-x0669 15,34 3dii-runP212121 Success - model created
MACROD1A-x0392 10,5 fast_dp Success - model created MACROD1A-x0672 6,04 dials-run Success - model created
MACROD1A-x0398 9,53 dials-runP212121 Success - model created MACROD1A-x0673 10,69 dials-runP212121 Success - model created
MACROD1A-x0407 8,05 3dii-run Success - model created MACROD1A-x0679 6,17 3dii-runP212121 Success - model created
MACROD1A-x0411 9,75 3d-run Success - model created MACROD1A-x0680 16,01 dials-runP212121 Success - model created
MACROD1A-x0418 6,78 autoPROC Success - model created MACROD1A-x0681 6,13 3dii-run Success - model created
MACROD1A-x0424 10,78 3dii-runP212121 Success - model created MACROD1A-x0682 9,66 3dii-runP212121 Success - model created
MACROD1A-x0426 6,53 3dii-runP212121 Success - model created MACROD1A-x0683 7,47 3d-run Success - model created
MACROD1A-x0427 6,44 3dii-runP212121 Success - model created MACROD1A-x0684 8,32 3dii-runP212121 Success - model created
MACROD1A-x0428 6,53 3d-runP212121 Success - model created MACROD1A-x0685 5,14 autoPROC Success - model created
MACROD1A-x0431 6,04 3d-run Success - model created MACROD1A-x0686 12,79 3dii-runP212121 Success - model created
MACROD1A-x0432 7,63 autoPROC Success - model created MACROD1A-x0687 8,68 3d-run Success - model created
MACROD1A-x0434 13,33 3dii-runP212121 Success - model created MACROD1A-x0688 7,47 3d-run Success - model created
MACROD1A-x0435 6,17 3d-runP212121 Success - model created MACROD1A-x0691 10,73 3dii-runP212121 Success - model created
MACROD1A-x0437 4,63 autoPROC Success - model created MACROD1A-x0692 8,05 3dii-runP212121 Success - model created
MACROD1A-x0438 6,62 3d-run Success - model created MACROD1A-x0694 8,68 3dii-run Success - model created
MACROD1A-x0439 7,65 3dii-runP212121 Success - model created MACROD1A-x0695 9,3 3d-run Success - model created
MACROD1A-x0440 6,75 3d-runP212121 Success - model created MACROD1A-x0696 8,68 3dii-runP212121 Success - model created
MACROD1A-x0444 5,81 autoPROC Success - model created MACROD1A-x0697 7,74 3dii-runP212121 Success - model created
MACROD1A-x0456 9,3 dials-runP212121 Success - model created MACROD1A-x0698 11,63 3dii-runP212121 Success - model created
MACROD1A-x0457 10,56 3dii-runP212121 Success - model created MACROD1A-x0702 11 dials-run Success - model created
MACROD1A-x0459 9,17 3d-run Success - model created MACROD1A-x0704 5,94 autoPROC Success - model created
MACROD1A-x0463 12,97 3dii-runP212121 Success - model created MACROD1A-x0705 6,89 dials-runP212121 Success - model created
MACROD1A-x0469 6,01 autoPROC Success - model created MACROD1A-x0706 6,4 3d-runP212121 Success - model created
MACROD1A-x0470 10,42 dials-run Success - model created MACROD1A-x0707 7,2 3dii-runP212121 Success - model created
MACROD1A-x0476 16,01 3dii-runP212121 Success - model created MACROD1A-x0708 8,02 autoPROC Success - model created
MACROD1A-x0478 13,96 fast_dp Success - model created MACROD1A-x0709 5,99 3dii-runP212121 Success - model created
MACROD1A-x0480 7,47 3dii-run Success - model created MACROD1A-x0710 9,21 dials-runP212121 Success - model created
MACROD1A-x0483 10,06 3dii-runP212121 Success - model created MACROD1A-x0712 12,18 autoPROC Success - model created
MACROD1A-x0484 6,22 3dii-runP212121 Success - model created MACROD1A-x0713 16,42 3dii-runP212121 Success - model created
MACROD1A-x0486 9,17 3dii-runP212121 Success - model created MACROD1A-x0714 7,16 3dii-runP212121 Success - model created
MACROD1A-x0487 9,48 dials-runP212121 Success - model created
MACROD1A-x0488 11,55 fast_dp Success - model created
MACROD1A-x0494 10,69 dials-runP212121 Success - model created
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other fragments, compounds 1 and 2, were found bound at the kinase surface but 

close to crystal contacts of two molecules of the same crystal (Figure 4.8).  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 Chemical structures of the fragment hits, co-crystallized in different sites 
of the target protein MacroD1 

 

Starting from these promising results, we decided to confirm the binding to the 

protein by means of Surface Plasmon Resonance (SPR) spectroscopy and Alpha 

Screen assay.  

 

Biochemical evaluation 

 

SPR has been proven to be one of the most powerful technologies to determine 

specificity, affinity and kinetic parameters during binding of macromolecules or 

small compounds.208 This optical technique measures the refractive index changes 

in the vicinity of thin metal layers (i.e., gold, silver, or aluminum films) in response 

to biomolecular interactions. While a sample solution flows across the SPR surface, 

capturing agents, such as antibodies, enzymes, peptides and DNAs are immobilized 

on the surface. The changes in the SPR angle, which is the angle of minimum 

reflectivity, can be determined by varying the incidence angle and recording the 

reflected light intensity during the biological binding reactions between various 

biomolecules (Figure 4.9). 

 Compound 1-  FMOPL000485a  Compound 2-FMOPL000314a  Compound 3 - FMOPL000074a  
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Figure 4.9 SPR analysis principle:  
the changes in the refractive index in the immediate vicinity of 

 the surface layer of a sensor chip can be detected by SPR 
 

For the SPR analysis I expressed the biotinylated protein that was then easily 

immobilized on Streptavidin chips (SA chips), exploiting the strong streptavidin-

biotin bond, the strongest known non-covalent interaction between a protein and a 

ligand (KD = 10-15M). Indeed, since the basal isoelectric point of the MacroD1 

protein is 9.58 and the immobilization on the CM5 chips requires that the protein is 

dissolved in a buffer with a lower pH, in order to obtain a net positive charge of the 

protein, we tried to dissolve MacroD1 in different buffers, such as sodium acetate 

pH 8.5, 7.5, 6.5, 5.5 and 4.5. Unfortunately none of these buffers allowed us to 

immobilize the protein on the chip and we thought this was due to the protein 

precipitation in these conditions.  

The expression of biotinylated MacroD1 was performed, as previously mentioned. 

In more details, BL21-(DE3)-R3-pRARE competent cells were transformed with 

the vector pCDF-BIRA, an expression vector for E.coli biotin ligase (BIR), and an 

initial expression screening was carried out by inoculating a glycerol stock in 10ml 

starter culture containing Luria-Bertani (LB) media; the cells were let growing 

overnight at 37°C. Then Biotinyl-His6-MacroD1 overexpression was scaled-up in 
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1L of LB/Kanamycin inoculated with 3 ml of the starter culture. Cells were grown 

at 37°C, until an appropriate value of optical density was reached (OD600= 0.6-0.8), 

afterwards, temperature was cooled to 18 °C and protein expression was induced 

with the addition of IPTG; moreover, biotin was added for the BirA cultures. Cells 

continued to grow overnight and were subsequently harvested by centrifugation and 

lysed by sonication. Biotinyl-His6-MacroD1 protein was purified from the whole 

cell extract by an immobilized metal ion affinity chromatography, on a chelating 

Sepharose column charged with Ni2+. The supernatant, following centrifugation, 

was loaded on the nickel column and all the protein was retained on the column; 

the unspecifically bound proteins were removed by a wash step of imidazole 60 

mM. The protein was then eluted by the addition of 250 mM imidazole, and all 

fractions containing the protein were then pooled together and treated with TEV 

protease, for the His-tag cleavage. After an overnight dialysis, fractions were loaded 

on a Ni-sepharose column and pure protein was then eluted by Gel Filtration buffer; 

finally, the flow through fraction was purified by size exclusion chromatography 

on a Superdex S75 column, and the pure protein was analyzed by Comassie-staining 

SDS-PAGE gels (Figure 4.10a). A 29000 kDa purified protein was identified, and 

its molecular weight was calculated in electrophoresis in comparison with the 

standards used for SDS-PAGE gel. The purified protein was identified as Biotinyl-

MacroD1 by mass spectrometry which revealed a peak at 29153.6 (Figure 4.10b). 

The yield obtained, was of 36 mg/ml of purified protein per 1 liter of expression 

culture.  

 

 
Figure 4.10 a) SDS-PAGE from large scale purification of Biotinyl-MacroD1; b) Mass 

reconstruction of +TOF MS from purified Biotyinil-MacroD1 
 

a b 
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The surface plasmon resonance analysis was performed using a Biacore 3000 

optical biosensor equipped with research-grade SA sensor chips. Protein was 

coupled to the surface of a SA sensor chip using the standard immobilization 

method. Since fragments are usually of low potency but of high quality, and the 

nominal concentration reached during the crystallization process was 100 mM, 

for each molecule five concentrations, including 0 – 0.31 – 0.625 – 1.25 – 

2.5 mM, were set up, and for each sample the complete binding study was 

performed using triplicate aliquots. On the basis of this preliminary screening, 

two of the three tested compounds were found to bind, with a dose-response 

affinity, to the target protein. In particular, for compound 1 a KD of 0.0116 ± 

0.002 mM and for compound 3 a KD of 0.012 ± 0.0015 mM were detected 

(Figure 4.11), whereas for compound 2, no binding could be detected; actually 

these data were perfectly in line with the lower resolution of the related crystal 

electron-density map found for this compound.  

 

 

 

 

 

 

 

 
 

Figure 4.11 Surface Plasmon resonance sensorgrams acquired for compounds  
1 and 3 interacting with Biotinyl-MacroD1 

 

Basing on these promising results, the AlphaScreen analysis was performed to 

evaluate the potential inhibition of the two identified compounds of the MacroD1 

protein; twelve final compound concentrations were used, with two fold dilutions, 

spanning from 1000 to 0.25 M. As result, compound 1, which showed to bind 

to MacroD1 surface at crystals contact, showed a 25% inhibition at 500 M, 

whereas for compound 3, found to bind to MacroD1 into a binding pocket near 

to the natural ligand binding site, no inhibition was measured (Figure 4.12). 

This negative result could be due to two different reasons: the AlphaScreen signal 
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couldn’t be detected or because the compound had a very low target affinity, or 

because the compound binding did not displace ADP-ribose. However, comparing 

this data to the SPR measurement, this result is more probably due to the weak 

binding affinity of the fragment. Concerning compound 1, even if it seemed to have 

a better inhibition in the AlphaScreen experiment, the fact that it did not locate in a 

binding pocket, on the protein, did not allow to define a binding mode profile for 

this molecule. Basing on these considerations we decided to investigate compound 

3 starting from the study of its binding mode in the MacroD1 binding site. 

 

 

 
Figure 4.12 AlphaScreen curves related to the experiment performed with compound  

1 and 3 against MacroD1 protein 
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4.5.Compound 3 chemical exploration 
 

Basing on these preliminary results, we decided to analyze the binding mode of 

compound 3 in order to possibly identify the key amino acidic residues for the 

interaction. This fragment has also been selected due to the higher resolution 

of the PDB file related to the crystal obtained (3.2 Å). The in silico study was 

realized through a computational modeling aimed at the optimization of 

compound 3. In particular, from the analysis of the PDB file of the protein, co-

crystallized with this fragment, a pharmacophore model has been proposed and 

three main structural requirements have been identified (Figure 4.13): 

 An H-bond between the nitrogen on the pyrazole ring and the phenolic 

moiety of the Tyr216. 

 A π stacking interactions between the aromatic ring, in position -5 of 

the pyrazole ring, and the Tyr 222, and cation- π interactions between 

the aromatic ring with the Arg110. 

 An H-bond between the oxygen and the nitrogen of the phenoxy-

pirimidine group and the Lys 221. 
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Figure 4.13 (A) Compound 3 (FMOPL000074a) 2D interaction diagram in the putative allosteric 
binding site; (B) Compound 3 binding mode: the protein is depicted with green ribbons. The 

compound is represented with aquamarine tubes. The yellow, green and light blue dotted lines 
represent the H-bonds, cation- and -stacking interactions respectively.  

 
 
Keeping in mind these features, a series of derivatives of compound 3 has 

been designed and tested in silico; the binding affinity of the most promising 

compounds has been predicted by means of molecular docking calculations 

(Table 4.2). In Figure 4.14 the structures of the best molecules are reported.  

 
Entry Docking score (kcal/mol) 

LA-1 -6.899 

LA-2 -7.487 

LA-3 -7.539 

LA-4 -7.487 

LA-5 -7.675 

LA-6 -7.622 

LA-7 -7.370 

 

Table 4.2 Docking scores values of the in silico selected compounds LA1-LA7 
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Figure 4.14 Chemical structures of compounds LA1-7; 
 the chemical modifications realized according to the computational studies 

 are highlighted in red, blue and green colors 
 
The synthesis of compounds LA1-7 was accomplished under classic heating or 

under microwave irradiation; in more detail, the synthesis of compounds LA1-4 

was performed starting from the 4-carboxyphenylboronic acid (1) reacting with 

four different heterocyclic bromides (a-d), by using Pd(OAc)2 and 

triphenylphosphine-3,3’,3’’-trisulfonic acid trisodium salt, as the catalytic system, 

with Cs2CO3 as base, in a water-acetonitrile reaction solvent. This approach allowed 

the synthesis of the desired compounds with very short reaction times (5-15 min), 

and with high yields and purity (Scheme 4.1). 

 
 

Scheme 4.1. General procedure for the synthesis of compounds LA1-4: 

Reagents and conditions: i) Pd(OAc)2, P(C6H4SO3Na)3, Cs2CO3, H2O/CH3CN, MW,150°,5 min 
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Concerning the synthesis of compounds LA5-7 (Figure 4.14), compound LA-5 

was synthesized starting from 5-bromo-3-phenyl-1H-pyrazole (2) reacting with the 

the 4-(nitrophenyl)-boronic acid (3) by using Pd(OAc)2 and triphenylphosphine-

3,3’,3’’-trisulfonic acid trisodium salt, as the catalytic system, with Cs2CO3 as base, 

in a water-acetonitrile reaction solvent. This approach allowed the synthesis of the 

desired compound with very short reaction times (5-15 min), and with high yields 

and purity (Scheme 4.2A). Whereas, compounds LA6-7 were obtained according 

to a procedure by Tofi et al209, through the coupling between the 2-(4-

bromophenoxy)pyrimidine (4)  with the furan-3-ylboronic acid (e) or the thiazol-4-

ylboronic acid (f) to obtain the desired compounds (Scheme 4.2B). The coupling 

step, for LA-5, was realized as described for the previous compounds whereas, for 

compounds LA-6 and LA-7, the coupling was performed at 80 °C for 16 h by using 

tetrakis(triphenylphosphine)palladium(0) as catalyst, sodium carbonate as base and 

a mixture toluene/water (2:1) as the reaction solvent. All the products were obtained 

in high yields. 

 

 

 
 

Scheme 4.2. General procedure for the synthesis of compounds LA5-7: 

Reagents and conditions: ii) Pd(OAc)2, P(C6H4SO3Na)3, Cs2CO3, 

H2O/CH3CN, MW,150°,5 min; iii) Pd(PPh3)4, Na2CO3, H2O/toluene, 80°C,16h 
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Biochemical evaluation 

 

In order to verify the binding affinity of the new synthesized derivatives of 

compound 3 all the compounds have been screened by SPR analysis, as previously 

described for the fragments 1-3, to assess their potential affinity against the 

Biotinyl-MacroD1. In this new experiment each molecule was evaluated at five 

concentrations, 0–6–12–25–and 50 M. For each sample the complete binding 

study was performed using triplicate aliquots. The analysis of the sensorgrams 

curves related to these compounds (Figure 4.15) revealed that four of them, in 

particular compound LA1-4, showed a very high binding affinity against the protein 

with KD calculated in the low micromolar range and with a dose response profile 

(Table 4.3). 

 

 

Figure 4.15 SPR sensorgrams documenting the interaction 

between compounds LA1-4 and MacroD1 protein 
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Table 4.3 Thermodynamic constants measured by SPR for the interaction between the tested  

compounds and the  immobilized MacroD1 

Hence, these preliminary data are in accordance with the computational predicted 

results showing an increased binding affinity against the target protein. For this 

reason the selected molecules have been sent to the SGC in order to perform 

additional experiments to confirm the real binding site on the MacroD1 protein and, 

at the same time, to further explore the potential activity of these molecules as new 

promising potential modulators of MacroD1 protein. 

 

 

 

 

 

 

 

 

 

 

 

Compound KD (M) 

LA-1 0.3 ±0.01 

LA-2 17 ±0.01 

LA-3 1.9 ±0.05 

LA-4 1.17 ±0.08 

LA-5 N.B. 

LA-6 80 ±3.4 

LA-7 N.B. 



Results and discussion 
 

- 103 - 
 

 

 

 

 

CHAPTER 5 

 

 

Design, synthesis and biological evaluation of 

the first BAG3 modulator as an attractive 

candidate for the development of a new class of 

chemotherapeutics 
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5.1. Targeting BAG3-Hsp70 protein protein interaction 
 

Aim of the work 

 

BAG3 protein is a molecular co-chaperone that regulates many important 

physiological and pathological cellular processes, including cell survival and 

apoptosis. Moreover, its overexpression has been demonstrated in many human 

cancers and, high levels of the protein, have been correlated with the aggressiveness 

of the tumor type. Although BAG3 biological role has been mostly disclosed, to 

date, no selective BAG3 modulator has been yet identified. Considering its potential 

value as a biological tool for future antitumor therapeutics, I decided to embark on 

the identification of possible BAG3 modulators, focusing in particular on its BAG 

domain. This project has been carried out exploiting a combined approach of 

structure-based drug design and biophysical analysis which provided a fast and 

cost-efficient lead identification. In particular, we succeeded to disclose LK-4 

compound, as the first synthetic BAG3 modulator able to interfere with the BAG3-

Hsp70 protein-protein interaction. 

 

5.2. Structure based drug design 
 

With the aim of identifying new chemical platforms able to bind BAG3 protein, as 

attractive drug candidates, a structure based drug discovery strategy has been 

employed. This research project started from a structure-based Virtual Screening 

performed on a large library of commercially available compounds from Otava, 

Ltd. (~ 3.1 × 105 compounds).  

BAG3- protein 3D-structure, used for the molecular modeling experiments, was 

retrieved from the Protein Data Bank (PDB), (PDB code: 4HWF)92, and refers to 

AtBAG3 from Arabidopsis thaliana. Indeed, even if the human BAG3 protein 

crystal structure has not been deposited yet, recently, seven BAG protein homologs 

in the A. thaliana genome sequence, have been identified, four of which have 

domain organization highly similar to their animal counterparts.91 In particular, two 

putative binding sites were identified, on the AtBAG3 protein, with the SiteMap 
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software, that were subsequently used for the molecular docking calculations (Glide 

software).189 

The Virtual Screening campaign performed, by using the "Virtual Screening 

Workflow", has been implemented in Schrodinger Suite, following this scheme 

(Figure 5.1):189 

 

 High-Throughput Virtual Screening scoring and sampling (HTVS) (input: 

~ 3.1 × 105 compounds), saved first 30% of ranked compounds (output: 

9.0 × 104 compounds); 

 

 Standard Precision scoring and sampling phase (SP) (input: 9.0 × 104 

compounds), saved first 30% of ranked compounds (output: 2.7 × 104 

compounds); 

 

 Extra Precision scoring and sampling phase (XP) (input: 2.7 × 104 

compounds), saved first 10% of ranked compounds as final output (2.7 × 

103 compounds). Furthermore, the obtained compounds were also re-

scored using the MMGBSA method. 
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Figure 5.1 The Virtual Screening workflow for the identification of BAG3 inhibitors 

 

Once the screening process was completed, the binding mode of the selected 

compounds was carefully analyzed by selecting docking poses, establishing 

specific sets of interactions and showing a favorable accommodation in the binding 

sites after visual inspection. In particular, two different sets of interactions were 

considered for the two different identified binding sites: 

 Grid A: residues involved in the binding of BAG proteins with 

HSP70/HSC70:  

            Glu176 – Asp186 – Arg198 – Lys199 – Gln206 – Asp213.  

 Grid B: Lys165 – Glu167 – Glu168 – Asp191 (polar interactions). 

 

In this way, concerning Grid A, 56 compounds were filtered out (MMGBSA 

energetic range: 20 kcal/mol, between -46.648 kcal/mol and -26.018 kcal/mol), 

whereas, for Grid B, only 2 compounds were selected (MMGBSA energetic range: 
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20 kcal/mol, between -60.414 kcal/mol and -40.000 kcal/mol). The analysis of the 

predicted in silico binding energies (obtained by our Virtual Screening exploration) 

allowed us to select the 24 top-scoring compounds, featuring an high variability of 

chemical frameworks; in the same time, other two molecules 25 and 26, which did 

not show any significant binding affinity for the target protein, were selected as 

negative controls (Figure 5.2).  All these above compounds have been purchased 

from Otava Chemicals and have been subjected to the post-processing phase in 

order to verify their ability to physically bind to the target protein. 
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Figure 5.2 Chemical structures of commercially available compounds 1-26 
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5.3. Biological evaluation of the selected compounds 1-26  
 

For this purpose we decided to perform, on the purchased molecules, a Surface 

Plasmon Resonance (SPR) assay, using a recombinant rBAG3 protein. SPR 

analyses were performed using a Biacore 3000 optical biosensor equipped with 

research-grade CM5 sensor chips. Using this platform, a recombinant BAG3 

surface, a BSA surface and one unmodified reference surface were prepared for 

simultaneous analyses. Proteins were immobilized on individual sensor chip 

surfaces at a flow rate of 5 µL min-1, using standard amine-coupling protocols to 

obtain densities of 8–12 kRU (Table 5.1). 

  

Table 5.1 SPR assays of compounds (1-26) on rBAG3 protein full length 

 

Based on this assay, two compounds (7 and 24) have been identified as high affinity 

leads for the target protein with very low KD values (compound 7 KD: 5.2±3.8 nM, 

and compound 24 KD: 5.99±0.4 nM, respectively) while compounds 25 and 26, 

Compound          KD nM±SD        Compound            KD nM±SD 

1 No Binding 14 No Binding 

2 No Binding 15 No Binding 

3 No Binding 16 No Binding 

4 No Binding 17 No Binding 

5 No Binding 18 No Binding 

6 No Binding 19 No Binding 

7 5.2±3.8 20 No Binding 

8 No Binding 21 No Binding 

9 No Binding 22 No Binding 

10 No Binding 23 No Binding 

11 No Binding 24 5.99±0.4 

12 No Binding 25 38.0 ±4.6 

13 No Binding 26 19.8 ±1.49 



                                                                                              Results and discussion 

  - 110 - 
 

showed a lower ligand affinity (compound 25 KD: 38.0 ±4.6 nM and compound 26 

KD: 19.8 ±1.49 nM). Basing on the obtained results, we focused our attention on 

compounds 7, 24, 25, and 26. In order to explore the potential selectivity of these 

molecules, we performed a further SPR analysis on other members of BAG family, 

in particular, we selected both BAG4, as the most closely BAG3 related among 

human BDs, and BAG1 which contains a structurally and evolutionarily distinct 

BD. Moreover, since as stated before the target protein contains several functional 

additional domains, in order to gather more information about the binding site of 

our molecules, we decided also to test their ability to bind the isolated BAG3 

domain (BAG3BD) (Table 5.2). 

 

 

Table 5.2 SPR assays of compounds (7, 24, 25 and 26) on BAG3, BAG4, 

BAG1 proteins and on BAG3 domain 

 

The SPR analysis showed the best results for compounds 7 and 24, indeed they 

displayed a high binding affinity for the isolated BAG3BD, without any binding for 

the other two BAG protein isoforms tested. Concerning compounds 25 and 26, SPR 

analysis allowed to rule them out, indeed, they did not show to bind BAG3 domain, 

as expected; taking together these results enabled to disclose two interesting 

molecules, 7 and 24 that, actually, showed a relevant binding affinity for the BAG3 

domain that has been established to be involved in key biological functions, 

including the interaction with the molecular chaperone Hsp70 (Table 5.2, see 

column IV); moreover, the identified compounds, showed a good selectivity for the 

protein of interest (Table 5.2, see column III, IV).  

 

Compound 

BAG3  

(full- length) 

KD (nM) ±SD 

BAG4 

(full- length) 

KD (nM) ± SD 

BAG1 

(full- length) 

KD (nM) ± SD 

BAG3 domain 

(BAG3BD)  

KD (nM) ± SD 

7 5.2±3.8 3240±90 No Binding 3.51±2.7 

24 5.99±0.4 No Binding No Binding 287.0±13.2 

25 38.0 ±4.6 No Binding No Binding No Binding 

26 19.8 ±1.5 No Binding No Binding No Binding 
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At this point we decided to perform, on the disclosed molecules, a preliminary 

cytotoxic assay in order to verify the agreement between virtual screening results, 

SPR binding analysis and biological outcomes. Since BAG3 protein has been 

reported to be overexpressed in melanoma cells (A375) and its down-modulation, 

mediated by specific small RNA interfering, showed to reduce M14 tumor growth 

in vivo by suppressing its anti-apoptotic activity153, we verified the antiproliferative 

effect of the most promising compounds on this kind of cells. The cell viability 

assay, performed on human melanoma cancer cell line (A375), showed that 

compound 7 was the most active one, with an IC50 value of 25±1.5 M. While, 

compound 24 with an IC50 of 41.6±1.9 µM, was less active (probably due either to 

its limited solubility, or, to its lower binding affinity to BAG3 domain, as reported 

in Table 5.2). Compounds 25 and 26, tested as negative controls, were totally 

inactive in the same antiproliferative experiment, according to our in silico 

predictions. Having disclosed this interesting hit, compound 7 was chosen for 

further investigations in order to define in more details its structural interaction with 

the molecular target.  

 

In particular, with the aim of identifying in more detail the BAG3 region involved 

in the binding with compound 7, a limited proteolysis mass spectrometry based 

experiment was used for the structural analysis of the BAG3/ compound 7 complex. 

The efficiency of this approach relies on the evidence that the exposed, weakly 

structured and flexible regions of a target protein can be recognized by a proteolytic 

enzyme and, therefore, the observed differences in the proteolytic patterns, in the 

presence or in the absence of a putative protein ligand, can be useful to identify the 

protein regions involved in the molecular interactions.210 

Limited proteolysis experiments were performed both on BAG3 and on BAG3/ 

compound 7 complex. The proteolytic patterns obtained both, on BAG3 and on 

BAG3/ compound 7 complex, using trypsin or chymotrypsin as proteolytic agents, 

identified on the basis of MALDI analysis of the respective digestion mixtures, are 

summarized in Figure 5.3. A comparison of the results achieved in these 

experiments suggests a direct interaction between 7 and the BAG3 domain of the 

protein. Indeed, it was observed that amino-acidic residues Arg331, Arg380, 
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Lys425, Lys455, Lys483 and Lys534 were protected from the enzymatic 

hydrolysis, in the complex BAG3/ compound 7. Conversely, the new preferential 

cleavage sites of the BAG3/ compound 7 complex, located at the level of Lys97, 

Arg176, Lys284, Arg304 and Arg346 amino-acidic residues, became susceptible to 

enzymatic hydrolysis.  

Hence, these data suggest that, the binding of compound 7 to BAG3 protein, 

induced significant conformational changes of its three-dimensional structure. 

Specifically, the protection from proteolysis, of the PXXP and BAG domains of 

BAG3 indicated that these are the protein domains mainly involved in interaction 

with the tested compound.211 -212 

 

 

 

Figure 5.3 Schematic representation of limited proteolysis experiments. The preferential cleavage 

sites detected on recombinant BAG3 and BAG3/7 complex are indicated in black. The WW domain 

is highlighted in yellow, the IPV domains are highlighted in pink, the PXXP domain in highlighted 

in grey and the BAG domain is highlighted in light blue  

 

Basing on these encouraging results, and considering the synthetic tractability of 

the disclosed hit, we selected compound 7 (Figure 5.4) as the parent molecule to 

expand the chemical diversity around the 2,4-thiazolidinedione scaffold and to 

generate a small collection of synthetic compounds which, if possible, could retain 

and even increase the biological profile of the identified lead.  
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Figure 5.4 Chemical structure of compound 7 identified as lead 

 

In this aim a CombiGlide virtual screening approach was used in order to generate, 

starting from the 2,4-thiazolidindione core of the parent molecule, a collection of 

structurally related compounds. The CombiGlide software, based on an accurate 

ligand-receptor scoring and coupled with intelligent and efficient combinatorial 

docking and core-hopping methods, can accelerate the lead optimization process 

and aid in designing the optimal focused compound library. In more details, 

Schrödinger's CombiGlide can flexibly vary the core or side-chain substitutions, 

creating virtual combinatorial libraries that may be screened for identifying novel 

scaffolds, or generate focused collections in support of lead optimization efforts. 

According to the chemical route we built in silico a new set of screening compounds 

featuring the 2,4-thiazolidindione chemical core and differently substituted in 3 and 

5 positions basing on the related commercially available synthons (~2.3 × 104 

items). The 23331 molecules built (considering all stereoisomers, tautomers and 

protonation states) were screened, with Glide HTVS, SP, and XP precision modes 

filters, as described above for the first virtual screening. From this in silico analysis, 

the 17 top scoring molecules have been selected (filters: predicted binding energy, 

observance of the key-interactions) for the chemical synthesis and biological 

evaluation (Figure 5.5). 
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Figure 5.5 Chemical structures of the compounds selected by virtual screening 

 

5.4. Synthesis of compounds LK1-LK17  
 

The synthesis of the selected compounds, starting from a stereoselective 

Knoevenagel condensation between the commercially available 2,4-

thiazolidindione 1 with different aromatic aldehydes (a-m), chosen in accordance 
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with the docking results, in basic conditions for piperidine, under refluxing ethanol, 

allowed us to obtain the (Z)-5-arylidene-2,4-thiazolidinediones 2a-m in high yields 

(Scheme 5.1A). The structure of compounds was assigned on the basis of 1H and 
13C NMR data, in particular the Z configuration of the exocyclic double bond was 

determined basing on the comparison of our spectral data with those reported for 

other (Z)-5-arylidene-2,4-thiazolidinediones reported in literature.213 The treatment 

of 2a-m with ethyl bromoacetate, in presence of NaH and THF dry as solvent, 

provided the desired compounds LK1-LK11 (Scheme 5.1B). Moreover, the 

reaction of 2d and 2m with bromoacetic acid afforded the intermediate 3d and 

compound LK-12 (Scheme 5.1B). In order to obtain compound LK-13, LK-12 was 

further coupled with phenylamine, whereas compound 3d was esterified with 

phenol, affording compound LK-14; both the reactions were performed in presence 

of hydroxybenzotriazole (HOBt) and N,N diisopropylcarbodiimide (DIC) as 

coupling agents (Scheme 5.2A). Concerning the synthesis of compounds LK15-

17, the most structurally related to the parent molecule 7, they have been obtained 

starting from LK-12. In particular, LK-12 was coupled with hydrazine-hydrate to 

afford the compound ((Z)-2-(5-(4-methoxybenzylidene)-2,4-dioxothiazolidin-3-

yl)acetohydrazide) 4m. Then, the treatment of 4m with three different aromatic 

carboxylic acids (piperonylic acid, 2,4-dihydroxybenzoic acid and 3-nitrobenzoic 

acid respectively) afforded the desired products LK15, LK16 and LK-17 (Scheme 

5.2B). 

 

 



                                                                                              Results and discussion 

  - 116 - 
 

 

 

 

Scheme 5.1. General procedure for the synthesis of compounds LK1-LK12, 3d and 3m; 

Reagents and conditions: (A) i) Pyperidine, EtOH, reflux, 16-24 h; 

(B) ii) NaH, THF dry. 0 °C, then reflux, 3h 
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Scheme 5.2. General procedure for the synthesis of compounds LK13-17; 

Reagents and conditions: (A) iii) HOBt, DIC, DCM, rt, overnight;  

 iv) DMAP, DIC, DCM, rt, overnight;  

(B) v) HOBt, DIC, DCM, rt, overnight; vi) HOBt, DIC, DMF, rt, overnight 

 

5.5. Biological evaluation 
 

All the synthetized molecules have been subjected to the same screening procedure 

used for the previous compound disclosed by virtual screening exploration, in order 

to verify their binding affinity for the full-length protein, the affinity for the isolated 

BAG domain and finally their potential cytotoxic effects (Table 5.3). 
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Entry 

BAG3  

(full- length) 

KD (nM) ±SD 

BAG3 domain 

(BAG3BD)  

KD (nM) ±SD 

 

Entry 

BAG3  

(full- length) 

KD (nM) ±SD 

BAG3 domain 

(BAG3BD) 

KD (nM) ±SD 

LK-1 No Binding _ LK-10 No Binding _ 

LK-2 27.5±8.8 No Binding LK-11 No Binding  

LK-3 6.0 ±2.9 13.5±1.1 LK-12 14.0±2.6 8.2± 1.1 

LK-4 11.1±3.9 6.4±2.2 LK-13 7.2±4.7 9.8±4.4 

LK-5 No Binding _ LK-14 30.2 ±9.8 No Binding 

LK-6 No Binding _ LK-15 No Binding _ 

LK-7 179.0 ±10.4 No Binding LK-16 10.8 ±2.2 34.2 ±12.3 

LK-8 42.5 ±3.2 43.3 ±4.0 LK-17 32.8 ±6.1 67.6 ±11.3 

LK-9 200.0 ±21.7 No Binding    

 

Table 5.3 SPR assays results of compounds (LK1-LK17) on BAG3 full protein and BAG3 domain 

 

Following this approach we found that, among compounds LK15-17, showing an 

high level of structural similarity with the parent molecule 7, LK-16 and LK-17 

were able to bind in SPR analysis both the full protein and the isolated BAG3BD, 

while LK-15 did not show any affinity for the target protein (Table 5.3). 

Concerning the other molecules, nine of them, (LK-2, LK-3,LK4, LK-7, LK-8, 

LK-9, LK-12, LK-13, LK-14) were able to bind the full length protein, however 

among these compounds only LK-3, LK-4, LK-8, LK-12 and LK-13 showed to 

efficiently interact with the BAG3BD (Table 5.3). These last molecules, together 

with LK-16 and LK-17, have been finally subjected to biological evaluation in 

order to assess their antiproliferative potency. In more detail, all compounds have 

been tested on A375 cells by a MTT cell viability assay, using different 

concentrations (5-50 M), and the IC50 have been calculated after 72 hours of 

treatment (Table 5.4). 
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Table 5.4 IC50 values of the antiproliferative activity of compounds LK-3, LK-4, LK-8, LK-12, 
LK-13, LK-16 and LK-17 on A375 cancer cell lines after 72 h treatment 

 

The obtained results allowed to disclose compound LK-4, endowed with a relevant 

cytotoxic activity (IC50: 16.0 ±1.5M), as the most attractive candidate for a further 

biological evaluation (Table 5.4). For this reason, we decided to evaluate the 

cytotoxic activity of this promising compound on a small panel of cancer cell lines: 

pancreatic carcinoma (Panc-1), breast cancer (MCF7), prostate cancer (PC3) and 

lung cancer cells (A549), that are known to be able to overexpress BAG3 protein.214 

Moreover, compound LK-4 was tested, at the same conditions, also on PHA-

stimulated proliferating non-tumor human cell line (PBMC). The analysis of the 

results showed that LK-4 displays an anti-proliferative activity in all the tested 

cancer cell lines (Table 5.5), even though it resulted to be less active compared to 

the results obtained on A375 cells. Moreover, no cytotoxic activity was detected in 

PBMC non-tumor cell line after 72h of exposure and at increasing concentrations 

of the compound (10-50 M). 

 

Compound IC50   SD (µM) 72h 

LK-3 >50 

LK-4 16.0 ± 1.5 

LK-8 >50 

LK-12 NA 

LK-13 NA 

LK-16 50 ± 2.0 

LK-17 NA 
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            Cell line       IC50 SD(µM) 72h 

A375 16.6 1.5 

MCF7 > 50  

PC3 48.1 1.5 

Panc-1 > 50 

A549 32.3 0.9 

PBMC NA 

 

Table 5.5 IC50 values of the antiproliferative activity of compounds LK-4 on human cell lines after 
72 h of treatment 

 

At this point, in order to definitely clarify the binding selectivity of compound LK-

4, it was screened by SPR assay against the other two BAG isoforms, BAG1 and 

BAG4, as well as against the molecular chaperone Hsp70. Interestingly, LK-4 did 

not interact with any of the tested protein isoforms, either with Hsp70, confirming 

its role of selective binder of BAG3 protein.  

Having identified this promising molecule, we decided to study, in more detail, its 

mechanism of action in the attempt to clarify how BAG3 activity was functionally 

modulated. Since several studies reported that down-modulation of BAG3 protein 

levels does not affect the basal cell survival but instead it modifies the cellular 

response to pro-apoptotic stimuli, we analyzed the effect of compound LK-4 on 

A375 cell cycle distribution, by flow cytometry analysis. The cells were incubated 

for 72 h with LK-4, at concentrations of 10 and 20 M; the cell cycle analysis 

showed that the tested compound affected the cell cycle progression by arresting 

the cells in G2/M without any significant increase of subG1 cell fraction (Figure 

5.6A). These results are perfectly in line with the modulation of BAG3 protein 

activity, which determines a cytostatic effect mediated by LK-4 compound, without 

any increase of the percentage of cell death. 

Conversely, the treatment of A375 cells with LK-4 produced an increased cell 

death, detected as sub-G1 peak of propidium iodide-stained cells, in response to 

serum deprivation or the proapoptotic antibiotic Staurosporine. This experiment 
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definitively confirmed the BAG3 down-modulation mediated by our molecule 

(Figure 5.6B).  

 

 

Figure 5.6 LK-4 affected A375 cell-cycle progression and increased the starvation (low serum 
condition) or Staurosporine-induced apoptosis in A375 cells: 

 (A) Cell cycle analysis of DNA content, with propidium iodide staining, by flow cytometric 
evaluation. The A375 cells were treated with DMSO or LK-4 (10 or 20 µM) for 72 h. Results are 
expressed as means SD of three experiment performed in duplicate. (***P 0.001, *P 0.05). 

(B) Percentage of A375 cells in sub-G1 for DNA content, with PI staining, analyzed by flow 
cytometry. The cells were incubated in complete medium with DMSO or LK-4 (10 or 20 µM) for 

72 h; in low medium (2% FBS) condition with DMSO or LK-4 (10 or 20 µM) for 72 h; in complete 
medium with DMSO or LK-4 (10 or 20 µM) for 72 h and in presence of Staurosporine (1 µM) for 

an additional 6 h. 

 

Moreover, since as reported in literature, the effect of BAG3 on cell survival is 

partially mediated by the interaction with Hsp707, we decided to verify if LK-4 was 

able to influence the BAG3-Hsp70 protein-protein interaction. For this purpose a 

co-immunoprecipitation experiment was performed and BAG protein was 

immunoprecipitated from A375 cell lysate in the presence of LK-4 (70 μM) or 

DMSO vehicle control, and immunoblotted for BAG protein. Interestingly, LK-4 

showed to reduce the BAG3-Hsp70 complex by a percentage of 60% as indicated 

by densitometric analysis (Figure 5.7). This result confirms that LK-4 binds to 

BAG domain of the protein disrupting, thus, BAG3-Hsp70 interaction. 

 

A B 



                                                                                              Results and discussion 

  - 122 - 
 

 
Figure 5.7 LK-4 inhibits the Bag3-Hsp70 protein-protein interaction: 

Co-immunoprecipitation cell free assay of A375 cell lysate with LK-4; 

LK-4 inhibits the Bag3-Hsp70 protein-protein interaction in melanoma cells.  

BAG3 was immuno-precipitated with 

LK-4 (70 μM) or DMSO and blotted for bound Hsp70 

 

Finally, in order to assess that BAG3-Hsp70 interaction was also inhibited inside 

the cells, in a time dependent manner, A375 cells were exposed for 24, 48 and 72 

hours to LK-4 compound, with a concentration of 20 μM, close to the calculated 

IC50 value. Endogenous BAG3-Hsp70 complex was co-immunoprecipitated from 

cell lysates and analyzed by western blotting; the densitometric analysis revealed, 

once again, that the BAG3-Hsp70 interaction was inhibited by a percentage of 40% 

after 24 h, while a percentage of 80% of inhibition was reached after 72h of 

treatment (Figure 5.8).  
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Figure 5.8. LK-4 inhibits the Bag3-Hsp70 protein-protein interaction in melanoma cells:  

Co-immunoprecipitation assay of cell extract from A375 treated with LK-4 (20 μM) for 24, 48 or 

72 h; BAG3 was immuno-precipitated and analyzed by immunoblotting with anti-Hsp70. The blots 

are representative of two different experiments with similar results and the amount of co-

immunoprecipitated Hsp70, quantified by densitometry, was normalized to the amount of BAG3 

and was expressed as means SD of these experiments.GADPH6 was used as a negative control. 

The significance between the two groups was calculated by the Student’s t test (**P, *P 

05) 

 

Taking together, all these data point out the important role of LK-4 in disrupting 

Hsp70-BAG3 protein protein interaction, emerging thus as an attractive candidate 

for drug development and representing also a useful tool for further biological 

investigations of the multifaceted role of the molecular co-chaperone BAG3. 

Hence, by using a combined approach of virtual screening, biophysical techniques 

and biological assays, the 2,4-thiazolidindione scaffold was successfully identified 

as a promising chemical platform able to selectively bind and inhibit BAG3-Hsp70 

protein-protein interaction. 

 

 

 

 

 

 

 

 



                                                                                              Results and discussion 

  - 124 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions 
 

- 125 - 
 

 

 

 

 

CONCLUSIONS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                               Conclusions 

  - 126 - 
 

Conclusions 

The research work carried out in the frame of my PhD project has been devoted to 

the study of new and attractive biological targets involved in cancer progression. 

Among these, the epigenetic Macrodomain proteins and the BAG3 chaperone-

regulator are of great interest, as they are mainly involved, with different 

mechanisms, in cancer processes. In virtue of their biological importance and their 

potential for therapeutic applications, this research project has been mainly 

addressed to the discovery of modulators of these two biological targets, exploiting 

the use of advanced technologies, both for lead identification process and for 

biophysical profile evaluation of the disclosed molecules. In order to identify new 

MacroD1 and MacroD2 modulators, basing on two different drug discovery 

approaches, I succeeded to identify different chemical platforms able to bind these 

two target proteins. In particular, compound SP2 has been identified as a high 

affinity binder of MacroD2 protein, through the application of a virtual screening 

approach and biophysical techniques. The interaction between this new emerged 

1,2,3 triazole-1,4-disubstituted binder and the macrodomain cavity of MacroD2 has 

been analyzed by biophysical and docking experiments; its activity in cancer cells 

is currently under evaluation, in order to better clarify the biological consequences 

of its protein modulation. These outcomes will be of great value because they can 

pave the way for the development of new and more potent modulators of MacroD2 

epigenetic protein. At the same time, a fragment screening approach, based on X-

ray crystallography was pursued for discovering new chemical entities able to 

interact with the MacroD1 protein. This strategy, that I had the opportunity to carry 

out during my research period at the Structural Genomics Consortium of Oxford, 

allowed to identify compound 3, endowed with a pyrazol-3-yl-phenoxy-pyrimidine 

core, as a promising lead compound to develop a small collection of higher affinity 

compounds. Crystallography studies, combined with SPR technology, confirmed 

the real binding ability of this compound in the macrodomain pocket of MacroD1. 

Afterwards, the in silico analysis of the binding mode of the disclosed hit offered 

new insights to develop a small collection of derivatives, four of which showed to 

bind with higher affinities the target protein. Further experiments are still in 
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progress to definitely assess their potentiality as attractive candidates for drug 

development. Concerning the other target of interest, BAG3 protein, the use of a 

combined approach of a structure-based drug design and SPR spectroscopy 

allowed to identify the 2,4-thiazolidindione scaffold as a new molecular platform 

for BAG3 domain interaction, yielding compound 7, which showed a nanomolar 

dissociation constant against the full length protein and a good cytotoxicity against 

melanoma cancer cell lines. Basing on this promising hit, we designed and 

synthesized a collection of differently decorated compounds, as potential 

modulators of the BAG3 BD domain. After an extensive biological evaluation, we 

disclosed compound LK-4 as a new promising cytostatic and antiproliferative 

agent, which exerts its activity interfering with BAG3-Hsp70 complex formation. 

These promising results may stimulate further research toward the identification of 

more potent and selective inhibitors of this protein-protein interaction, that, beyond 

their potentiality in drug development, represent chemical probes to deepen the 

biological functions of this multifaceted protein.  
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CHAPTER 6 
 

Discovery of new modulators of the human 

Macrodomain protein MacroD2 by a structure-

based-drug design approach: Experimental 

procedures 
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6.1. General synthetic methods 
 

All commercially available starting materials were purchased from Sigma- Aldrich 

and were used as received. Solvents used for the synthesis were of HPLC grade and 

were purchased from Sigma-Aldrich or VWR. NMR spectra were recorded on 

Bruker Advance 400 or 300 MHz instruments. Compounds were dissolved in 0.5 

ml of CD3OD, or CDCl3.Coupling constants (J) are reported in Hertz, and chemical 

shifts are expressed in parts per million (ppm) on the delta (δ) scale relative to the 

solvent peak as internal reference. Multiplicities are reported as follows: s, singlet; 

d, doublet; t, triplet; m, multiplet; dd, doublet of doublets. Electrospray mass 

spectrometry (ESI-MS) was performed on a LCQ DECA TermoQuest (San Josè, 

California, USA) mass spectrometer. Chemical reactions were monitored on silica 

gel 60 F254 plates (Merck) and spots were visualized under UV light. Analytical 

and semi-preparative reversed-phase HPLC were performed on an Agilent 

Technologies 1200 Series high performance liquid chromatography system using a 

Fusion-RP, C18 reversed-phase column (100 x 2mm, 4μM, 80 Å, flow rate = 1 

mL/min; 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min respectively, 

Phenomenex ®). The binary solvent system (A/B) was as follows: 0.1% TFA in 

water (A) and 0.1% TFA in CH3CN (B). Absorbance was detected at 240 nm. The 

purity of all tested compound (> 95%) was determined by HPLC analysis.  
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6.2. Methods and materials 
 

Scheme 1. General method for the Synthesis of compounds SP1-SP6 

A) Synthesis of (1-(benzo[d]thiazol-6-yl)-1H-1,2,3-triazol-4-yl)methanol (2)      

 

 

 

A mixture of benzo[d]thiazol-6-amine (1) (1 eq., 100mg) in acetonitrile (4 mL) was 

placed in a 25 ml bottom flask and cooled to 0 °C. Then, tert-butyl nitrite (t-

BuONO) (1.5 eq) and azidotrimethylsilane (TMSN3) (1.2 eq.) were added dropwise 

and the reaction mixture was stirred, for 2 hours, at room temperature. The course 

of the reaction was monitored by TLC. Once the the diazotization reaction was 

completed, to the reaction mixture were added Propargyl alcohol (1 eq.), an aqueous 

solution of CuSO4·5H2O (0.05 eq.) and sodium ascorbate (0.2 eq.). The reaction 

mixture was stirred overnight, at room temperature and monitored by TLC. The 

reaction solvent was evaporated under vacuum and the mixture was poured into 

methanol. The resulting precipitate was filtered off to give the product (2). HPLC 

purification was performed by semi-preparative reversed-phase HPLC (Fusion-RP, 

C18 reversed-phase column: 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) 

using the gradient conditions reported below and the final products were 

characterized by ESI-MS (High purity> 97% detected by HPLC analysis).   
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B) Synthesis of ((1-(benzo[d]thiazol-6-yl)-1H-1,2,3-triazol-4-yl)methyl esters 

(SP1-SP6) 

 

 

 

 

 

A mixture of (2) (2 eq.), aromatic carboxylic acids (a-f) (1 eq.), N,N’-

Diisopropylcarbodiimide (1.2 eq.), 4-Dimethylaminopyridine (DMAP) (0.12 eq.) 

and dichloromethane, were placed in a 25 ml bottom flask. The reaction mixture 

was stirred for a period of 16 h, at room temperature. The course of the reaction 

was monitored by TLC. Then, the mixture was extracted with ethyl acetate, 

followed by washing the organic phase with citric acid (10%). The organic phase 

was evaporated under vacuum to give the products (SP1–SP6). HPLC purification 

was performed by semi-preparative reversed-phase HPLC (Fusion-RP, C18 

reversed-phase column: 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) using 
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the gradient conditions reported below and the final products were characterized by 

ESI-MS and NMR spectra (High purity> 97% detected by HPLC analysis).  

 

Scheme 2 General method for the Synthesis of compounds SP7-SP12 

A) Synthesis of 2-azidothiazole (5) 

 

 

To a mixture of 2-amino-thiazole (4) (2 eq.) in HCl conc. (1 mL), cooled to 0°C, 

sodium nitrite (NaNO2) (1 eq.) and sodium azide (NaN3) (1 eq.) were added 

dropwise. After ten minutes, the mixture was left at room temperature and stirred 

for 2 hours. The course of the reaction was monitored by TLC and after extraction 

with diethyl ether, the organic phase was evaporated under vacuum to give 2-azido-

thiazole (5). HPLC purification was performed by semi-preparative reversed-phase 

HPLC (Fusion-RP, C18 reversed-phase column: 250 x 10.00mm, 4μM, 80 Å, flow 

rate = 4 mL/min) using the gradient conditions reported below and the final 

products were characterized by ESI-MS (High purity> 97% detected by HPLC 

analysis). 
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B) Synthesis of 5-methyl-1-(thiazol-2-yl)-1H-1,2,3-triazole-4-carboxylic 

acid (7) 

 

 

A mixture of (5) (1 eq.), ethyl acetoacetate (1 eq.) and sodium methoxide (CH3ONa) 

(2 mL) were placed in a 25 ml bottom flask and cooled in an ice bath, stirring for 

30 minutes. Then, the reaction mixture was heated under reflux (60°C) and 

continuously stirred for 1 h, then, hot water was added to dissolve the observed 

precipitate. The course of the reaction was monitored by TLC and, after 1 hour, to 

the reaction mixture was added an aqueous solution of NaOH (1M) to hydrolyze in 

situ the ethyl ester and stirred under reflux for one more hour. Once the reaction 

was completed, the mixture was poured into HCl conc. and the resulting precipitate 

was filtered off and recrystallized to give compound (7). HPLC purification was 

performed by semi-preparative reversed-phase HPLC (Fusion-RP, C18 reversed-

phase column: 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) using the 

gradient conditions reported below and the final products were characterized by 

ESI-MS (High purity> 97% detected by HPLC analysis). 
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C) Synthesis of (5-methyl-1-(thiazol-2-yl)-1H-1,2,3-triazol-4-yl)methanol 

(8) 

 

A mixture of  (7) (1 eq.), Hydroxybenzotriazole (HOBt) (1 eq.), N,N'-

Diisopropylcarbodiimide (1 eq.) and dichloromethane (2 mL) were placed in a 25 

ml bottom flask and stirred for 30 minutes, at room temperature. After this time, the 

solvent was evaporated, the organic layer dissolved in THF, and water and Sodium 

borohydride (NaBH4) (2 eq.) were added to the reaction mixture, which was stirred 

for 30 minutes at 0°C. The course of the reaction was monitored by TLC and after 

completion, the reaction mixture was quenched with methanol, extracted with 

ethylacetate, then washing the organic phase with citric acid (10%), NaHCO3 and 

Brine, achieved the product (8). HPLC purification was performed by semi-

preparative reversed-phase HPLC (Fusion-RP, C18 reversed-phase column: 250 x 

10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) using the gradient conditions reported 

below and the final products were characterized by ESI-MS (High purity> 97% 

detected by HPLC analysis).   
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D) Synthesis of (5-methyl-1-(thiazol-2-yl)-1H-1,2,3-triazol-4-yl)methyl 

esters (SP7-SP12) 

 

 

OH
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A mixture of (8) (2 eq.), aromatic carboxylic acids (a-f) (1 eq.), N,N'-

Diisopropylcarbodiimide (1.2 eq.), 4-Dimethylaminopyridine (DMAP) (0.12 eq.) 

and dichloromethane, were placed in a 25 ml bottom flask. The reaction mixture 

was stirred for a period of 16 h, at room temperature. The course of the reaction 

was monitored by TLC. Then, the mixture was extracted with ethyl acetate, 

followed by washing the organic phase with citric acid (10%). The organic phase 

was evaporated under vacuum to give the products (SP7–SP12). HPLC purification 

was performed by semi-preparative reversed-phase HPLC (Fusion-RP, C18 

reversed-phase column: 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) using 
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the gradient conditions reported below and the final products were characterized by 

ESI-MS and NMR spectra (High purity> 97% detected by HPLC analysis).   

 

Scheme 3. General method for the Synthesis of SP13-SP20 

A) Synthesis of various substituted aryl-azides (11h-11n) 

 

 

 

Compound R1 Yield (%) 
 

11h 

 

 
80 

 
11i  

 
82 

 
11l 

 
 

 
95.2 
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A mixture of different aryl-halides (10h-n) (1 eq.), sodium azide (1.5 eq.), and a 

solution of water/acetone (1:4), were placed in a 25 ml bottom flask. The reaction 

mixture was heated under reflux and continuously stirred for a period of 3 h. The 

course of the reaction was monitored by TLC. The reaction mixture was extracted 

with dichloromethane and the organic phase was then evaporated under vacuum to 

achieve the products (11h–n). HPLC purification was performed by semi-

preparative reversed-phase HPLC (Fusion-RP, C18 reversed-phase column: 250 x 

10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) using the gradient conditions reported 

below and the final products were characterized by ESI-MS (High purity> 97% 

detected by HPLC analysis).  

 

B) Synthesis of various substituted 1,4 disubstituted triazoles (13h-13n) 

 

 

 

 
11m 

 

94 
 

 
11n                                           

 

100 
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A mixture of (11h-n) (1 eq.), propargyl alcohol (1 eq.), an aqueous solution of 

CuSO4·5H2O (0.033 eq.) and sodium ascorbate (0.07 eq.), and water/tert-butanol 

(TBA) (1:1) were placed in a 25 ml bottom flask. The reaction mixture was stirred, 

overnight, at room temperature. The course of the reaction was monitored by TLC, 

and after completation, the reaction mixture was extracted with dichloromethane 

and the organic phase was evaporated under vacuum, to give the triazoles (13h-

13n). HPLC purification was performed by semi-preparative reversed-phase HPLC 

(Fusion-RP, C18 reversed-phase column: 250 x 10.00mm, 4μM, 80 Å, flow rate = 

4 mL/min) using the gradient conditions reported below and the final products were 

characterized by ESI-MS (High purity> 97% detected by HPLC analysis).   

 

Compound R1 Yield (%) 
 

13h 

 

 
50 

 
13i  

 
72 

 
13l 

 
 

 
65.2 

 
13m 

 

54 
 

 
13n                                           

 

70 
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C) Synthesis of (1-aryl)-1H-1,2,3-triazol-4-yl)methyl esters (SP13-SP20) 

 

 

 

 
Compound R1 R2 Yield (%) 

 
SP13 

 
 

 
45 

 
SP14 

 
 

 
40 

 
SP15 

 

 

 

 
 

 
60 

SP16 

 
 

 

 
87.2 

SP17 

  

70.2 
 

SP18 

 
 

 
82.2 

SP19 

 
 

 

 
89.1 

SP20 

  

75.1 
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A mixture of (13h-13n) (2 eq.), piperonylic acid (a) and 3-nitro benzoic acid (b) (1 

eq.), N,N'-Diisopropylcarbodiimide (1.2 eq.), 4-Dimethylaminopyridine (DMAP) 

(0.12 eq.) and dichloromethane, were placed in a 25 ml bottom flask. The reaction 

mixture was stirred for a period of 16 h, at room temperature. The course of the 

reaction was monitored by TLC. Then, the mixture was extracted with ethyl acetate, 

followed by washing the organic phase with citric acid (10%). The organic phase 

was evaporated under vacuum to give the products (SP13–SP20). 
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1.1 (1-(benzo[d]thiazol-6-yl)-1H-1,2,3-triazol-4-yl)methyl 3-methoxybenzoate (SP-1) 

 was obtained by following the general procedure as a pale 

yellow powdery solid (80 mg, 62% yield after HPLC purification); RP-HPLC tR = 32.06 

min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  

= 254 nm. 1H NMR (300 MHz, Chloroform-d): δ 9.18 (s, 1H), 8.44 (s, 1H), 8.26 (s, 2H), 

7.8 (d, J = 2.1 Hz, 2H), 7.88 (d, J = 1.6 Hz, 1H), 6.87 (d, J = 2.1 Hz, 2H), 5.50 (s, 2H), 3.80 

(s, 3H). 13C NMR (101 MHz, Chloroform-d): δ 166.28, 158.23, 157.04, 156.03, 148.10, 

137.70, 132.32, 131.88, 131.63, 128.39, 124.65, 122.78, 119.62, 119.38, 114.34, 113.72, 

57.67, 55.47. ESI-MS, calcd for C18H14N4O3S 366.39; found m/z = 367.3 [M+ H]+ 

1.2 (1-(benzo[d]thiazol-6-yl)-1H-1,2,3-triazol-4-yl)methylbenzo[d][1,3]dioxole-5-

carboxylate (SP-2) 

 was obtained by following the general procedure as a white 

powdery solid (153,7 mg, 63% yield after HPLC purification); RP-HPLC tR = 26.87 min, 

gradient condition: from 5% B ending to 100% B over 50 min, flow rate of 4 mL/min,  = 

254 nm. 1H NMR (400 MHz, Methanol-d4): δ 9.19 (s, 1H), 8.77 (s, 1H), 8.67 (d, J = 2.2 

Hz, 1H), 8.29 (d, J = 8.8 Hz, 1H), 8.11 (d, J = 8.8 Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.49 

(s, 1H), 6.92 (d, J = 8.2 Hz, 1H), 6.07 (s, 2H), 5.54 (s, 2H).13C NMR (125 MHz, Methanol-

d4): δ 167.36, 152.36, 151.82, 149.46, 148.76, 138.74, 133.24, 131.63, 127.44, 124.28, 

121.09 , 119.14, 115.50, 111.98, 110.27, 108.80, 101.50, 56.23. ESI-MS, calcd for 

C18H12N4O4S 380.38; found m/z = 381.3 [M + H]+. 
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1.3 (1-(benzo[d]thiazol-6-yl)-1H-1,2,3-triazol-4-yl)methylquinoline-4-carboxylate(SP-3) 

 was obtained by following the general procedure as a pale 

yellow solid (91,8 mg, 60% yield after HPLC purification); RP-HPLC tR = 26.51 min, 

gradient condition: from 5% B ending  to 100% B over 50 min, flow rate of 4 mL/min,  = 

254 nm. 1H NMR (300 MHz, Methanol-d4): δ 9.09 (s, 1H), 8.88 (d, J = 6.9 Hz, 2H), 8.69 

(d, J = 2.1 Hz, 1H), 8.29 (d, J = 8.8 Hz, 1H), 8.21 – 8.11 (m, 3H), 7.94 (t, J = 7.7 Hz, 2H), 

7.81 (t, J = 7.8 Hz, 1H), 5.75 (s, 2H). 13C NMR (125 MHz, Methanol-d4): δ 168.22 ,157.04,  

152.36, 149.41 (2C), 147.72 , 146.82 , 138.74, 134.48, 132.92, 130.69, 128.74, 127.74, 

125.81, 123.57, 123.53, 122.49, 119.35, 114.36, 58.43. ESI-MS, calcd for C20H13N5O2S 

387.42; found m/z = 388.4 [M + H]+. 

1.4 (1-(benzo[d]thiazol-6-yl)-1H-1,2,3-triazol-4-yl)methyl 3-nitrobenzoate (SP-4) 

 was obtained by following the general procedure as a 

pale yellow solid (50,9 mg, 90% yield after HPLC purification); RP-HPLC tR = 24.38 min, 

gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 

254 nm. 1H NMR (400 MHz, Chloroform-d):δ 9.32 (s, 1H), 8.49-8.32 (m, 5H), 8.36 (s, 

1H), 8.01 (dt, J = 7.5, 2.0 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 5.51 (s, 2H). 13C NMR (125 

MHz, Chloroform-d): δ 167.28, 158.23, 157.04, 156.03, 148.10, 137.70, 132.32,  131.88, 

131.63,  128.39, 124.65, 122.78, 119.62, 119.38, 114.34, 113.72, 56.11. ESI-MS, calcd for 

C17H11N5O4S 381.37; found m/z = 382.3 [M + H]+.  
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1.5 (1-(benzo[d]thiazol-6-yl)-1H-1,2,3-triazol-4-yl)methyl isonicotinate (SP-5) 

 was obtained by following the general procedure as pale 

yellow solid (60,6 mg, 80% yield after HPLC purification); RP-HPLC tR = 23.9 min, 

gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 

240 nm. 1H NMR (400 MHz, Chloroform-d): δ 9.32 (s, 1H), 8.90 (d, J = 5.1 Hz, 2H), 8.34 

(s, 1H), 7.97 – 7.89 (m, 4H), 7.31 (dd, J = 7.5, 1.5 Hz, 1H), 5.51 (s, 2H). 13C NMR (125 

MHz, Chloroform-d): δ 167.43, 152.36, 150.87 (2C), 149.46, 146.82, 139.05, 138.74, 

133.24, 127.44, 122.72 (2C), 121.09, 119.14, 111.98, 56.23. ESI-MS, calcd for 

C16H11N5O2S 337,36; found m/z = 338.3 [M + H]+. 

1.6 (1-(benzo[d]thiazol-6-yl)-1H-1,2,3-triazol-4-yl)methyl 2,4-dihydroxybenzoate 

(SP-6) 

 was obtained by following the general procedure as a 

white solid (48.5 mg, 85% yield after HPLC purification); RP-HPLC tR= 35.42 min, 

gradient condition: from 5% B to ending to 100 % B over 40 min, flow rate of 4 mL/min,  

= 254 nm. 1H NMR (400 MHz, Chloroform-d): δ 9.32 (s, 1H), 8.35 (s, 1H), 7.98 – 7.89 

(m, 1H), 7.64 (d, J = 7.5 Hz, 1H), 7.31 (dd, J = 7.5, 1.5 Hz, 1H), 7.00 (s, 1H), 6.45 (dd, J = 

7.5, 2.0 Hz, 1H), 6.31 (d, J = 2.0 Hz, 1H), 5.51 (s, 2H).13C NMR (125 MHz, Chloroform-

d): δ 168.41, 164.60, 163.58 , 152.36 , 149.46 , 146.82 , 138.74 , 133.23 (2C), 127.44 , 

121.09 , 119.14 , 112.03 (2C), 108.67, 103.19, 56.49. ESI-MS, calcd for C17H12N4O4S 

368.37; found m/z = 369.3 [M + H]+.  
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1.7 (5-methyl-1-(thiazol-2-yl)-1H-1,2,3-triazol-4-yl)methyl 3-methoxybenzoate (SP-7) 

 was obtained by following the general procedure as a pale 

yellow solid (122 mg, 60% yield after HPLC purification); RP-HPLC tR = 33.09 min, 

gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 

254 nm. 1H NMR (400 MHz, Chloroform-d): δ 8.04 (d, J = 3.5 Hz, 1H), 7.75 (d, J = 3.5 

Hz, 2H), 7.33 (d, J = 3.5 Hz, 2H), 6.94 (d, J = 3.5 Hz, 1H). 5.51 (s, 2H), 3.89 (s, 3H), 2.81 

(s, 3H). 13C NMR (125 MHz, Chloroform-d): δ 167.36, 159.50, 153.58, 138.07, 137.81, 

131.47, 129.40, 128.12, 122.10, 118.99, 114.20, 112.91, 55.49, 53.46, 10.88. ESI-MS, 

calcd for C15H14N4O3S 330.36; found m/z = 331.3 [M + H]+.  

1.8 (5-methyl-1-(thiazol-2-yl)-1H-1,2,3-triazol-4-yl)methylbenzo[d][1,3]dioxole-5-

carboxylate (SP-8) 

 was obtained by following the general procedure as a yellow 

solid (63.7 mg, 75% yield after HPLC purification); RP-HPLC tR = 32.6 min, gradient 

condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 254 nm. 

1H NMR (400 MHz, Chloroform-d)  δ 7.75 (d, J = 3.4 Hz, 1H), 7.69 (ddd, J = 8.2, 2.6, 1.4 

Hz, 1H), 7.50 (d, J = 1.7 Hz, 1H), 7.33 (d, J = 3.4 Hz, 1H), 6.85 (d, J = 8.2, 2.0 Hz, 1H), 

6.06 (s, 2H), 5.49 (s, 2H), 2.83 (s, 3H). 13C NMR (125 MHz, Chloroform-d): δ 167.36, 

153.58, 149.10, 148.76, 138.07, 137.81, 128.12 , 124.28 (2C) , 112.91 , 110.27, 108.80, 

101.50, 53.46, 10.88. ESI-MS, calcd for C15H12N4O4S 344.36; found m/z = 345.3 [M + H]+.  
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1.9 (5-methyl-1-(thiazol-2-yl)-1H-1,2,3-triazol-4-yl)methyl isonicotinate (SP-9) 

 was obtained by following the general procedure as a yellow 

solid (116 mg, 56% yield after HPLC purification); RP-HPLC tR = 26.62, gradient 

condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 254 nm. 

1H NMR (400 MHz, Chloroform-d): δ 9.29 (d, J = 4.9 Hz, 1H), 8.97 (d, J = 8.7 Hz, 1H), 

8.53 (d, J = 8.6 Hz, 1H), 8.28 (d, J = 4.8 Hz, 1H), 8.05 (t, J = 7.8 Hz, 1H), 7.93 (t, J = 7.9 

Hz, 1H), 7.78 (d, J = 3.7 Hz, 1H), 7.36 (dd, J = 3.5, 1.5 Hz, 1H), 5.71 (s, 2H), 2.90 (s, 3H). 

13C NMR (125 MHz, Chloroform-d): δ 168.22, 153.58, 149.37, 147.72, 138.07, 137.81, 

132.94, 130.02, 129.73, 128.52, 128.17, 128.10, 125.68, 123.80, 112.91, 53.46, 10.88. ESI-

MS, calcd for C17H13N5O2S 351.38; found m/z = 352.3 [M + H]+.  

1.10 (5-methyl-1-(thiazol-2-yl)-1H-1,2,3-triazol-4-yl)methyl 3-nitrobenzoate (SP-

10) 

 was obtained by following the general procedure as a pale 

yellow solid (63.7 mg, 86.4% yield after HPLC purification); RP-HPLC tR = 34.3 min, 

gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 

240 nm. 1H NMR (400 MHz, Chloroform-d): δ 8.95 – 8.90 (m, 2H), 8.49 – 8.40 (m, 3H), 

7.69 (t, J = 8.0 Hz, 1H), 5.60 (s, 2H), 2.88 (s, 3H).13C NMR (125 MHz, Chloroform-d): δ 

167.36, 153.58, 147.92, 138.07, 137.81, 130.92, 129.76, 128.99, 128.12, 127.25, 123.87, 

112.91, 53.46, 10.88. ESI-MS, calcd for C14H11N5O4S 345.33; found m/z = 346.3 [M + H]+.  
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1.11 (5-methyl-1-(thiazol-2-yl)-1H-1,2,3-triazol-4-yl)methyl isonicotinate (SP-11)  

N

S
N

NN

O O

N  was obtained by following the general procedure as a white solid 

(116 mg, 93.3% yield after HPLC purification); RP-HPLC tR = 18.8 min, gradient 

condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 254 nm. 

1H NMR (400 MHz, Chloroform-d): δ 8.98 (s, 2H), 8.39 (s, 2H), 7.78 (d, J = 3.5 Hz, 1H), 

7.37 (d, J = 3.5 Hz, 1H), 5.65 (s, 2H), 2.87 (s, 3H). 13C NMR (125 MHz, Chloroform-d): δ 

167.43, 153.58, 150.87 (2C), 139.05, 138.07, 137.81, 128.12, 122.7 (2C), 112.91, 53.46, 

10.88. ESI-MS, calcd for C13H11N5O2S 301.32; found m/z = 302.3 [M + H]+. 

1.12 (5-methyl-1-(thiazol-2-yl)-1H-1,2,3-triazol-4-yl)methyl 2,5-dihydroxybenzoate (SP-

12) 

 was obtained by following the general procedure as a 

yellow solid (116 mg, 87% yield after HPLC purification); RP-HPLC tR = 31.9 min, 

gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 

254 nm. 1H NMR (400 MHz, Chloroform-d): δ 7.78 – 7.74 (m, 1H), 7.34 (t, J = 2.9 Hz, 

1H), 6.64 (s, 1H), 6.44 – 6.34 (m, 2H), 5.53 (s, 2H), 2.84 (s, 3H). 13C NMR (125 MHz, 

Chloroform-d): δ 169.45, 156.70, 153.58, 150.32, 138.07, 137.81, 128.12, 121.30, 116.20, 

115.50, 112.89, 103.15, 53.46, 10.88. ESI-MS, calcd for C14H12N4O4S, 332.33; found m/z= 

333.33 [M + H]+.  
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1.13 (1-(4-benzoylbenzyl)-1H-1,2,3-triazol-4-yl)methyl 3-nitrobenzoate (SP-13)  

was obtained by following the general procedure as a grey 

solid (80 mg, 45% yield after HPLC purification); RP-HPLC tR = 34.6 min, gradient 

condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 254 nm. 

1H NMR (300 MHz, Chloroform-d): δ 8.87 (d, J = 2.2 Hz, 1H), 8.47 – 8.34 (m, 1H), 7.88 

– 7.73 (m, 6H), 7.71 – 7.58 (m, 2H), 7.50 (t, J = 8.0 Hz, 3H), 7.41 (d, J = 7.9 Hz, 1H), 5.66 

(s, 2H), 5.55 (s, 2H). 13C NMR (125 MHz, Chloroform-d): δ 196.60, 164.14, 148.32, 

139.90, 137.48, 137.14, 134.89, 132.53, 131.38, 130.20, 130.06, 129.87, 129.55 (2C), 

128.76, 128.73, 128.13 (2C), 127.75, 127.31, 125.13, 123.87, 58.03, 53.09. ESI-MS, calcd 

for C24H18N4O5 442.13; found m/z = 443.3 [M+H]+.  

1.14 (1-(4-benzoylbenzyl)-1H-1,2,3-triazol-4-yl)methyl benzo[d][1,3]dioxole-5-

carboxylate (SP-14)  

was obtained by following the general procedure as a 

yellow solid (70 mg, 40.0% yield after HPLC purification); RP-HPLC tR = 33.54 min, 

gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 

254 nm. 1H NMR (300 MHz, Chloroform-d): δ 7.87 – 7.74 (m, 3H), 7.70 – 7.57 (m, 3H), 

7.55 – 7.45 (m, 3H), 7.39 (d, J = 7.9 Hz, 2H), 6.84 (d, J = 8.1 Hz, 2H), 6.05 (s, 2H), 5.64 

(s, 2H), 5.46 (s, 2H).13C NMR (125 MHz, Chloroform-d): δ 195.84, 167.36, 149.10, 

148.76, 142.00, 138.04, 136.23, 134.96, 132.42, 129.58 (2C), 128.75 (2C), 128.73 (2C),  
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128.07 (2C) , 127.64, 124.28 (2C), 110.27, 108.80, 101.50, 56.46, 53.30. ESI-MS, calcd 

for C25H19N3O5 441.44; found m/z = 442.4[M+ H]+.  

1.15 (1-([1,1'-biphenyl]-4-ylmethyl)-1H-1,2,3-triazol-4-yl)methyl 3-nitrobenzoate (SP-

15) 

N

N
N

O

O
NO2

was obtained by following the general procedure as a yellow 

solid (97.2 mg, 60.0% yield after HPLC purification); RP-HPLC tR = 37.03 min, gradient 

condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 254 nm. 

1H NMR (300 MHz, Chloroform-d): δ 8.86 (s, 1H), 8.48 – 8.32 (m, 2H), 7.75 – 7.54 (m, 

7H), 7.50 – 7.37 (m, 4H), 5.61 (s, 2H), 5.53 (s, 2H).13C NMR (125 MHz, Chloroform-d): 

δ 167.36, 149.75, 142.05, 141.94, 140.72, 135.92, 133.16, 130.93, 129.72, 128.81 (2C), 

128.64 (2C) , 127.71 , 127.65 , 127.55 (2C) , 127.25, 126.98 (2C), 123.85, 56.46, 53.35. 

ESI-MS, calcd for C23H18N4O4 414.42; found m/z = 415.4 [M+H]+.  

1.16 (1-((2,3-dihydrobenzo[b][1,4]dioxin-2-yl)methyl)1H-1,2,3-triazol-4-yl)methyl-3-

nitrobenzoate (SP-16)  

was obtained by following the general procedure as a yellow 

solid (120 mg, 87.2% yield after HPLC purification); RP-HPLC tR = 32.09 min, gradient 

condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 240 nm. 

1H NMR (300 MHz, Chloroform-d): δ 8.88 (s, 1H), 8.41 (dd, J = 13.9, 7.8 Hz, 2H), 7.88 

(s, 1H), 7.67 (t, J = 8.0 Hz, 1H), 6.91 (s, 4H), 5.56 (s, 2H), 4.78 – 4.67 (m, 2H), 4.65 (s, 
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1H), 4.37 (d, J = 11.4 Hz, 1H), 3.94 (dd, J = 11.6, 5.7 Hz, 1H).13C NMR (125 MHz, 

Chloroform-d): δ 167.36, 147.92, 145.38, 144.08, 142.03, 130.92, 129.76, 128.99, 127.25, 

123.92 (2C), 121.55 (2C), 117.39 , 117.20, 71.96, 66.11, 56.46, 49.15. ESI-MS, calcd for 

C19H16N4O6 396.36; found m/z = 397.3 [M+H]+. 

1.17 (1-((3-(pyridin-3-yl)1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl-3-

nitrobenzoate (SP-17)  

was obtained by following the general procedure as a yellow 

solid (100mg, 70.2% yield after HPLC purification); RP-HPLC tR 24.03 min, gradient 

condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 254nm. 

1H NMR (300 MHz, Chloroform-d): δ 8.88 (s, 1H), 8.64 (s, 1H), 8.43 (dt, J = 11.8, 4.7 Hz, 

4H), 8.09 (s, 1H), 7.68 (t, J = 7.9 Hz, 2H), 5.97 (s, 2H), 5.60 (s, 2H).13C NMR (125 MHz, 

Chloroform-d): δ 167.50, 164.27, 158.52, 152.96 , 147.97, 147.89 , 143.47, 135.42, 134.58, 

131.32, 129.77, 127.82 , 124.63, 124.05, 123.60, 119.63, 58.37, 44.28. ESI-MS, calcd for 

C18H13N7O5 407.35; found m/z = 408.3 [M+H]+. 

1.18 (1-((3-(pyridin-3-yl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-

4yl)methylbenzo[d][1,3]dioxole-5 carboxylate (SP-18) 

was obtained by following the general procedure as a yellow 

solid (68.2 mg, 82.2% yield after HPLC purification); RP-HPLC tR = 32.33 min, gradient 
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condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 254nm. 

1H NMR (300 MHz, Chloroform-d): 9.31 (s, 1H), δ 8.59 (d, J = 8.2 Hz, 1H), 8.03 (s, 1H), 

7.67 (d, J = 8.2 Hz, 2H), 7.47 (s, 1H), 7.28 (s, 1H), 6.84 (d, J = 8.2 Hz, 1H), 6.05 (s, 2H), 

5.95 (s, 2H), 5.50 (s, 2H).13C NMR (125 MHz, Chloroform-d): δ 172.56, 167.36, 167.01, 

152.24, 149.40, 149.10, 148.76, 141.64, 136.36, 126.87, 124.38, 124.28 (2C), 124.16, 

110.27, 108.80, 101.50, 56.46, 41.10. ESI-MS, calcd for C19H14N6O5 406.36; found m/z = 

407.3 [M + H]+.  

1.19((1-((5-(pyridin-3-yl)-1,3,4-oxadiazol-2-yl)methyl)1H-1,2,3-triazol-4-yl)methyl-3-

nitrobenzoate(SP-19) 

was obtained by following the general procedure as a pale 

yellow solid (68.2 mg, 82.2% yield after HPLC purification); RP-HPLC tR = 23.4 min, 

gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 

254nm. 1H NMR (300 MHz, Chloroform-d): δ 8.94 – 8.78 (m, 2H), 8.52 (d, J = 7.9 Hz, 

1H), 8.48 – 8.34 (m, 2H), 8.03 (s, 1H), 7.66 (s, 2H), 5.95 (s, 2H), 5.50 (s, 2H).  13C NMR 

(125 MHz, Chloroform-d): δ 167.50, 164.27, 158.52, 152.96, 147.97, 147.89, 143.47, 

135.42, 134.58, 131.32, 129.77, 127.82, 124.63, 124.05, 123.60, 119.63, 58.37, 44.28. ESI-

MS, calcd for C18H13N7O5 407.35; found m/z = 408.3 [M + H]+.  
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1.20 (1-((5-(pyridin-3-yl)-1,3,4-oxadiazol-2-yl)methyl)-1H-1,2,3-triazol-4-

yl)methylbenzo[d][1,3]dioxole-5-carboxylate (SP-20) 

was obtained by following the general procedure as a yellow 

solid (70.1 mg, 75.5% yield after HPLC purification); RP-HPLC tR = 22.38 min, gradient 

condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 254nm. 

1H NMR (500 MHz, Chloroform-d): δ 8.59 (d, J = 7.9 Hz, 2H), 7.99 (s, 1H), 7.66 (dd, J = 

8.2, 1.7 Hz, 1H), 7.46 (d, J = 1.7 Hz, 1H), 6.84 (d, J = 8.2 Hz, 1H), 6.04 (s, 2H), 5.95 (s, 

2H), 5.48 (s, 2H).13C NMR (125 MHz, Chloroform-d): δ 172.56, 167.36, 167.01 , 152.24, 

149.40, 149.10, 148.76, 141.64, 136.36, 126.87, 124.38, 124.28 (2C), 124.16, 110.27, 

108.80, 101.50, 56.46, 41.10. ESI-MS, calcd for C19H14N6O5 406.36; found m/z = 407.3 

[M + H]+.  
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CHAPTER 7 
 

 

Discovery of new modulators of human 

Macrodomain protein MacroD1 by a fragment 

screening X-ray crystallography based 

approach: Experimental procedures 
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7.1.General methods 
 

BL21 (DE3)-R3-pRARE (a phage-resistant derivative of Rosetta2) competent E. 

coli cells were purchased from Novagen. Ni-NTA sepharose gravity flow columns 

and size Exclusion Chromatography – S75 HiLoad 16/60 Superdex columns were 

from GE Healthcare Life Sciences and run on ÄKTA-Express system. SDS page 

was performed on ready made 18% polyacrylamide gels from Bio-Rad. Gelcode 

Blue stain and BCA Protein Assay Reducing Agent Compatible were from Pierce. 

All other chemicals were of reagent grade and obtained from common commercial 

sources. 

 

Bacterial overexpression of Human MACROD1A 

 

The His6 tagged human MACROD1A (His6-MACROD1A) was expressed from 

His6-MACROD1A pNH-TrxTC-terminal His vector in E. coli BL21 (DE3) 

competent cells. A glycerol stock was used to inoculate a 10ml starter culture 

containing LB media with 50µg/ml Kanamycin + 34 µg/ml Chloramphenicol. The 

starter culture was grown overnight at 37°C with shaking at 200 rpm. The following 

morning, flasks containing 1L TB/Kanamycin were each inoculated with 3 ml of 

the starter culture. Cultures were incubated at 37°C with shaking at 170 rpm until 

an OD600nm ≥ 1.4 was reached. The flasks were then cooled down to 18°C and 

0.4 mM Isopropyl β-D-1 thiogalactopyranoside (IPTG) added to induce protein 

expression overnight at OD600nm ≥ 2.0. Cells were harvested by centrifugation at 

5000 rpm at 4°C for 15 min. Cell pellets from each flask were resuspended in 15ml 

Binding buffer (50mM HEPES, pH 7.5; 500mM NaCl; 5% Glycerol; 5mM 

Imidazole; 0.5mM TCEP; 1:2000 Protease Inhibitor Cocktail) and frozen at -20°C. 

 

Preparation of whole cell extract 

 

The frozen cells were thawed. The cells were lysed by ultrasonication over 15 min 

with the sonicator pulsing ON for 5 sec and OFF for 10. A final concentration of 

0.15% polyethylenimine (PEI) was added to the lysate. The cell lysate was spun 
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down by centrifugation at 22 K rpm at 4°C for 1 h. The supernatant was recovered 

for purification. 

 

IMAC (Immobilized metal affinity chromatography) 

 

Recombinant Human His6-MACROD1A was purified first by Immobilized metal 

ion affinity chromatography (IMAC) carried out in a cold room: 5 ml of 50 % Ni-

sepharose slurry was applied onto a 1.5 x 10 cm column. The column was 

equilibrated with binding buffer (50 mM Hepes, pH 7.5; 500 mM NaCl; 5% 

Glycerol; 5 mM imidazole; 0.5mM Tris-(2-chloroethyl)-phosphate (TCEP). The 

supernatant following centrifugation was applied by gravity flow onto the Ni-

sepharose column. The bound protein was then washed with 50ml binding buffer 

and subsequently with 30 ml wash buffer (50 mM Hepes, pH 7.5; 500 mM NaCl; 

5% Glycerol; 30 mM imidazole 0.5mM TCEP).  MACROD1A  protein was then 

eluted by applying a step gradient of imidazole – using 5 ml portions of elution 

buffer (50 mM HEPES, pH 7.5; 500 mM NaCl; 5% Glycerol; 50, 100, 150 and 250 

mM imidazole 0.5mM TCEP) with increasing concentration of imidazole (1 x 50 

mM, 1 x 100 mM, 1 x 150 mM and 2 x 250 mM). Fractions were analyzed by SDS 

PAGE and the first, second, third & fourth elution fractions were kept and pooled. 

 

Enzymatic treatment: TEV protease cleavage 

 

The elute fractions containing MACROD1A were treated with Tobacco Etch Virus 

nuclear-inclusion-a endopeptidase TEV protease and dialyzed against GF buffer 

(300 mM NaCl, 50 mM HEPES pH 7.5, 0.5 mM TCEP, pH 7.5, 5% glycerol) 

overnight at 4°C. 

 

Nickel rebinding chromatography 

 

Ni-Affinity Chromatography: 1 ml of 50 % Ni-sepharose slurry was applied onto a 

1.0 x 10 cm column. The column was equilibrated with binding buffer (15ml). 

Carried out at room temperature, with fractions stored on ice immediately following 
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collection. The pooled fractions from gel filtration were applied by gravity flow 

onto the Ni-sepharose column and flow-through collected. The column was then 

washed with 4ml wash buffer and subsequently with 5ml elution buffer.  Fractions 

were analyzed by SDS PAGE and the flow-through containing MacroD1A was 

stored. 

 

Size-exclusion chromatography (SEC) 

 

Size Exclusion Chromatography – S75 HiLoad 16/60 Superdex run on ÄKTA-

Express. Column stored in a cold room. The Superdex S75 column was first 

equilibrated with Gel Filtration buffer. The protein fraction from above step was 

concentrated to <5ml using a centrifugal filter with a 30kDa cut-off, before being 

syringe injected onto the column through 0.2µM pore filter and eluted with Gel 

Filtration buffer.  Fractions containing the target protein were pooled together. 

 

Fractions Pooling, Mass Spec and Concentration 

 

The fractions containing the target protein from gel filtration were pooled together. 

A Mass spectrometry was run on Agilent 6530 QTOFmass spectrometer for the 

pooled sample concentrated in a 10 KD MW cutoff spin concentrator. The 

concentrated samples were aliquoted in PCR tubes and kept in -80°C. 

 

Gel Electrophoresis and Western Blotting 

 

SDS-PAGE was performed in 18% polyacrylamide gels. Protein bands were 

detected by Gelcode Blue Coomassie stain.High Resolution Clear Native 

Electrophoresis (hrCNE) was performed on 4-16% Bis-Tris Glycine gels using 

sodium deoxycholate (0.05%) and Triton X-100 (0.05%) in place of Comassie 

Brilliant Blue G-250 in cathode buffers. 
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Expressed protein sequence 

 

AMAAKVDLSTSTDWKEAKSFLKGLSDKQREEHYFCKDFVRLKKIPTWKE

MAKGVAVKVEEPRYKKDKQLNEKISLLRSDITKLEVDAIVNAANSSLLGG

GGVDGCIHRAAGPLLTDECRTLQSCKTGKAKITGGYRLPAKYVIHTVGPI

AYGEPSASQAAELRSCYLSSLDLLLEHRLRSVAFPCISTGVFGYPCEAAAEI

VLATLREWLEQHKDKVDRLIICVFLEKDEDIYRSRLPHYFPVA. 

 

MacroD1 Crystallization 

 

The protein was concentrated to 22mg/mL. We pipetted 20 uL screen into 2 x CI 

plates.  The plates were then sealed and refrigerated until use. We used Mosquito 

Crystal robots (http://www.ttplabtech.com) (3-drop CI method) to set up sitting 

drops: 2:1, 1:1, 1:2 ratios. Total drop volume was 150 nL. The plates were sealed 

and incubated at, 4 °C and 20°C,  with drops automatically imaged at fixed time 

intervals by Minstrel HT(http://www.rigaku.com)  systems and  at at room 

temperature. Crystals grew under multiple conditions using freshly prepared 

protein. The best-diffracting crystals of the MACROD1A were obtained using a 

reservoir solution containing 0.1M malic acid (DL-), 21% PEG3350 1:1 with 

MACROD1A. Crystals were then flash frozen in liquid nitrogen. 

 

7.2.Fragment screening general methods  
 

Compounds Soaking 
 
All compounds of DSPL1 (Diamond-SGC Poised Fragment Library v1.0) were 

dissolved in DMSO at a nominal concentration of 200mM. It should be noted that 

not all compounds could be dissolved at such high concentrations, but in this case 

we assumed that the solution was saturated; 600nl of each compound was mixed 

with 600nl of reservoir solution and the mixture was added to the crystals by using 

a Mosquito® crystallization robot (TTP Labtech). The plates were resealed and 

incubated for at least 12 hours at 4°C before the crystals were mounted in nylon 

loops and immediately flash frozen in liquid nitrogen. 
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Data Collection and Structure Solution 

 

X-ray diffraction data were collected on beamline I04-1 at Diamond Light Source 

using monochromatic radiation at wavelength 0.9795 Å. Crystals belonged to 

spacegroup P212121 with unit cell parameters a=61.8 Å b=55.05 Å c=86.57 Å, 

α=90° β= 104.44 γ= 90° a and were processed using the Diamond autoprocessing 

pipeline, which utilizes xia2, DIALS, XDS, POINTLESS and CCP4. Electron-

density maps were generated using XChemExplorer via DIMPLE. Ligand restraints 

were generated with AceDRG and ligand binding was detected with PanDDA with 

ligands built into PanDDA event maps. Three molecules were present in the 

asymmetric unit. Once a hit was identified, further rounds of refinement with 

REFMAC24 and manual rebuilding with COOT were carried out. ACEDRG22 was 

used to generate compound coordinates and restraint files. The quality of the final 

models was validated with MOLPROBITY. 

 
Bacterial overexpression of MacroD1A biotinylated protein. 

 

The His6 tagged human MACROD1A (His6-MACROD1A) was expressed from 

His6-MACROD1A pNH-TrxTC-terminal His vector in E. coli BL21 (DE3) 

competent cells. A glycerol stock was used to inoculate a 10ml starter culture 

containing LB media with 50µg/ml Kanamycin + 34 µg/ml Chloramphenicol and 

50µg/ml Streptomycin. The starter culture was grown overnight at 37°C with 

shaking at 200 rpm. The following morning, flasks containing 1L TB/Kanamycin 

were each inoculated with 3 ml of the starter culture. Cultures were incubated at 

37°C with shaking at 170 rpm until an OD 600nm ≥ 1.4 was reached.  The flasks 

were then cooled down to 18°C and 0.4 mM Isopropyl β-D-1 thiogalactopyranoside 

(IPTG) and 0.2 mM biotin added for the BirA cultures. (Added 20 ml of 10 mM 

biotin in 10 mM bicine pH 8.3 to each 1L culture) added to induce protein 

expression overnight at OD 600nm ≥ 2.0. Cells were harvested by centrifugation at 

5000 rpm at 4°C for 15 min. Cell pellets from each flask were resuspended in 15ml 

Binding buffer (50mM HEPES, pH 7.5; 500mM NaCl; 5% Glycerol; 5mM 

Imidazole; 0.5mM TCEP; 1:2000 Protease Inhibitor Cocktail) and frozen at -20°C. 
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Preparation of whole cell extract 

 

The frozen cells were thawed. The cells were lysed by ultrasonication over 15 min 

with the sonicator pulsing ON for 5 sec and OFF for 10. A final concentration of 

0.15% polyethylenimine (PEI) was added to the lysate. The cell lysate was spun 

down by centrifugation at 22 K rpm at 4°C for 1 h. The supernatant was recovered 

for purification. 

 

IMAC (Immobilized metal affinity chromatography) 

 

Recombinant Human His6-biotinyl-MACROD1A was purified first by 

Immobilized metal ion affinity chromatography (IMAC) carried out in a cold room: 

5 ml of 50 % Ni-sepharose slurry was applied onto a 1.5 x 10 cm column. The 

column was equilibrated with binding buffer (50 mM Hepes, pH 7.5; 500 mM 

NaCl; 5% Glycerol; 5 mM imidazole; 0.5mM Tris-(2-chloroethyl)-phosphate 

(TCEP). The supernatant following centrifugation was applied by gravity flow onto 

the Ni-sepharose column. The bound protein was then washed with 50ml binding 

buffer and subsequently with 30 ml wash buffer (50 mM Hepes, pH 7.5; 500 mM 

NaCl; 5% Glycerol; 30 mM imidazole 0.5mM TCEP).  MACROD1A  protein was 

then eluted by applying a step gradient of imidazole – using 5 ml portions of elution 

buffer (50 mM HEPES, pH 7.5; 500 mM NaCl; 5% Glycerol; 50, 100, 150 and 250 

mM imidazole 0.5mM TCEP) with increasing concentration of imidazole (1 x 50 

mM, 1 x 100 mM, 1 x 150 mM and 2 x 250 mM). Fractions were analyzed by SDS 

PAGE and the first, second, third & fourth elution fractions were kept and pooled. 

 

Enzymatic treatment: TEV protease cleavage 

 

The elute fractions containing MACROD1A were treated with Tobacco Etch Virus 

nuclear-inclusion- endopeptidase TEV protease and dialysed against GF buffer 

(300 mM NaCl, 50 mM HEPES pH 7.5, 0.5 mM TCEP, pH 7.5, 5% glycerol) 

overnight at 4°C. 
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Nickel rebinding chromatography 

 

Ni-Affinity Chromatography: 1 ml of 50 % Ni-sepharose slurry was applied onto a 

1.0 x 10 cm column. The column was equilibrated with binding buffer (15ml). 

Carried out at room temperature, with fractions stored on ice immediately following 

collection. The pooled fractions from gel filtration were applied by gravity flow 

onto the Ni-sepharose column and flow-through collected. The column was then 

washed with 4ml wash buffer and subsequently with 5ml elution buffer.  Fractions 

were analyzed by SDS PAGE and the flow-through containing MacroD1A was 

stored. 

 

Size-exclusion chromatography (SEC) 

 

Size Exclusion Chromatography – S75 HiLoad 16/60 Superdex run on ÄKTA-

Express. Column stored in a cold room. The Superdex S75 column was first 

equilibrated with Gel Filtration buffer. The protein fraction from above step was 

concentrated to <5ml using a centrifugal filter with a 30kDa cut-off, before being 

syringe injected onto the column through 0.2µM pore filter and eluted with Gel 

Filtration buffer.  Fractions containing the target protein were pooled together. 

 

Fractions Pooling, Mass Spec and Concentration 

 

The fractions containing the target protein from gel filtration were pooled together. 

A Mass spectrometry was run on Agilent 6530 QTOF mass spectrometer for the 

pooled sample concentrated in a 10 KD MW cutoff spin concentrator. The 

concentrated samples were aliquoted in PCR tubes and kept in -80°C. 

MACROD1A-construct protein mass is 28927.3, and the observed mass was 

29153.6 (=+226.3).4. 
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Gel Electrophoresis and Western Blotting 

 

SDS-PAGE was performed in 18% polyacrylamide gels. Protein bands were 

detected by Gelcode Blue Coomassie stain.High Resolution Clear Native 

Electrophoresis (hrCNE) was performed on 4-16% Bis-Tris Glycine gels using 

sodium deoxycholate (0.05%) and Triton X-100 (0.05%) in place of Comassie 

Brilliant Blue G-250 in cathode buffers. 

 

7.3. SPR General methods 
 

Recombinant human biotinyl-MacroD1 was previously expressed and SPR 

analyses were carried out according to our previously SPR published data.210 

Surface Plasmon Resonance Spectroscopy (SPR) analyses were performed to 

determine binding of various molecules to MacroD1 protein using a Biacore 3000 

optical biosensor equipped with research-grade SA sensor chips (GE Healthcare). 

Biotnyl-MacroD1 was coupled to the surface of a SA sensor chip using standard 

biotinylated ligand-coupling protocols, according to the manufacturer’s 

instructions. Biotinylated ligand is immobilized on Sensor Chip SA by non-

covalent capture (binding to streptavidin). The protein (100 µg mL−1 in 10 mM 

PBS, pH 7.4) was immobilized on individual sensor chip surfaces at a flow rate of 

10 µL min−1 to obtain densities of 8–12 kRU, with 1 minute of contact time. For 

the experiments a recombinant biotinyl-MacroD1 surface, a BSA surface and one 

unmodified reference surface were prepared for simultaneous analyses. Compounds 

1-3 were dissolved, to obtain 500 mM solutions, in 100% DMSO and diluted 1:200 

(v/v) in PBS (10 mM NaH2PO4, 150 mM NaCl, pH 7.4) to a final DMSO 

concentration of 5%. For each molecule a six-point concentration series were set 

up, spanning 0 – 0.31 – 0.625 – 1.25 – 2.5 mM, and for each sample the complete 

binding study was performed using triplicate aliquots. Whereas compounds LA1-

LA7 were dissolved, to obtain 50 mM solutions, in 100% DMSO and diluted 

1:1000 (v/v) in PBS (10 mM NaH2PO4, 150 mM NaCl, pH 7.4) to a final DMSO 

concentration of 0.1%. For each molecule a five-point concentration series were set 

up, spanning 0–6–12–25–and 50 M. Changes in mass, due to the binding response, 
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were recorded as resonance units (RU). To obtain the dissociation constant (KD) 

these responses were fit to a 1:1 Langmuir binding model by nonlinear regression 

using the BiaEvaluation software program provided by GE Healthcare. Simple 

interactions were suitably fitted to a single-site bimolecular interaction model 

(A + B = AB), yielding a single KD. SPR experiments were performed at 25 °C, 

using a flow rate of 15 µL min−1, with 60 s monitoring of association and 300 s 

monitoring of dissociation. 

 

7.4. General synthetic methods 
 

All commercially available starting materials were purchased from Sigma- Aldrich 

and were used as received. Solvents used for the synthesis were of HPLC grade and 

were purchased from Sigma-Aldrich or VWR. NMR spectra were recorded on 

Bruker Advance 400 or 300 MHz instruments. Compounds were dissolved in 0.5 

ml of CD3OD, or CDCl3.Coupling constants (J) are reported in Hertz, and chemical 

shifts are expressed in parts per million (ppm) on the delta (δ) scale relative to the 

solvent peak as internal reference. Multiplicities are reported as follows: s, singlet; 

d, doublet; t, triplet; m, multiplet; dd, doublet of doublets. Electrospray mass 

spectrometry (ESI-MS) was performed on a LCQ DECA TermoQuest (San Josè, 

California, USA) mass spectrometer. Chemical reactions were monitored on silica 

gel 60 F254 plates (Merck) and spots were visualized under UV light. Analytical 

and semi-preparative reversed-phase HPLC were performed on an Agilent 

Technologies 1200 Series high performance liquid chromatography system using a 

Nucleodur, C8 reversed-phase column (100 x 2mm, 4μM, 80 Å, flow rate = 1 

mL/min; 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min respectively, 

Phenomenex ®). The binary solvent system (A/B) was as follows: 0.1% TFA in 

water (A) and 0.1% TFA in CH3CN (B). Absorbance was detected at 240 nm. The 

purity of all tested compound (> 95%) was determined by HPLC analysis. All 

microwave irradiation experiments were carried out in a dedicated CEM-

Discover® Focused Microwave Synthesis apparatus, operating with continuous 

irradiation power from 0 to 300 W utilizing the standard absorbance level of 300 

W maximum power. The reactions were carried out in 10 mL sealed microwave 

glass vials. The DiscoverTM system also offers controllable ramp time, hold time 
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(reaction time) and uniform stirring. The temperature was monitored using the 

CEM-Discover built-in-vertically focused IR temperature sensor. After the 

irradiation period, the reaction vessel was cooled rapidly (60-120 s) to ambient 

temperature by air jet cooling.  

7.5.Methods and materials 
 

Scheme 1. General method for the Synthesis of compounds LA1-LA5 

A) Suzuki-Miyaura cross-coupling for the synthesis of LA1-LA4 

 

 

 

Carboxy-phenyl boronic acid (1) (50.0 mg, 1 eq.), commercially available 

heteroaryl-bromides (a-d, 0.8 eq), Pd(OAc)2 (0.04 eq.), P(C6H4SO3Na)3 (0.2 eq.) 

and Cs2CO3 (2.4 eq.) were added to a 10 ml microwave vial equipped with a 

magnetic stirrer. The vial was evacuated and backfilled with nitrogen three times. 

Degassed acetonitrile (0.5 ml) and degassed water (1.0 ml) were added by means 

of an air-tight syringe. The mixture was heated under microwave irradiation at 150 

ºC for 5-15 min. After irradiation, the vial was cooled to ambient temperature by 

air jet cooling and a mixture of cold water and 1.5 M HCl were added (5.0 and 2.0 

ml, respectively). The mixture was subsequently poured into crushed ice and then 

left at 4 ºC overnight. The resulting precipitate was filtered and purified by HPLC 
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to give the desired product in good yields (52-75%). HPLC purification was 

performed by semi-preparative reversed-phase HPLC using the gradient conditions 

reported below for each compound.         

 

B) Suzuki-Miyaura cross-coupling for the synthesis of LA-5 

 

 

5-bromo-3-phenyl-1H-pyrazole (2) (50.0 mg, 0.8 eq.) and commercially available 

4-nitrophenylboronic acid (3) (1 eq.), Pd(OAc)2 (0.04 eq.), P(C6H4SO3Na)3 (0.2 eq.) 

and Cs2CO3 (2.4 eq.) were added to a 10 ml microwave vial equipped with a 

magnetic stirrer. The vial was evacuated and backfilled with nitrogen three times. 

Degassed acetonitrile (0.5 ml) and degassed water (1.0 ml) were added by means 

of an air-tight syringe. The mixture was heated under microwave irradiation at 150 

ºC for 5 min. After irradiation, the vial was cooled to ambient temperature by air jet 

cooling and a mixture of cold water and 1.5 M HCl were added (5.0 and 2.0 ml, 

respectively). The mixture was subsequently poured into crushed ice and then left 

at 4 ºC overnight. The resulting precipitate was filtered and purified by HPLC to 

give the desired product in good yields (60.6%). HPLC purification was performed 

by semi-preparative reversed-phase HPLC using the gradient conditions reported 

below for each compound.         
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Scheme 2. General method for the Synthesis of compounds LA6-LA7 

Suzuki-Miyaura cross-coupling  

 

 

 

A solution of furan-3 boronic acid (e) (1.2 eq.) and thiazol-4-ylboronic acid (f) (1.2 

eq) in methanol (0.6 mL) was added to a solution of 2-(4-bromophenoxy) 

pyrimidine (4) (1 eq.), Pd(PPh3)4 (4 mol%) and sodium carbonate (2.2 eq.) in a 

toluene/water-mixture (2:1). The reaction mixture was stirred for 16 h at 80 °C. The 

reaction course was monitored by TLC and, once it was completed, the mixture was 

diluted with dichloromethane and the aqueous layer was washed with brine, dried 

over Na2SO4, filtered and concentrated under reduced pressure. The resulting crude 

product was purified by HPLC to give the desired product in good yields (70-72%). 

HPLC purification was performed by semi-preparative reversed-phase HPLC using 

the gradient conditions reported below for each compound.  

 

1.1 4-(1H-1,2,4-triazol-5-yl)benzoic acid (LA-1) 

was obtained by following the general procedure as a white 

powdery solid (30 mg, 55.6% yield after HPLC purification); RP-HPLC tR = 22.03 min, 
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gradient condition: from 5% B ending to 100 % B over 54 min, flow rate of 4 mL/min,  = 

240 nm. 1H NMR (300 MHz, Methanol-d4): δ 8.43 (s, 1H), 7.89 (d, J = 4.0 Hz, 2H), 6.83 

(d, J = 5.5 Hz, 2H).13C NMR (101 MHz, Methanol-d4): δ 168.14, 151.62, 149.30, 130.96 

(2C), 128.61 (2C), 127.61, 126.71.  ESI-MS, calcd for C9H7N3O2 189.17; found m/z = 

188.1 [M-H]. 

1.2 4-(furan-3-yl) benzoic acid (LA-2) 

was obtained by following the general procedure as a white powdery 

solid (153,7 mg, 63% yield after HPLC purification); RP-HPLC tR = 29.58 min, gradient 

condition: from 5% B ending to 100% B over 40 min, flow rate of 4 mL/min,  = 240 nm. 

1H NMR (300 MHz, Methanol-d4): δ 8.04 (d, J = 8.4 Hz, 1H), 7.72 – 7.59 (m, 3H), 7.61 (d, 

J = 1.9 Hz, 2H), 6.90 (d, J = 1.9 Hz, 1H).13C NMR (125 MHz, Methanol-d4): δ 168.10, 

145.13, 142.53, 141.08, 131.20 (2C), 128.98, 126.07, 123.93, 108.93, 106.8. ESI-MS, calcd 

for C11H8O3 188.18; found m/z = 187.1 [M - H].  

1.3.  4-(thiazol-5-yl)benzoic acid (LA-3) 

was obtained by following the general procedure as a pale yellow 

solid (91,8 mg, 60% yield after HPLC purification); RP-HPLC tR = 21.44 min, gradient 

condition: from 5% B ending  to 100% B over 40 min, flow rate of 4 mL/min,  = 240nm. 

1H NMR (300 MHz, Methanol-d4):  δ 8.92 (s, 1H), 8.18 (s, 1H), 7.97 (d, J = 8.1 Hz, 2H), 

7.65 (d, J = 7.9 Hz, 2H).13C NMR (125 MHz, Methanol-d4): δ 168.14, 152.00, 140.88, 
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137.49, 135.46, 131.15, 130.3 (2C), 125.10 (2C). ESI-MS, calcd for C10H7NO2S 205.23; 

found m/z = 204.5 [M-H]. 

1.4 4-(1H-pyrazol-3-yl) benzoic acid (LA-4) 

was obtained by following the general procedure as a white powdery 

solid (85.9 mg, 75.7% yield after HPLC purification); RP-HPLC tR = 16.63 min, gradient 

condition: from 5% B ending to 100 % B 4 min, flow rate of 4 mL/min, = 240 nm. 1H 

NMR (500 MHz, Methanol-d4): δ 8.20 (d, J = 7.9 Hz, 2H), 7.66 (d, J = 7.5 Hz, 2H), 7.30 

(d, J = 7.5 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H); 13C NMR (125 MHz, Methanol-d4): δ 168.14, 

147.63, 133.65, 131.28, 129.89 (2C), 127.35, 126.45 (2C), 101.95. ESI-MS, calcd for 

C10H8N2O2 188.19; found m/z = 187.1 [M - H].  

1.5 5-(4-nitrophenyl)-3-phenyl-1H-pyrazole (LA-5) 

NO2

NHN was obtained by following the general procedure as white 

solid (86 mg, 70% yield after HPLC purification); RP-HPLC tR = 25.9 min, gradient 

condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 240 nm. 

1H NMR (400 MHz, Chloroform-d): δ  8.32 (d, 2H), 8.17 – 8.11 (m, 2H), 7.83 (d, J = 7.3 

Hz, 2H), 7.53 – 7.47 (m, 3H), 7.41 (s, 1H);  13C NMR (125 MHz, Chloroform-d): δ 148.05, 

147.78, 146.89, 135.16, 131.89, 129.48, 128.25 (2C), 127.58 (2C), 125.55 (2C), 124.29 

(2C), 99.96. ESI-MS, calcd for C15H11N3O2 265.27; found m/z = 266.2 [M + H]+. 
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1.6 (2-(4-(furan-3-yl)phenoxy)pyrimidine (LA-6) 

was obtained by following the general procedure as a white solid 

(50.2 mg, 45% yield after silica chromatography column purification);. 1H NMR (300 

MHz, Chloroform-d): δ 8.42 (d, J = 4.9 Hz, 2H), 7.76 (s, 1H), 7.52 (d, J = 7.7 Hz, 3H), 7.40 

(t, J = 6.8 Hz, 2H), 7.29 (t, J = 6.8 Hz 1H), 6.73 (t, J = 6.8 Hz, 1H); 13C NMR (125 MHz, 

Chloroform-d): δ 166.31, 160.60 (2C), 149.59, 144.70, 140.30, 135.02, 127.99 (2C), 

127.58 , 121.82 (2C), 117.40, 109.00. ESI-MS, calcd for C14H10N2O2 238.07; found m/z = 

239.1 [M+H]+.  

1.7 4-(4-(pyrimidin-2-yloxy)phenyl)isothiazole (LA-7) 

was obtained by following the general procedure as a brown 

solid (100 mg, 60% yield after silica chromatography column purification) .1H NMR (400 

MHz, Chloroform-d): δ 8.65 (d, J = 4.8 Hz, 2H), 7.91 – 7.76 (m, 3H), 7.30 – 7.19 (m, 3H), 

6.71 (t, J = 6.8 Hz, 1H); 13C NMR (125 MHz, Chloroform-d): δ 166.31, 160.60 (2C), 

157.18, 149.53, 143.89, 141.59, 131.21, 128.43 (2C), 120.74 (2C), 117.40. ESI-MS, calcd 

for C13H9N3OS; 255.09.; found m/z = 256.0 [M+H]+.  
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CHAPTER 8 
 

 

 

Design, synthesis and biological evaluation of 

the first BAG3 modulator as an attractive 

candidate for the development of a new class of 

chemotherapeutics: Experimental procedures 
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8.1 General synthetic methods 
 

All commercially available starting materials were purchased from Sigma- Aldrich 

and were used as received. Solvents used for the synthesis were of HPLC grade and 

were purchased from Sigma-Aldrich or VWR. NMR spectra were recorded on 

Bruker Advance 400 or 300 MHz instruments. Compounds were dissolved in 0.5 

ml of CD3OD or CDCl3. Coupling constants (J) are reported in Hertz, and chemical 

shifts are expressed in parts per million (ppm) on the delta (δ) scale relative to the 

solvent peak as internal reference. Multiplicities are reported as follows: s, singlet; 

d, doublet; t, triplet; m, multiplet; dd, doublet of doublets. Electrospray mass 

spectrometry (ESI-MS) was performed on a LCQ DECA TermoQuest (San Josè, 

California, USA) mass spectrometer. Chemical reactions were monitored on silica 

gel 60 F254 plates (Merck) and spots were visualized under UV light. Analytical 

and semi-preparative reversed-phase HPLC were performed on an Agilent 

Technologies 1200 Series high performance liquid chromatography system using a 

Fusion-RP, C18 reversed-phase column (100 x 2mm, 4μM, 80 Å, flow rate = 1 

mL/min; 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min respectively, 

Phenomenex ®). The binary solvent system (A/B) was as follows: 0.1% TFA in 

water (A) and 0.1% TFA in CH3CN (B). Absorbance was detected at 240 nm. The 

purity of all tested compound (> 95%) was determined by HPLC analysis. 
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8.2 Methods and materials 
 

Scheme 1. General method for the Synthesis of compounds LK1-LK12 

A) Synthesis of 5-arylidene-thiazolidine-2,4-diones (2a-m) (Knoevenagel 

condensation) 

 

 

 

A mixture of thiazolidine-2,4-dione (1) (2.5 g, 1 eq.), aldehydes a-m (1 eq.), 

piperidine (0.5 eq.), and ethanol (150 mL) were placed in a 25 ml bottom flask. The 

reaction mixture was heated under reflux and continuously stirred for a period of 8-

9 h. The course of the reaction was monitored by TLC. The reaction mixture was 

poured into water and acidified with acetic acid. The resulting precipitate was 

filtered off and recrystallized from acetic acid to give 2a–m. HPLC purification was 

performed by semi-preparative reversed-phase HPLC (Fusion-RP, C18 reversed-

phase column: 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) using the 
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gradient conditions reported below and the final products were characterized by 

ESI-MS and NMR spectra. (High purity> 97% detected by HPLC analysis)   

     

B) Synthesis of compounds LK1-LK12 and 3d 

 

 

 

A 1 mmol (1 eq.) of 2a-m was dissolved in DMF (3.5 mL), and fine disperse 

anhydrous sodium hydride (1.5 eq.) was added on ice. The mixture was stirred for 

30 min and to the resulting suspension were added ethyl bromoacetate (1.1 eq.) or 

bromoacetic acid (1.1 eq.). The mixture was stirred at 80°C for 3 h. The reaction 

was monitored by TLC. After completion of the reaction, the reaction mass was 

poured into ice-cold water. The resulted precipitate was filtered, washed with water, 

dried, and then recrystallized from absolute methanol to give compounds LK1-

LK11 and LK12, 3d. HPLC purification was performed by semi-preparative 

reversed-phase HPLC (Fusion-RP, C18 reversed-phase column: 250 x 10.00mm, 

4μM, 80 Å, flow rate = 4 mL/min) using the gradient conditions reported below and 
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the final products were characterized by ESI-MS and NMR spectra (High purity> 

97% detected by HPLC analysis). 

 

Scheme 2. General method for the Synthesis of compounds LK13-LK17 

A) Synthesis of compound LK-13 

 

1 eq. (70 mg) of LK-12 was dissolved in DCM (4 mL), and fine disperse 

phenylamine (2 eq.), hydroxybenzotriazole (1 eq.) and liquid N,N′-

Diisopropylcarbodiimide (1.5 eq.) were added. The mixture was stirred overnight 

at room temperature to give the desired product. The reaction was monitored by 

TLC. After completation the reaction mixture was extracted with EtOAc and the 

organic phase was anhydrified with Sodium sulphate anhydrous and then 

evaporated under vacuum to give the crude product LK-13. HPLC purification was 

performed by semi-preparative reversed-phase HPLC (Fusion-RP, C18 reversed-

phase column: 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) using the 

gradient conditions reported below and the final products were characterized by 

ESI-MS and NMR spectra (High purity> 97% detected by HPLC analysis). 
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B) Synthesis of compound LK-14 

 

 

1 eq. (70mg) of 3d was dissolved in DCM (4 mL), and fine disperse 4-

dimethylaminopyridine (1 eq.), liquid phenol (1 eq.) and liquid N,N′-

Diisopropylcarbodiimide (1 eq.) were added. The mixture was stirred overnight at 

room temperature to give the desired product. The reaction was monitored by TLC. 

After completion of the reaction, the mixture was filtered off in order to remove the 

precipitated N,N′-Dicyclohexylurea and the reaction mixture was extracted with 

EtOAc; the organic phase was anhydrified with Sodium sulphate anhydrous and 

then evaporated under vacuum to give the crude product LK-14. HPLC purification 

was performed by semi-preparative reversed-phase HPLC (Fusion-RP, C18 

reversed-phase column: 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) using 

the gradient conditions reported below and the final products were characterized by 

ESI-MS and NMR spectra (High purity> 97% detected by HPLC analysis). 
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C) Synthesis of compounds LK15-LK17 

 

 

1 eq. (70 mg) of LK-12 was dissolved in DCM (4 mL) and liquid Hydrazine hydrate 

(2 eq.), hydroxybenzotriazole (1 eq.) and liquid N,N′-Diisopropylcarbodiimide (1.5 

eq.) were added. The mixture was stirred overnight at room temperature to give the 

desired product 4m. The reaction was monitored by TLC. After completation the 

reaction mixture was extracted with EtOAc and the organic phase was anhydrified 

with Sodium sulphate anhydrous and then evaporated under vacuum. HPLC 

purification was performed by semi-preparative reversed-phase HPLC (Fusion-RP, 

C18 reversed-phase column: 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) 

using the gradient conditions reported below and the final products were 

characterized by ESI-MS and NMR spectra (High purity> 97% detected by HPLC 
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analysis). Then, 1 eq. (50mg) of 4m was dissolved in DCM (4 mL), and fine 

disperse 4-dimethylaminopyridine (1 eq.), 1,3-benzodioxole-4-carboxylic acid (2 

eq.); 2,5-Dihydroxybenzoic acid (2 eq.) or 3-nitrobenzoic acid  (2 eq.) and liquid 

N,N′-Diisopropylcarbodiimide (1 eq.) were added. The mixture was stirred 

overnight at room temperature to give the desired products LK15-LK17. The 

reaction was monitored by TLC. After completion of the reaction, the mixture was 

filtered off in order to remove the precipitated N,N′-Dicyclohexylurea and the 

reaction mixture was extracted with EtOAc and the organic phase was anhydrified 

with Sodium sulphate anhydrous and evaporated under vacuum. HPLC purification 

was performed by semi-preparative reversed-phase HPLC (Fusion-RP, C18 

reversed-phase column: 250 x 10.00mm, 4μM, 80 Å, flow rate = 4 mL/min) using 

the gradient conditions reported below and the final products were characterized by 

ESI-MS and NMR spectra (High purity> 97% detected by HPLC analysis).     
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1.1 Ethyl (Z)-2-(5-(5-hydroxy-2-nitrobenzylidene)-2,4-dioxothiazolidin-3-yl)acetate( 

LK-1) 

 was obtained by following the general procedure as a 

pale brown powdery solid (75 mg, 44% yield after HPLC purification); RP-HPLC tR = 32.6 

min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  

= 240 nm. 1H NMR (400 MHz, Chloroform-d): δ 8.24 (s, 1H), 8.10 (dd, J = 9.0, 2.6 Hz, 

1H), 7.84 (s, 1H), 6.95 (d, J = 9.0 Hz, 1H), 4.44 (s, 2H), 4.21 (q, J = 7.1 Hz, 2H), 1.25 (t, J 

= 7.1 Hz, 3H).13C NMR (101 MHz, Chloroform-d): δ 171.81, 166.86, 165.41, 162.81, 

140.49, 127.73, 124.63, 124.18, 122.73, 120.82, 115.62, 61.89, 41.58, 13.08. ESI-MS, 

calcd for C14H12N2O7S 352.32; found m/z = 351.2 [M -H]  

1.2 Ethyl-(Z)-2-(5-(3-hydroxy-4-nitrobenzylidene)-2,4-dioxothiazolidin-3-yl)acetate 

(LK-2) 

 was obtained by following the general procedure as 

a pale yellow powdery solid (109.8 mg, 63.3% yield after HPLC purification); RP-HPLC 

tR = 32.6 min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 

4 mL/min, = 240 nm. 1H NMR (400 MHz, Chloroform-d): δ 8.14 (d, J = 8.8 Hz, 1H), 

7.77 (s, 1H), 7.22 (s, 1H), 7.05 (dd, J 8.8, 1.9, 1H), 4.42 (s, 2H), 4.19 (q, J = 7.1 Hz, 2H), 

1.24 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, Chloroform-d): δ 171.81, 166.86, 165.41, 

162.81, 140.49, 127.73, 124.63, 124.18, 122.73, 120.82, 115.62, 61.89, 41.58, 13.08. ESI-

MS, calcd for C14H12N2O7S 352.32; found m/z = 351.2 [M -H]. 
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1.3Ethyl-(Z)-2-(5-(3,4-bis(benzyloxy)benzylidene)-2,4-dioxothiazolidin-3-yl)acetate 

(LK-3) 

 was obtained by following the general 

procedure as a grey solid (106.6 mg, 44% yield after HPLC purification); RP-HPLC tR = 

41.4 min, gradient condition: from 5% B ending  to 100% B over 50 min, flow rate of 4 

mL/min,  = 240 nm. 1H NMR (400 MHz, Chloroform-d): δ 7.72 (s, 1H), 7.40 – 7.34 (m, 

3H), 7.34 – 7.23 (m, 7H), 7.02 – 6.97 (m, 2H), 6.92 (d, J = 8.4 Hz, 1H), 5.17 (d, J = 7.0 Hz, 

4H), 4.38 (s, 2H), 4.17 (q, J = 7.1 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, 

Chloroform-d): δ 171.79, 169.25, 169.13, 152.13, 148.91, 138.00, 135.19, 130.44, 128.53 

(4C), 127.87 (2C), 127.20 (4C), 125.38, 115.98, 114.57, 114.28, 71.32 (2C), 62.15, 41.93, 

29.69, 14.09. ESI-MS, calcd for C28H25NO6S 503.5; found m/z = 504.3 [M + H]+.  

1.4 Ethyl (Z)-2-(5-(3,4-dihydroxybenzylidene)-2,4-dioxothiazolidin-3-yl)acetate (LK-4) 

 was obtained by following the general procedure 

as a bright yellow powdery solid (70 mg, 47% yield after HPLC purification); RP-HPLC 

tR = 25.66 min, gradient condition: from 5% B ending to 100% B over 50 min, flow rate of 

4 mL/min,  = 240 nm.1H NMR (400 MHz, Chloroform-d): δ 7.81 (s, 1H), 7.06 (s, 1H), 

7.02 (d, J = 8.1 Hz, 1 H), 6.90 (d, J=8.21 Hz, 1H), 4.41 (s, 2H), 4.19 (q, J = 7.1 Hz, 2H), 

1.24 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, Chloroform-d): δ 170.32, 169.31, 169.11, 

148.08, 145.97, 134.71, 125.12, 121.98, 119.89, 116.63, 116.34, 62.27, 29.69, 14.07. ESI-

MS, calcd for C14H13NO6S 323.32; found m/z = 322.3 [M- H].  
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1.5 Ethyl (Z)-2-(5-(3-methoxybenzylidene)-2,4-dioxothiazolidin-3-yl)acetate (LK-5) 

 was obtained by following the general procedure as 

pale yellow solid (173.6 mg, 80% yield after HPLC purification); RP-HPLC tR = 36.93 

min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  

= 240 nm. 1H NMR (300 MHz, Chloroform-d): δ 7.96 (1 H, s), 7.62 (d, J= 9.5 Hz, 2H), 

7.12 (d, J = 9.6 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H). 13C 

NMR (125 MHz, Chloroform-d): δ 171.79, 169.25, 169.13, 159.84, 131.93, 130.90 (2C), 

127.47, 122.27, 115.61(2C), 61.54, 55.35, 42.80, 14.13. ESI-MS, calcd for C15H15NO5S 

321.35; found m/z = 322.35 [M +H]+ ;  

1.6 Ethyl-(Z)-2-(5-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2,4-dioxothiazolidin-3-

yl)acetate (LK-6) 

 was obtained by following the general 

procedure as a pale yellow solid (124 mg, 60.5% yield after HPLC purification); RP-HPLC 

tR = 31.1 min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 

4 mL/min,  = 240 nm. 1H NMR (300 MHz, Chloroform-d): δ 8.02 (s, 1H), 7.20 (s, 1H), 

7.01 (s, 1H), 4.50 (s, 2H), 4.27 (q, J = 9.1 Hz, 2H), 3.98 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). 

13C NMR (125 MHz, Chloroform-d): δ 167.08, 166.70, 165.30, 150.40, 145.51, 132.41, 

124.99, 120.91, 116.31, 116.03, 114.54, 61.69, 55.43, 41.61, 12.88. ESI-MS, calcd for 

C15H14BrNO6S 416.24; found m/z = 415.2 [M -H]. 
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1.7 Ethyl-(Z)-2-(5-(5-hydroxy-2,4-dimethoxybenzylidene)-2,4-dioxothiazolidin-3-

yl)acetate (LK-7) 

 was obtained by following the general 

procedure as pale yellow solid (138.6 mg, 77% yield after HPLC purification); RP-HPLC 

tR = 29.1 min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 

4 mL/min,  = 240 nm. 1H  NMR (300 MHz, Chloroform-d): δ 7.90 (s, 1H), 6.07 (s, 1H), 

5.99 (s, 1H),  4.48 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 1.31 (t, J = 

7.2 Hz, 3H). 13C NMR (125 MHz, Chloroform-d): δ 171.79, 169.25, 169.13, 166.30, 

160.64, 158.66, 129.80, 125.53, 110.26, 97.44, 89.53, 61.54, 56.31, 55.87, 42.86, 14.13. 

ESI-MS, calcd for C16H17NO7S 367.37; found m/z = 366.3 [M–H]. 

1.8Ethyl-(Z)-2-(5-(5-bromo-2-hydroxy-3-nitrobenzylidene)-2,4-dioxothiazolidin-3-

yl)acetate (LK-8) 

 was obtained by following the general procedure 

as a pale grey solid (218.6 mg, 67% yield after HPLC purification); RP-HPLC tR = 38.5 

min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  

= 240 nm. 1H  NMR (300 MHz, Chloroform-d): δ  8.35 (d, J = 2.3 Hz, 1H), 7.99 (s, 1H), 

7.85 (d, J = 2.3 Hz, 1H), 4.52 (s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). 13C 

NMR (125 MHz, Chloroform-d): δ 171.79, 169.25, 169.13, 158.74, 137.19, 135.17, 

127.04, 124.55, 123.41, 122.03, 114.50, 61.54, 42.86, 14.13. ESI-MS, calcd for 

C14H11BrN2O7S 431.21; found m/z = 454.2 [M + Na]+. 



Experimental section 
 

- 183 - 
 

1.9 Ethyl (Z)-2-(5-((8-hydroxyquinolin-2-yl)methylene)-2,4-dioxothiazolidin-3-

yl)acetate (LK-9) 

 was obtained by following the general 

procedure as a yellow solid (135.2 mg, 77% yield after HPLC purification); RP-HPLC tR 

= 30.5 min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 

mL/min,  = 240 nm. 1H NMR (400 MHz, DMSO-d6): δ 8.42 (d, J= 8.8, 4.7, 1H), 8.17 (s, 

1H), 7.95 (d , J = 8.4, 4.6 Hz, 1H), 7.51 (t, J = 7.1 Hz, 1H), 7.43 (d, J = 2.3 Hz, 1H), 7.23 

(d, J = 3.8 Hz, 1H), 4.51 (s, 2H), 4.18 (q, J= 7.1 Hz, 2H), 1.22 (t, J = 7.1 Hz, 3 H). 13C NMR 

(125 MHz, DMSO-d6): δ 167.46, 165.46, 154.37, 151.06, 138.21, 137.53, 129.71, 129.11 

129.03, 126.81, 124.25, 122.24, 118.04, 111.66, 61.54, 42.86, 14.13. ESI-MS, calcd for 

C17H14N2O5S 358.37; found m/z = 381.4 [M+Na]+. 

1.10 Ethyl (Z)-2-(5-(3,5-difluoro-2-hydroxybenzylidene)-2,4-dioxothiazolidin-3-

yl)acetate (LK-10) 

 was obtained by following the general procedure as 

a white solid (63.3 mg 37.5% yield after HPLC purification); RP-HPLC tR = 34.75 min, 

gradient condition: from 5% B to ending to 100 % B over 40 min, flow rate of 4 mL/min,  

= 240 nm. 1H NMR (300 MHz, Acetone-d6) δ 8.25 (s, 1H), 7.02 (s, 1H), 6.98(s, 1H), 4.51 

(s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). 13C NMR (125 MHz, Acetone-

d6): δ 171.79, 169.25, 169.13, 158.74, 137.19, 135.17, 127.04, 124.55, 123.41, 122.03, 
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114.50, 61.54, 42.86, 14.13; ESI-MS, calcd for C14H11F2NO5S 343.30; found m/z = 342.3 

[M - H].  

1.11 Ethyl (Z)-2-(5-(furan-2-ylmethylene)-2,4-dioxothiazolidin-3-yl)acetate (LK-11) 

 was obtained by following the general procedure as a 

white solid (74 mg, 53.3% yield after HPLC purification); RP-HPLC tR = 28.9 min, 

gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 

240 nm. 1H NMR (300 MHz, Acetone-d6): δ 7.61 (d, J = 3.6 Hz, 1H), 7.22 (s, 1H),  6.74 

(d, J = 3.6 Hz, 1H), 6.52 (t, J = 3.0, 1.4 Hz, 1H), 4.39 (s, 2H), 4.17 (q, J = 7.1, 1.1 Hz, 2H), 

1.21 (t, J = 7.1 Hz, 3H). 13C NMR (125 MHz, Acetone-d6): δ 170.12, 169.25, 169.13, 

149.56, 142.28, 124.45, 116.02, 111.23, 110.53, 61.54, 42.86, 14.13. ESI-MS calcd for 

C12H11NO5S 281.28; found m/z = 304.30 [M + Na]+.  

1.12 (Z)-2-(5-(3-methoxybenzylidene)-2,4-dioxothiazolidin-3-yl)acetic acid (LK-12) 

 was obtained by following the general procedure as 

a yellow solid (38.6 mg, 35.6% yield after HPLC purification); RP-HPLC tR = 28.10 min, 

gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 

240 nm. 1H (300 MHz, Chloroform-d): δ 7.96 (1 H, s), 7.62 (d, J= 9.5 Hz, 2H), 7.12 (d, J 

= 9.6 Hz, 2H), 4.17 (s, 2H), 3.91 (s, 3H). 13C NMR (125 MHz, Chloroform-d): δ 171.79, 

170.00, 169.13, 159.84, 131.93, 130.90 (2C), 127.47, 122.27, 115.61 (2C), 55.35, 41.76. 

ESI-MS, calcd for C13H11NO5S 293.29; found m/z = 292.29 [M -H]. 
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1.13 (Z)-N-benzyl-2-(5-(3-methoxybenzylidene)-2,4-dioxothiazolidin-3-yl)acetamide 

(LK-13) 

 was obtained by following the general procedure as a 

light grey solid (108.7 mg, 83.3% yield after HPLC purification); RP-HPLC tR = 42.3 min, 

gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  = 

240 nm. 1H NMR (400 MHz, Chloroform-d): δ 7.76 (s, 1H), 7.55 – 7.48 (m, 4H), 7.31 (d, 

J = 9.5 Hz, 2H), 7.16–7.13(m, 1H), 7.00 (d, J = 8.4 Hz, 2H), 5.17 (s, 2H), 3.88 (s, 3H). 13C 

NMR (101 MHz, Chloroform-d) δ 172.81, 171.79, 169.13, 168.99, 159.84, 138.94, 132.06 

(2C), 129.12, 128.46, 123.49, 127.94 (2C), 119.81 (2C), 114.75 (2C), 55.50, 46.54. ESI-

MS, calcd for C19H16N2O4S 368.41; found m/z = 367.4 [M - H];  

1.14 phenyl (Z)-2-(5-(3-hydroxy-4-nitrobenzylidene)-2,4-dioxothiazolidin-3-yl)acetate 

(LK-14) 

 was obtained by following the general procedure 

as a yellow solid (123.2 mg, 99.7% yield after HPLC purification); RP-HPLC tR = 34.44 

min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 mL/min,  

= 240 nm. 1H NMR (400 MHz, Chloroform-d): δ 8.10 (d, J = 8.8 Hz, 1H), 7.44 (s, 1H), 

7.35 (d, J = 7.9 Hz, 1H), 7.28 (d, J = 1.9 Hz, 1H), 7.23 (t, J = 3.0, 1.4 Hz, 2H), 7.15 – 7.07 

(m, 1H), 6.67 (d, J = 8.1 Hz, 2H), 4.34 (s, 2H). 13C NMR (125 MHz, Chloroform-d): δ 

171.79, 169.13, 168.84, 152.20, 150.66, 138.83, 136.03, 135.24, 130.44, 129.44, 125.12, 
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125.05, 124.49, 121.98 (2C), 119.87, 115.67, 43.39. ESI-MS, calcd for C18H12N2O7S 

400.36; found m/z = 423.4 [M + Na]+. 

1.15(Z)-N'-(2-(5-(3-methoxybenzylidene)-2,4-dioxothiazolidin-3-

yl)etyl)benzo[d][1,3]dioxole-4-carbohydrazide (LK-15) 

S
N

O

O

NH

O HN

O

O

O

O

was obtained by following the general 

procedure as a white solid (110 mg, 74.2% yield after HPLC purification); RP-HPLC tR = 

32.1 min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 

mL/min,  = 240 nm. 1H NMR (400 MHz, Methanol-d4): δ 7.46 – 7.41 (m, 3H), 7.38 (d, J 

= 7.3 Hz, 1H), 7.27(s, 1H), 6.98 (d, J = 8.8 Hz, 2H), 6.91 (dd, J = 8.3, 4.1 Hz, 1H), 6.06 (d, 

J = 2.4 Hz, 2H), 4.45 (s, 2H), 3.81 (s, 3H). 13C NMR (125 MHz, Methanol-d4): δ 171.79 , 

169.13, 167.79, 166.13, 159.84, 148.78, 148.56, 131.93, 130.90, 130.43 (2C), 127.47, 

124.56, 120.72, 115.61, 114.78,  109.82, 107.72, 101.50, 55.35, 42.84. ESI-MS, calcd for 

C21H17N3O7S 455.44; found m/z = 456.4 [M + H]+. 

1.16 (Z)-N'-(2-(5-(3-methoxybenzylidene)-2,4-dioxothiazolidin-3-yl)acetyl)-3-

nitrobenzohy drazide (LK-16) 

was obtained by following the general 

procedure as a yellow solid (69.4 mg, 46% yield after HPLC purification); RP-HPLC tR = 

29.9 min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 4 
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mL/min,  = 240 nm. 1H NMR (400 MHz, Methanol-d4): δ 7.94 (s, 1H), 7.86 (d, J = 8.0, 

1.7 Hz, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.44 (t, J = 8.31 Hz, 1H), 7.13 (d, J = 8.7 Hz, 2H), 

6.96 (t, J = 7.5 Hz, 2H), 4.44 (s, 2H), 3.84 (s, 3H). 13C NMR (125 MHz, Methanol-d4): δ 

171.79, 169.13, 167.79, 166.13, 159.84, 147.81, 134.05, 131.93, 130.90, 129.65, 129.33, 

127.47, 125.58, 122.93, 120.72, 115.61 (2C), 114.78, 55.35, 42.84. ESI-MS, calcd for 

C20H16N4O7S 456.43; found m/z = 457.43 [M + H]+. 

1.17 (Z)-2,5-dihydroxy-N'-(2-(5-(3-methoxybenzylidene)-2,4-dioxothiazolidin-3-

yl)acetyl) benzohydrazide (LK-17) 

was obtained by following the general 

procedure as a pale grey solid (108 mg, 74.8% yield after HPLC purification); RP-HPLC 

tR = 31.2 min, gradient condition: from 5% B ending to 100 % B over 50 min, flow rate of 

4 mL/min,  = 240 nm. 1H (400 MHz, Methanol-d4): δ 7.73 (s, 1H), 7.44 (dd, J = 6.3, 3.0 

Hz, 2H), 7.24 (d, J = 3.1 Hz, 1H), 7.12 – 7.05 (m, 2H), 7.00 (dd, J = 8.9, 3.1 Hz, 1H), 6.89 

(d, J = 8.9 Hz, 1H), 4.48 (s, 2H), 3.77 (s, 3H).13C NMR (125 MHz, Methanol-d4): δ 171.79, 

169.13, 167.79, 163.78, 159.84, 156.62, 151.84, 131.93, 130.90, 129.65, 127.47, 121.00, 

120.72, 118.97, 115.67, 115.61 (2C), 114.87, 55.35, 42.84. ESI-MS, calcd for C20H17N3O7S 

443.43; found m/z = 442.43 [M -H].  
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8.3 SPR General methods 
 

Recombinant human r-BAG3 protein was previously expressed, r-BAG3 domain 

was purchased from ARETA International S.r.l., BAG1 and BAG4 human 

recombinant proteins were purchased from Abnova. SPR analyses were performed 

using a Biacore 3000 optical biosensor equipped with research-grade CM5 sensor 

chips (GE Healthcare). Using this platform, two separate recombinant rBAG 

proteins surfaces, a BSA surface and one unmodified reference surface were 

prepared for simultaneous analyses. Proteins (BAG3 and BAG3 domain 100 µg 

mL-1 in 10 mM CH3COONa, pH 4.5, BAG1 100 µg mL-1 in 10 mM CH3COONa, 

pH 7.2 and BAG4 100 µg mL-1 in 10 mM CH3COONa, pH 4.5) were immobilized 

on individual sensor chip surfaces at a flow rate of 5 µL min-1 using standard 

amine-coupling protocols to obtain densities of 8–12 kRU. Commercially available 

compounds 1-26 were purchased from Otava Chemicals. 

Commercially available compounds 1-26, as well as synthetic compounds LK1-

LK17, were dissolved in 100% DMSO to obtain 4 mM solutions, and diluted 1:200 

(v/v) in PBS (10 mM NaH2PO4, 150 mM NaCl, pH 7.4) to a final DMSO 

concentration of 0.5%. Compounds concentration series were prepared as two-fold 

dilutions into running buffer: for each sample, the complete binding study was 

performed using a six-point concentration series, typically spanning 0.025–20 µM, 

and triplicate aliquots of each compound concentration were dispensed into 

disposable vials. Binding experiments were performed at 25°C, using a flow rate of 

50 µL min-1, with 60 s monitoring of association and 300 s monitoring of 

dissociation. Simple interactions were suitably fitted to a single-site bimolecular 
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interaction model (A+B = AB), yielding a single KD (Table 1). Sensorgram 

elaborations were performed using the BIA evaluation software provided by GE 

Healthcare. 
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APPENDIX 

 

 

Based on: 

New dihydropyrimidin-2(1H)-one based Hsp90 C-terminal inhibitors 

S. Terracciano, A. Foglia, M. G. Chini, M. C. Vaccaro, A. Russo, F. Dal Piaz, C. 

Saturnino, R. Riccio, G. Bifulco and I. Bruno 

RSC Advances, 2016, 6, 82330-82340.  
 

Discovery of new molecular entities able to strongly interfere with Hsp90 C-

terminal domain  

Stefania Terracciano, Alessandra Russo, Maria G. Chini, Maria C. Vaccaro, 

Marianna Potenza, Antonio Vassallo, Raffaele Riccio, Giuseppe Bifulco, and Ines 

Bruno 

Scientific Reports, 2018, 8, 1709, 1-11; 
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Targeting Hsp90 C-terminal domain 

Besides the main projects developed in the frame of my PhD research experience, 

I had the opportunity to participate to an ongoing study focused on the development 

of Hsp90 C-terminal domain inhibitors, carried out by the research group of 

Organic Chemistry. Heat shock protein 90 (Hsp90) is a molecular chaperone 

involved in the control of a wide range of cellular processes through directing the 

folding and conformational maturation of many client proteins under both normal 

and stress conditions. The amplified expression of Hsp proteins is a common feature 

in human cancers and is associated with increased tumor growth, metastatic 

potential of tumor cells and resistance to chemotherapy.215 Among Hsp90’s clients 

there are different oncoproteins (Her2, Bcr-Abl, Akt, etc) that are linked to the six 

hallmarks of cancer. The depletion of these clients oncoproteins and the 

simultaneous suppression of multiple oncogenic pathways highlights the strategic 

approach of targeting Hsp90 machinery in cancer therapy.216 In the last decades 

many effective and selective Hsp90 inhibitors (Hsp90-I), targeting the N-terminal 

domain, have been identified. However,  despite their efficacy, these classical 

inhibitors have not yet achieved the expected success because they also stimulate a 

cytoprotective mechanism in cancer cells due to the heat shock response (HSR), 

leading to an increase in the expression of heat shock proteins (mainly Hsp70 and 

Hsp27), which may limit their clinical potential.215 In contrast to these modulators, 

molecules that interfere with Hsp90 C-terminus have been shown to not produce 

the deleterious HSR emerging, thus, as a promising alternative and a more effective 

therapeutic anti-cancer strategy.217 So far, for this less-targeted C-terminal domain 

only few inhibitors have been disclosed, including both natural products and their 

synthetic derivatives217, owing to both the structural complexity of the protein 

domain and the absence of the crystal structures of C-terminal Hsp90-inhibitor 

complexes. In the frame of this project, I had the opportunity to perform some 

experimental procedures that allowed the identification of new interesting 

modulators of the Hsp90 C-terminal domain. 

In more details, starting from the previous identification of a 3,4-dihydropyrimidin-

2-(1H)-one (DHPM) based compound 1218, disclosed as the first non natural 
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inspired C-terminal Hsp90 inhibitor, a new set of synthetic derivatives (Figure A.1) 

was explored by means of SPR analysis, followed by biological screening. 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Chemical structures of the lead compound 1 and new DHPM-based compounds 2-13 

 

In particular, I was involved in the optimization of some steps of the synthetic 

procedure and in the SPR analysis of the synthesized molecules. In the table A.1 

the KD constants, measured in the SPR assay, have been reported; the lead 

compound 1 and the known Hsp90 inhibitor 17-N-allylamino-17-

demethoxygeldanamycin (17-AAG)219 were used as positive controls.  
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Compound KD (nM) Compound KD (nM) 

1 76 ± 7 8 2.9 ± 0.8 

2 76.2 ± 1.9 9 NB 

3 17.6 ± 4.9 10 NB 

4 13.0 ± 4.9 11 23.6 ± 0.7 

5 12.0 ± 1.9 12 NB 

6 3.7 ± 0.9 13 NB 

7 NB 17-AAGa 388 ± 89 
a17-N-allylamino-17-demethoxygeldanamycin 

 

Table A.1. Thermodynamic constants measured by SPR for the interaction between  

the tested compounds and the  immobilized Hsp90 

 

The seven best DHPM binders 2-6 and 8, 11 have been further investigated for their 

anti-proliferative activity against two cancer cell lines: A375 (human melanoma) 

and Jurkat (human leukemic) (Table A.2). 

 

Table A.2. IC50 values of compounds 2-6, 8, 11 and Novobiocin, from cells viability assay, on 

human T lymphocyte cell line Jurkat and on human melanoma cancer cell line A375 

 

Compound IC50 (µM) 
24h 

Jurkat cell 
line  

IC50 (µM) 
48h 

Jurkat cell 
line 

IC50 (µM) 
24h 

A375 cell line                   

IC50 (µM)  
48h 

A375 cell line 

2 - - - - 

3 - - - 86.1  0.9 
4 - - 51.2  0.8 40.3  0.6 
5 85.1  0.8 74.2  1.1 55.0  0.6 43.5  1.0 
6 - - - - 

8 - - - - 

11 81.0  1.2 70.5  1.4 21.3  0.9 15.2  1.1 
Novobiocin  550.3  1.3 460.5  0.9 170.6  1.1 150.5  0.7 
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The obtained data allowed the identification of compounds 4, 5 and 11 displaying 

a biological profile better than Novobiocin, a known C-terminal Hsp90 inhibitor, 

and similar to the lead compound 1. These findings have been reported in a recent 

paper, entitled: “New dihydropyrimidin-2(1H)-one based Hsp90 C-terminal 

inhibitors”, published on RSC Advances, 2016, 6, 82330-82340.   

Continuing this research line I took part in another project focused on the 

biophysical screening of a collection of commercially available compounds. The 

details of this research work that afforded the discovery of two new chemical 

entities 7 and 10 (see Figure A.2), able to target the C-terminal Hsp90 domain, 

have been reported in the last published paper on Scientific Reports entitled: 

“Discovery of new molecular entities able to strongly interfere with Hsp90 C-

terminal domain”.  

 

                                              

                 Compound 7                                                                Compound 10 

KD: 5.2±3.8 nM a                                                                 KD: 20.8±8.7 nM a  

IC50 (on U937 cancer cell lines) 24 hb                   IC50 (on U937 cancer cell lines) 24hb 

51.0±0.7 M                                                                        50.0± 0.7 M 

IC50 (on Jurkat cancer cell lines) 24 hb               IC50 (on Jurkat cancer cell lines) 24 hb 

25.1± 0.4 M                                                                     26.1± 0.7 M 

 

 Figure A.2. Chemical structures of the compounds 7, 10                                                                                 
aTermodynamic constants measured by SPR for the interaction between the tested compounds and 

the immobilized Hsp90; b IC50 values of compounds 7, 10, from cells viability assay on human 

monocytic cell line U397,  from histiocytic lymphoma, and human leukemik T lymphocyte cell line 

Jurkat 
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List of Abbreviations 

 

17-AAG              17-N-allylamino-17-demethoxygeldanamycin  

AAR                  O-acetyl-ADP-ribose 

ADPr                    ADP-ribose 

ADPRT               ADP-ribosyl-transferase 

AR                      Androgen receptor 

ARTC                  Arginine-specific ecto-enzymes 

At                    Arabidopsis thaliana 

BAG                 Bcl-2 associated athanogene 

BD                        BAG domain 

BIR                     Biotin ligase 

BLI                       Biolayer Interferometry 

CCT                        Chaperonin Containing TCP-1 

CDK              Cyclin-Dependent Kinase 

CMA                       Chaperone-mediated autophagy  

DEM                       Depletor diethyl maleate  

DHPM            3,4-dihydropyrimidin-2-(1H)-one 

DIC                         N,N′-Diisopropylcarbodiimide 

DMAP                  Dimethylaminopyridine   

DMSO           Dimethyl Sulfoxide 

DNMT       DNA-methyl-transferase 

ER                     Estrogen receptor 

ESI-MS        Electrospray mass spectrometry 

HAT            Histone acetyltransferases  

 HDAC                Histone deacetylases 

Hsc70                   Heat shock cognate 70 

HSF1                      Heat Shock Factor 1 

Hsp                       Heat Shock Protein 

HSR                         Heat Shock Response 

IC50                     Half Maximal Inhibitory Concentration 
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IFITM-2               Interferon-induced transmembrane protein 2 

IKK                       IκB kinase 

IMAC            Immobilized-metal affinitychromatography 

IPTG                  -D-1-thiogalactopyranoside  

IPV                        Isoleucine–proline–valin 

ITC                      Isothermal titration calorimetry experiment 

KD                     Dissociation Constant 

LRP16              Leukemia-related protein 16  

MacroD1             Macrodomain protein 1 

MacroD2               Macrodomain protein 2 

MAR                   Mono-ADP-ribose 

MARHs                Mono-ADP-ribose-protein hydrolases 

MARTs              Mono-ADP-ribose-protein transferases   

NAD                    Nicotinamide adenine dinucleotide 

NMR           Nuclear Magnetic Resonance 

OD                        Optical density 

ODN                      Oligodeoxynucleotides 

PAR                     Poly-ADP-ribose 

PARG                 PAR glycohydrolases 

PARPs                  PAR-polymerases 

PBMC                      Peripheral blood mononuclear cells 

PDACs               Pancreatic ductal adenocarcinomas  

PDB                       Protein Data Bank 

PDZGEF2            Guanine nucleotide exchange factor 2  

PLC-g                  Phospholipase C gamma 

PTM                 Post translational modification 

PXXP                     Proline-rich  

Rap1                        Ras proximate-1 

RP-HPLC       Reverse Phase- High Performance Liquid Chromatography 

SAR                Structure Activity Relationship 

SCLC                      Small cell lung cancer  

SDS PAGE   Sodium Dodecyl Sulphate -PolyAcrylamide Gel Electrophoresis 



                                                                                                 List of Abbreviations 

  - 216 - 
 

SODD               Silencer of death domains 

SPR                 Surface plasmon resonance 

STS                         Staurosporine 

SUMO              Small-ubiquitine-like modifiers 

SYNPO2                Synaptopodin-2  

TB                          Terrific broth 

TEV                Tobacco Etch Virus nuclear-inclusion-endopeptidase 

THF         Tetrahydrofuran 

TMSCl          Chlorotrimethylsilane 

TNF                      Tumor necrosis factor 

 

 

 


