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Abstract

The overarching goal of this work has been that of devising novel methods
for building functional neuromarkers from resting-state fMRI data to describe
healthy and pathological human behaviour. Observing spontaneous fluctua-
tions of the BOLD signal, resting-state fMRI allows to have an insight into the
functional organisation of the brain and to detect functional networks that are
consistent across subjects. Studying how patterns of functional connectivity
vary both in healthy subjects and in subjects affected by a neurodegenerative
disease is a way to shed light on the physiological and pathological mechanisms
governing our nervous system.

The first part of this thesis is devoted to the description of fully data-driven
feature extraction techniques based on clustering aimed at supporting the di-
agnosis of neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and
Parkinson’s disease). The high-dimensional nature of resting state fMRI data
implies the need of suitable feature selection techniques. Traditional univariate
techniques are fast and straightforward to interpret, but are unable to unveil
relationships among multiple features. For this reason, this work presents a
methodology based on consensus clustering, a particular approach to the clus-
tering problem that consists in combining different partitions of the same data
set to produce more stable solutions. One of the objectives of fMRI data analysis
is to determine regions that show an abnormal activity with respect to a healthy
brain and this is often attained with comparative statistical models applied to
single voxels or brain parcels within one or several functional networks. Here,
stochastic rank aggregation is applied to identify brain regions that exhibit a
coherent behaviour in groups of subjects affected by the same disorder. The
proposed methodology was validated on real data and the results are consistent
with previous literature, thus indicating that this approach might be suitable
to support early diagnosis of neurodegenerative diseases.

The second part of the thesis is dedicated to the study of the link between

brain functional connectivity and individual differences in intelligence and per-



sonality. Functional connectivity networks are built by parcelling the brain into
regions according to some criterion, so that regions become the nodes of the
network, and by adding a connection between two nodes if the time series of the
involved brain regions are correlated. One of the challenge of functional con-
nectivity estimation is that it can be greatly affected by motion artifacts and
nowadays there is still no universal agreement on what is the best strategy for
noise and motion artifact removal. For this reason, during this project a pre-
processing pipeline was developed implementing the most used denoising steps
found in literature, to study how different approaches affect the final outcome
of the analysis. After preprocessing, starting from the connectivity network of
each subject, regression models were built using the edges as features to pre-
dict IQ scores. The results have shown the presence of a correlation, although
weak, between the strength of the connections and the intelligence score, but
also how this value can be greatly affected by the presence of motion artefacts
and experimental choices. The same framework was applied also to predict
personality traits, to investigate the neural correlates of psychometric models
currently adopted in personality psychology.
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Chapter

Introduction

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique
based on magnetic resonance used to describe brain activity over time. It
measures neural activity indirectly, exploiting the blood-oxygen-level depen-
dent (BOLD) effect, first discovered by Seiji Ogawa in the early 1990s, that can
be summarized as follows: after a neural activation, the oxygen consumption
causes an increase of the blood flow in the activation locus that in turn causes
an increase of the intensity of the measured signal.

The introduction of fMRI allowed for non-invasive in vivo observation of
brain function with an unprecedented spatial resolution, thus dramatically chan-
ging the landscape of brain science. One of the main research goal of this field
is to analyse the human brain network, often referred to as human connectome,
in order to understand its anatomical and functional organisation. Gaining
such an understanding is fundamental to support early diagnoses of neurological
disorders and to improve the treatments of these pathologies. Furthermore,
connectome-based predictive models can be used to study the links between

measured brain activity and individual differences in demographics, behaviour

and psychological profile.

Features

Samples

Figure 1.1: Representation of fMRI data in 2D form.



fMRI data consist of 3D volumetric images of the brain acquired over time,
that can be represented in matrix form, with a time series associated to each
voxel (volumetric pixel), as depicted in figure Traditionally, fMRI has been
applied to observe brain activity during the performance of a task or in con-
junction with the administration of a stimulus (e.g., visual or auditory stimuli).
However, already in 1995, in the seminal work by Biswal and colleagues, spa-
tially correlated fluctuations of the BOLD signal were observed in the brain at
rest, i.e. in the absence of a task. The common variance of signals from dif-
ferent regions of the brain has been interpreted as an indicator of synchronous
neural activity, demonstrating that these regions are functionally connected.
Since then, a large body of literature has been devoted to the study of resting-
state IMRI (rfMRI), to investigate the organisation of the brain as a functional
network.

The central theme of this thesis is the design of methods for building func-
tional neuromarkers from rfMRI data. Identifying brain correlates of health-
related outcomes, such as diagnostic categories or cognitive performance, could
bring further insight in neuropathology and in the assessment of healthy brain
function. One of the challenges of defining brain markers, as opposed to other
biomarkers based on relatively stable trait indicators, is to cope with the con-
siderable variability in brain structure, brain function and cognition during the
lifetime of the same individual. Ideally, a neuromarker should be stable across
age, not significantly affected by brain states, sensitive when compared with
normative controls and specific across disorders (Gordon, 2007)). Moreover, fea-
tures that can be easily understood and interpreted by humans tend to be more
useful, since it is easier to assess their neuroscientific plausibility. Early neu-
roimaging studies were aimed at understanding which functions were encoded
in isolated regions of interest, but it is now commonly believed that features of
brain disorders are more likely to be encoded in neural systems encompassing
networks of many regions (Woo et al.,[2017)), therefore models that integrate the
contributions of multiple regions, as those based on brain functional networks,
have a better chance of obtaining more accurate neuromarkers. Similarly, stud-
ies investigating the neural mechanisms underlying higher cognitive abilities in
healthy subjects discovered that human intelligence, rather than arising from
specialized regions, is linked with global properties of brain networks (Barbey,
2017).

In this work, we consider two of the main approaches used to model func-
tional brain networks. The first is based on independent component analysis
(ICA), a blind source separation method that assumes that the observed signal
X is the result of the contributions of different independent sources, the com-
ponents: X = MC, where each row of C' is a component and M is a mixing

matrix representing the contribution of each component to the observed sig-
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Figure 1.2: ICA on fMRI data: the input matrix consists of time series associ-
ated to brain voxels; the mixing matrix contains, for each time point, the relative
contribution of each independent component to the global signal; the component
matrix indicates the contribution of the single voxels to the components.

nal for each time point. The goal of ICA is to determine an unmixing matrix
W to separate signal components: C = WX. With fMRI data, every com-
ponent identified by ICA consists of a set of voxel values with an associated
time course (figure . These values are a measure of the voxel contribution
to the specific component. We can distinguish between spatial and temporal
ICA depending on whether we require the spatial pattern or the time courses
to be independent, but the most commonly used is the spatial ICA, and this is
also due to the fact that there are many more voxels than time points. When
applied to rfMRI data, ICA is used to identify resting state networks (RSNs),
i.e. functionally connected networks of regions that are spatially independent
(Beckmann et al., [2005; Damoiseaux et al., [2006; Tedeschi and Esposito), [2012).
The most commonly reported RSNs are six: the default-mode network (DMN),

the visual network, the fronto-parietal network, the sensori-motor network, the
auditory network and the self-referential network. The DMN is by far the most
studied RSN. It is involved in attention-related processes and it appears to be
deactivated when the brain is involved in cognitive tasks while active when the
subject is awake and at rest, therefore it is considered a cognitive baseline for a
subject (Tedeschi and Espositol, 2012).

A second approach builds functional connectivity networks first defining net-

work nodes as spatial coordinates or as regions of interest derived from a brain
parcellation; a time series is then identified for each node, e.g. as the average
time series across all voxels in a parcel; finally, the strength of the connections
between nodes is estimated from data, commonly as the correlation of each time
series with every other time series (figure .

While in the latter approach the dimensionality of the problem is deter-
mined by the number of network nodes, ICA performs a whole brain analysis,
and a feature selection step is often necessary to allow for the application of
advanced analysis techniques. In chapter 2] a framework is presented for the
extraction of features from the DMN maps based on clustering techniques, as
opposed to traditional univariate feature selection methods. Clustering is the
task of grouping similar objects together. In this context, it is used to identify
groups of voxels showing a common behaviour, shifting the perspective from a
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Figure 1.3: Network modelling applied to the investigation of brain connectivity:
nodes represent brain regions and an edge between two regions indicates that
there is a functional connection between the measured brain activity in the two
regions.

mere geometric representation to the level of brain parcels. This has the dual
advantage of making the system more robust to noise and to divide the brain
into functional modules that are easier to interpret. Consensus clustering, a par-
ticular approach to the clustering problem that consists in combining different
partitions of the same data set to produce more robust solutions, is introduced
as a technique for obtaining stable subsets of features. In chapter 3} a method
based on stochastic rank aggregation is proposed for the identification of neu-
romarkers of neurodegenerative diseases that uses as input clustering derived
features. Briefly, this approach consists in using the data of each subject to
create a ranking of the most activated brain regions; all the rankings of a given
condition are then integrated to derive a subset of informative parcels.
Chapter [4] explores the possibility of training learning models on individual
functional connectivity networks to predict cognitive abilities and personality
traits in healthy subjects. Since functional connectivity is known to be greatly
affected by motion artefacts (Burgess et al., [2016} [Siegel et al., [2016)), the main
denoising strategies adopted in the field are discussed. The experimentation was

based on a large cohort of subjects made available by the Human Connectome
project, an open data initiative that provides access to a great number of fMRI

acquisitions in order to promote research on the human brain connectivity.



Chapter

Feature extraction from ritMRI

Over the past decades a great effort has been made by researchers in order to
shed light on the physiological and pathological mechanisms governing our ner-
vous system. Recent advances in neuroimaging have allowed the collection of a
considerable amount of data describing living human brains. However, the high-
dimensional nature of fMRI data implies the need of suitable feature selection
techniques. Traditional univariate techniques are fast and straightforward to
interpret, but are unable to unveil relationships among multiple features. The
aim of this chapter is to discuss the applicability of clustering based techniques
to the problem of feature extraction in resting state fMRI data analysis. More
specifically, a methodology is presented based on consensus clustering, a par-
ticular approach to the clustering problem that consists in combining different
partitions of the same data set in a final solution. The approach was validated
on a real-word data set, deriving from multiple clinical studies on Parkinson’s
disease and amyotrophic lateral sclerosis. Spcifically, it was applied to default-
mode network maps extracted from each subject with ICA. Results show that
the adoption of consensus-based techniques can indeed lead to an improvement
of the results, not only in terms of feature discriminability, but also from the

point of view of interpretability.

2.1 Background

After preprocessing fMRI data, a feature selection step is often necessary be-
fore performing further analyses. The reasons for reducing data dimensionality
are several: prohibitive computational requirements; metrics that lose mean-
ing when applied in a high dimensional space; the relatively higher number of
samples required to train a learning model.

Traditional univariate techniques, such as t-test or analysis of variance (A-
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NOVA), suffer from many drawbacks. First, false positives and the multiple
comparisons problem should be taken into account (Eklund et al.l 2016]), since
the number of features in a whole-brain analysis is in the order of several thou-
sands and above. Second, univariate approaches are unable to unveil relation-
ships among features and this is a serious limitation in this domain. In fact, vox-
els are features deriving from a geometrical representation of the brain that does
not reflect the actual organization of neurons, therefore it is most unlikely that
a single voxel could alone explain an underlying neurobiological phenomenon.

Since the ultimate goal of fMRI studies is to understand which voxels co-
vary and whether the activity of some voxel influences the activity of another
voxel, then one possible solution is to employ multivariate statistical tests (e.g.
multivariate ANOVA); but, since each independent variable takes up a degree
of freedom, these approaches are problematic when working with a high num-
ber of features. Alternative techniques employ anatomical information to build
regions of interest, but they imply the need for strong a priori assumptions,
or are based on searchlight analysis, a method for combining the information
deriving from all voxels lying into a sphere centred on a given voxel (the ‘search-
light’). The latter approach has, however, some limitations that could lead to
the wrong interpretation of a cluster as informative, or to the inability to detect
truly informative voxels (see |[Etzel et al. (2013) for a detailed discussion of these
aspects).

In exploratory data analysis, clustering is the task of segmenting data in
groups in order to highlight underlying relationships among data objects. Typ-
ically, a clustering algorithm works by building a partition in which a given
measure of intra-group similarity between items is maximized. When applying
clustering to fMRI data, the goal is to obtain a compressed representation of
the original data set. Voxels are partitioned into groups using correlation as
a similarity measure, in order to cluster together voxels that show a similar
behaviour; then, a representative feature is selected from each cluster and the
extracted features become the input for further analysis. On the one hand this
can be considered as a dimensionality reduction step, aimed to decrease the
number of variables and thus facilitating the application of more sophisticated
statistical models. On the other hand, aggregating the information described
by several voxels allows to work at a higher level of abstraction, that of brain
regions, and this has multiple advantages: a) it captures the modular organi-
zation of the brain; b) it aids the generalization of the results since clusters of
voxels are built across subjects; ¢) features are easier to interpret because they
can be reliably mapped to brain regions. Compared to other dimensionality
reduction techniques (e.g. PCA), clustering produces features that can be put
into bijective correspondence with voxels, retaining information useful for visu-

alization and interpretation. Working with small regions instead of single voxels
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guarantees a higher reliability of the results, especially in group studies, where
even if every acquired brain is transformed in order to fit in a standard common
space, it might be troublesome to assign a single voxel to the same anatomical
area across subjects with a high degree of confidence.

Consensus clustering is a methodology used to combine multiple clustering

solutions to obtain more accurate and stable results (Kuncheva et al., 2006),

since a single clustering run could be affected by noise and prone to overfitting
the data. Moreover, many clustering algorithms are sensitive to the choice of
initialization parameters. The idea is borrowed from classifier ensembles, where
many weak classifiers are combined together to improve the overall accuracy of
the model. In this context, consensus clustering was applied not only in the
attempt to get better quality partitions of the data, but also to achieve a higher
reliability in the results and to devise a robust method for the extraction of
stable set of features.

2.2 Methods

In this section the basic concepts of consensus clustering are presented together
with a methodology for extracting stable subsets of features inspired by this
technique. Then, a domain specific evaluation measure for cluster quality is
introduced.

2.2.1 Consensus clustering

Consensus clustering is a particular approach to the clustering problem that con-
sists in aggregating different partitions of the same data set into a final solution
for the purpose of improving the quality of individual data clusterings. Intu-
itively, results obtained with this methodology are more reliable because they are
supported by many base solutions and the final clusters are more stable, since
they represent the consensus among multiple different partitions; furthermore,
this technique is more robust to noise and overfitting than a simple execution of
a clustering algorithm (Monti et al.| 2003; Hornik|, [2005}; [Nguyen and Caruanal,
2007). A wide literature exists on this subject (Strehl and Ghosh), 2003} [Topchy]
let al.] 2005 [Kuncheva et al. [2006; [Nguyen and Caruanal [2007; [Ghaemi et al.
, but the algorithms differ mainly in two aspects: the generation of multi-
ple clustering solutions and the consensus function used to quantify the concor-

dance among partitions. Different base clusterings can be generated in several
ways: varying the number of clusters in the partitions; using different clustering
algorithms or, where applicable, using a random initialization of the same algo-
rithm (e.g. K-means); perturbing the original data set by means of subsampling
(Monti et al.|[2003) or random projections (Fern and Brodleyl [2003; Bertoni and|

Valentini, |2006). The most simple and common way to measure consensus is
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to build a pairwise similarity matrix (the consensus or co-association matrix)
counting how many times two objects are assigned to the same cluster across
partitions. More formally, given a data set of IV points and P data partitions,
let

M(p) (’L,j) _ 1 if items ¢ and j belong to the same cluster (2'1)
0 otherwise.
be an N x N connectivity matrix corresponding to partition p € {1,..., P} (see

figure for an illustrative example). We can build a consensus matrix in the
following way:
>, MW, )

(2.2)
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Figure 2.1: An example of connectivity matrix. The dotted lines represent two
clusters.

The final consensus clustering can then be obtained using the matrix M as
input to a hierarchical clustering algorithm.

2.2.2 Consensus-based feature filtering

The information contained in a consensus matrix can give an insight into the
stability of a feature set. If we consider only data points that are clustered
often together, we can obtain a subset of more stable features, since many of
the base solutions agree on their collocation in a partition. This idea inspired
the approach called consensus-based feature filtering. Considering the consensus
matrix as a pair-wise similarity matrix, we choose two thresholds v and ¢ and
select only the items that have a similarity greater than ¢ with at least v other
objects. In more detail:

e o is a real value between 0 and 1, and indicates how often two features

have to be clustered together to be considered a stable pair.

e v is an integer number: a feature is selected if it is included in a number

of stable pairs greater than v.



2.3. DATA DESCRIPTION 15

The choice for the values of the thresholds is problem-specific. Threshold o
is related to the variability in the base solutions: for instance, if the various
partitions are the results of the application of the same clustering algorithm
with varying initialization, a stricter value for the threshold would be appropri-
ate since solutions are expected to share a certain amount of information; on
the contrary, when combining clusterings resulting from different algorithms,
solutions are likely to be more diverse and therefore a more tolerant threshold
would be preferable. Threshold v is related to the average size of clusters and
so indirectly to the number of clusters in the partition: the bigger the original
clusters are, the higher the threshold should be.

2.2.3 Anatomical cluster filtering

In correlation based clustering, voxels are grouped together if they behave co-
herently across subjects, ignoring their spatial position. Nevertheless, in this
specific domain, a desirable property for a cluster is to be formed by a sufficient
number of contiguous voxels in order to be easily associated with an anatomical
area and to be a posteriori validated.

In order to assess the quality of the obtained clusters, an evaluation measure
based on the degree of clustering (Formisano et al., |2002) is adopted. For each

cluster, this score is defined as follows:

2.3
]\J,\th otherwise. ( )

0 if cluster size is smaller than 6
DoC = {

where 6 is a user-defined threshold for the minimum size of a cluster, IV, is the
number of contiguous voxels in a cluster and Ny, is the total number of voxels
in a cluster. For instance, if a cluster is too small then its score will be 0; if a
sufficiently big cluster is constituted by contiguous voxels its score will be 1.
This measure can be used to filter out clusters that do not meet the desired
properties.

2.3 Data description

Data come from a cohort of 121 subjects, with age ranging from 38 to 82 years
(mean age 63.87 + 8.2). Specifically, they include 41 patients (20 women) from a
clinical study on amyotrophic lateral sclerosis (Tedeschi et al. 2012); 37 patients
(14 women) from a clinical study on Parkinson’s Disease (Tessitore et al. 2012a;
Tessitore et al. 2012b; Esposito et al. 2013; Amboni et al. 2015) and 43 control
subjects (23 women) from the same clinical studies. A 3T scanner equipped
with an 8-channel parallel head coil (General Electric Healthcare, Milwaukee,

Wisconsin) was used for the acquisition of MRI images. A sequence of 240
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volume was acquired using gradient-echo T2*-weighted MR imaging (TR =
1508ms, axial slices = 29, matrix = 64 x 64, field of view = 256mm, thickness =
4mm, inter-slice gap = Omm). Subjects were asked to stay awake and motionless
and to keep their eyes closed during the scans. To register and normalize {MRI
images, high resolution T1-weighted sagittal images were acquired in the same
session (GE sequence IR-FSPGR, TR = 6988ms, TI = 1100ms, TE = 3.9ms,
flip angle = 10, voxel size = lmm X lmm X 1.2mm). Data pre-processing
was performed with BrainVoyager QX (Brain Innovation BV, Maastricht, the
Netherlands) including slice timing correction, 3D rigid body motion correction
and high-pass temporal filtering. For each subject, 40 independent components
(ICs) were extracted with the fastICA algorithm (Hyvarinen 1999), accounting
for more than 99.9% of the total variance. The number of ICs corresponds to
one sixth of the number of time points (following the example of Greicius et
al. 2007). Each component identifies a whole brain spatial map, which assigns
to each voxel a weight representing the voxel’s contribution to the signal of the
component. Among the extracted spatial maps, the one associated with the
DMN was selected as the one with the highest goodness of fit (GoF) with a
DMN mask from a previous study on the same MRI scanner with the same
protocol and pre-processing (Esposito et al. 2010), where the GoF is computed
as the mean IC value inside the mask minus the mean IC value outside the mask
(Greicius et al. 2004; Greicius et al. 2007). To avoid ICA sign ambiguity, each
component sign was adjusted to have all GoF values as positive.

2.4 Experimental setup

After the preprocessing of fMRI data (as described in section , ICA was
applied to each subject data to extract the independent component correspond-
ing to the DMN, that was selected as the component with the best fit with a
template of the DMN from a previous study of |[Esposito et al.| (2010).

In order to speed up the tests, data were subsampled from 3 mm to 4.5 mm
voxels, reducing the number of features from ~ 50000 to ~ 13 000.

We obtained an v X n matrix X, where v is the number of voxels and n is the
number of subjects, and entry X (i, j) indicates the contribution of voxel i to
the DMN component of subject j.

Two clustering algorithms were chosen to generate the initial partitions of X:

1. K-means clustering, a standard method in the cluster analysis literature,
which tries to find a partition of the data set that minimizes the distortion
error, i.e. the distance between cluster points and centroids. The main
drawback of this approach is that the output might be affected by the
presence of local minima in the error function.
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subjects clusterings voxels
2 input 2 || multiple 2 || consensus
g || P > ¢ Ple | > g
3 data 3 || solutions 3 || matrix
s > s
generate evaluate
base solutions consensus

Figure 2.2: The steps for builduing a consensus matrix.

2. DBSCAN (Ester et al., [1996), a density based clustering algorithm that
identifies clusters starting from an estimate of the density distribution of

points, and was chosen for its ability to detect noise in the form of outliers
that lie in low-density regions.

Figure 2:2] shows the steps performed to obtain a consensus matrix starting
from matrix X. Multiple base clusterings of the voxels were performed by
100 runs of the K-means algorithm with a random initialization of the initial
centroids or by 100 runs of DBSCAN algorithm shuffling the input data, since
this method is sensitive to the ordering of data points. In both cases, one
minus the Pearson correlation coefficient was used as a dissimilarity measure.
The number of clusters in the partitions was set to 500 for K-means and the
parameters of DBSCAN were tuned in order to obtain clusters of ~ 30 voxels,
which is a reasonable size to map a cluster to an anatomical region. A consensus
matrix was built as described in section [2:2.1] and a final clustering was obtained
by means of hierarchical clustering with average linkage. The resulting clusters
were filtered using the degree of clustering (section to select only those
with a score higher than 0.5 and a minimum size of 10 voxels. The consensus
based voxel filtering (section was then applied to select only voxels that
are often clustered together, with parameters o € [0.4,0.7] and v € [3,5]. These
ranges of values were chosen to guarantee a high degree of stability in the final
solution while preserving cluster structure. Specifically, the upper bounds were
chosen experimentally, since with stricter thresholds too few voxels were selected
to constitute a meaningful solution.

Features were extracted from clusters in two ways:

e selecting the medoid of each cluster, i.e. the voxel which has on average
the higher correlation with the other voxels forming the cluster;

e computing the geometric mean of the cluster voxels.

To assess the quality of the selected features, they were used as input in a
three-class classification problem (i.e. to distinguish healthy controls, subjects
affected by amyotrophic lateral sclerosis, and subjects diagnosed with Parkin-
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all  all the features were used
mean means of clusters used as features
mean+DoC  means of clusters used as features with DoC filtering
mds medoids of clusters used as features
mds+DoC  medoids of clusters used as features and DoC filtering
mean+filter ~means of clusters used as features with both consensus fil-
tering
mean-+filter+DoC  means of clusters used as features with both consensus and
DoC filtering
mds—+filter medoids of clusters used as features with both consensus
filtering
mds+filter+DoC  medoids of clusters used as features with both consensus
and DoC filtering
RF  Random Forest
SVM  Support Vector Machine
(algorithm).  clustering obtained with (algorithm) and consensus
(algorithm)g  clustering obtained with a simple run of (algorithm,)

Table 2.1: Abbreviations used to the identify the different tests.

son’s disease). Random Forest (RF) and Support Vector Machines (SVM) with
linear kernel were chosen as classifiers because these models are known to cope
well with high dimensional data. In order to evaluate the generalization abilities
of the models, data were split into a training and a test set (70-30%). Since
the three classes were slightly unbalanced (see section , proportions were
preserved when training and test folds were generated. All the clusterings were
performed on the training set. The obtained partitions were then applied on
the test set to extract the features. Since the consensus-based voxel filtering de-
pends on two tuning parameters, stratified 5-fold cross validation was performed
on the training set to select them in a grid search fashion; namely, different com-
binations of the two parameters were compared using the cross-validated score
(table reports the selected parameters for each test). While Random For-
est uses a built-in procedure for feature selection, recursive feature elimination
(RFE) was applied in combination with SVM to select a subset of the features.
In this case, a nested cross-validation was implemented: an outer loop with a
stratified 5-fold cross validation for the consensus filter parameters and an inner

loop with Leave-one-out cross validation for the parameters of SVM and RFE.

2.5 Results and discussion

We compared the obtained classification accuracies using all the features, the
medoids and the means of the clusters generated with a simple run of K-means or
DBSCAN and with consensus clustering. We also compared the results achieved
with or without the application of the DoC and the consensus filters. Please
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K-meansc DBSCAN¢

o v o v
Random Forest
mean-+filter 0.5 3 0.7 3
mean+filter+DoC 0.5 3 04 3
mds+filter 0.5 3 04 4
mds+filter+DoC 0.7 5 04 4
SVM
mean-+filter 0.6 4 0.6 3
mean+filter+DoC 0.5 4 0.5 3
mds+filter 0.6 4 0.6 4
mds+filter+DoC 0.4 3 0.6 5

Table 2.2: Parameters of consensus filter, selected with cross validation.

#-clusters K-meansc K-meanss DBSCANs DBSCANg
mean,/mds 500 500 500 622
DoC 434 486 275 305

Random Forest

mean+filter 453 - 61 -
mean+filter+DoC 405 - 10 -
mds+filter 453 - 304 -
mds—+filter+DoC 187 - 154 -
SVM
mean+filter 445 - 140 -
mean+filter+DoC 389 - 101 -
mds+filter 445 - 105 -
mds+filter+DoC 422 - 21 -

Table 2.3: Number of clusters in each test. The DoC and the consensus filtering
preserve much more clusters when the base clusterings were generated with K-
means rather than with DBSCAN;, suggesting that the former algorithm is able
to detect more compact clusters.
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RF accuracies K-meansc K-meanss DBSCANs DBSCANg

all 74% 74% 74% 74%

mean 6% 76% 74% 1%

mean+DoC 79% 79% 85% 68%

mds 71% 65% 76% 82%

mds+DoC 6% 65% 74% 74%
mean+filter 82% - 76% -
mean+filter+DoC 82% - 76% -
mds+filter 6% - 71% -
mds+filter+DoC 76% - 65% -

Table 2.4: Classification accuracies obtained with Random Forest classifier (best
results in bold).

SVM accuracies K-meansc K-meanss DBSCANs DBSCANg

all 65% 65% 65% 65%
mean 62% 65% 68% 47%
mean+DoC 56% 59% 56% 68%
mds 53% 53% 56% 44%
mds+DoC 41% 59% 53% 53%
mean+filter 56% - 44% -
mean+filter+DoC 56% - 47% -
mds+filter 50% - 53% -
mds—+filter+DoC 59% - 50% -

Table 2.5: Classification accuracies obtained with SVM classifier in the various
tests (best results in bold).

refer to table 23] for an explanation of the abbreviations used to identify the
various tests. Table reports the number of clusters in each test. Tables
and [2.5] show the classification accuracies obtained with Random Forest and
SVM respectively. Figures and show bar plots of the results grouped
by clustering method and by classifier. For better readability, results relative
to tests based on the medoids of clusters were omitted, since in all but one
case they were outperformed by the ones based on the means of clusters. This
might suggest that the geometric mean is a more effective method for extracting
features compared to the selection of the cluster medoids. In the following
paragraphs, a brief comment is provided for each combination of clustering

algorithm and classifier.

K-means Consensus and RF In this test, the best result has been achieved
with the means of the clusters used as features in combination with the consensus
based filtering. Even applying the DoC filter, the result is unchanged, suggesting
that the clusters that form the solution are made of a sufficient amount of
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K-means Consensus K-means Simple

il mean mean +doc  mmm mean + filter mean + filter + doc  ——chance - all mean mean +doc ——chance

svM RE svM

Figure 2.3: Classification accuracies obtained with Random Forest and SVM
with features extracted with K-means Consensus (left) and K-means Simple
(right). The black line indicates chance level.

DBSCAN Consensus DBSCAN Simple

|l = mean mean +doc W mean + filter mean + filter + doc == chance all mean mean +doc ——chance

Figure 2.4: Classification accuracies obtained with Random Forest and SVM
with features extracted with DBSCAN Consensus (left) and DBSCAN Simple
(right). The black line indicates chance level.

Figure 2.5: Comparison between the two most similar clusters generated with
K-means Consensus and both DoC and consensus filtering (top row) and simple
K-means with DoC filtering (bottom row).
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contiguous voxels.

K-means Consensus and SVM The best accuracy is obtained when using
all the features, but this result is not helpful from the point of view of the
interpretability. No one of the techniques improves the standard result, however
the best score obtained with SVM is lower than the average score obtained with
RF.

K-means Simple and RF The best result is attained with the means of the
clusters used as features in combinations with the DoC filtering, but the score is
lower than the best score obtained with K-means and consensus-based filtering.

K-means Simple and SVM The results of this test show a similar trend to
the one with K-means Consensus, except for an in improvement in the run with
medoids and DoC filters.

DBSCAN Consensus and RF Here the best result is achieved with the
means of the clusters as features and the DoC filtering, followed closely by the
run with medoids and means with consensus filtering (both with and without
DoC filtering).

DBSCAN Consensus and SVM The best result is the one with the means
of clusters as features, but also in this case the score is lower than the average
score achieved with RF.

DBSCAN Simple and RF The best result is obtained in the run with the
medoids of clusters as features, but we can observe how after the application
of the DoC filter there is a significant decrease in accuracy, indicating that the

selected clusters do not satisfy the minimum quality requirements.

DBSCAN Simple and SVM Similarly to the other tests with SVM, the
best score (achieved in the run with cluster means as features and DoC filter-

ing), is lower than the scores obtained with RF.

In reference to table where the number of clusters of each test is reported,
it is important to note that, when using the consensus-based voxel filtering, the
subsequent application of the DoC filtering plays a relevant role. In fact, the
filtering could break cluster structure, leading to sparse or too small groups of
voxels.

We can observe that in general the DoC and the consensus filtering preserve
much more clusters when the base clusterings were generated with K-means
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rather than with DBSCAN, suggesting that the former algorithm is able to de-
tect more compact clusters and indeed, while the clusters built by K-means are
homogeneous in size, DBSCAN tends to find few big clusters and many small
sized groups of voxels that are then filtered out.
For what concerns the adopted classifiers, Random Forest outperformed SVM
in every test. This is probably due to the ability of Random Forest of handling
non-linearity, but the choice of a linear kernel for SVM was obliged considering
the high dimensionality of data compared to the number of training samples
available. Considering then the test based on K-means and Random Forest, we
can see an improvement in the classification accuracy both in combination with
consensus clustering and with the consensus-based feature filtering. The appli-
cation of the DoC filtering removes a little number of clusters without affecting
the accuracy, indicating that the resulting clusters were already compact and
sufficiently big.
To give an idea of the qualitative difference between clusters built with our
consensus approach and with a simple clustering algorithm, in figure we
compare two clusters taken from the best solutions yielded by K-means Con-
sensus and K-means Simple respectively. The clusters were chosen as the two
most similar with respect to Jaccard index, defined as

|AN B|

JAB) = g (2.4)

As we can see, the cluster generated with consensus is more compact, while the
other has a more sparse structure, therefore in the former case it is easier to
map the cluster to an anatomical region (in this case Brodmann area 40) and
this helps to increase the interpretability of the results from a neurobiological
perspective. Indeed, in [Mohammadi et al.| (2009) the DMN showed less activa-
tion in patients affected by ALS in left and right inferior parietal cortex, and
in {Tessitore et al.| (2012b]) patients with Parkinson’s disease showed decreased
functional connectivity of the bilateral inferior parietal cortex. In order to ob-
serve the effect of the consensus-based voxel filtering, figure [2.6] shows some of
the clusters from the best solution before and after the application of the filter.
The voxels that are removed by the filter (in white in the figure) lie in border
regions of the clusters or are isolated voxels, thus the remaining voxels consti-
tute core regions of the initial clusters, indicating that the use of the proposed
method has the desired effect of selecting stable subsets of the original features.
Since one of the main goal of fMRI data analysis is that of detecting relevant
regions of the brain related to physiological and pathological mechanisms, we
selected the top 10% most discriminative clusters according to Random Forest’s
feature importance score (see figure and made a comparison with literature.
We found out that more than a half of the top clusters fall in regions that have
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Figure 2.6: The effect of the consensus-based voxel filtering on clusters. On the
left column some of the clusters generated with consensus. On the right, the
same clusters after the consensus filtering (white points are filtered out).

some relevance with respect to the diseases object of the study. Specifically,
these regions were associated with patterns of enhanced activation or deacti-
vation in patients when compared to controls, and this would explain why the
classier model selected the features associated with this set of regions. In more
detail, we found clusters in the following areas:

e the prefrontal cortex, that was found to be deactivated in Parkinson’s
boni et all] 2015} [van Eimeren et al. 2009} [Gorges et all, [2013} [Tessitore|
2012a) and ALS patients (Trojsi et al., |2015} |Agosta et al., 2013);
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e the angular gyrus, that was found to be deactivated in Parkinson’s patients

with freezing of gait (Tessitore et al., |2012a));

e the inferior parietal cortex, which was associated with decreased functional

connectivity in Parkinson’s patients (Tessitore et al.,[2012b; Amboni et al.,
2015) and enhanced connectivity in ALS patients.(Agosta et al., 2013);

e the precuneus, that showed enhanced connectivity both in Parkinson’s
(van Eimeren et al., 2009) and in ALS patients (Agosta et al., 2013).

2.6 Conclusion

In this chapter, a framework based on consensus clustering for feature extrac-
tion from rfMRI data was presented. The proposed approach was tested on
a real world data set in a three-class classification task. Firstly, results show
that clustering based techniques constitute a promising alternative to univariate
feature selection methods. In fact, not only they led to higher accuracy scores,
but also allowed to reliably map features to anatomical regions for a posteriori
validation. Secondly, it was demonstrated how further improvements can be
achieved with a consensus approach and how the information contained in a
consensus matrix can be exploited to extract a stable subset of features.

As one would expect, the final consensus solution is affected by the qual-
ity of the base clusterings. Indeed, the application of a domain-specific score
(DoC) to filter out clusters that did not meet the given quality requirements
showed that in general solutions composed by more compact clusters (in this
case the ones based on K-means) attained the best results also in term of ac-
curacy. Additionally, comparing the solutions obtained with K-means with the
ones generated with the proposed approach, we observed how consensus clus-
ters exhibit a tight structure of contiguous voxels, a desirable property in this
application. It should be noted that the advantages of the adoption of con-
sensus clustering in this domain rely not only in quantifiable enhancements of
the results, but also in qualitative aspects such as a higher reliability and in-
terpretability of the results and a higher robustness of the method to noise and
overfitting.

The framework presented here is meant to be used as an exploratory tool
to derive meaningful features without relying on prior assumptions on what
the regions of interest should be. Since the general approach is data-driven,
the model should be tuned to adapt to the data set under study, but once
a consensus partition is computed and the parameters of the consensus filter
are set, it is trivial to extract features from previously unseen data samples.
The extracted features can then become the input of further analyses. In the

next chapter we will discuss how these consensus-based features can be used in
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Figure 2.7: The highlighted areas correspond to the top 10% more discriminative
clusters according to Random Forest on an inflated representation of the cortex
(right hemisphere on top row and left hemisphere on bottom row).

B

combination with a stochastic rank aggregation method to automatically select
a subset of relevant features.



Chapter

Building neuromarkers from

rftMRI

The main challenge in analysing fMRI data from extended samples of subjects
(N>100) is to extract as much relevant information as possible from big amounts
of noisy data. When studying neurodegenerative diseases with resting-state
fMRI, one of the objectives is to determine regions with abnormal background
activity with respect to a healthy brain and this is often attained with compar-
ative statistical models applied to single voxels or brain parcels within one or
several functional networks. This chapter presents a novel approach based on
clustering and stochastic rank aggregation methods to identify functional neu-
romarkers starting from single-subject activation maps. This framework was
tested on a real-world data set consisting of individual ICA-derived default-
mode network (DMN) maps from resting-state fMRI scans of subjects affected
by neurodegenerative diseases (amyotrophic lateral sclerosis and Parkinson’s
disease) and of healthy controls.

Clustering has been previously applied in fMRI data analysis to extract pat-
terns from raw time series (Gouttel, [1999) or from second level features extracted
from data (Goutte et al.l2001), and in group level analyses (Thirion et al., 2006;
van den Heuvel et al., 2008). In combination with single-subject independent
component analysis (ICA) (Hyvérinen and Ojal, 2000), clustering has been also
used to identify the most similar ICA components within a single group of sub-
jects (Esposito et al., |2005), but the novelty of the proposed methodology is
that it uses clustering in combination with rank aggregation to identify parcels
that exhibit a coherent behaviour in groups of subjects affected by the same
disorder. This approach being fully data-driven, there is no need for strong as-
sumptions about data distribution as in parametric models, and it can therefore
be equally applied to, e. g., ICA maps derived from resting-state fMRI data
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or conventional activation maps derived from a general linear model analysis
of activation time-courses. Nor it is necessary to specify in advance regions of
interest, since a small subset of informative regions automatically emerges from
the analysis.

3.1 Background

The recent advances in fMRI technology have made available high quality data
characterized by ever higher resolution images and shorter repetition times. This
translated into an explosion of data dimensionality, thus generating the need of
analysis techniques able to cope with the increased complexity of the problem.
To investigate how information is represented in the brain of healthy subjects,
and how neurodegenerative diseases affect the physiological mechanisms un-
derlying such a representation, a wide variety of statistical and computational
methods have been applied to extract meaningful patterns of neural activity
from fMRI data.

In population-level analysis, brain voxels are usually analysed in isolation
with traditional univariate techniques such as t-test or ANOVA, and we dis-
cussed some drawbacks of this approach in the chapter 2] While this might
not constitute an issue in single-subject study, in a cohort study inter-subject
variability hinders the generalizability of the results: in fact, a voxel found to
be significant on a given subject may not be significant on a different subject,
or even fall in a different brain region. When conducting population studies,
the goal is to analyse group-specific behaviour starting from the product of a
first-level analysis consisting in single-subject activation maps. Due to the low
signal-to-noise ratio of single-subject images, and to within and between subject
variability, the measurable effects might be small or masked by noise. For this
reason, the proposed approach is based on similarity within groups, as opposed
to traditional comparative approaches that focus on searching discriminative

patterns.

3.2 Data description

Data presented in this chapter come from multiple clinical studies on amyotro-
phic lateral sclerosis (Tedeschi et al., [2012; Trojsi et al, |2015) and Parkinson’s
disease (Amboni et al.,|2015; Esposito et al., 2013} [Tessitore et al.l [2012alb) and
consist of 115 rs-fMRI acquisitions from 3 classes of subjects: 37 controls, 41
ALS and 37 PD. MRI images were acquired on a 3T scanner equipped with an
8-channel parallel head coil (General Electric Healthcare, Milwaukee, Wiscon-
sin). Subjects were asked to rest motionless and with eyes closed during the

acquisition. In the same session, high-resolution structural images were acquired
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to provide spatial reference for registration and normalization of the functional
data.

Data preprocessing was performed with BrainVoyager QX software (Brain
Innovation BV, Maastricht, the Netherlands) and consisted of slice timing cor-
rection, 3D rigid body motion correction and temporal high-pass filtering. Fi-
nally, functional data were coregistered to structural data and then transformed
to the Talairach standard space through a 12-parameter affine transformation.
After registration to structural images, functional images were normalized to
fit the Talairach standard space using a 12-parameter affine transformation and
resampled to an isometric 3mm grid covering the entire Talairach box. Finally,
all volumes were visually inspected to assess the impact of geometric distortion
on the final images, which was judged to be negligible for a whole-brain analysis.

3.3 Overview of the methodology

Following the pre-processing and the extraction of the DMN from each subject’s
data (as described in section, the input data consist of a matrix NV xV where
N is the number of subject and V' is the number of voxels, and each entry (i, j)
represents the contribution of voxel j to the DMN map of subject i. First,
voxels are partitioned into parcels using one of the two methodologies detailed
in the following section, and a representative feature (the median) is selected
for each group. A ranking is then computed for each subject by sorting in
descending order the extracted features. Finally, rankings are aggregated by
class of subjects through stochastic rank aggregation; the goal is obtaining a
subset of brain regions that share a common behaviour throughout classes.

3.3.1 Brain parcellation

As discussed previously, working on brain parcels instead of single voxels is
convenient for many reasons. First of all, brain activity is likely to span over
multiple voxels. Therefore, the aggregation of several voxels in a single ag-
glomerated feature may reduce redundancy and improve signal-to-noise ratio,
and this could in turn increase the prediction accuracies of learning models.
To validate our method for the selection of relevant regions of the brain based
on stochastic rank aggregation, we adopted two different approaches to brain
parcellation: one based on anatomical information and the other based on the
data-driven clustering technique presented in chapter

Anatomical parcellations are derived from an atlas that defines brain regions
on a template image. The one used in this work is the Automated Anatomical
Labelling (AAL) atlas (Tzourio-Mazoyer et al.l2002) that consists of 90 parcels.
Since this approach is data-independent, it allows for an objective comparison
of the results of different models.
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For the clustering based parcellation, we adopted k-means clustering and
Pearson’s correlation coefficient as measure of similarity between voxels across
subjects. Moreover, to obtain more stable and reliable sets of features, clustering
solutions were enhanced through consensus techniques (as in chapter [2). The
final solution consists of 405 brain parcels. Once voxels are segmented in parcels,
a representative feature can be extracted from each group to obtain a compressed
representation of the input data.

The main drawback of atlas-based approaches is that they are prone to er-
rors in the segmentation of functional regions and this might translate into a
decreased sensitivity of the models. Data-driven approaches are, by contrast,
more sensitive to noise and since they are not based on a priori defined anatom-
ical regions they require a further step to map features onto an atlas to allow a
biological interpretation.

3.3.2 Stochastic rank aggregation

TopKLists (Schimek et al., 2012} 2015) is a stochastic rank aggregation me-
thod that, starting from an ensemble of rankings of a set of items, outputs a
new ranking of a subset of the same objects. It works by estimating the rank
position k£ beyond which the concordance among the input rankings degenerates
into noise. Once k has been computed, all rankings are cut at position k, thus
selecting the top k elements of each ordered list (hence the name). Finally, all
the sublists of length k are aggregated through a cross-entropy Monte Carlo
method (Lin and Ding}, [2009).

A
v
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Figure 3.1: The first iteration starts at position J,, (the first entry of the
indicator vector) and stops in position Jy,, that is the first position where ﬁ;" -
% < z,. The second iteration starts at position Js, + rv and ends in position
Js,, the first position where p; — % > 2z

The estimation algorithm can be summarized as follows. For each pair of
ordered lists an indicator vector I is built, where I; = 1 if the item ranked ¢ by
the first assessor is ranked no more than § positions away from rank ¢ by the



3.4. RESULTS 31

second assessor, and I; = 0 otherwise. The underlying assumption is that the

1
2

for i < ip and p; = % for i > io, where p; is the probability that I; = 1 and

variables Iy, ..., Iy are independent Bernoulli random variables, with p; >

ip is the rank position where the consensus of the two lists breaks down and
noise takes over. For each I; an estimate of iy is computed: starting from the
first position of I;, the algorithm updates the current estimate of the position
ip along the vector by alternating two steps. Even steps start rv positions
to the right of the point where the previous odd step ended, while odd steps
start rv positions to the left of where the previous even step ended. At step
sj, a sample of size v is extracted consisting of elements I; with ¢ comprised
among the first v indices to the right of J,, , —rv, if j is odd, or to the left of
Js,_, +rv,if j is even (where J,, | is the point where the previous step ended).
See figure for a schematisation of these steps. For this sample, an estimate
of consensus probability p; is computed as the sample mean, i.e. for even steps
p; =12 {;’771 I, and for odd steps p; = 1 Z{i}jil I;. In even steps, we move
to the left by unitary steps until we reach the first point where p; — % > 2.
In odd steps, we move to the right as long as the inequality p;” — 3 > 2, holds.
The threshold z, is defined as

z, = (Cv~tlogv)'/?

with C' > 1, to control for moderate deviations (Hall and Schimek, 2012).
The algorithm terminates when one of the following stop conditions is met:
a) the algorithm enters a loop between two adjacent stages; b) for some j,
Jsnjin S Jsn; 13 €) Jsyy =T <1

In this work, TopKLists has been applied to combine the rankings of brain
parcels expressed by each subject of a class. Specifically, for each subject the
medians of the brain regions were computed and sorted in descending order,
then all rankings of a class were aggregated in a single list, containing a subset

of regions that were ranked similarly across subjects of the same class.

3.4 Results

Tables and report the regions selected by TopKLists for each class with
the relative rankings for anatomical parcels and clusters, respectively (the num-
ber of voxels and the Talairach coordinates of the geometric mean is reported
for each region). The number of anatomical areas selected per class (30 for con-
trols, 27 for ALS, 26 for PD) was higher than the number of selected clusters
(8 for controls, 9 for ALS, 8 for PD) albeit the size of functional clusters was
smaller than the size of anatomical areas.

Figure [3.2] represents with Venn’s diagrams the overlap of regions and clus-

ters shared among classes. There are more anatomical areas shared among all
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controls v ALS controls v ALS

Figure 3.2: Venn diagram of the selected anatomical areas (left) and of selected
clusters (right). Most of the anatomical areas are shared among the three classes,
while there are more class-specific regions when using clusters. For the ALS
group, there are 5 class-specific parcels in the clustering-based ranking while
there are none in the anatomical based one.

three classes than class-specific anatomical areas; conversely, there are more
class-specific than shared clusters. For the ALS group, there are 5 class-specific
parcels in the clustering-based ranking while there are none in the anatomical-
based one.

Figures [3.3] and .4 show a comparison between the anatomical and the clus-
tering based solutions in corresponding regions, on an MRI image and on an
inflated representation of the cortex. Cluster 265 and AAL area 25 (correspond-
ing to the left medial orbitofrontal cortex) are both in the first or the second
rank in all three classes (figure . Both parcels identify approximately the
same region, but the functional cluster is smaller and has a substantial overlap
with Brodmann area 10. Based on their respective rankings, AAL region 86
(right middle temporal gyrus) can be compared with functional clusters 380,
382 and 383. In this case, the AAL parcel is present in the top rankings of all
classes, while clusters 380 and 382 are specific for the control class, and cluster
382 is specific to the ALS class.

Figures [3.5] to 3.8 represent with a box-plot the distribution of the median
of each of the selected regions across subjects of the same class (for anatomical
regions in figures to and for clusters in figure , with the parcels
ordered according to the rankings. In most cases, class specific regions (black
box-plots) exhibit less variability than others. In the anatomical-based solution
for the control class (ﬁgure, the five class-specific regions occupy the highest
ranks and exhibit narrow distributions; all of the remaining regions are shared
among all classes except for two that are shared only with the ALS class and
are present in the first half of the ranking. The only class-specific region for
PD occupies the first rank, followed by the two regions shared with the ALS
class (figure . The remaing regions are shared with all classes and show a
high variability across subjects (figure . For what concerns the anatomical
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Figure 3.3: Comparison between anatomical areas and clusters in corresponding
regions superimposed on a standard MRI image and on an inflated cortex. The
top row shows cluster 265 while the bottom row shows AAL ROI 25.

INFLATED CORTEX

Figure 3.4: Comparison between anatomical areas and clusters in corresponding
regions superimposed on a standard MRI image and on an inflated cortex. The
top row shows clusters 380 (in orange), 382 (in green) and 383 (in red). The
bottom row shows AAL ROI 86.



3.4. RESULTS

34

Top areas medians Controls

Angular_R
ParaHip%ocampal_R
Rectus_|
Frontal_Mid_L
ParaHipEocampaLL
Rectus_|
Frontal_Mid_R
Angular_L

Frontal Sup_R
Lingual_R
Cuneus_R
Lingual _L
Occipital_Mid_R
Temporal_Mid_L
Cingulum_Ant L
Frontal_Su&_L
Temporal_Mid_R
Precuneus_R
Occipital_Mid_L.
Cingulum_Ant_R
Precuneus_L
Cuneus_L
Calcarine_R
Calcarine_L
FrontaI_SuB_MediaI_L
Cingulum_Post_R
Frontal_Med_Orb R
Frontal_Sup _Medial_R
Cingulum_Post_L
Frontal_Med_Orb_L

T 5 T T T T

hared hared by ALS
.class specific -S arec among - shared by

all classes and controls

Figure 3.5: Box plots of the distribution of the medians of each of the selected

anatomical areas across subjects of the control class.
regions (in black) occupy the highest ranks and exhibit narrow distributions.
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Figure 3.6: Box plots of the distribution of the medians of each of the selected
anatomical areas across subjects of the PD class. The only class-specific region
(in black) occupies the first rank, followed by the two regions shared with the

ALS class (in blue).
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Figure 3.7: Box plots of the distribution of the medians of each of the selected
anatomical areas across subjects of the ALS class. There are no class-specific
regions, but the ones shared with PD (in blue) and controls (in green) are listed
in the top ranks with narrower distributions.
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Figure 3.8: Box plots of the distribution of the medians of each of the selected
clusters across subjects of the same class. In general the parcels show a reduced
variability compared to the anatomical regions, but this is not unexpected since
the clusters are smaller and the selected parcels are fewer.
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areas relative to the ALS class (figure , there are no class-specific regions,
but the ones shared with PD and controls, respectively, are listed in the top
ranks with narrow distributions. Also in this case the regions shared among all
classes exhibit a high variability. Considering now the clustering-based solutions
(figure , we can see that in general the parcels show a reduced variability
compared to the anatomical regions, but this is not unexpected since the clusters
are smaller and the selected parcels are fewer. Another difference with the
anatomical approach is that class-specific parcels occupy the second half of the
ranking while the clusters shared by all classes (265, 98 and 182) are in the top

ranks.
AAL ROI AAL # CTRL(30) ALS(27) PD(26) voxel #
Frontal Sup L 3 15 19 17 1402
Frontal Sup R 4 22 22 23 1513
Frontal Mid L 7 27 25 22 1765
Frontal Mid_R 8 24 = = 1866
Frontal Sup Medial L 23 6 3 6 1099
Frontal Sup Medial R 24 3 9 13 853
Frontal Med Orb L 25 1 2 2 300
Frontal Med_Orb_R 26 4 11 11 367
Rectus_L 27 25 - - 374
Rectus R 28 28 - - 352
Cingulum _Ant L 31 16 17 14 590
Cingulum Ant R 32 11 18 21 537
Cingulum_Mid_L 33 - 26 674
Cingulum Post L 35 2 1 1 205
Cingulum_Post R 36 5 4 5 152
ParaHippocampal L 39 26 - - 410
ParaHippocampal R 40 29 - - 471
Calcarine L 43 7 8 10 866
Calcarine_ R 44 8 10 15 743
Cuneus_ L 45 9 6 7 579
Cuneus_ R 46 20 16 18 577
Lingual L 47 19 23 = 868
Lingual R 48 21 24 - 940
Occipital Sup L 49 - 27 25 554
Occipital _Sup_R 50 - 26 24 573
Occipital Mid L 51 12 15 12 1222
Occipital _Mid_R 52 18 14 16 789
Angular L 65 23 12 4 461
Angular R 66 30 20 9 679
Precuneus L 67 10 5 3 1308
Precuneus_ R 68 13 7 8 1257
Temporal Mid L 85 17 21 20 1604
Temporal Mid R 86 14 13 19 1542

Table 3.1: Ranking per class (AAL) The first two columns report the
name and the number of the AAL ROI, for reference. Columns CTRL(30),
ALS(27) and PD(26) report the ranking for each parcel for controls, ALS and
PD patients, respectively. The number between brackets indicates the number
of top ranking regions selected per each class. The last column reports the
number of voxels for each parcel.
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Cluster CTRL(8) ALS(9) PD(8) BA AAL Area # voxels

86 - - 5 40,41 - 27
95 - - 6 40 - 51
98 2 3 3 10 25, 27 81

160 - - 8 40 - 71

182 3 2 4 WM - 27

197 4 - 1 WM - 61

223 - 7 - 93,24 31 81

265 1 1 2 10, 32 25 54

297 - - 7 39 65, 85 54

314 - 9 - 7,18 67,45 54

341 7 8 - WM - 27

380 6 - - 21 86 101

381 - 5 y 22 y 17

382 8 - - 20,37 86 98

383 - 6 - 37 86 72

386 5 - - 92,47 - 78

425 y 4 - 8 3,7 26

Table 3.2: Ranking per class (clusters) The first column reports numeric
identifiers of clusters, for reference. Columns CTRL(8), ALS(9) and PD(8) re-
port the ranking for each cluster for controls, ALS and PD patients, respectively.
The number between brackets indicates the number of top ranking clusters se-
lected per each class. The fourth column indicates in which Brodmann area
(BA) each cluster falls. The column AAL AREA indicates the corresponding
parcel in the anatomical based solution; when more than one region is reported,
the clusters lie on the boundary of parcels. The last column reports the number
of voxels for each parcel.

3.5 Discussion

A novel framework based on clustering and stochastic rank aggregation has
been evaluated using DMN maps from resting-state fMRI scans of ALS and
PD patients and of healthy controls. As an alternative to clustering, a purely
anatomical definition of brain parcels to extract regional DMN features for rank-
ing, was also considered. While in the clustering-based analyses about 2% of
the clusters (8 or 9 out of 405) were selected in the final rankings, in the case of
anatomical defined areas up to one third of the parcels (30 out of 90) are part
of the solution. One reason for this might be that anatomical areas are bigger
and fewer compared to clusters and since the median is used as representative
feature this might flatten the differences across subjects resulting in more con-
forming rankings. This would also explain why more anatomical parcels are
shared in the rankings across classes. Indeed, observing the Venn diagrams in
figure most of the anatomical areas are shared among the three classes,
while there are more class-specific regions when using clusters. It is interest-
ing to observe that the anatomical parcels cover most of the DMN, that is the
spatial component that was extracted by ICA, meaning that although not very
selective, the approach based on the anatomical parcellation led to the subset
of regions that contribute to this network. As mentioned above, clusters are



3.5. DISCUSSION 38

smaller than anatomical parcels and might therefore unveil differences at a finer
granularity. Indeed, the example of figure where a region included in the
anatomical solutions of all three classes is compared to two clusters that are
specific for the control group and one cluster that is specific for the ALS class,
suggests that working with smaller regions might bring to light differences that
are not evident at a higher level, because they are average out when considering
a larger region. Nevertheless, most of the clusters in the solution are included in
one of the anatomical parcels (see last column of Table , often with a sim-
ilar ranking between the two approaches, demonstrating the consistency of the
results. The fact that the clustering-based approach results in more localised
regions, and that the features extracted from these regions exhibit a more sta-
ble behaviour across subjects of the same group, makes this method potentially
better suited than the anatomical-based one when searching for a set of regional
features characteristic of a specific neurological condition, i.e. what is usually
called a neuromarker. If we study in detail the clusters selected for each class,
we can observe that clusters 86, 95 and 160, that are class specific for PD, all lie
in Brodmann area 40, in the inferior parietal cortex, that has been shown to be

relevant for this disease in previous fMRI studies: in [Tessitore et al. (2012Db) a

decreased functional connectivity of the bilateral inferior parietal cortex in the
DMN was observed in patients with PD; the results of |Amboni et al. (2015)
suggest that a functional disconnection of the frontoparietal network could be

associated with mild cognitive impairment in PD. Another class specific clus-

ter for PD is cluster 297 in Brodmann area 39 in the medial temporal lobe,

whose relation with PD has been investigated in |Gorges et al. (2013) and |Tes-|

[sitore et al.| (2012b)), where a decreased connectivity in the DMN was observed

between this area and the posterior cingulate cortex, and with the prefrontal
cortex, respectively. Clusters 98 and 265, that are high-ranking in all three
classes, lie in Brodmann area 10 in the prefrontal cortex, a region related to
both ALS and PD: a weaker connectivity of the prefrontal region was observed
in ALS patients in the DMN (Mohammadi et al., 2009; [Agosta et al., 2013)
and in the salience network (Trojsi et all [2015); a deactivation of the medial

prefrontal cortex was measured in PD patients in the DMN (van Eimeren et al.,

[2009; (Gorges et al., 2013) and in the fronto-parietal network (Amboni et al.,

[2015); (Tessitore et al| (2012a)) showed that PD patients with freezing of gait

present reduced functional connectivity within the executive-attention network

in the middle frontal gyrus. Considering the five clusters that are specific to
the ALS class, we observe that clusters 381 and 383 are located in the temporal
lobe; cluster 314 is included in Brodmann areas 18 (in the occipital lobe) and 7,
in the left precuneus, that has been previously associated to ALS in the study

by [Agosta et al| (2013), where this region exhibited enhanced connectivity in

the DMN; cluster 223 covers Brodmann areas 23 and 24, corresponding to the
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posterior and anterior cingulate cortex, mentioned in Tedeschi et al. (2012),

where the DMN showed a disease-by-age interaction in the posterior cingulate
cortex, and in Mohammadi et al.|(2009) where the DMN showed less activation
in ALS patients compared to controls; cluster 425 lies in Brodmann area 8 on

the middle frontal gyrus, that has been associated with cognitive deficit in ALS
patients in a PET study by [Wicks et al. (2008)), while in Terada et al.| (2016)

the gray matter volume measured within the right middle frontal gyrus in ALS

patients was significantly lower than in healthy controls. If we observe the clus-
ters that are class specific for control subjects, two of them (clusters 380 and
382) are on the middle temporal gyrus and one (cluster 386) on the fusiform
gyrus. Both these regions are mentioned in studies on cortical thickness that
investigated healthy aging as opposed to neurodegenerative disorders: in a work
by [Convit et al.| (2000), the volumes of the fusiform gyrus and the middle (and
inferior) temporal gyrus are shown to predict decline to Alzheimer’s disease
(AD) in non-demented elderly; while in a work of Hanggi et al.| (2011)), the vol-
ume of the right middle temporal gyrus revealed promising diagnostic values to
distinguish AD from mild cognitive impairment. Another study
investigated the aging-related changes of the haemodynamic response in
regions surrounding the fusiform gyrus. Finally, three clusters (182, 197 and

341) fall in regions of white matter and might therefore be resulting from noise.

3.6 Conclusion

This chapter presented a data-driven methodology to detect regions that show a
common behaviour in a class of subjects. Looking for commonalities instead of
differences between groups is advantageous because the actual differences might
be masked by noise of different origins. This approach takes into account both
inter-subject variability and noise by excluding from the analysis brain parcels
whose patterns of activation are incoherent across subjects of the same diag-
nostic group, while retaining regions for which a sufficient degree of consensus
exist.

The proposed framework combines unsupervised clustering, consensus tech-
niques and stochastic rank aggregation methods to automatically identify a
small subset of regions of interest, without requiring prior hypotheses. However,
the same framework can be applied with parcels derived from pre-existing brain
atlases. In this work, it was applied on DMN maps derived from resting-state
fMRI acquisitions of healthy controls, PD and ALS patients, and results are
consistent with previous literature, thus indicating that this approach might be
suitable to support early diagnosis of neurodegenerative diseases.

In future work, it would be interesting to apply this approach in task {MRI,

where it is easier to detect activation loci and more prior knowledge is available
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to define regions of interest (e.g., consider the specialization of motor cortex).
This would allow to observe how the rankings of regions vary between healthy
subjects and patients in the performance of specific tasks.



Chapter

Predicting individual differences

In most fMRI studies, investigators resort to averaging data across subjects,
both for increasing signal-to-noise ratio (SNR) and to perform group compar-
isons, e.g., in clinical studies. However, the recent advances in MRI technologies,
leading to higher field strength and shorter acquisition times, substantially im-
proved SNR, thus allowing for investigations at single subject level (Dubois and
Adolphs|, 2016). Every brain is unique in its structural and functional organi-
sation, and this intrinsic variability could be used to explain why people differ
in their attitudes and abilities. Brain can be considered as the proximal cause
of all behaviour, hence it is reasonable to search for the neural bases of be-
haviour in the brain. Correlations from resting-state {MRI have recently been
used to predict a number of individual differences in cognitive abilities. In these
studies, an estimate of the resting state functional connectivity (FC) network
is derived for each subject in the following way: network nodes are defined, as
spatial coordinates or as regions of interest; a time series is identified for each
node; the strength of the connections between nodes is estimated, e.g., as the
correlation of each time series with every other time series (Smith et al.l [2013)).
Then, a (multivariate or univariate) statistic is derived from the network and
used in combination with confound variables to predict an individual measure.
However, motion artefacts can greatly influence the estimation of functional
connectivity and consequently introduce bias when estimating its relationship
with individual measures (Siegel et al., 2016). In this chapter, starting from
the replication of a previous work that successfully predicted IQ in a cohort
of subjects of the HCP dataset, we compare the effect of different denoising
strategies on the outcome of the prediction. The same approach is then used to

investigate whether functional connectivity can predict personality traits.
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4.1 Denoising of rfMRI data

Contrary to task fMRI, that is more robust to artefactual influences because it
relies on a predefined temporal model, resting-state data need to be preprocessed

beyond minimal preprocessing, since the correlations between voxels’ time series

might be corrupted by artefacts spanning multiple voxels (Smith et al. 2013)).

Subject motion and physiological fluctuations are two of the principal noise
sources that are targeted by denoising techniques. Temporal filtering is usu-
ally applied to remove fluctuations outside the frequency range of interest for
resting-state data (between = 0.01 Hz and ~ 0.1 Hz), since signal components
related to cardiac pulsations and respiration have relatively high frequencies
(~ 1 Hz and = 0.3 Hz, respectively). Nevertheless, if scan repetition time is

not short enough to avoid undersampling of the physiological fluctuations, these

will appear as aliased frequencies in the band of interest (Caballero-Gaudes and)

Reynolds, [2017). Since the signal related to neural activity is expected to be

present mainly in gray matter voxels, nuisance regressors can be derived from

regions like white matter and ventricles where the signal is likely to be dom-
inated by physiological noise 2016). Similarly, global signal regression
removes the global mean of the signal computed across all brain voxels, follow-
ing the assumption that processes captured globally across the brain cannot be
related to neural activity but are linked to confounding factors (Power et al.
, although it has been argued that in doing so also meaningful components
are removed as well (Caballero-Gaudes and Reynolds, 2017). Motion during an

acquisition has three main consequences: first, the tissue composition within a
given voxel might change, especially at tissue interfaces, thus causing a change
in the BOLD signal; second, movement alters the homogeneity of the magnetic
field inducing local distortions; third, when movement occurs across successive

slices, timing between excitations will change generating spin history effects

(Murphy et al.l2013). To reduce the effect of head movement, volume registra-

tion is performed by aligning each scan to a reference volume through a rigid
body transformation described by 3 translational and 3 rotational parameters.
However, to remove any residual variance due to motion-related signal changes,
the time series of realignment parameters are often used as nuisance regressors.

Some models include also temporal derivatives and squared regressors of the

realignment parameters to account for spin history effects (Friston et al. [1996).

Censoring (or scrubbing) of high motion volumes has been proposed as an ad-
ditional step to contrast changes in image intensity due to motion that cannot

be explained by the realignment parameters (Power et al., 2012} [Siegel et al.,

2014), but, as pointed out in (2013)), censored points should be interpolated

before performing temporal filtering to prevent motion artifacts in censored vol-

umes from affecting the signal of retained frames. Alternatively, scan nulling
regressors, modeled as a unit impulse function, can be added to the model (Sat-
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fterthwaite et al., [2013)). To account for residual unmodeled noise, data-driven

methods based on principal component analysis (Behzadi et al.,[2007) and inde-

pendent component analysis (Salimi-Khorshidi et al.,|2014) have been proposed

to detect noise-related components to be removed from the signal.

There is currently no consensus on the best denoising pipeline for resting-
state f/MRI data (Caballero-Gaudes and Reynolds|, 2017} Siegel et al., 2016; Ciric|
let al.}2017; Murphy and Fox,|2017)). The following section illustrates 14 different
pipelines representative of the most common approaches found in literature. To

conduct the analyses described in this chapter using a common framework,
all pipeliens were implemented in Python using well-established open source
libraries for scientific computing, including SciPy, Numpy, NiLearn, NiPype
and Scikit-learn.

4.1.1 Description of denoising pipelines

In the following, details are provided on the denoising steps constituting each
pipeline. Each strategy is given a code name that will be used from now on
to identify it. Figure is a graphical summary of the pipelines, that shows
that denoising steps can be grouped in seven categories, that are: scrubbing,
normalization, detrending, tissue regression, global signal regression, motion
regression and temporal filtering. Figure [£.2]highlights the order in which every
step is performed and allows to observe that there are some steps that are very
common among different strategies (demeaning, polynomial detrending, WM
and CSF signal regression), while for others there is less consensus (e.g., global
signal regression).

Finn This pipeline is based on the work of Finn et al| (2015) and consists

of seven consecutive steps: first, the signal at each voxel is z-score normal-
ized; then, using tissue masks computed with FSL, temporal drifts from CSF
and white matter are removed with third degree Legendre polynomial regres-
sors; subsequently, the mean signals of CSF and white matter are computed
and regressed from gray matter voxels; translational and rotational realignment
parameters and their derivatives are used as explanatory variables in motion
regression; to perform temporal filtering, signals are low-pass filtered with a
Gaussian kernel; as a last step, the temporal drift from gray matter signal is
removed using again third degree Legendre polynomial regressors. As we can
observe in figure this pipeline comprises some denoising steps that are un-
common in literature. In addition, while other strategies tend to include all
confounds in a single regression step, in this pipeline regression is performed in
three consecutive steps.

The following nine pipelines are described in |Ciric et al.|(2017). If not stated
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otherwise, all pipelines have three initial steps in common: the demeaning of
each voxel’s time series, the removal of linear and quadratic trends, and temporal
filtering with a first order Butterworth filter with a passband between 0.01 and
0.08 Hz. The pipelines differ from each other for the adopted confound regression
strategy.

Ciricl This pipeline regresses out from whole brain signal two confounds com-
puted as the mean signal in WM and the mean signal in CSF.

Ciric2 In this pipeline, the only explanatory variables used in confound re-
gression are the 6 translational and rotational realignment parameters.

Ciric3 This pipeline uses translational and rotational realignment parameters
and their derivatives together with WM, CSF and whole brain mean signals in

confound regression.

Ciric4 This pipeline is an extension of model Ciric2 that includes 6 motion
parameters, 6 temporal derivatives, 6 quadratic terms, and 6 quadratic expan-
sions of the derivatives of motion estimates for a total 24 regressors.

Ciric5 This is an extension of model Ciric3 that uses its 9 regressors plus
their derivatives, quadratic terms, and squares of derivatives, for a total of 36

regressors.

Ciric7 This pipeline uses the same 36 regressors as in Cirics. Additionally,
for each volume with an RMS (root-mean-squared) displacement that exceeded
0.25 mm, a regressor is added consisting of a unit impulse function with a value

of 1 at the time point to be censored and 0 elsewhere (spike regression).

Ciric9 This pipeline uses aCompCor (Muschelli et al.,|2014), a method based
on PCA, to derive 5 principal components each from the WM and CSF, that are
used as regressors in addition to motion estimates and their temporal derivatives.

Ciric13 This pipeline uses ICA-AROMA (Pruim et al. 2015), an ICA-based
procedure for removal of motion-related variance from BOLD data, together
with mean WM and CSF regressors.

Ciric14 This pipeline combines ICA-AROMA with global signal regression.
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The following two pipelines are described in [Siegel et al.| (2016)). As a first
step, data go through the HCP ICA-FIX denoising pipeline based on indepen-
dent component analysis (Salimi-Khorshidi et al., |2014)), that regresses out the
signal of components classified as noise.

SiegelA After ICA-FIX, voxel signals are demeaned and detrended with a

first degree polynomial.

SiegelB In addition to ICA-FIX, voxel demeaning and detrending as in model
SiegelA, PCA-based method CompCor (Behzadi et al., [2007) is applied to de-
rive CSF and white matter regressors that are used together with gray matter
and whole brain mean signals in a single regression step. Also in this case as
in Ciric7, regressors are added to remove the contributions of censored time
points, identified as volumes with a frame-wise displacement greater than 0.25
mm and a variance of differentiated signal (DVARS) greater than 105% of the
run median DVARS. Finally, a first order Butterworth band-pass filter between
0.01 and 0.08 Hz is used for temporal filtering.

The remaining two pipelines are described in (Gordon et al.| (2016]).

Gordonl After voxel demeaning and detrending, confound regression is per-
formed combining WM, CSF and whole brain signals with motion regressors
derived by Volterra expansion (Friston et al. 1996)

Gordon2 The only difference with Gordonl is that in this case temporal
filtering is implemented with a discrete cosine transform and it is performed
together with confound regression.

When performing temporal filtering after scrubbing, to prevent motion arti-
facts in censored volumes from affecting the signal of retained frames, censored

time points were replaced with linear interpolation.

4.2 Data description

Data come from the public repository of the Human Connectome Project (HCP)
(Van Essen et al.,{2013). The HCP provides MRI data and extensive behavioural
assessment from almost 1200 subjects. Acquisition parameters and minimal
preprocessing of the resting-state fMRI data is described in the original pub-
lication (Glasser et al.l [2013). Briefly, each subject underwent two sessions of
resting-state fIMRI on separate days (REST1 and REST2), each session with two
separate 15 minute acquisitions generating 1200 volumes (customized Siemens
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Skyra 3 Tesla MRI scanner, TR = 720 ms, TE = 33 ms, flip angle= 52°, voxel
size = 2 mm isotropic, 72 slices, matrix = 104 x 90, FOV = 208 mm x 180 mm,
multiband acceleration factor = 8). The two runs acquired on the same day
differed in the phase encoding direction, left-right and right-left (which leads to
differential signal intensity especially in ventral temporal and frontal structures).
The HCP data were downloaded in their minimally preprocessed form, i.e. af-
ter motion correction, BO distortion correction, co-registration to T1-weighted
images and normalization to MNI space. The experiments described in section
are based on the Q2 release of HCP (136 subjects), while in section [4.4] all
analyses are run on the full dataset of 1200 subjects.

4.3 Intelligence prediction from rfMRI

Individual differences in intelligence can be measured with psychometric tests
assessing reasoning ability, processing speed, executive function, memory and
spatial ability. However, it is believed that all these aspects are influenced by
a common factor (Deary et al., 2010), denominated general intelligence (or g
factor). This general factor can be assessed with cognitive tasks as the Raven’s
progressive matrices test, in which the subject is presented with a series of
patterns, one of which is incomplete, and the task is to identify the missing tile,
as showed in figure

The challenge for cognitive neuroscience is to understand the neural struc-
tures and mechanisms underlying such a multifaceted ability. Early studies have
linked intelligence to brain size, proportion of gray matter and cortical thickness
(Brancucci, 2012), but one emerging theory is that intelligence is correlated to
neural processing efficiency(Deary et al., 2010} Neubauer and Fink| 2009). For
example, in Kievit et al.[ (2016), the authors built a hierarchical model to ex-
plain the interaction between intelligence, processing speed and white matter
organisation and reported that individual differences in white matter anatomy
predicted individual differences in processing speed, which in turn predicted over
58% of the variance in intelligence scores. Using diffusion tensor tractography
to map white matter fibers, [Li et al. (2009) provided evidence that subjects
with higher IQ show a higher global efficiency of the brain anatomical network.

Other studies used graph analysis to assess the efficiency of functional net-
works built from rfMRI data, and significant correlation were found between
1Q and functional efficiency, supporting the theory that more intelligent people
tend to use less brain resources for completing a task (i.e., they tend to process
information more efficiently). In [van den Heuvel et al. (2009), it was found
that IQ was negatively correlated with characteristic path length of functional
connectivity networks, a measure of the average number of connections that

have to be crossed to travel from each node to every other node in the network
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that provides information about the level of global communication efficiency.

In |Cole et al.| (2012), a lateral prefrontal cortex region’s activity was found to

predict performance in a high control demand working memory task and also to
exhibit high global connectivity, suggesting it may constitute a functional hub

involved in control processes central to cognitive ability. In Song et al. (2008),

the strengths of functional connections in the frontal and parietal lobes were

found to be predictive for the variability of IQ scores across subjects.

It has been recently reported in [Finn et al. (2015) that a measure of IQ

based on the raw score on a 24-item version of the Raven’s Progressive Matrices
can be predicted from individual whole brain functional connectivity networks.
The authors of this work claim that they were able to predict IQ with a cor-
relation of 0.5 between predicted and actual scores. Yet, it has been observed
that data quality plays a relevant role in the estimation of FC, in that motion
related artefacts can introduce bias if not properly accounted for
(2016): specifically, FC estimates are inflated for high motion time points and
high motion participants (Burgess et all 2016). More recently, Geerligs et al.
suggested that head motion might constitute a biological trait per se and
recommended against regressing motion out across participants, since it might

have a dramatic impact on connectivity differences between individuals.

To understand to what degree preprocessing can affect predictions, in the
following the performances of each of the denoising strategy described in the
previous section are compared with respect to the task of predicting IQ from FC

using the same data, parcellation and predictive model as in [Finn et al.| (2015).

This model was chosen as a reference because it was shown to generalize to
other datasets (Rosenberg et all 2016} [Yoo et al., [2018; |Jangraw et al.| [2018).
Furthermore, to investigate whether these predictions are completely free of

any residual motion information in the data, a predictive model was built for
motion itself: if such a model is not able to predict motion it is likely that
preprocessing succeeded in disrupting motion contribution; otherwise, it might
be the case that motion carries all the information. Indeed, as shown in figure
[4:4] for the HCP dataset, IQ and motion are correlated, and this relationship

holds even after discarding acquisitions of high movers.

4.3.1 Methods

Subject scans with a root-mean-squared (RMS) frame-to-frame head motion
estimate exceeding 0.14 mm were removed from the analysis, leaving a sample
of 115 subjects in REST1 session and a sample of 114 subjects in REST2 session.
After performing one of the preprocessing pipelines presented in section

a volumetric parcellation of the brain into 268 nodes (Shen et al., 2013) was

applied to each subject’s data and the average time series was computed for

each parcel. Functional connectivity between a pair of regions was estimated as
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the Pearson’s correlations coefficient between the two corresponding time series.
FC matrices were averaged across runs acquired with left-right and right-left
phase encoding in each session. Then a univariate regression model was built
where the dependent variable is the score to be predicted and the explanatory
variable is a scalar value that summarize the FC network strength (i.e., the
sum of edge weights). A simple filtering approach was used to select features
that are correlated with the behavioural score on the training set. Two distinct
models are built using edges of the network that are positively and negatively
correlated with the score, respectively, with a p-value less than 0.01. In the
following we refer to positive and negative models to distinguish between the
two approaches. The prediction ability of the models is assessed using a leave-
one-out cross-validation scheme. The IQ score is the 24-item version of the
Raven’s Progressive Matrices (PMAT24 A CR) as in |Finn et al.| (2015)), while

motion is measured using the mean RMS frame-to-frame displacement.

4.3.2 Results

In the original work by [Finn et al.| (2015]) the authors reported only the result for
the positive model for IQ on session REST1 (p = 0.5). Figure [4.5| highlights the
results for the positive models for both IQ and motion. Additionally, the results
on session REST2 are reported to assess the stability of the predictions across
sessions held at different times. The correlations between actual and predicted
scores for all experiments are showed in tables and

The best performing pipeline in predicting 1Q was Ciric7, ranking first in
both sessions, followed closely by Finn strategy, ranked second in REST1 and
third in REST2. In session REST1, eight pipelines out of 14 yielded significant
correlations, and ten in session REST2, but just seven of them have significant
results in both sessions, with an average correlation of 0.30 in session REST1
and of 0.29 in session REST2.

The trend in the IQ predictions across denoising strategies is fairly stable
between the two sessions, while we can observe more variability comparing RMS
predictions in session REST1 and in session REST2 (figure [£.5)), even if there
was no significant difference between the average RMS measure across subjects
between the two sessions (0.0850 vs. 0.0853). In REST1 the motion predictions
seem to follow IQ predictions, except for pipelines SiegelB, Gordonl and Gor-
don2 that scored low on IQ predictions and very high on motion prediction,
while in REST2 motion predictions achieved in general lower correlations, with
the same exception for pipelines SiegelB, Gordonl and Gordon2 that seem to
predict motion very well. This might indicate that, after all, the selected fea-
tures are better predictors for IQ than for motion.

Yet, the fact that in many cases motion could be predicted from FC suggests

that the preprocessing did not succeed in isolating and removing the effects
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of head motion. It is interesting to note that the negative models performed
sensibly worse on motion predictions (table 4.3.2): correlations are either not
significant or negative, meaning that the models predict in the wrong direction.
This is in line with the results of Burgess et al.| (2016, that reported that
motion artefacts tend to inflate functional connectivity estimates, hence the
contribution of motion should be found in the FC edges positively correlated
with RMS score.

One encouraging datum is that when comparing the functional connections
used to predict IQ and motion, there were very few overlapping edges (less than
10 on average) and this might be an indicator that FC contains information
related to intelligence that is not resulting from the contribution of motion.
However, in none of the predictive models the selected connections exhibited
regional specificity. While this contrasts with previous results on IQ where edges
predictive of intelligence were found in fronto-parietal regions (Song et al., 2008;
Cole et al., 2012; [Finn et al.l |2015)), it is in accord with the theory of globally
distributed effects of head motion (Burgess et al., 2016).

In conclusion, there seems to be a relationship between the strength of indi-
vidual functional connectivity networks and the IQ score, and this association
emerges even when varying consistently the preprocessing strategy. Yet, the
role played by head motion needs to be taken into account and the variability
of the results means that preprocessing can greatly affect results. Some of these
aspects will be further investigated in the following section, where the IQ exper-
iments are repeated on a larger sample for selected pipelines and a multivariate

model for regression is examined as well.

4.4 Resting-state fMRI and personality

Personality traits are relatively stable dispositions that influence behavioural,
social, and emotional expression. According to the the Big Five model (McCrae
and Costal, [1986), the major features of personality can be described by five
factors, namely openness to experience, conscientiousness, extraversion, agree-

ableness, and neuroticism, that can be described as follows:

¢ Openness to experience concerns an individual’s willingness to try new
things and the ability to think outside the box. It is also sometimes called
intellect or imagination.

e Conscientiousness can be described as the tendency to control im-
pulses and act in socially acceptable ways, to be organized and show self-
discipline, act dutifully, aim for achievement, and prefer planned rather

than spontaneous behaviour.
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e Extraversion is the tendency to seek out opportunities for social inter-
action, to feel comfortable with others, and prone to action rather than

contemplation.

e Agreeableness concerns how well people get along with others. It is the
tendency to be compassionate and cooperative rather than suspicious and

antagonistic towards others.

e Neuroticism concerns anxiety, sadness, worry, and low self-esteem. It
describes the tendency to experience unpleasant emotions easily, such as

anger, depression, and vulnerability.

Since personality traits are stable over time, one might expect that brain mea-
sures that are similarly stable over time (e.g., structural, connectional and neu-
rochemical measures) are the most promising candidates for predicting such
traits. Resting-state data do not explicitly engage cognitive processes that are
thought to be related to personality traits. However, they are used to study
correlated self-generated activity between brain areas while a subject is at rest,
and these correlations are thought to reflect stable aspects of brain organization.
Several studies report an association between Neuroticism and Extraversion and
properties of brain connectivity networks. In|Gao et al.|(2013), in a sample of 71
subjects, Extraversion was correlated with the normalized clustering coefficient
of individual networks (a measure of modularity), while Neuroticism was asso-
ciated with high betweenness centrality of nodes situated in the right precentral
gyrus, right caudate nucleus, right olfactory cortex, and bilateral amygdala. In
Aghajani et al.| (2014), a seed-based correlation analysis focused on the amyg-
dala was performed on a sample of 50 subjects with the following results: higher
Neuroticism was observed in presence of increased amygdala connectivity with
the precuneus, and decreased amygdala connectivity with the temporal poles,
insula, and superior temporal gyrus; higher Extraversion scores were associated
with increased amygdala connectivity with the putamen, temporal pole, insula,
and several regions of the occipital cortex. [Lei et al| (2013) investigated the
association between personality and the scale-free dynamics of default mode
network and found that Extraversion correlated with the Hurst exponent, a
measure of long memory of temporal dynamics, in a sample of 20 subjects.
More recently, Pang et al.| (2016)) applied Granger causality analysis to the rest-
ing state functional networks of 70 subjects and reported a positive correlation
between Extraversion and the influence from the right inferior occipital gyrus
(I0G) to the left amygdala, and from the bilateral IOG to the right amygdala,
while Neuroticism was found to be associated with an increased influence from
right amygdala to right middle frontal gyrus and a decreased influence from
right precuneus to right amygdala.

In a study of the interaction of personality traits with cingulate functionality in
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the prediction of stressor-evoked cardiovascular reactivity (Sheu et all 2011),

Agreeableness was correlated with posterior and perigenual cingulate connec-
tivity in a sample of 39 subjects; additionally, cingulate cortex connectivity was
found to mediate the covariation between Agreeableness and blood pressure re-
activity.

In Adelstein et al, (2011), the Big Five traits are used to predict patterns of

functional connectivity in a sample of 39 subjects, and each dimension predicted

connectivity in non-overlapping regions responsible for cognitive and affective
processing, although selected connections were inconsistent across subjects.

The association between the Big Five traits and the connectivity of the default

mode network was investigated in Beaty et al.| (2016) using structural equation

modeling. After controlling for age, gender and intelligence (measured with the
Intelligence Structure Battery), Openness was the only significant predictor of
the global efficiency of the default mode network, while Extraversion, Agree-
ableness, and Conscientiousness had marginal effects.

Beyond the five-factor model, other personality dimensions have been studied

using resting state fMRI, as harm avoidance (Baeken et al., 2014), procrastina-

tion (Wu et al.| 2016), and creativity (Takeuchi et al.l [2012} Beaty et al.| 2014;

|Jiao et al.,|2017). In Deris et al.| (2017)), a study on the correlation of functional

connectivity of the amygdala with the Affective Neuroscience Personality Scales

reported an association between connection in the basolateral amygdala and the
SADNESS scale.

However, previous studies suffer from several methodological limitations. First
of all, essentially all studies to date have been severely underpowered due to
small sample sizes (Button et al., |2013}|Schénbrodt and Peruginil [2013} [Yarkonil
. Second, most studies have failed to use a predictive or replication frame-
work, making their generalizability unclear. To overcome these issues, in this

work a predictive framework, together with a built-in replication, was applied

to a large, homogeneous resting-state fMRI dataset.

4.4.1 Methods

Personality factors The 60 item version of the Costa and McCrae Neuroti-
cism Extraversion and Openness Five Factor Inventory (NEO-FFI) was adminis-
tered to HCP subjects. The NEO-FFT1is a self-report questionnaire, the abbrevi-
ated version of the 240-item Neuroticism Extraversion and Openness Personality
Inventory Revised (NEO-PI-R). For each item, participants reported their level
of agreement on a 5-point Likert scale, from strongly disagree to strongly agree.
As the Big Five were correlated with each another in the selected sample of
subjects, factor analysis (with varimax rotation) was performed on the 60 item

scores to extract two superordinate factors (DeYoung) [2006) variably referred

to in the literature as alpha (or socialization or stability) and beta (or personal
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growth or plasticity).

Subject selection The total number of subjects in the 1200-subject release
of the HCP dataset is N=1206. The following criteria were applied to select
subjects for the analyses.

1. Subjects must have completed all resting-state fMRI scans, as well as
the Raven’s matrices intelligence test, the NEO-FFI and the Mini Mental
Status Exam (208 subjects excluded).

2. One subject with a score MMSE below 26 was excluded, since it could

indicate severe cognitive impairment or delirium.

3. Subjects with high motion were excluded. Specifically, subjects with a
root-mean-squared frame-to-frame head motion estimate exceeding 0.15
mm in any of the 4 resting-state runs (72 subjects excluded).

4. As an attempt to identify subjects that did not answer the self-report
NEO-FFT in a consistent manner, a robust outlier detection method was
used (Leys et al., [2018]) in the five-dimensional space spanned by the five
personality factors. As per recommendations in [Leys et al. (2018)), a ro-
bust Mahalanobis distance was used based on the Minimum Covariance
Determinant (with a breakdown point of 0.25), and a threshold based
on the chi-square value with 5 degrees of freedom for quantile 99.9 (58

subjects excluded).

The final sample consisted of 867 subjects, including 402 males (age range 22-
36).

Removal of potential confound Gender, age, 1Q, brain size and multi-
band reconstruction algorithm (which changed in the third quarter of HCP
data collection) were regressed from each of the personality scores to remove
their confounding effects. The multiple linear regression used for removing the
variance shared with confounds was performed on training data only (in each
cross-validation fold during the prediction analysis), and then the fitted weights
were applied to both the training and test data. This is critical to avoid any
leakage of information, however negligible, from the test data into the training
data.

Resting-state data preprocessing Three different pipelines (Finn, Ciric7
and SiegelB, described in section [4.1.1)) were selected and compared as repre-
sentative alternatives of the implemented denoising strategies.
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Inter-subject alignment and parcellation The most common approach
to align subjects is to warp individual brains to a common volumetric tem-
plate, typically MNI152. However, it is possible to exploit functional informa-
tion alongside anatomical information, as in the multimodal surface match-
ing (MSM) framework (Robinson et al., 2014). MSM-All aligned data, in
which inter-subject registration uses individual cortical folding, myelin map,
and resting-state fMRI correlation data, are available for download from the
HCP database. Two different approaches were compared: one based on the
classical volumetric alignment with a volumetric parcellation of the brain into
268 nodes (Shen et al., |2013; Finn et al., |2015), and one based on MSM-All
data and a multi-modal parcellation that was specifically derived from these
data (Glasser et al.| |2016).

Functional connectivity estimation Following the same approach descri-
bed in section time series were extracted for each node of the network by
averaging data across voxels within each brain parcel, and a connectivity matrix
was built computing pairwise Pearson’s correlations between time series. FC
matrices were averaged across runs acquired with left-right and right-left phase

encoding in each session, i.e. two FC matrices were derived per subject, one for
REST1 and one for REST2.

Test-retest comparisons In the following, three metrics are described that
were adopted to compare the FC matrices produced by the three different de-
noising strategies.

e Identification Success Rate (ISR): identification of subject S is suc-
cessful if, out of all subjects’ FC matrices derived from REST2, subject
S’s is the most highly correlated with subject S’s FC matrix from REST1.
The ISR gives an estimate of the reliability and specificity of the en-
tire FC matrix at the individual subject level, and is influenced both by
within-subject test-retest reliability as well as by discriminability among

all subjects in the sample.

e Similarity across sessions: it is desirable to have stable similarities
(and differences) between all subjects across repeated testing sessions.
Following an approach introduced in |Geerligs et al.| (2015a), the pairwise
similarity between subjects was computed separately for sessions REST1
and REST?2, constructing a Nsybjects X Nsubjects matrix for each session.
The two matrices were then compared using Pearson’s correlation coeffi-

cient.

e Behavioural utility: for each entry of the connectivity matrix, the cor-

relation between the entry and a trait across subjects was computed and
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matrix was built representing the relationship of each entry to this trait,
separately for session REST1 and session REST2. These two matrices
were then compared using Pearson’s correlation coefficient as a similar-
ity measure. The more edges reliably correlate with the stable trait, the
higher the correlation between session REST1 and session REST2 matrices
(Geerligs et al.l 2015a).

Predictive models The choice of the predictive model is limited by the curse
of dimensionality: although the HCP dataset is one of the largest available to
date, the number of subjects (in this case 867) is one order of magnitude smaller
than the number of features (the edges of the connectivity network), hence too
complex models, e.g., non linear models, are likely to overfit the data. For
this reason, two linear models were chosen, of which one is univariate and one
multivariate. In both cases, to alleviate the problem of high dimensionality, a
filter method was applied to select only features correlated with the score to
be predicted (on the training set). The univariate model is the same described
in section 4.3.1] since it was able to reproduce a previous finding (Finn et al.
2015). This method has the advantage of being extremely fast to compute,
but it is limited in that it condenses all the information contained in the con-
nectivity network in a single measure, it does not account for any interactions
between edges and it arbitrarily builds two separate models (one for positively
correlated edges and one for negatively correlated edges), but does not offer a
way to integrate them. The multivariate model is the elastic net, a regularized
regression method that linearly combines L1- (lasso) and L2- (ridge) penalties
to shrink some of the regressor coefficients toward zero, thus retaining just a
subset of features. The lasso model performs continuous shrinkage and auto-
matic variable selection simultaneously, but in the presence of a group of highly
correlated features, it tends to arbitrarily select one feature from the group.
With high-dimensional data and few examples, the ridge model has been shown
to outperform lasso; yet it cannot produce a sparse model since all the pre-
dictors are retained. Combining the two approaches, elastic net is able to do
variable selection and coefficient shrinkage while retaining groups of correlated
variables. 3-fold nested cross-validation was used to choose the alpha parameter

that weighs the penalty term.

Statistical assessment of predictions The HCP dataset includes data of
twins subjects and their non-twin siblings. To avoid any bias resulting from
the inclusion of genetically related subjects in the training and in the test sets,
all analyses were validated using a leave-one-family-out cross-validation scheme.
The performances of the predictive models were measured computing the corre-
lation between predicted and actual scores (p). To assign statistical significance

to the results, permutation testing would be preferable to parametric tests, since
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in a cross-validation scheme the folds are not independent from each other. How-
ever, to reduce the computational demand, permutation tests were performed
only for the analyses that passed the parametric significance threshold, since
in general these results tend to be more optimistic. The null distribution was
computed performing the whole analysis on 1000 random permutations of the

scores between subjects, while keeping everything else unchanged.

4.4.2 Results

Test-retest reliability Results regarding test-retest reliability were consis-
tent across denoising pipelines. All three strategies scored high (> 87%) on
the Identification Success Rate (ISR), with the best result attained by pipeline
Ciric7 (Figure [4.6R). Intra-session pairwise similarities between subjects were
similar for all strategies and also in this case model Ciric7 reported the high-
est score (Figure [l.6b). The best score for behavioural utility was obtained
with pipeline Finn (Figure ) We can observe that Neuroticism has lower
scores in terms of behavioural utility ), indicating that it is unlikely that
connectivity matrices contain information about this specific personality trait.
In general, analyses carried out with MSM-AIl alignment outperformed those
based on MNTI alignment.

IQ prediction The IQ prediction experiment presented in section [.3] was re-
peated on the full HCP dataset, but in this case removing the confounding fac-
tors prior to performing regression and using a leave-family-out cross-validation
scheme (4.4.1). In all experiments, positive correlations were found between
predicted and actual scores (Figure ) The mean effect size across all 12
alternative analyses was p=0.147 for session REST1, and p=0.123 for session
REST?2 (see Table. Comparing the results obtained with pipeline Finn and
the alignment in MNI space with those presented in section [4.3] we can ob-
serve that on the extended sample the prediction is barely significant in REST1
(at parametric p<0.05) and not significant in REST2. It might be that in the
previous analysis some variance from confounds was used in the predictions.
Results are consistently better in the experiments based on the MSM-AIl align-
ments (4.3). In figure [£.7p, the null distributions of the performance scores
for the univariate and multivariate models are reported for pipeline Finn. As
mentioned above, the parametric statistics underestimate the confidence inter-
vals, overestimating significance. Considering non-parametric statistics, the IQ
prediction with Finn strategy and MNI alignment does not yield to signifi-
cant results using the univariate model (permutation p—0.063 vs. parametric
p=0.005) as in the previous experiments. Results are however significant when
using the multivariate model and MSM-AIl alignment (permutation p=0.001),
showing how the choice of the model can affect statistical thresholds.
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Prediction of personality factors In general, the results of prediction were
quite poor (see Table , with the highest correlation between predicted and
actual score equal to 0.265 with a permutation p-value of 0.003 (while the para-
metric p-value is 2.46 x 107?), attained with pipeline Finn, MSM-AIl alignment
and the multivariate model for prediction. Some experiments produced nega-
tive correlations, hinting at the unreliability of the models. However, we can
observe some trends in the results. As mentioned above, experiments based
on the MSM-AIl alignment and parcellation tend to score higher and results in
the REST2 session are better than results in the REST1 session. It is interest-
ing to note that the REST2 session was held closer in time to the personality
assessment. Elastic net yielded overall better predictions than the univariate
model. No significant results were obtained for Conscientiousness, Agreeable-
ness, and Neuroticism, as well as the superordinate factor o derived primarily
from these traits. By contrast, Openness and Extraversion, as well as their
corresponding superordinate factor 5 showed considerably better predictability
(mean correlations of p=0.11, p=0.08 and p=0.12, respectively). Finally, the
variability across the 12 different experimental settings demonstrates how sensi-
tive the task of predicting individual differences is with respect to preprocessing

and modelling choices.

4.5 Conclusion

In this chapter, we investigated the potential of using individual functional
connectivity networks to predict intelligence and several personality factors.
Comparing different denoising strategies and using data collected in two distinct
fMRI sessions, we observed that the estimated FC networks were stable across
time, a fundamental prerequisite when trying to predict individual traits that
are expected to be stable in time as well. After replicating a previous finding
on the prediction of IQ, thus confirming that this framework is indeed able to
predict individual differences, the same approach was extended to personality
factors. A total of 24 analyses were run, choosing among 2 resting sessions, 3
preprocessing pipelines, 2 predictive models and 2 alignment and parcellation
schemes. Results showed that the best performances were attained with the
MSM-AIl multimodal parcellation scheme and elastic net as predictive model.
The only personality traits that could be predicted (although with rather low
scores, approaching 0.2 in the best cases) were Extraversion and Openness and
the superordinate factor 8. In particular the [ factor was the most reliably
predicted of all, with an effect size similar to the prediction of I1Q (mean p=.12).

However significant in a large enough population of subjects like the one con-
sidered here, a correlation of 0.2 corresponds to just 4% of explained variance.

The first conclusion that we can draw from this datum is that previous stud-



4.5. CONCLUSION 57

ies on personality, that were based on smaller samples and had lower statistical
power, could not detect an actual effect. Additionally, predictions were unstable
with respect to changes in preprocessing or across sessions. It seems therefore
unlikely that a connectome-based model could explain the causal mechanisms
bringing personality into being, but this does not imply that functional predic-
tors cannot be used as markers of personality, intended not as neural correlates
of individual traits, but as features that a computational model can learn to
map to personality factors, in a supervised fashion. To explore this possibility,
the first step would certainly be that of obtaining larger samples. More complex,
non linear model could reach higher accuracies, but are inapplicable given the
current sample sizes. The latter problem might be however alleviated adopting
advanced dimensionality reductions methods or more sophisticated tools derived
from network analysis. Further advances would also be possible with longitudi-
nal studies, that monitoring the evolution of the brain over time would allow to
account for the stability and variability of individual traits.

To effectively assess whether these findings reflect the inability to predict
personality from functional connectivity data or rather the unsuitability of the
chosen models, further replications and a more rigorous statistical evaluation
of the results based on permutation testing would be needed, together with the
examination of additional preprocessing alternatives. One concluding consider-
ation is that the adopted psycho-metric tests might reflect just socio-cultural
aspects and not biological individual differences, therefore a joint goal for psy-
chology, personality and cognitive neuroscience could be that of defining a new
taxonomy for personality and intelligence that better correlates with neurobio-

logical substrates.
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Figure 4.2: Pipeline flow chart.
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Figure 4.3: An item of the Raven’s progressive matrices test.
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IQ REST1 pt  p-value™ p~  p-value”

Finn 0.4213 2.75E-06 0.3013 1.07E-03
Ciricl 0.1852 4.76E-02 0.2378 1.05E-02
Ciric2  0.1550 9.82E-02  0.0277 7.69E-01
Ciric3 0.2933 1.46E-03 0.3928 1.41E-05
Ciric4  0.1493 1.11E-01  0.1770 5.85E-02
Cirics 0.3835 2.33E-05 0.3872 1.91E-05
Ciric7 0.4253 2.15E-06 0.3890 1.73E-05
Ciric9 0.2445 8.44E-03 0.3596 7.91E-05

Ciric13  0.1480 1.15E-01  0.1190 2.05E-01
Ciric14 0.2666 3.97E-03 0.2361 1.11E-02
SiegelA  0.2072 2.63E-02 -0.0318 7.35E-01
SiegelB  0.1647 7.87E-02  0.1441 1.25E-01
Gordonl  0.0934 3.23E-01  0.0054 9.55E-01
Gordon2 0.2383 1.07E-02 -0.0835 3.77E-01

IQ REST?2 pt  p-value™ p~  p-value”

Finn 0.3136 6.79E-04 0.3197 5.26E-04
Ciric1 0.2378 1.08E-02 0.2549 6.20E-03
Ciric2  0.1286 1.73E-01 0.1601 8.89E-02
Ciric3 0.3164 6.05E-04 0.3848 2.36E-05
Ciric4  0.0373 6.94E-01 0.1667 7.62E-02
Cirics 0.3985 1.13E-05 0.4289 1.92E-06
Ciric6 0.4531 4.14E-07 0.3888 1.91E-05
Ciric9 0.3267 3.89E-04 0.2776 2.79E-03

Ciric13 0.1944 3.82E-02 0.1514 1.08E-01
Ciricl4 0.1856 4.81E-02 0.2852 2.10E-03
SiegelA  0.2087 2.59E-02 0.1086 2.50E-01
SiegelB  0.2652 4.35E-03 0.2906 1.71E-03
Gordonl  0.1145 2.29E-01 -0.2322 1.37E-02
Gordon2 -0.0221 8.17E-01 0.0069 9.42E-01

Table 4.1: IQ prediction results for session REST1 (top) and REST2 (bottom).
The values indicate the correlations between predicted and actual scores (p) and
the associated p-values for positive (*) and negative (7) models. Correlations
with a p-value < 0.05 are in bold.
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RMS REST1 ot p-value® p~  p-value”

Finn 0.418051 3.34E-06 -0.02169 0.817996
Ciric1 0.191935 0.039885 -0.1279 0.173149
Ciric2 0.166155 0.075947  -0.10114 0.282158
Ciric3 0.390901 1.57E-05 -0.02137  0.820668
Ciric4 0.170949 0.067749  -0.07583 0.420558
Cirich 0.3886 1.77E-05 -0.01756 0.852275
Ciric6 0.430703 1.55E-06  -0.04332 0.645698
Ciric9 0.399074 9.97E-06 0.030367  0.747325

Ciricl3 0.279706 0.002467  -0.06066 0.5196
Ciric14 0.336586 0.000235 -0.0024 0.979665
SiegelA  0.194479 0.037278 -0.21659 0.020075
SiegelB  0.412015 4.76E-06 -0.24096 0.009484
Gordonl 0.531467 1.17E-09  -0.08242 0.383349
Gordon2 0.67818 1.14E-16  -0.02027 0.83047

RMS REST2 pT  p-value™ P p-value™

Finn 0.2996 1.20E-03 -0.0978  3.01E-01
Ciricl  -0.0790  4.04E-01  -0.1843  4.97E-02
Ciric2  -0.0439 6.43E-01 -0.0122 8.98E-01
Ciric3  0.2586 5.47E-03  -0.0135 8.87E-01
Ciric4 -0.2070 2.71E-02 0.0113  9.05E-01
Cirich 0.1781 5.80E-02  -0.0889  3.47E-01
Ciric6  0.2045 2.90E-02 -0.0433 6.47E-01
Ciric9  0.2178 1.99E-02 -0.2196 1.89E-02

Ciricl3 0.0173  8.55E-01  -0.0597  5.28E-01
Ciric14  0.2517 6.91E-03  -0.0240  8.00E-01
Siegel A 0.1170 2.15E-01  -0.1487 1.14E-01
SiegelB  0.4120 5.24E-06 -0.2283 1.46E-02
Gordonl 0.5513 3.01E-10 0.0876  3.59E-01
Gordon2  0.6309 8.91E-14 -0.0348 7.16E-01

Table 4.2: Motion prediction results for session REST1 (top) and REST2 (bot-
tom). The values indicate the correlations between predicted and actual scores
(p) and the associated p-values for positive (T) and negative () models. Cor-
relations with a p-value < 0.05 are in bold.
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Figure 4.6: Test-retest comparisons between alignment (in MNI and in MSM-All
spaces) and denoising strategies (A, B and C refer to Finn, Ciric7 and SiegelB
models, respectively). a. Identification success rate and other statistics. b.
Test-retest of the pairwise similarities (based on Pearson’s correlation) between
all subjects c. Test-retest reliability of behavioral utility, quantified as the
pattern of correlations between each edge and a behavioral score of interest.
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Figure 4.7: Prediction results for de-confounded IQ (PMAT24 A CR). a. All
predictions are assessed using the correlation between the predicted and the
actual scores. The prediction score in REST?2 is plotted against the prediction
score in REST1, to assess test-retest reliability of the results. Parametric con-
fidence intervals (95%, 99% and 99.9%) for the null hypothesis are shown as
shades of gray. b. The distribution of prediction scores under the null hypothe-
sis is shown (black histogram). Note that the empirical 99% confidence interval
is wider than the parametric CI used in a, and features a heavy tail on the left

side for the univariate model.

NEOFAC_C NEOFAC_A_corr
° | | o ' '
2 i | Y B i i /
g 02 1 1 202 i 1
H i / g i i
/. =0.001 £
R e 3;552 ] S Ao Ogyl i
T i = ;
~3 Ay o o3 b ] o
g o i | BE o o 1 e
&3 vi | &3 ; : &
&-01F===—— A1 FE=———- 801F===—7 A== e
c 7 i = A i
s S i s yal i
®02f &1 | ® 02 / 1 1
= D | 3 / i !
£ &S | | 3 / |
g € 1 L g 1 H
02 01 0 01 02 02 01 0 01 02

correlation predicted vs. measured correlation predicted vs. measured

NEOFAC_N
El ' ! /
2 i i V%
o
g i 1
P -
. S A
s T T
3 i |
g o LY 1
B i |
a-01F-—--- $E T tr—————
€ A i
s S |
B2l i
] / i i
8 L L

02 01 0 01 02

correlation predicted vs. measured

NEOFAC_O

3 ' 3
|4 | |4
g ) g
MNI E o a €
mAG g o E g
2 ABA g = T 3 =
[EYCV S £g | v £z
|SMsm-All 2| ve | 1 5]
SmAD 3| =3 ‘ 1 g
ABA E &= —— === g
vcy € T €
s 1 §
5 02 ' 3
v | v

§ ; 5 L

02 01 0 o1 02 02 01 0 01 02

correlation predicted vs. measured
REST1

correlation predicted vs. measured
REST1

REST2
correlation predicted vs. measured

REST2
correlation predicted vs. measured

°

L
02 01 0 01 02

02 01 0 01 02
correlation predicted vs. measured
REST1
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factors. a. Prediction results for each of the Big Five.b. Prediction results for

superordinate factors a and .
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Chapter

Conclusion

We can think of our brains as computational machines that receive inputs from
the surrounding environment and produce behaviour as an output. In the past
decades, neuroscience has tried to quantitatively analyse neural activity to un-
derstand how the information processing taking place in our brains translates
into physiological and pathological behaviour. Despite the daunting complexity
of this challenge, great progress has been made in this field, e.g. in mapping
functions to brain regions. Yet, a complete understanding of brain disorders is
still lacking.

Every person is unique because every individual is the result of a unique
point of view on the world. However, to be able to diagnose a neurodegenera-
tive disease, it is necessary to identify anomalies that go beyond inter-subject
variability and in fMRI data analysis this task is hindered by the presence of
multiple sources of noise. The overarching goal of this work has been that
of devising novel methods to derive neuromarkers built upon brain functional
networks, taking advantage of machine learning and computational intelligence
approaches. The need for these advanced methods is justified by the additional
difficulties posed by resting state data: while in task fMRI a big portion of noise
can be removed by averaging multiple acquisitions, in absence of a defined task
it is crucial to isolate the signal of interest from background noise. Aggregat-
ing the information coming from multiple voxels, clustering techniques increase
the signal-to-noise ratio and hence facilitate the task of extracting neurophysi-
ological information. On the other hand, ever more studies on brain functional
organisation support the theory of a modular community structure, and clus-
tering allows to identify functional modules of co-varying voxels. We have also
discussed how consensus clustering techniques can be used in population studies
to extract meaningful features able to increase discriminability but also inter-

pretability of the results in a classification task. Additionally, a new approach
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was presented that uses stochastic rank aggregation methods to identify brain
regions that exhibit a coherent behaviour in subjects of the same diagnostic
group, as opposed to traditional methods based on comparative statistics that
look at differences between groups. The proposed framework was applied on
a resting state activation map, but potentially it can be extended also to task
fMRI, to study specific aspects of behaviour.

A commonly raised objection to diagnostic markers derived from neuroimag-
ing studies is that they only recapitulate existing findings. However, neuromark-
ers should not be considered just as diagnostic tools, but primarily as a means
to study the neurobiological basis of disorders. Nevertheless, neuromarkers can
support complex diagnostic tasks as patient subtyping, early detection, risk
assessment and predicting conversion to full-scale disorders (Woo et al.| [2017).

With more and more quality data being available, nowadays it is possible to
investigate the variability of the functional organisation of the brain at the indi-
vidual level. In this work, we discussed the possibility of predicting behavioural
traits like fluid intelligence and personality factors from functional connectivity
networks, and, to the best of my knowledge, this was the first time that this
problem was investigated in a systematic way in a sample of this extension. De-
spite some negative findings, results showed that a measurable effect is present,
especially in the case of intelligence. Indeed, in the IQ experiments, most of the
results were significant, independently from the chosen preprocessing pipeline
and regression model: this is in accord with the principle of inter-rater reliability
(Dubois and Adolphs| 2016)), that states that if all the different analyses choices
are reasonable, they should all yield a similar result. Results were also stable
when replicated on the data of the second session. Furthermore, preliminary
experiments have shown that better predictability can be achieved when using
factor analysis to derive a general factor of intelligence from multiple cognitive
tasks, instead of relying on a single test like Raven’s progressive matrices.

The main contribution of this work has been that of reporting the challenges
for prospective investigators approaching this field, first among all the need for
more data. It has been demonstrated that common sample sizes of less than 50
subjects have extremely low statistical power, and consequently are unable to
represent actual effects, leading to a higher variability in subsequent replications
(Yarkoni, [2009). Another fundamental aspect to consider is the adoption of
predictive frameworks, that provide a means to assess the generalizability of
the results on previously unseen data. In the near future, thanks to many data
collection initiatives, like UK Biobank, larger datasets will be accessible, that
will allow to replicate the presented experiments on independent data and to
have more conclusive results, but also to adopt more sophisticated methods. We
have seen how the application of multivariate models and of parcellations derived
from multi-modal data led to better results. It is probable that the application
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of non-linear models could yield to further improvements. For example, deep
learning is one of the most trending areas in machine learning research, with
outstanding results in several applications, but to achieve its full potential in
this field samples sizes in the order of tens of thousands would be needed, while
currently available datasets comprise hundreds of samples in the best cases.
Future investigations aimed at understanding which is the best model for a given
individual trait could give us a minimal representation of a trait in terms of brain
function, and this in turn could constitute a basis to derive new psychometric
tools that are better supported by neural correlates.
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