

Contents

1 Introduction and motivation 3

1.1 Threats evolution in modern networks 3

1.2 Taxonomy of propagative attacks 5

1.3 Taxonomy of Distributed Denial of Service (DDoS)
attacks . 8

1.4 Network resilience and availability 11

1.5 Related research . 12

1.6 Outline and main contribution 15

2 Classic Background 17

2.1 Continuous Time Markov Chains 17

2.2 Kendall’s Birth-and-Death model 19

2.3 The Poisson process 20

2.4 Generating Functions 21

2.5 Stochastic convergences 22

2.6 Stochastic Reward Networks (SRN) 24

3 Modeling network threats propagation 27

3.1 Problem statement 27

3.2 Birth and Death models with Immigration (B-D-I) 31

3.2.1 Regimes of operation 36

3.3 Optimal resource allocation for threat mitigation . 39

3.4 Maximum Likelihood estimation of B-D-I parameters 44

3.5 Experimental results 48

i

4 Randomized DDoS: formal model and performance
evaluation 51
4.1 Main setting and inference strategies 51
4.2 Randomized DDoS model 53
4.3 Main network indicators 54
4.4 Randomized DDoS with Emulation Dictionary . . . 55
4.5 The Botnet Identification Condition (BIC) 61

4.5.1 Replacement and Reassignment procedure . 65
4.5.2 Threshold setting 70

4.6 The BotBuster algorithm 73
4.7 Numerical results and performance evaluation . . . 76

4.7.1 Experimental threshold setting 79
4.7.2 Role of Emulation Dictionary Rate 80
4.7.3 Network size scaling 81
4.7.4 Multiple bots / Spoofed addresses 83
4.7.5 No botnet setting 87

5 Randomized DDoS attacks in a multi-clustered en-
vironment 89
5.1 The multi-clustered scenario 89
5.2 Network indicators for multi-clustered DDoS 89
5.3 Malicious clusters identification algorithm 91

5.3.1 Algorithm examination 94
5.4 Experimental results 98

6 High Availability (HA): an effective prevention
strategy 103
6.1 HA concepts in modern data networks 103
6.2 HA and Software Defined Networking (SDN) 104

6.2.1 SDN Controller performance model 105
6.2.2 Multi-dimensional UGF 111
6.2.3 A numerical example 114

6.3 HA and Network Function Virtualization (NFV) . . 115
6.3.1 Modeling a network service via SRN 116
6.3.2 Experimental results 126

7 Concluding remarks 131

ii

A Appendices 135
A.1 Appendix 1 . 135
A.2 Appendix 2 . 139
A.3 Appendix 3 . 146

Bibliography 149

2

Chapter 1

Introduction and
motivation

1.1 Threats evolution in modern net-

works

Nowadays, the proliferation of new network paradigms, novel
communication protocols, ground-breaking technologies and in-
frastructures, provides new value to the digital information. Let’s
think of Internet of Things (IoT) paradigm allowing globe-wide
disseminated objects to communicate among them. Let’s think
of the so-called 5G (fifth generation) platforms, such as Software
Defined Networking (SDN) and Network Function Virtualization
(NFV), conceived to boost the deployment of new IP-based ser-
vices. Let’s think of new multimedia protocols as WebRTC allow-
ing to exploit a simple internet browser to set-up an audio/video
session. All these innovations go hand in hand with security issues
that become even more challenging and hard to face. As regards to
the IoT ecosystem for example, the large volume of interconnected
objects provides a big appeal for malicious users that could exploit
the possible lack of strong security measures on IoT devices. Such
devices, in fact, do not natively support advanced security mech-
anisms being designed with computational (and physical) con-

3

1. Introduction and motivation

straints. It is worth noting that, at the end of 2016, a powerful and
insidious malware called Mirai [1] infected a huge number of IoT
devices (web cameras) by simply using telnet default passwords.
As a second step, these cameras were instructed by Mirai to trig-
ger a distributed attack against the french provider OVH that was
flooded by 1.1 Tbps of network traffic, resulting in a service inter-
ruption. This kind of attack is often marked as Distributed Denial
of Service (DDoS) attack that will be deepened within this work.
New kinds of threats emerge also in the novel 5G platforms. The
SDN infrastructure, where the data and control plane are decou-
pled, suffers of several vulnerabilities as the lack of authentication
mechanisms in the data plane, triggerable CPU intensive oper-
ations on SDN switches, fraudulent memory space allocation on
SDN devices [2]. Again, the NFV paradigm that introduces the
virtualization technologies in telecommunication world, is prone
to various kind of threats. In a Virtual Machine escape attack
scenario, for example, a malicious user could take advantage of
the common virtualization layer shared among more virtual ma-
chines (VMs); it is possible in this case to gain the access to the
least protected VM and, by exploiting a weak isolation between
VMs and hypervisor, to break this latter [3]. Finally, as regards
to the novel multimedia protocols and applications, some classical
network attacks have been conveniently tailored to tamper or in-
terfere with VoIP/Video communications. Most dangerous threats
in VoIP ecosystem are summarized in [4] where emerge: i) social
threats, referring to vishing (namely, VoIP phishing), theft of ser-
vice, unwanted spam; ii) eavesdropping, referring to a situation
where a malicious user can unlawfully intercept (and eventually
modify) the signaling or the content of a VoIP communication;
iii) service abuse, covering the situation where service is offered
in a commercial setting; iv) denial of service that involves VoIP
infrastructures by causing resource consumption of vital nodes as
SIP proxies, SIP registrars, Media Gateways. Other kinds of mul-
timedia resources misuses concern the possibility of injecting ille-
gal content into encrypted VoIP streams in order to circumvent
any form of legal control. Accordingly, some statistical techniques

4

1.2. Taxonomy of propagative attacks

Figure 1.1: Observed Code Red propagation - number of infected
hosts (from Caida.org).

have been exploited in order to reveal possibly dangerous real-
time traffic [5–9]. In the following subsections I will introduce a
macroscopic class of attacks that, due to its nature, is representa-
tive of one of the most evolved threats in modern communications:
propagative and distributed attacks.

1.2 Taxonomy of propagative attacks

The propagation of a network threat is a common expression used
in cybersecurity context to account for a particular process where a
threat spreads across a network by infecting its neighborhood. The
propagation (or diffusion) processes are frequently encountered in
many disciplines as physics, material science, biology, chemistry,
and they can emerge as naturally or artificially [10]. Such phenom-
ena inspired a lot of hackers communities to create malwares able
to mimic this kind of behavior. When propagation concepts ap-

5

1. Introduction and motivation

ply to malware, they refer to diffusion processes where a malware
starts to infect a source user (or a source users area) and then it
propagates to other users that can become themselves a source of
propagation. In the technical literature we find some interesting
cases of malwares that exploit the propagation mechanisms. Let’s
see some examples. The worm Code Red [11] has been discovered
in 2001 when it exploited a Windows IIS web server vulnerabil-
ity. Each computer infected by Code Red started to generate one
hundred of random simultaneous scans by seeking new possible
victims. Routers that had to manage millions of fake scans, were
prone to several disruptions as: large number of flows in NAT/PAT
tables, high CPU utilization, large number of ARP requests or
ARP storms in the network. A detailed study of Code Red propa-
gation mechanism has been performed by CAIDA 1 that measured
the number of infected hosts as function of time as depicted in Fig.
1.1. Few years later (2008), another worm called Conficker rapidly
spread worldwide by exploiting a NETBIOS vulnerability in sev-
eral Windows operating systems [12]. Once infected a computer,
Conficker tried to install a listening http server and to wait for
a client connection to download a copy of the worm in a DLL
form. According to New York Times [13], this dangerous worm
infected over 9 millions of computers. A very recent malware that
combines the features of a ransomware and the features of a self-
propagating worm, has been protagonist of worldwide attack in
May 2017: WannaCry. Basically, the malicious software (eventu-
ally downloaded via phishing mails) is able to propagate inside a
local area network by exploiting a Server Message Block (SMB)
vulnerability of Microsoft systems. Once installed (and propa-
gated inside the LAN), it behaves as a ransomware able to cipher
data on computer’s victims. To obtain the deciphering key, the
victim has to pay about 300 dollars in bitcoins. Actually, when
dealing with self-propagating threats, the users’ (namely network
nodes) behavior can depend on: i) the ability of malware of be-
ing dangerous and exploit peculiar vulnerabilities (e.g. operating
system bugs) and, ii) the capability of user to be resilient to the at-

1Center for Applied Internet Data Analysis - www.caida.org

6

1.2. Taxonomy of propagative attacks

S I

R

S I

S I RS I

DS I DS I

D

S I

R

S-I
S-I-S

S-I-R S-I-S-R

S-I-D S-I-S-D

S-I-R-D

Figure 1.2: A subset of node infection models.

tack (presence of updated antivirus/firewall, advanced users skills,
etc.). Inspired by epidemiological studies (and adopting the per-
tinent nomenclature) [14–16], it is possible to associate different
states to the nodes: susceptible (S) indicates that a node is prone
to be infected by a malware; infected (I) indicates that a node has
been attacked by a malware; removed (R) indicates a successful
recovery action; dead (D) indicates that a node has been com-
pletely broken by a malware. The four states can be variously
combined in order to create different (and deterministic) infection
models as represented in Fig. 1.2. The most basic combination
of states generates the S-I model, where a susceptible node be-
comes infected and persists in the infected state up to the rest of
its lifetime. When, after infection, a node gets back susceptible,
we refer to a S-I-S model; in this case, there is no immunization
upon recovery from infection and nodes become susceptible again.
In case of a S-I-R model, instead, a node becomes immune after
recovery stage. If a recovery stage is not possible, the node will
die after the infection, and the resulting model is a S-I-D model.
A combination of these basic configurations can generate models
such as S-I-S-R or S-I-S-D. In the former case, a node can oscillate

7

1. Introduction and motivation

between susceptible and infected states but, at a certain time, a
recovery stage will permanently cure the node. In the latter case,
instead, no recovery action will be possible and the node will die.
Another interesting combination is represented by S-I-R-D model.
Such a model describes the behavior of a susceptible node that is
infected by malware and passes to the infected state. Two tran-
sitions are possible: towards recovery state if the node receives
the specific cure, and towards dead state if the node becomes de-
stroyed. The transition between susceptible and removed state in-
dicates a node that is conveniently patched and hence, protected.
The Code Red worm is particularly suitable to be modeled with
S-I-R-D paradigm.

1.3 Taxonomy of Distributed Denial of

Service (DDoS) attacks

The main purpose of a traditional Denial of Service (DoS) attack
is to create a service disruption. Classical examples refer to a web
server overwhelmed by a huge amount of spurious requests, or an
internet router that has to manage an enormous number of fake
IP entries. This kind of attack is often categorized as volumetric,
and, in many cases, it forces the target to be unavailable also for
legitimate users. The distributed variant of DoS attack is called
Distributed DoS (DDoS) and exploits basically the same kind of
vulnerabilities and repetition schemes, except for the fact that
the large request rate is now obtained by aggregating many small
individual rates. Now, in the case of a classical DoS, the attacker
machine generates a great bulk of traffic that allows an Intrusion
Detection System (IDS) to possibly reveal the source of attack.
In case of a DDoS, instead, it is practically impossible to keep
track of every malicious host (often called bot) generating a tiny
rate of fake requests. DDoS is a well structured and organized
attack where a botmaster coordinates a set of bots called botnet
to send attack packets to the victims. The damage depends on the
botnet size that, if huge, can disrupt an entire portion of network

8

1.3. Taxonomy of Distributed Denial of Service (DDoS) attacks

in a very short time. Today, some darknets offer DDoS “services”
allowing to rent a botnet of 100.000 bots with a total attack rate
lying between 10Gbps and 100Gbps for about 100 dollars per hour.
Many of (D)DoS attacks exploit the Network and the Transport
levels of the TCP/IP stack, and classical examples include:

• SYN flood attack: a group of attackers try to break the
three-way-handshake procedure characterizing the TCP pro-
tocol. In particular, the attackers send a succession of SYN
requests to a victim system without waiting for the proce-
dure were completed. The aim is to consume the victim’s
resources.

• Smurf attack: a group of attackers use the victim’s IP
address (IP spoofing) as sources to build ICMP messages sent
to the broadcast address of an internet gateway. As result,
the gateway forwards such ICMP messages to its network
hosts that, in turn, answer to the source IP address (victim)
making it flooded of unwanted responses.

• Teardrop attack: a group of attackers flood a target ma-
chine with malformed IP packets. More specifically, such
packets are fragmented and sent with a wrong offset. Dur-
ing the reassembling stage, some operating systems crash
when try to reassemble packets with skewed offsets.

Recently, the new class of application-layer DDoS (or L7-
DDos) attacks is arising as one of the most powerful threats. Gen-
erally, L7-DDoS targets the HTTP protocol by building artificial
GET and POST requests aimed at exhausting the web resources.
Such attacks are not trivial to reveal for a series of reasons [17]: i)
lower bandwidth consumption in comparison to network/transport
layer DDoS attacks; ii) potentially infinite possibilities to build
GET and POST requests with fake content; iii) obscurity due to
the legitimate usage of TCP and UDP protocols; iv) facility of
implementation because no tools for manipulating IP packets are
needed. From a topological perspective, the DDoS attacks can

9

1. Introduction and motivation

C&C C&C

Botmaster

BotBot

Bot

Bot

Bot

Bot

Bot

Bot Bot

Bot

Bot

Bot

Bot Bot

Bot

Bot Bot Bot

Centralized

Architecture

P-2-P

Architecture

Hybrid

Architecture

Botmaster
Servent

Bots

Client

Bots

Figure 1.3: Botnet architectures and models.

be launched by relying on different botnet architectures. Some
topological schemes are depicted in Fig. 1.3 where three kinds of
architectures have been represented:

• Centralized Architecture: it is the most common of bot-
net architecture. Botmaster interacts (optionally) with bot-
net via command & control (C&C) servers, that propagate
the instructions to bot agents. (C&C) servers can act either
as load balancers, in case of a huge size of managed botnet,
and as cluster-roots of a subset of bot agents, in case of an
heterogeneous DDoS attack where different bot clusters have
to be infected with different malwares.

• P-2-P Architecture: information about targets are shared
among the bots. It provides a more resilient infrastruc-
ture because it avoids the problem of single point of failure
present in the centralized solution.

• Hybrid Architecture: it has been designed to take ad-
vantage from both centralized and P2P architectures. Two
kinds of bot agents are present: servant bots and client bots.

10

1.4. Network resilience and availability

The former contain static and routable IP addresses, whereas
the latter do the dirty work.

Due to the growing sophistication of DDoS attacks, either from
a protocol point of view and from an architectural improvements
perspective, the real-time detection of such attacks is becoming
even more challenging. Actually, the adopted defense mechanisms
try to use variously combined strategies in order to make the pro-
tection effective. Tools such as IDSs are often exploited to monitor
DDoS threats by using misuse and anomaly detection approaches.
According to the misuse approach, an IDS can be instructed with
specific rules in order to track down suspicious combination of
TCP flags and discover SYN flood or Teardrop attacks for exam-
ple. On the contrary, the anomaly detection approach is useful to
monitor anomalous network behaviors (e.g. traffic peaks, exces-
sive bandwidth consumption), resulting in a deviation from regular
operations. Unluckily, some DDoS attacks as L7-DDoS ones are
able, in many cases, to provoke damages without possibility of
being revealed.

1.4 Network resilience and availability

Propagative and distributed attacks rely on different strategies but
have often the same purpose, namely, the fraudulent exhaustion
of network resources. Since such massive attacks can be effective
in a very short time, it is not always possible to design efficient al-
gorithms able to counter them in a real-time fashion. Accordingly,
before a security algorithm could properly intervene, the network
should exhibit a certain degree of resilience in order to face (at
least) the first stage of a massive attack. The network resilience
refers to the capacity of a network infrastructure to resist to faults
(e.g. network attacks) and to continue in providing a service. An
useful metric able to capture the resilience features of a network is
the availability, intended as a measure of the percentage uptime,
considering the downtime due to faults. In particular, when deal-
ing with mission critical systems, the concept of high availability

11

1. Introduction and motivation

is often introduced to ensure a certain level of performance for a
higher than normal period. A measure of this condition is the
number (or class) of “nines”. For example, a “five nines” condi-
tion means that a system (e.g. a network) can be unavailable for
only 5 minutes and 26 seconds throughout a year. The number of
nines is often inserted in Service Level Agreements (SLAs) that a
network provider subscribes, where planned and unplanned down-
times are considered. The former category refers to the scheduled
operations of maintenance that a provider puts in field in order to
guarantee a correctly working system. The latter category is obvi-
ously due to unpredictable events that can occur within a system,
and it is not hard to realize that massive network attacks belong to
such category. A way to ensure a certain level of high availability
in a network infrastructure is to deploy some redundancy. Since
redundancy policies have their own cost, good designing practices
should be considered in order to guarantee a desired level of avail-
ability (often “five nines”), and to contain the operational costs
at the same time.

1.5 Related research

In this section, a non-exhaustive excursus about relevant works
concerning the characterization of propagative and distributed at-
tacks will be exposed. Even if propagation and distribution of
network threats are considered two sides of the same coin, the un-
derlying models can be significantly different, thus, for the sake
of clarity, they will be discussed separately. Therefore, a further
discussion about pertinent related work concerning the availabil-
ity issues of networks is proposed at the end of this section. As
regards propagation and diffusion mechanisms, part of technical
literature is devoting efforts to recast epidemic inspired models by
applying new techniques or formalisms. For example, the authors
in [18] propose an analytical framework able to catch the interac-
tions among e-mails exchanged by infected users where the under-
lying scheme is represented by a Susceptible-Infected-Immunized

12

1.5. Related research

(S-I-I) model. Besides, such a model accounts for the problem of
receiving multiple malware email copies from the same neighbor,
by introducing the virtual nodes amenable to represent the n-th
infection caused by users that open the n-th copy of an infected
mail. A queueing-based methodology for modeling threat diffu-
sion in complex networks has been devised in [19]. In particular,
the proposed approach intends to capture the dynamics of SIS-
based systems in time-varying networks, where nodes appear and
disappear due to their energy reserves. An interesting patching
mechanism able to immunize vulnerable nodes has been instead
proposed in [20], where the intuition of the authors is to apply the
propagative mechanisms to patching operations. More specifically,
in a non-replicative patching setting, some nodes are preloaded
with a patch that makes them immunized; in a replicative patch-
ing setting instead, each node can also forward the patch to the
neighbor nodes, by relying on an action similar to the malware
spreading. Again, a perspective about worm propagation in social
environments is offered in [21]. Social worms are able to exploit the
trusted relationships among friends, by spreading malicious code
to neighbors. A new feature based on a reinfection-notification
model seems to appear: an infected user re-transmits the malware
as he/she reads the malicious message. Besides, this situation is
amplified thanks to the mobility of users that can log in the same
social account from different locations, causing the growth of in-
fected nodes. In [22] the threat propagation is modeled through
the Galton-Watson branching process [23], whose analytical prop-
erties are exploited to devise proper containment strategies. A
generalized random Fibonacci model is instead proposed in [24],
where effective strategies for tracking the infection process are de-
vised, relying on powerful algorithms for filtering and prediction of
epidemic outbreaks. As regards distributed attacks, technical lit-
erature is focusing on the novel DDoS attacks by trying to capture
their multiform nature that makes them employable at each level
of the TCP/IP protocol stack. The authors in [25], for example,
propose to apply statistical methods based on computing entropy
and frequency-sorted distributions of selected packet attributes to

13

1. Introduction and motivation

counter DDoS attacks. Consequently, the identification procedure
is based on the detection of anomalies arising in the features of
the packet attributes. In [26], two novel metrics, namely, the infor-
mation distance metric and the generalized entropy metric, have
been exploited to reveal low-rate DDoS attacks based on the dis-
similarity between malicious and legitimate traffic. A particular
DDoS variant called shrew distributed attack has been faced and
mathematically modeled in [27]. Shrew attack tries to stealthy ex-
ploit some vulnerabilities in TCP’s retransmission timeout (RTO)
procedure. In particular, legitimate TCP flows are attacked by
periodic high rate packet streams matching the RTO. Hence, as
a TCP sender recovers from timeout, it will experiment conges-
tion problems and will be forced to enter timeout again. More
closely coupled to present research is the new class of application-
layer DDoS attacks [28, 29], where the malicious traffic patterns
are disguised as normal ones by leveraging the many possibilities
offered at the application layer. Finally, as regards to the network
availability problems, the interest of technical literature is recently
growing also in accordance with newly conceived 5G infrastruc-
tures. Accordingly, the European Telecommunications Standard
Institute (ETSI) has provided some guidelines about the applica-
tion of reliability concepts to new generation networks [30] that
have been considered in many works. In [31], some high availabil-
ity concepts have been successfully applied to OpenStack platform,
a cloud computing architecture implementing the Infrastructure-
as-a-Service (IaaS) paradigm. Approaches based on Continuous-
Time Markov Chains have been exploited in [32–34] to evaluate
the system dependability. Since some serious issues arise when
Markov chains are applied to complex systems due the intractable
sizes of the state space, more evolved tools as Stochastic Reward
Nets (SRNs) have been exploited to characterize network avail-
ability [35–37]. This last trend is in line with the research activity
presented in this work.

14

1.6. Outline and main contribution

1.6 Outline and main contribution

This thesis focuses on statistical approaches to model, mitigate,
and prevent distributed network attacks. When dealing with
distributed network attacks (and, more in general, with cyber-
security problems), three fundamental phases/issues emerge dis-
tinctly. The first issue concerns the threat propagation across the
network, which entails an ”avalanche” effect, with the number of
infected nodes increasing exponentially as time elapses. The sec-
ond issue regards the design of proper mitigation strategies (e.g.,
threat detection, attacker’s identification) aimed at containing the
propagation phenomenon. Finally (and this is the third issue), it
is also desirable to act on the system infrastructure to grant a con-
servative design by adding some controlled degree of redundancy,
in order to face those cases where the attacker has not been yet de-
feated. The contributions of the present thesis address the afore-
mentioned relevant issues, namely, propagation, mitigation and
prevention of distributed network attacks. A brief summary of
the main contributions is reported in the following. The current
Chapter 1 is merely introductive, and offers a general overview
about the topics considered in the present work.

Some mathematical and statistical tools are briefly exposed in
Chapter 2, in order to help the reader to comfortably follow the
dissertation. Along each proposed methodology, the candidate
anticipates where it will be exploited within the document.

The first contribution is illustrated in Chapter 3, and concerns
the adoption of Kendall′s birth-and-death process (1948) as an
analytical model for threat propagation [38]. Such a model ex-
hibits two main properties: i) it is a stochastic model (a desirable
requirement to embody the complexity of real-world networks)
whereas many models are purely deterministic; ii) it is able to
capture the essential features of threat propagation through a few
parameters with a clear physical meaning. By exploiting the re-
markable properties of Kendall′s model, the exact solution for the
optimal resource allocation problem (namely, the optimal miti-
gation policy) has been provided for both conditions of perfectly

15

1. Introduction and motivation

known parameters, and unknown parameters (with the latter case
being solved through a Maximum-Likelihood estimator).

The second contribution is presented in Chapter 4, and per-
tains to the formalization of a novel kind of randomized Dis-
tributed Denial of Service (DDoS) attack. In particular, a botnet
(a network of malicious entities) is able to emulate some normal
traffic, by picking messages from a dictionary of admissible re-
quests. Such a model allows to quantify the botnet learning abil-
ity, and to ascertain the real nature of users (normal or bot) via an
indicator referred to as MIR (Message Innovation Rate). Exploit-
ing the considered model, an algorithm that allows to identify a
botnet (possibly) hidden in the network has been devised [39,40].

Chapter 5 extends the contribution provided in the previous
section, by broadening the view to a multi-clustered setting where
the botnet is now spread across many clusters, each one of them
having its own emulation dictionary. Although this part is in-
tended as a further development of the one presented in Chapter
4, some original contribution emerges, such as the definition of spe-
cific rules useful to identify the malicious clusters and embodied
in a new algorithm tailored to a multi-clustered scenario [41].

A third contribution is offered in Chapter 6, and concerns the
formalization of the network availability problem and the con-
sequent design of a prevention strategy. Two statistical frame-
works are proposed to model the high availability requirements
of network infrastructures, namely, the Stochastic Reward Net-
work (SRN), and the Universal Generating Function (UGF) frame-
works. In particular, since in the network environment dealing
with multi-dimensional quantities is crucial, an extension of the
classic UGF framework, called Multi-dimensional UGF (MUGF),
is devised. Actually, this third contribution intends to offer a more
generalized and enlarged view of the network availability issue (not
exclusively intended as a prevention measure), also applied to some
new generation paradigms (e.g. NFV, SDN) [5, 7, 8, 42–49].

Finally, Chapter 7 ends this thesis by drawing a brief summary
along with considerations about possible future works.

16

Chapter 2

Classic Background

2.1 Continuous Time Markov Chains

In this section, the candidate wants to recap some classical back-
ground techniques that have been exploited in his research. Con-
tinuous Time Markov Chains (CTMCs) and their variants have
been extensively used inside the present work. This representa-
tion is used to model a variety of phenomena, such as propagation
and diffusion of threats (epidemics), queueing networks, reliability
and availability of complex systems. A continuous-time stochastic
process {X(t) : t ≥ 0} with discrete space S is a CTMC if for all
t ≥ 0, s ≥ 0, i ∈ S, j ∈ S,

P (X(s+ t) = j|X(s) = i, {X(u) : 0 ≤ u < s})

= (P (X(s+ t) = j|X(s) = i) = Pij(t) (2.1)

where Pij(t) is the transition probability from state i to state j
during a time interval of t. The CTMCs have the following prop-
erty: given that the process is in state i, the sojourn time in that
state is an exponentially distributed random variable with a pa-
rameter λi. Since the exponential distribution is memoryless, the
future outcome of the process depends only on the present state
and does not depend on when the last transition occurred. Some
useful properties and definitions about CTMCs follow.

17

2. Classic Background

• Definition: a probability distribution λ is a limiting distri-
bution of a CTMC if

lim
t→∞

Pij(t) = λj ∀i, j. (2.2)

• Definition: a probability distribution π is a stationary dis-
tribution of a CTMC if

π = πP (t) ∀t ≥ 0. (2.3)

• Definition: a CTMC is irreducible if, given any two states
i and j,

P (X(t) = j|X(0) = i) > 0. (2.4)

for some finite t.

• Definition: A state in a CTMC is said recurrent if the
probability that the process will return to the same state
is one. A recurrent state is said positive-recurrent if the
expected return time is finite.

• Stationary Transitions: a CTMC has a stationary tran-
sition if

Pij(s, s+ t) = Pij(0, t) = Pij(t). (2.5)

In other words, Pij only depends on the difference between
t+s and s, and {X(t)} is referred to a homogeneous CTMC.

• Ergodicity of a CTMC: Let {X(t) : t ≥ 0} be an irre-
ducible positive recurrent Markov chain. It follows that, if
there exists a stationary distribution π it is unique, and

lim
t→∞

Pij(t) = πj ∀i, j. (2.6)

18

2.2. Kendall’s Birth-and-Death model

2.2 Kendall’s Birth-and-Death model

The Birth-and-Death (BD) process, formalized in a seminal work
of Kendall [50], represents a particular case of CTMCs in which
the state transitions are of two types: i) births, where the state
variable increases by one unit, and ii) deaths, where the state vari-
able decreases by one unit. The state diagram of a BD process is
depicted in Fig. 2.1 where: in case of birth, we observe a transition
from state n to state n + 1, while, in case of death, we observe a
transition from state n to state n−1. The process is characterized
in terms of birth rates {λi}i=0...∞ and death rates {µi}i=0...∞. In
some cases it is useful to define a pure birth process, namely, a
process where µi = 0 (∀i ≥ 0) and a pure death process, namely,
a process where λi = 0 (∀i ≥ 0). In order to formally define a
BD, let {X(t)}t≥0 a CTMC and dt a very short interval of time
during which observable changes in the chain exist. Letting k the
cardinality of a certain population (e.g. network nodes, particles,
etc.), we want to evaluate the probability of a change occurring at
time t+dt, by starting at time t. The probability of a birth in the
interval (t, t+ dt), given X(t) = k, can be written:

P (X(t+ dt) = k + 1|X(t) = k) = λkdt+ o(dt). (2.7)

Basically, it means that it is possible to neglect the probability of
more than one birth event in a small time interval dt. Similarly,
the probability of a death in the interval (t, t+ dt) can be written:

P (X(t+ dt) = k − 1|X(t) = k) = µkdt+ o(dt), (2.8)

with the obvious meaning that the probability of more than one
death event in a small time interval dt is negligible. By grouping
the two assumptions (probability of no birth or deaths occurring
during (t, t+ dt)), we can write:

P (X(t+ dt) = k|X(t) = k) = 1− (λk + µk)dt+ o(dt). (2.9)

19

2. Classic Background

! " # $ $%"& &

!" !# !$!%&# !%

'# '$ '('% '%)#

Figure 2.1: Birth-and-Death process. State diagram.

The BD process will be extensively used in Chapter 3 in order
to propose a formal model of a malware propagation, where the
infected nodes are interpreted in the sense of new births (malware’s
birth), whereas the cured nodes are interpreted in the sense of new
deaths (malware’s death).

2.3 The Poisson process

A homogeneous Poisson process can be defined as a pure birth
process (see sec. 2.2) where λk = λ, µk = 0 for all k ≥ 0. We
recall some useful properties of a Poisson process {X(t)}t≥0:

• given arbitrary time instants t0 < t1 < · · · < tn with
t0 = 0, the events occurring in disjoint intervals X(t1) −
X(t0), X(t2) − X(t1), . . .X(tn) − X(tn−1), are independent
random variables. This Poisson process property is often
called independent increments property;

• for h ≥ 0 and t > 0, the number of events occurring in
(h, h+ t) is represented by random variable X(h+ t)−X(h)
that follows the Poisson distribution:

P (X(h+ t)−X(h) = k) =
(λt)ke−λt

k!
(2.10)

• given a short time interval dt, from a stochastic perspective
could be useful to evaluate the probability that exactly one
event occurs over dt:

20

2.4. Generating Functions

P (X(t+ dt)−X(t) = 1) =
(λdt)1e−λdt

1!

=
∞∑

n=0

(−λdt)n

n!
= λdt+ o(dt) (2.11)

where o(dt) indicates a term of smaller order than dt and
where rate λ represents the proportionality constant in the
probability that an event occurs during an arbitrary small
interval dt.

The Poisson process, along with its properties, has been exten-
sively exploited in this research: in Chapter 3, to model the count-
ing process associated to sick nodes, in Chapters 4 and 5, to char-
acterize the transmission scheduling of a botnet, in Chapter 6, to
describe the failure and repair events associated to a multi-state
performance model describing a resilient network infrastructure.

2.4 Generating Functions

The distribution of a random variable can be often characterized
in terms of its Moment Generating Function (MGF). MGF can
be used to comfortably derive the moments of a random variable,
and, being able to uniquely determine the probability distribution
of a random variable, it provides an amenable analytical tool to
solve some practical problems. The MGF of a random variable X ,
is formally defined as:

MX(t) = E[etX], (2.12)

wherever the expectation exists. The MGF may be not defined
for some real values of the argument t. If MX(t) < ∞ at least in
some open interval containing t = 0, then it is infinitely differen-
tiable in this interval, and its n-th derivative at t = 0 represents
the n-th moment of the random variable X . For the purposes

21

2. Classic Background

of this work, the MGFs have been exploited in Chapter 3: for
the Birth-and-Death model with immigration, in fact, it is pos-
sible to find a closed-form solution for the MGF (and, then, for
the corresponding probability distribution). More specifically, it
is rather straightforward to characterize the time evolution of the
MGF through a first-order linear partial differential equation, by
describing the dynamics of the infected nodes in a network. As a
further application, an interesting extension of MGF called Uni-
versal Generating Function (UGF) has been proposed in [51], and
recently resumed in [52]. UGF technique allows to find a system
performance distribution based on the performance distributions
of its elements, by exploiting simple algebraic procedures. From a
mathematical viewpoint, the UGF of a discrete random variable
X , is a polynomial-shape function u(z) defined as:

u(z) =

J∑

j=1

pjz
xj , (2.13)

where X has J values xj, and pj = Pr{X = xj}, for j = 1, ..., J .
As follows from (2.13), the coefficient of zxj equals the probability
that random variable X equals xj . In other words, (2.13) repre-
sents the pmf (probability mass function) of the variable X . As
regards the present work, UGF methodology has been used to find
the best redundant, and hence, resilient network architecture as
explained in Chapter 6. Besides, a multi-dimensional extension
of UGF (called MUGF) useful to deal with availability of multi-
operator networks has been devised as an original contribution.

2.5 Stochastic convergences

The concept of convergence is typically applied to a sequence of
non-random numbers in order to analyze its asymptotic behavior.
The extension of such a concept to a sequence of random vari-
ables is not so immediate because one cannot predict the asymp-
totic behavior of a random element. This notwithstanding, one

22

2.5. Stochastic convergences

can consider the convergence of a non-random sequence derived
from the random one. Since it is possible to derive non-random
sequences in many ways, it is possible to define different stochastic
convergence concepts [53].

Proposition 1 (Convergence in Distribution). A sequence of ran-
dom variables {Xn} is said to converge in distribution to a random
variable X if

lim
n→∞

FXn
(u) = FX(u), (2.14)

for each point u at which FX(u) is continuous, where FXn
(u) rep-

resents the distribution function of Xn, and FX(u) the distribu-
tion function of X. This kind of convergence is often denoted by

Xn
d−→ X and is the weakest form of convergence, since it is

implied by all other types of convergences.

Proposition 2 (Convergence in Probability). A sequence of ran-
dom variables {Xn} is said to converge in probability to a random
variable X if, ∀ε > 0

lim
n→∞

P(|Xn −X| > ε) = 0. (2.15)

This kind of convergence is often denoted by Xn
p−→ X.

Proposition 3 (Almost sure Convergence). A sequence of ran-
dom variables {Xn} is said to converge almost surely to a random
variable X if

P (lim
n→∞

Xn = X) = 1. (2.16)

This kind of convergence is often denoted by Xn
a.s.−→ X.

It is useful to remark that the following chain of implications

holds: if Xn
a.s.−→ X , then Xn

p−→ X , then Xn
d−→ X .

Some stochastic convergences concepts have been exploited in
Chapter 3 in order to characterize the asymptotic regime of node
infection process, and in Chapter 4 when dealing with the botnet
dynamics.

23

2. Classic Background

2.6 Stochastic Reward Networks

(SRN)

Another useful application of CTMCs (and of BDs in particular)
concerns the modeling of a system in terms of its reliability. More
specifically, a complex system could be represented via Markov
structures where a transition towards an OFF state regulated by
a rate λ is interpreted as a failure, whereas, a transition towards
an ON state regulated by a rate µ is interpreted as a repair. One
major drawback of Markov models is that the size of chains tend
to be very large when representing complex systems. To this aim,
different formalisms as Stochastic Petri Nets (SPNs) have been
introduced [54] to provide an high level interface for generating
the underlying Markov model. Besides, SPN is useful to model
some features of computer systems such as synchronization, con-
currency, resource possession. An interesting variant of classical
Markov models, is offered by Markov Reward Models [55] where
a reward rate is attached to each state of Markov chain. Such
reward rate is a non-negative random variable associated with
certain conditions of the system, and its value is related to the
particular measure (performance, dependability, availability etc.).
Since MRMs (as classical CTMCs) suffer from the state space
largeness, it is necessary to extend the SPN representation to a
similar reward-based structure. Accordingly, the authors in [56]
propose a Stochastic Reward Nets (SRNs) formalism providing a
concise description of the underlying MRM.

By using SRN formalism, it is particularly straightforward to
interpret the measures of interest as instances of expected reward
rate. GivenX(t) a random variable representing the instantaneous
reward rate, it is possible to write:

E[X(t)] =
∑

k∈T

rkπk(t), (2.17)

where T is the set of states, rk the reward rate in state k, and πk

the probability of being in state k. The expression for the expected

24

2.6. Stochastic Reward Networks (SRN)

accumulated reward in an interval [0, t) is given by:

E[Y (t)] =
∑

k∈T

rk

∫ t

0

πk(x)dx. (2.18)

Actually, the set of states is related to the concept of marking of
an SRN that will be directly clarified in Chapter 6. SRNs adopt a
comfortable graphical representation of a system where places and
transitions account for states (e.g. off/on conditions) and events
(e.g. failures, repairs) respectively. Additional details about such a
graphical representation will be offered in Chapter 6 when dealing
with the modeling of novel network infrastructures.

25

2. Classic Background

26

Chapter 3

Modeling network threats
propagation

3.1 Problem statement

In this section, a general perspective of the faced problem is pre-
sented. In particular, the setting considered in this research is pic-
torially represented in Fig. 3.1. At a certain time, multiple threats
crowd a data network. The network under attack is conveniently
partitioned into N subnets, with each subnet being susceptible
to a specific threat. Typically, sensitivity to different threats re-
flects into some degree of heterogeneity across distinct subnets,
in terms of several types of attributes, e.g., in terms of consti-
tutive elements (computers, laptops, mobiles), operating systems,
protocols, and so on. Such heterogeneity implies, in particular,
that the threat parameters must be subnet dependent. For each
subnet, a security agency: i) gathers information (probably not
in real time) regarding the number of infected nodes at successive
time epochs; ii) aims at implementing proper countermeasures to
mitigate the attack. The underlying mechanism governing threat
propagation over networks follows a kind of cascade effect, where
a primary source is aimed at infecting the closest nodes of other
subnets. It is not hard to envisage interesting common points
between such structure and the mechanism governing other prop-

27

3. Modeling network threats propagation

!"#$%"&

'()"*+,

')-.+/ !

')-.+/ 0

')-.+/ 1

!"#$ %#&

!"'$ %'&

!"($ %(&

2

Figure 3.1: Representation of threat propagation mechanism. The
primary source of infection continuously scans portions of network
(N distinct subnets). When a vulnerable node is infected, it be-
comes a secondary source (red circle) and starts to seek for further
vulnerable nodes within the pertinent subnet.

agative phenomena, such as the birth-death-immigration process
ruling the growth of a population, as well as the virus propaga-
tion in epidemiological models. Accordingly, mathematical mod-
els inspired from other fields (e.g., biology, natural and/or social
sciences) have been successfully employed to study the propaga-
tion of threats in the cyber-security domain [10, 14]. The earliest
models were basically deterministic, where a system of differential
equations was exploited to describe the evolution of the number
of infected nodes in the observed population of individuals [15].
Then, such models have been generalized to stochastic models, in
order to include the high variability present in typical real-world
systems. One of the significant paradigms for stochastic threat
propagation is the queueing paradigm, where, loosely speaking,
nodes “arrive” (i.e., they get sick) following a certain arrival pro-
cess, while nodes “depart” (i.e., they are cured) according to a
certain departing process. It is very common to model the in-

28

3.1. Problem statement

fection and the curing measures as memoryless processes, corre-
sponding to say that the arrival process is a Poisson process and
that the service times are exponentially distributed [57]. Even if
the memoryless property could be only approximately met in real-
world systems, it results into a classic and advantageous first-order
approximation crucial to obtain tractable results and to capture
the essential scaling laws of the system. Based on the particular
features of the system under analysis (local as opposed to large,
wireless as opposed to wired, and so on), several models allow rep-
resenting the various characteristics of the system. There is one
main conclusion that has been established as regards the threat
diffusion over data networks. Several works [10, 58, 59], have con-
firmed the exponential growth of the infected nodes grows in the
early stage of infection, namely, in the stage before the vulnerable
nodes are consumed. One of the most elegant stochastic models
that allows capture this essential behaviors is the birth-and-death
model with immigration proposed by Kendall in 1948 [50] which
is the object of the next section. Before enter the characteristic of
Kendall model, it is worth to remark the three contributions pro-
vided in this section. The first contribution concerns the adoption
of the Kendall’s birth-and-death process with immigration as an
analytical model for threat propagation with and without coun-
termeasures. In particular, the appropriate model is a pure-birth
model with immigration, characterized by two parameters: the
“immigration” rate ν, representing the number of hosts per unit
time, infected by the original source of attack (here the meaning
of the term “immigration” resides in the fact that the attacker is
seen as an external entity that injects the threat into the system);
and the “birth” rate λ, representing the rate of hosts infected by
another infected host. Accordingly, ν is an external infection rate,
whereas λ is an internal infection rate. Besides, the model be-
comes the birth-and-death model with immigration, where a third
parameter comes up, namely, the “death” rate µ, which takes on
the meaning of the number of cured hosts per unit time. Let-
ting (λℓ, µℓ, νℓ) be the parameters referring to the ℓ-th subnet,
the adopted countermeasures correspond to choose the curing rate

29

3. Modeling network threats propagation

!"#$ %

!"#"$%&''(%#)&*

!"
!#

!$

+,-*(# .

+,-*(# /

+,-*(# !

0

!"#$ &

123("# 4"3"5(#(36 (6#)5"#)&*

!"#$ '

74#)5"' 3(6&,3%("''&%"#)&*

Figure 3.2: Representation of the curing process divided in three
phases: collection of parameters (phase 1), estimation of attacks
parameters (phase 2), optimal resource allocation (phase 3).

vector, µ = (µ1, µ2, . . . , µN), in order to minimize the threat diffu-
sion. Due to inevitable resource limitations, a total-rate constraint
must be enforced, such that the overall curing capacity must fulfill:
∑N

ℓ=1 µℓ ≤ C. Such model exhibits two interesting properties. It
is a stochastic model, an advisable requirement for complex data
networks, whereas deterministic models are expected to be over-
simplified. Besides, the proposed model is able to catch the main
characteristics of threat propagation that appeared in the topical
literature, which are conveniently summarized in a few parameters
with a clear physical meaning. The second contribution consists in
exploiting some useful properties of Kendall’s model to provide the
exact solution for the optimal resource allocation problem. Such
exact solution is derived for the case where the infection parame-
ter vectors, λ and ν, are perfectly known. The third contribution
concerns in removing the assumption of perfect knowledge, and in
providing Maximum Likelihood (ML) estimators of the unknown
parameters. In summary, it is possible to sketch a pipeline for
threat mitigation that works as follows: i) observe the N subnets

30

3.2. Birth and Death models with Immigration (B-D-I)

under attack for a certain time; ii) based on this observation, es-
timate the infection parameter vectors, λ and ν; iii) implement
the countermeasures allocating the curing capacity according to
the optimal vector µ = (µ1, µ2, . . . , µN). This pipeline has been
represented in Fig. 3.2.

3.2 Birth and Death models with Im-

migration (B-D-I)

Let’s start to describe the birth-and-death model in connection to
the specific network application considered in this research track.
A group of hackers disseminates a certain threat (e.g., a malware)
across a network, acting as primary source of infection. In or-
der to achieve the goal, the hackers seek for vulnerable nodes by
probing, progressively as time elapses, new zones of the network.
When a vulnerable node is found, it is attacked and gets “sick”
after a certain amount of time. It is important to highlight that
the primary source disseminates the infection across the network
intentionally and continually. As a result, the primary source can-
not be cured, and runs forever. The global rate of infection related
to the primary source(s) is denoted by ν. The times of infection
will be conveniently considered as random variables. Accordingly,
the counting process associated to the number of sick nodes will
be modeled by a Poisson counting process with rate ν. Thus, the
arrival times of the Poisson process coincide to the times at which
the nodes are effectively infected. Once a node gets sick, it be-
comes a secondary source of infection. As soon as a new node is
infected, it starts probing vulnerable nodes all across the network,
giving rise to a new Poisson process assumed, for simplicity, iden-
tical across nodes, and equal to λ. Independence across nodes is
assumed, implying the mutual independence of Poisson processes
corresponding to distinct nodes. When a node gets sick, it is as-
sumed to be cured after a certain time, which will be assumed as
random time. More specifically, the curing time will be modeled
as an exponential random variable of rate µ, and curing times of

31

3. Modeling network threats propagation

distinct nodes will be assumed as statistically independent. It is
useful to remark that the Poisson infection process that starts from
a certain sick node ends as soon as such node is cured. An im-
portant assumption is that the primary source of infection cannot
be cured, namely, the primary infection process is a never-ending
process. From the aforementioned description, it is possible to
note that the propagation model exhibits a tree-type complexity,
since each infected node acts as a new source of infection. Thus,
the model is open to an exponential growth, which could give
rise to an unstable regime of operation as time elapses. On the
other hand, it is expected that the infection growth is related to
the balance and interplay between the infection and curing pro-
cesses. Accordingly, it is legitimate to ask whether some stable
regime exists, where such (undesired) growth can be avoided. I
shall comment exhaustively on these aspects in the forthcoming
sections. As we shall see, the analytical characterization that will
be given later on, sheds some light on these important questions,
and identifies precisely three distinct regimes of operation. Be-
fore proceeding, it is useful to introduce some notation. Capital
letters will denote random variable and boldface letters will refer
to vectors. The symbols P and E will denote the probability and
expectation operators respectively. The symbols

d−−−→
t→∞

,
p−−−→

t→∞
,

a.s.−−−→
t→∞

, (3.1)

denote respectively convergence in distribution, convergence in
probability, and almost sure convergence as t → ∞. Let I(t)
be the number of infected nodes at time t, and let the probability
of having n infected nodes at time t be:

p(n; t) ! P[I(t) = n]. (3.2)

I introduce also the Moment Generating Function (MGF) of the
number of infected nodes at time t:

Ψ(x; t) ! E[exI(t)], (3.3)

32

3.2. Birth and Death models with Immigration (B-D-I)

and, to avoid confusion, I stress that x is the argument of the
MGF, while t is the time variable.

For the birth-and-death model with immigration, it is possible
to find a closed-form solution for the MGF (and, then, for the
corresponding probability distribution). More specifically, it is
rather straightforward to describe the time evolution of the MGF
through a first-order linear partial differential equation, namely,
through Eq. (3.13) further ahead. I now outline briefly how such
time evolution can be obtained. Let us consider a vanishing time
interval of size ε. Given that there are n− 1 nodes in the system,
the infection (i.e., arrival) process is a Poisson process of global
rate

λ(n) ! (n− 1)λ+ ν, (3.4)

which aggregates the internal (i.e., (n−1)λ) as well as the external
(i.e., ν) infection rate components. Using the known properties
of Poisson processes, the probability of reaching the state n is
approximately given by λ(n)ε. Likewise, given that there are n +
1 nodes in the system, and using the known properties of the
exponential distribution, the probability of reaching the state n
is approximately given by µ(n)ε, with µ(n) ! (n + 1)µ. For the
same reasons, reaching the state n from state n ± k, with k > 1,
is infinitesimal of higher order, and is accordingly neglected. We
can accordingly write, by the law of total probability:

p(n; t+ ε) = λ(n)ε p(n− 1; t) + µ(n)ε p(n+ 1; t)

+ [1− λ(n)− µ(n)]ε p(n; t). (3.5)

Dividing by ε, and taking the limit as ε → 0, we get an infi-
nite system of differential-difference equations, namely, the classic
birth-and-death master equations [50]:

dp(n; t)

dt
= λ(n) p(n− 1; t)− [λ(n) + µ(n)] p(n; t)

+ µ(n) p(n+ 1; t). (3.6)

If we now multiply both sides of the above equation by enx, and

33

3. Modeling network threats propagation

sum over n, after simple algebraic manipulations we obtain:

∞∑

n=0

dp(n; t)

dt
enx

= λex
∞∑

n=0

np(n; t)enx + νex
∞∑

n=0

p(n; t)enx

− (λ+ µ)
∞∑

n=0

np(n; t)enx − ν

∞∑

n=0

p(n; t)enx

+ µe−x

∞∑

n=0

np(n; t)enx. (3.7)

Exchanging differentiation and infinite summation yields:

∞∑

n=0

dp(n; t)

dt
enx =

d

dt

∞∑

n=0

p(n; t)enx =
∂Ψ(x; t)

∂t

= λex
∂Ψ(x; t)

∂x
+ νexΨ(x; t)

− (λ+ µ)
∂Ψ(x; t)

∂x
− νΨ(x; t)

+ µe−x∂Ψ(x; t)

∂x
, (3.8)

which, grouping suitably the terms, corresponds to (3.11).
We are now ready to state some known results regarding the

statistical characterization of the BDI process. At certain points,
it will be convenient to work in terms of the following normalized
quantities:

∆ ! λ− µ, ρ ! λ/µ, η !
ν

λ
(3.9)

Property 1. (Statistical characterization of I(t))

1. Let:

a(x) ! [λ(1− ex) + µ(1− e−x)], b(x) ! ν(ex − 1). (3.10)

34

3.2. Birth and Death models with Immigration (B-D-I)

Then, the moment generating function of I(t) obeys the fol-
lowing first-order linear partial differential equation.

∂Ψ

∂t
+ a(x)

∂Ψ

∂x
= b(x)Ψ (3.11)

2. Let also:

πt !
e∆t − 1

e∆t − 1/ρ
, qt !

e∆t − ρ

e∆t − 1
. (3.12)

Then, the moment generating function that solves (3.11) is
defined in the range x < ln(1/πt), and is equal to:

Ψ(x; t) =

(
1− πt

1− πt ex

)η+n0
(
1− qt e

x

1− qt

)n0

(3.13)

where n0 is the initial number of infected nodes.

The probability distribution of the number of infected nodes
can be expressed in the following closed form, for n =
0, 1, . . . :

p(n; t) = (1/ρ)n0(1− πt)
ηπn+n0

t

min(n0,n)∑

i=0

(αt − 1)i

×
(
n0

i

)(
n0 + n+ η − i− 1

n− i

)

.

(3.14)

where

αt =
(1− qt)(1− πt)

πt

∆e∆t. (3.15)

I remark that, in the special case ρ = 1, Eqs. (3.13), (3.14)
and (3.15) hold true, provided that one sets:

πt =
λt

λt+ 1
, qt =

λt− 1

λt
, (3.16)

which can be obtained from (3.12) by setting (see 3.9) ρ = λ/(λ−

35

3. Modeling network threats propagation

∆), and then taking the limit as ∆ → 0.

Proof. See [14, 60].

The statistical characterization presented in Property 1 enables
a detailed asymptotic study of the system. In the two following
propositions, some known results about the asymptotic character-
ization of the BDI process are presented, which will be useful to
face the proposed setting.

3.2.1 Regimes of operation

It will possible to see that the system exhibits three distinct
regimes of operations. It is useful to preliminarily introduce some
notations. A negative binomial random variable of parameters
r > 0 and 0 < p < 1 will be denoted by Nb(r, p), featuring a
probability mass function equal to [61]:

pnb(n) =

(
n + r − 1

n

)

(1− p)rpn, (n = 0, 1, . . .). (3.17)

A unit-scale gamma random variable with scale parameter r > 0
will be denoted by G (r), featuring a probability density function
equal to:

fG(z) =
1

Γ(r)
zr−1 e−z, z > 0 (3.18)

where Γ(·) is the (complete) gamma function [62]. Finally, let
Y (r, s,m) with r > 0, s > 1, and m ∈ {0, 1, . . . } be a random
variable with moment generating function equal to:

ΨY(x) =

(

1

1− xs
s−1

)r+m(

1− x

s− 1

)m

, (3.19)

defined for x < 1− 1/s We have the following result.

36

3.2. Birth and Death models with Immigration (B-D-I)

Property 2. (Asymptotic regimes of operations)

I(t)
d−−−→

t→∞
Nb(η, ρ) if ρ < 1,

I(t)

λt

d−−−→
t→∞

G (η) if ρ = 1 ,

I(t) e−∆t d−−−→
t→∞

Y (η, ρ, n0) if ρ > 1

(3.20)

Proof. See Appendix A.1.

Property 2 provides a helpful description of the possible modes
of operation in the threat propagation model. There are three fun-
damental regimes of operations. The first regime, corresponding
to the case ρ < 1, is a stable regime of operation, where the prob-
ability distribution of the number of infected nodes approaches,
as time elapses, a negative binomial distribution of parameters ρ
and η. The second regime, corresponding to the case ρ = 1, is
an unstable regime of operation, where the probability distribu-
tion of the number of infected nodes, scaled by λt, converges to
an exponential distribution. We see that, on average, the number
of infected nodes increases linearly with time. The third regime,
corresponding to the case ρ > 1, is a strongly unstable regime
of operation, where the probability distribution of the number of
infected nodes, scaled by e∆t, converges to an exponential distri-
bution. We see that, on average, the number of infected nodes
increases exponentially with time. Remarkably, the transition be-
tween the three regimes of operation occurs in a sharp, non-smooth
way with respect to variations of the system parameter ρ. The
strongly unstable regime (for ρ > 1) is of interest whenever the
curing rate is smaller than the infection rate, a situation that is
frequently encountered when facing threat propagation. This ob-
servation applies especially in the context of large networks and
at the early stages of the infection spreading, which are the focus
of the present work. Moreover, we observe that the regime of op-
eration of the system is necessarily unstable in the initial phase of

37

3. Modeling network threats propagation

threat propagation, namely, before that any countermeasure has
been implemented. The exponential divergence of birth-and-death
models for ρ > 1 and, more in general, of branching processes
operating in such a regime, has been studied extensively in the
literature [23, 63, 64]. In fact, it is possible to sharpen the weak
convergence result presented in Property 2 by establishing that
exponential divergence holds over the sample paths (i.e., almost
surely).

Property 3. (Almost sure exponential divergence of I(t) when
ρ > 1) Under the unstable regime with ρ > 1, the number of
infected nodes, I(t), diverges exponentially with probability one.
More specifically, the scaled process, I(t)e−∆t, converges almost
surely to a limiting random variable I⋆, namely,

I(t)e−∆t a.s.−−−→
t→∞

I⋆ ∼ Y (η, ρ, n0), (ρ > 1) (3.21)

Proof. From Lemma 1 in the Appendix A.1, we know that the ran-
dom process I(t)e−∆t admits almost surely a (finite) limit, which
is denoted by I⋆. On the other hand, from Proposition 1 we know
that I(t)e−∆t converges weakly to Y (η, ρ, n0). Since almost sure
convergence implies weak convergence, we conclude that I⋆ is dis-
tributed as Y (η, ρ, n0).

It is interesting to note that, in the context of branching pro-
cesses, the exponent ∆ is usually referred to as Malthusian pa-
rameter, stemming from the fact that T.R. Malthus is credited
to have conjectured the exponential growth of populations for the
first time [65]. For later use, it is important to specialize (3.21) to
the case µ = 0, which yields:

I(t)e−λt a.s.−−−→
t→∞

I⋆ ∼ G (η + n0), (µ = 0) (3.22)

The result in Property 3 is a strong result that deserves special
attention in our setting, for the following reasons. Since almost
sure convergence is a convergence over the sample paths, Property
3 reveals that, even if the process I(t) is random, (almost) all

38

3.3. Optimal resource allocation for threat mitigation

realizations of I(t) will share the same behavior:

I(t) ≈ I⋆ e∆t for large t, (3.23)

i.e., they eventually increase exponentially fast with rate ∆. On
the other hand, the randomness of the limiting variable I⋆ gives
rise to a non-ergodic behavior of the process, because different
realizations will feature a different constant multiplying the expo-
nential factor e∆t. Such non-ergodic behavior will play an impor-
tant role in the estimation problem addressed in the next section.
The above remarks are more clearly visible in Fig. 3.3, where are
depicted (log-scale on the vertical axis) three realizations of the
process, under the unstable regime, along with the theoretical ex-
ponential curve e∆t (dashed line). It is possible to see that all
the realizations stay nearly parallel to the theoretical exponential
curve, which matches perfectly (3.21) and (3.23). The different
heights of the curves correspond to the different realization of the
random multiplying constant, I⋆. The latter behavior is magnified
in the inset of Fig. 3.3, where the normalized process, I(t)e−∆t,
is depicted. As predicted by (3.21), the normalized curves con-
verge, over the sample paths, to some limit points. The different
limit points correspond to the different realizations of the limiting
random variable, I⋆.

3.3 Optimal resource allocation for

threat mitigation

In this section the optimization of resource allocation with perfect
knowledge of the infection parameter vectors, λ and ν is consid-
ered. Later on, a methodology to estimate such parameters when
they are unknown will be presented. Ideally, one would like to
solve the following optimization problem:

min
µ

N∑

ℓ=1

Iℓ(t) s.t.

N∑

ℓ=1

µℓ ≤ C (3.24)

39

3. Modeling network threats propagation

0 1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

t

I
(t
)

t

I
(t
)
e
−
∆
t

Realizations of
limiting r.v.

Figure 3.3: Semi-log representation of three realizations (red, blue,
and green lines) of random process I(t), and the theoretical expo-
nential curve e∆t (black dashed line) under the unstable regime.
In the inset, the normalized process I(t)e−∆t is depicted where the
three distinct limit points correspond to the distinct realizations
of the limiting random variable I⋆.

However, the functions Iℓ(t) are random processes, and, hence, we
must choose a proper cost function that is amenable to optimiza-
tion. We must distinguish two regimes for the optimization, which
are determined by the available system capacity, C.

The first regime corresponds to the case that the global infec-
tion rate is greater than the available capacity, namely,

∑N
ℓ=1 λℓ >

C. It is possible to see that, no matter what allocation is employed,
at least for one ℓ one should have λℓ > µℓ. Let us accordingly de-
fine:

∆max ! max
ℓ=1,2,...,N

(λℓ − µℓ) > 0. (3.25)

40

3.3. Optimal resource allocation for threat mitigation

The following proposition ascertains the asymptotic behavior of
the overall number of infected nodes under the regime

∑N
ℓ=1 λℓ >

∑N

ℓ=1 µℓ.

Proposition 1 (Almost sure exponential divergence of the overall
number of infected nodes). If

∑N
ℓ=1 λℓ >

∑N
ℓ=1 µℓ, then, almost

surely, the overall number of infected nodes diverges exponentially
with exponent equal to ∆max, namely, we have that:

N∑

ℓ=1

Iℓ(t)e
−∆maxt a.s.−−−→

t→∞
I⋆sum, (3.26)

where random variable I⋆sum has MGF equal to:

∏

ℓ∈S

(

1

1− xρℓ
ρℓ−1

)ηℓ+n0,ℓ (

1− x

ρℓ − 1

)n0,ℓ

, x < 1− 1

ρmin

, (3.27)

with x being the argument of MGF, ρmin ! minℓ∈S ρℓ, where the
subscript ℓ has been appended to all system parameters to denote
dependence on the particular subnet, and where:

S ! {ℓ ∈ [1, N] : λℓ − µℓ = ∆max}, (3.28)

Proof. In view of (3.28), λℓ − µℓ = ∆max for all ℓ ∈ S. Thus,
straight application of Property 3 yields:

Iℓ(t)e
−∆maxt a.s.−−−→

t→∞
I⋆ ∼ Y (ηℓ, ρℓ, n0,l), [ℓ ∈ S]. (3.29)

It is now possible to show that Iℓ(t)e
−∆max(t) converges to zero

almost surely when ℓ /∈ S. As first, it is possible to show that the
results holds distribution, namely, that:

Iℓ(t)e
−∆maxt p−−−→

t→∞
0 [ℓ /∈ S]. (3.30)

Now, it is possible to note that [66]: if Y (t) converges to Y in distri-
bution, and the (deterministic) function f(t) converges to 0, then
the product f(t)Y (t) converges to 0 in probability. Let’s apply this

41

3. Modeling network threats propagation

result to the three possible regimes characterizing the considered
system. For the case ρℓ < 1, Iℓ(t) converges in distribution for the
Property 2. Setting Y (t) = Iℓ(t) and f(t) = e−∆maxt, (3.30) holds
true because e−∆maxt vanishes as t goes to infinity. In the case
that ρℓ = 1, (λℓt)

−1Iℓ(t) converges in distribution in view of Prop-
erty 2. Setting Y (t) = (λℓt)

−1Iℓ(t) and f(t) = (λℓt)e
−∆maxt, (3.30)

holds true because (λℓt)e
−∆maxt vanishes. Finally, in the case that

ρℓ > 1, Iℓ(t)e
−∆ℓt converges in distribution for the Property 2.

Setting Y (t) = Iℓ(t)e
−∆ℓt and f(t) = e(∆ℓ−∆max)t, (3.30) holds true

because e(∆ℓ−∆max)t vanishes for all ℓ /∈ S. Moreover, since for
ℓ /∈ S we have ∆max > ∆ℓ, from Lemma 1 in the Appendix A.1
it is possible to conclude that the convergence in (3.30) actually
holds in the almost sure sense. Merging this result with (3.29) we
get the claim of the proposition, provided that we set:

I⋆sum =
∑

ℓ∈S

I⋆ℓ . (3.31)

Claim 3.27 follows because: the processes corresponding to differ-
ent subnets are statistically independent; the MGF of the sum of
independent variables is given by the product of the MGFs of the
variables; in view of (3.29), the MGF of I⋆ℓ is given by (3.19), by
choosing: r = ηℓ, s = ρℓ, and m = n0,ℓ.

According to Proposition 1, in the case
∑N

ℓ=1 λℓ > C, we can
therefore conclude that, for t large enough, the behavior of the
overall number of infected nodes across the N subnets will be
determined by an exponential function featuring the largest expo-
nent, namely,

N∑

ℓ=1

Iℓ(t) ≈ e∆maxt (3.32)

where the symbol “≈” here means “scales as”. As a consequence,
the optimization in (3.24) can be meaningfully reformulated as:

min
µ

max
ℓ∈[1,N]

(λℓ − µℓ) s.t.

N∑

ℓ=1

µℓ ≤ C, (3.33)

42

3.3. Optimal resource allocation for threat mitigation

namely, we focus on the minimization at the exponent. It is easy to
show that the minimizer is obtained through the so-called reverse
water-filling solution:

µ⋆
ℓ = max(0,λℓ − γ) (ℓ = 1, 2, . . . , N) (3.34)

where γ is set to met the constraint
∑

ℓ=1 µℓ = C. Let us move
on examining the most favorable case where the system capacity
is larger than the global infection rate, namely,

∑N

ℓ=1 λℓ < C.
In this case it will be certainly possible to reach the desirable
condition λℓ < µℓ for all ℓ = 1, 2, . . . , N , which prevents from
exponential divergence in all subnets. According to Property 2, in
this case we cannot rely on almost sure convergence, and, hence,
we cannot consider a cost function directly on the sample paths.
A comfortable and meaningful choice is that of minimizing the
expected number of infected nodes. To this aim, it is useful to
remark that the weak convergence expressed by the first equation
in (3.20) can be obtained by proving the stronger result that the
MGF of I(t) converges to the MGF of Nb(η, ρ) (see the proof of
Property 2 in the Appendix A.1). Since convergence of the MGF
implies converges of moments [67], and the expectation of Nb(η, ρ)
is equal to ηρ

1−ρ
= ν

µ−λ
[61] we can write:

E

[
N∑

ℓ=1

Iℓ(t)

]

−−−→
t→∞

N∑

ℓ=1

νℓ

µℓ − λℓ

, (3.35)

and accordingly focus on the optimization problem:

min
µ

N∑

ℓ=1

νℓ

µℓ − λℓ

s.t.
N∑

ℓ=1

µℓ ≤ C (3.36)

with µℓ > λℓ for all ℓ = 1, 2, . . . , N . We will solve this prob-
lem by the Lagrange multipliers method. Let us introduce the
Lagrangian:

J(µ) =
N∑

ℓ=1

νℓ

µℓ − λℓ

+ β

N∑

ℓ=1

µℓ (3.37)

43

3. Modeling network threats propagation

where β is the Lagrange multiplier. Taking the partial derivative
with respect to the k-th component, we get:

∂J

∂µk

= − νk

(µk − λk)2
+ β = 0

⇒ µk = λk + β
√
νk. (3.38)

Imposing the constraint with equality yields:

µ⋆
k = λk + δC

√
νk

∑N

ℓ=1

√
νℓ

(k = 1, 2, . . . , N) (3.39)

where we defined

δC = C −
N∑

ℓ=1

λℓ. (3.40)

3.4 Maximum Likelihood estimation

of B-D-I parameters

When the infection parameters are unknown, it is necessary to
estimate them before choosing the optimal allocation detailed in
the previous section. Clearly, such estimation takes place before
the implementation of the countermeasures, which, according to
our model, corresponds to the case that µ = 0. We denote the
process observed until time epoch t as:

Xt ! {I(τ)}τ≤t. (3.41)

The pertinent log-likelihood function can be written as:

L (Xt;λ, ν) =

I(t)−1
∑

n=0

ln(nλ+ ν)− λ

∫ t

0

I(τ)dτ − νt (3.42)

which is obtained by exploiting the properties of exponential inter-
arrivals characterizing the system (and corresponding to specialize
the log-likelihood function used in [68] to the case µ = 0). We shall

44

3.4. Maximum Likelihood estimation of B-D-I parameters

examine the maximum likelihood solution:

(λ̂, ν̂) = argmax
λ,ν

L (Xt;λ, ν). (3.43)

In order to compute the ML estimators, let us evaluate the partial
derivatives:

∂L

∂λ
=

I(t)−1
∑

n=0

n

nλ+ ν
−
∫ t

0

I(τ)dτ, (3.44)

∂L

∂ν
=

I(t)−1
∑

n=0

1

nλ+ ν
− t (3.45)

We start looking for the stationary point (λ̂, ν̂) where the above
two derivatives nullify, yielding:

I(t)−1
∑

n=0

n

nλ̂ + ν̂
=

∫ t

0

I(τ)dτ, (3.46)

I(t)−1
∑

n=0

n

nλ̂ + ν̂
= t. (3.47)

Since we can write:

I(t)−1
∑

n=0

n

nλ+ ν
=

I(t)−1
∑

n=0

n+ ν/λ

nλ + ν

−
I(t)−1
∑

n=0

ν/λ

nλ+ ν

=
I(t)

λ
− ν

λ

I(t)−1
∑

n=0

1

nλ+ ν
(3.48)

45

3. Modeling network threats propagation

using (3.47) in (3.48) we get:

I(t)−1
∑

n=0

n

nλ̂+ ν̂
=

I(t)

λ̂
− ν̂

λ̂
t. (3.49)

Substituting (3.49) in (3.46), we obtain:

λ̂ =
I(t)

∫ t

0
I(τ)dτ

, (3.50)

which corresponds exactly to the ML solution for the pure-birth
model without immigration [69]. With this approximate choice,
one has obtained the decoupled estimation of λ from estimation
of ν. Besides, it is possible to observe that the integral

∫ t

0
I(τ)dτ

fulfills the following condition:

∫ t

0

I(τ)dτe−λt a.s.−−−→
t→∞

I⋆

λ
(3.51)

Almost sure exponential divergence of integral and other func-
tionals of branching processes have been addressed in the literature
see, e.g., [63]. In particular, in our case, the convergence in (3.51)
can be obtained in a straightforward manner from the convergence
in (3.22), by using the same procedure applied in [[69], Th. 2.2].
Using (3.22) and (3.51), it is possible to conclude that λ̂ converges
almost surely to λ as t goes to infinity, namely, λ̂ is a.s. consis-
tent [66]. Let’s now switch to examining (3.47). The summation
appearing in (3.45), can be expressed as follows:

I(t)−1
∑

n=0

1

nλ + ν
=

ψ(I(t) + ν/λ)− ψ(η)

λ
, (3.52)

where ψ(·) is the digamma function [62]. For large values of
its argument, the digamma function can be approximated by the
function ln(x−1/2) and it can be verified that such approximation
is excellent in the range x ≥ 1, which is important in our case.
By examining the (3.52), it is possible to see that the pertinent

46

3.4. Maximum Likelihood estimation of B-D-I parameters

arguments of the digamma function are typically greater than 1,
because: i) for meaningful values of t on has that I(t) - 1; ii)
typically one has ν/λ > 1, since the infection rate sustained by
the primary source is expected to be larger than the infection rate
sustained by a generic infected host. Accordingly, by employing
the approximation ψ(x) ≈ ln(x−1/2) in (3.52) and by using (3.47)
it is possible to obtain the following approximate condition:

ln
I(t) + ν̂/λ̂− 1/2

ν̂/λ̂− 1/2
≈ λ̂t → ν̂ ≈ λ̂

(
I(t)

eλt
+

1

2

)

. (3.53)

We know that the estimator λ̂ converges almost surely to the true
value λ. In order to assert the role of the term 1/2, let us roughly
replace λ̂ with λ in 3.53, yielding:

ν̂ ≈ λ

(

I⋆ +
1

2

)

! ν̂. (3.54)

Recalling from Property 3 that I⋆ is a unit-scale gamma random
variable with shape parameter η = ν/λ, one has that [61]:

E[ν̂] = ν +
λ

2
, E[(ν̂ − ν)2] = λν +

λ2

4
(3.55)

suggesting that the term 1/2 in (3.54), does not bring any benefit
to the mean-square estimator’s performance. Thus, it is possible
to safely remove such constant term, yielding the final pair of
estimators:

λ̂ =
I(t)

∫ t

0
I(τ)dτ

, ν̂ = λ
I(t)

eλ̂t
(3.56)

The consistency holds as regards λ̂, but the situation for ν̂ is dif-
ferent and a non-vanishing error is expected as t gets large – see
(3.55). This behavior is perfectly in accordance with the non-
ergodicity remarked in the comment of Fig.3.3. Indeed, such non-
ergodicity manifests itself in the fact that I⋆, which contains infor-
mation about ν, is still random. This behavior might be ascribed
to the fact that the effect of the primary source is somehow obfus-

47

3. Modeling network threats propagation

cated by the effect of the infected nodes, which produce a global
(internal) infection rate, nλ, scaling exponentially with time (be-
cause the number of infected nodes grows exponentially).

3.5 Experimental results

Some experimental results are now discussed concerning the appli-
cation of the aforementioned optimization procedure for the two
possible situations regarding: i) the case that the available capac-
ity, C, is smaller than the overall infection rate,

∑N

ℓ=1 λℓ, and ii)
the opposite case that C is larger. Figure 3.4 refers to the former
scenario, depicting the overall number of infected nodes spread-
ing across N = 3 subnets, as a function of time. The internal
infection rates are λ = [5, 4, 3.9], whereas the external (scaled)
infection rates are ν = [2.5, 4, 7.8]. The available capacity is set
to C = 0.8

∑N
ℓ=1 λℓ. In the considered example, at one fifth of the

observation window the network manager estimates the infection
parameters and implements the optimization detailed in (3.34), re-
placing the actual values of λ and ν with the estimates provided
in (3.56). For comparison purposes, the system that performs the
optimization with the actual values of λ and ν is displayed. It is
evident from Fig. 3.4 that, starting from the origin, the number of
infected nodes increases exponentially (in the displayed logarith-
mic scale), and a marked change of slope occurs approximately at
one fifth of the time window, namely, after the implementation of
the countermeasures following the optimization procedure. The
broken lines refer to the slopes (i.e., exponents) predicted by the
theoretical analysis. We note that, since the available capacity is
smaller than the infection rate, the countermeasures are not suf-
ficient to contain the exponential spread of the threat, while they
are effective in mitigating its growth rate. In contrast, in Fig. 3.5
we address the most favorable scenario where C = 1.1

∑N
ℓ=1 λℓ. In

this case, optimization is performed (still after estimating λ and
η at one fifth of the observation window) by employing the opti-
mization in (3.39). We see that the optimization is now successful

48

3.5. Experimental results

in forcing the stability of the threat growth, which is no longer
exponential.

Figure 3.4: Semi-log representation of the number of infected
nodes spreading across N = 3 subnets. The internal and external
infection rates are λ = [5, 4, 3.9] and ν = [2.5, 4, 7.8] respectively,
whereas the available capacity is set to C = 0.8

∑N

ℓ=1 λℓ. The (bro-
ken) black dashed lines indicate the slope predicted by theoretical
analysis, whereas blue and red curves refer to the optimization
procedures in case of known and unknown (estimated via ML cri-
terion) parameters respectively. Being C > λ, the optimization
procedure weakly mitigates the threat growth rate since the num-
ber of infected nodes increases exponentially up about one fifth of
time window before changing its slope.

49

3. Modeling network threats propagation

Figure 3.5: Semi-log representation of the number of infected
nodes spreading across N = 3 subnets. The internal and external
infection rates are λ = [5, 4, 3.9] and ν = [2.5, 4, 7.8] respectively,
whereas the available capacity is set to C = 0.8

∑N
ℓ=1 λℓ. Blue

and red curves refer to the optimization procedures in case of
known and unknown (estimated via ML criterion) parameters re-
spectively. Being C < λ, the optimization procedure is now able
to guarantee the stability of threat growth by avoiding exponential
behaviors.

50

Chapter 4

Randomized DDoS: formal
model and performance
evaluation

4.1 Main setting and inference strate-

gies

This section focuses on a reinforced DDoS attack that takes in-
spiration from powerful L7-DDoS. For our purposes, in fact, the
botnet is given the strong power of learning an emulation dictio-
nary that becomes richer and richer as time elapses. One can
think such emulation dictionary as a database built (and kept
updated) by a botmaster. The botmaster is able to scan the net-
work (by using network probes or sniffers), and to collect messages
originating from legitimate users. Then, such messages are made
available to the bots that continually and periodically pick them
from the emulation dictionary as pictorially depicted in Fig. 4.1.
Given the aforementioned setting, two important questions arise:
i) is it possible to discriminate (and then to identify) bots from
legitimate users? ii) is it possible to devise pertinent inferential
strategies by guaranteeing a good trade-off between the botnet
learning ability and the inference performance? By starting from

51

4. Randomized DDoS: formal model and performance evaluation

! "

Figure 4.1: The Emulation Dictionary contains a set of legitimate
messages. Bots continually pick such messages in order to build
apparently legitimate requests exploited to attack a target.

the latter question, the classical inferential strategies derived from
technical literature are not properly conceived to manage this class
of DDoS attacks with an increasing emulation dictionary. Tradi-
tional parametric methods (e.g. Neyman-Pearson tests, maximum
likelihood) offer a good degree of tractability in terms of analyt-
ical results and performance guarantees, but typically require a
detailed knowledge of the underlying model [70, 71]. Such a con-
dition is far from being met in the considered setting. On the
contrary, data-driven methods (e.g. machine learning techniques)
that operate in a black box environment with a great degree of
flexibility, often suffer of lack of analytical results and heavy tun-
ing of algorithms. The approach followed in this research lies in
the middle, and takes inspiration from emerging trends of signal
processing techniques applied to the cyber-security context [72].
Accordingly, the following guidelines will be kept in mind: i) focus
on minimal-but-realistic physical assumptions; ii) conceive signi-
ficative indicators arising from the modeling assumptions; iii) de-
vise an inference strategy.

52

4.2. Randomized DDoS model

4.2 Randomized DDoS model

A formal model for randomized DDoS attacks with growing em-
ulation dictionary, is defined by the following main features: i)
the botnet emulates the legitimate traffic patterns by gleaning ad-
missible messages from an emulation dictionary; ii) the botnet is
given the great power of learning an emulation dictionary that
becomes richer and richer as time progresses, so as to guarantee
a sufficient variability across messages. In order to quantify the
botnet learning ability, the Emulation Dictionary Rate (EDR) is
introduced, accounting for the increase of dictionary cardinality
per unit time. Remarkably, the considered class of DDoS attacks
is more general and powerful than many attacks documented in
the literature. The assumption of such great power in the at-
tacker’s hands might perhaps look overly pessimistic. At the same
time, a worst-case analysis is perfectly suited to security applica-
tions, and allows getting important insights as regards the botnet
identifiability under challenging operational conditions.

The fundamental descriptive indicator employed in this work
to ascertain the nature of network users is the Message Innovation
Rate (MIR), namely, the number of distinct messages per unit
time, transmitted by a given group of users. The relevance of the
MIR for botnet identification purposes arises since, in view of the
coordination in the DDoS attack, the users belonging to a botnet
are expected to exhibit a smaller degree of innovation than normal
users, which act by their own nature independently one each other.

The first contribution determines the MIR for a botnet B, with
either deterministic or Poisson transmission scheduling. Denoting
by λB the transmission rate corresponding to the overall trans-
mission activity in B, and by α the EDR, we show that the MIR
converges in probability to the following innovation rate (Theo-
rem 1):

R(α,λB) =
α λB

α + λB

(4.1)

The second contribution consists in devising an algorithm that,
under a suitable Botnet Identification Condition (BIC), guarantees

53

4. Randomized DDoS: formal model and performance evaluation

that the botnet hidden in the network is correctly identified as time
elapses.

Finally, as a third contribution, all of the aforementioned the-
oretical results are tested and validated on a testbed environment;
the experimental outcomes are definitely encouraging.

Notation. P[·] and E[·] denote the probability and the expecta-
tion operators, respectively. Given an ensemble of random vari-
ables Xt (with either continuous or discrete index t), the notation

Xt
p−→ X means that Xt converges in probability to X as t → ∞.

4.3 Main network indicators

It is useful to introduce the basic quantities that will be used to
describe the network activity. The first quantity relates to the
transmission activity of the network users. Each user employs a
certain scheduling, which is identified by the transmission epochs
of its own messages. More in general, for any given subnet S of
the network, it is possible to define the aggregate pattern that
comprises all (ordered) transmission epochs of the users belonging
to S, formally: TS(1), TS(2), . . . , where TS(i) is the i-th (random)
transmission epoch of users belonging to S. Likewise, the pattern
of an individual user u becomes: Tu(1), Tu(2), . . . , where, with a
slight abuse of notation (which will be used throughout the work),
we have written u in lieu of {u}. The total number of transmissions
occurred in S, up to a given (deterministic) time t is denoted by
NS(t) ! |{i : TS(i) ≤ t}|.

As an indicator of the transmission activity, it is possible to
introduce the empirical transmission rate at time t, namely,

λ̂S(t) !
NS(t)

t
(4.2)

Whenever a limiting rate (as t goes to infinity) is meaningfully
defined, it will be denoted by λS, which will be simply referred to
as the transmission rate of subnet S.

Two examples of transmission schedulings which are relevant

54

4.4. Randomized DDoS with Emulation Dictionary

for our DDoS application, and which admit a limiting rate, are the
synchronous, constant-rate transmission scheduling, and the inde-
pendent Poisson scheduling. In the former case, all users transmit
synchronously, and the (constant) interval between two transmis-
sions has duration 1/λ. The empirical transmission rate clearly
obeys: λ̂S(t) → λ |S| as t → ∞. In the latter case, the transmis-
sion pattern of user u is a Poisson process with rate λu, and the
processes are mutually independent. Since the aggregate of inde-
pendent Poisson processes is still a Poisson process, as a straight-
forward application of the (weak) law of large numbers, it is pos-

sible to write [73]: λ̂S(t)
p−→ ∑

u∈S λu. As a second indicator of
the network activity, it is possible to define a quantity that relates
to the content of the messages sent by network users. We are in-
terested in the new messages that are incrementally produced by
the users during their activities, namely, in a Message Innovation
Rate (MIR). In order to obtain a formal definition of the MIR,
let DS(t) denote the empirical dictionary composed by the distinct
messages sent, up to time t, by users within S. For the sake of
clarity, I remark that, if the same message is sent, e.g., twice, from
users belonging to S, it appears only once in the dictionary DS(t).
The empirical Message Innovation Rate (MIR) is:

ρ̂S(t) !
|DS(t)|

t
(4.3)

In particular, if ρ̂S(t)
p−→ ρS, the limiting value ρS will be simply

referred to as the MIR of subnet S. The transmission activity and
MIR have been summarized in Figg. 4.2 and 4.3 respectively.

4.4 Randomized DDoS with Emula-

tion Dictionary

A botnet Btot, composed by Btot malicious nodes, sends messages
to the destination under attack in order to saturate its resources.
The botnet mimics normal patterns by picking messages from an

55

4. Randomized DDoS: formal model and performance evaluation

!"#$%&'()

!" # $ %&' &()#*+%,-.,,.&%,)-/+,0*/1)02)#&)#.-/)3).%)+)4.5/%),06%/#)7

*"+#,-.#,%-

+,#"

t

t

t

8" # $
9:;<=

<

!"#$%&'#%& &()'#! *+#%#,-./'& "#

01'/ %#2()(&(/3 $%&'#'4(,&,5

8" #)
<>?

8"

!" # @ A

Figure 4.2: Transmission Rate as an indicator of users transmis-
sion activity.

!"#$%&'()

*"+#,-.#,%-

+,#"

t

t

t

!" # $
%&' (%

(

!"##$%"&'(()*$+,)(-$+"&./01/0

12"($&3,4,+,(% !'-&"5,#+#0

!" #)
(*+

!"

," # $ -./010234)502#067318))69)50:#072#).;::3<;:):;7#)=/)#6)>)?@)ABCDB EFGHFI J

," # K L))))))))))M)) M) N

Figure 4.3: Message Innovation Rate as an indicator of capacity
of users to produce incrementally new messages.

emulation dictionary, which is learned continually (i.e., its cardi-
nality increases with time), in order to ensure that a reasonable
innovation rate can be sustained. Such a dictionary construction
can occur in many different ways. For instance, by means of one
or more powerful botmasters, the botnet might be able to perform
an on-line monitoring of normal activities from across the network.
From such a monitoring, sequences of messages corresponding to
normal patterns of activity are collected, allowing the construction
of a dictionary of admissible messages.

56

4.4. Randomized DDoS with Emulation Dictionary

Let E (t) be the (common) dictionary available at time t to
all botnet members. It is assumed that the number of messages
available for emulation grows, asymptotically, in a linear fashion.
Therefore, it makes sense to introduce the Emulation Dictionary
Rate (EDR) as:

α ! lim
t→∞

|E (t)|

t
(4.4)

Given the emulation dictionary, the botnet has clearly many ways
to build the traffic patterns. At one extreme, the botmaster dis-
seminates Btot disjoint (say, equal-size) portions of E (t) through
the botnet. Then, each bot builds its traffic pattern by scanning,
in a sequential fashion, its portion of the emulation dictionary.
Such a scheme would clearly maximize the independence among
the bots. With this policy, the problem would become equivalent
to the case that each bot owns a distinct emulation dictionary
with EDR equal to α/Btot. However, since Btot must be large, it
is unrealistic to assume that a botmaster can learn so many pat-
terns to build Btot distinct dictionaries that are in turn so rich to
guarantee a credible emulation. Therefore, in the case of disjoint
dictionaries, the number of distinct messages available to a single
bot would be typically small, implying a suspiciously high degree
of replication, which would make the bots easily identifiable by
single-user inspection.

At the other extreme, each bot might simply use all messages
contained in E (t). Clearly, such scheme maximizes the innovation
of each individual bot, but also maximizes the dependence inside
the botnet. By inspection of the messages sequentially sent by
two or more bots, a traffic analyst would recognize an anomalous
behavior.

Hence, it is assumed that the attacker has devised some in-
termediate strategy to circumvent the aforementioned issues. I
introduce a class of randomized DDoS attacks, where a bot that
intends to transmit at time t picks a message from the available
emulation dictionary E (t), and sends such a message to the desti-
nation. The message is chosen uniformly at random, so that the
probability of a particular message is simply 1/|E (t)|.

57

4. Randomized DDoS: formal model and performance evaluation

The corresponding evolution of the empirical dictionaries, for
any subnet B of Btot, is easily obtained as follows. Given the
empirical dictionary DB(t), the empirical dictionary DB(t + τ) is
obtained by adding the distinct messages not contained in DB(t),
which have been selected during the interval τ by the bots belong-
ing to B.

It is now useful to derive a formal characterization of the Bot-
net Message Innovation Rate, by introducing the following func-
tion:

R(α,λ) !
αλ

α + λ
(4.5)

A first result provides a closed-form expression for the MIR of a
botnet.

Theorem 1 (Botnet MIR). Consider a botnet Btot launching a
DDoS attack, where the node transmission policies are either syn-
chronous with constant transmission rate, or independent Poisson
processes, with rates λu, for u ∈ Btot. Consider a subset of the
botnet B ⊆ Btot. Let E (t) be the emulation dictionary available to
the botnet, with emulation dictionary rate α, and let DB(t) be the
empirical dictionary of the subnet B at time t. Then, the message
innovation rate of B is:

|DB(t)|

t

p−→ ρB = R(α,λB) (4.6)

where λB =
∑

u∈B λu is the aggregate transmission rate of the
considered botnet subset.

Proof. See Appendix A.2.

Remark I. From (4.5) and (4.6) we see that increasing the EDR
α and/or the transmission rate λ corresponds to increasing the
MIR. Besides, the MIR is always smaller1 than min(α,λ), which
makes sense, since the number of new messages can exceed neither
the number of messages in the emulation dictionary (R(α,λ) ≤
α), nor the overall number of transmitted messages (R(α,λ) ≤

1For x > 0 and y > 0, one has x/(x+ y) ≤ 1.

58

4.4. Randomized DDoS with Emulation Dictionary

λ). Notably, the quantity min(α,λ) is the MIR corresponding
to a practical scheme where the patterns are obtained by taking
sequentially (in a deterministic way) the messages of the emulation
dictionary. With such a scheme, if α > λ, a new message can be
always found in E (t), and the maximum rate of distinct messages
is λ. Likewise, if λ > α, all messages in E (t) can be selected,
along with some unavoidable repetitions, and the maximum rate
of distinct messages is α.

Remark II. As α goes to infinity, the MIR converges to λ. In
fact, as the number of messages in the emulation dictionary goes to
infinity, each transmission would correspond with high probability
to a new message, and the MIR will eventually reach the maximum
allowable value λ. Likewise, as λ goes to infinity, we see that the
MIR converges to α. In fact, as the number of sent messages goes
to infinity, the emulation dictionary is completely spanned, and
the MIR will eventually saturate to its maximum allowable value
α.

Remark III. The MIR is symmetric in α and λ, implying that
both quantities, even if they have a completely different practical
meaning, play the same role as regards their effect on the MIR. In
particular, we can write R(α,λ) = (1/α + 1/λ)−1, which reveals
that the rate R(α,λ) can be represented as the inverse of a time
interval given by the sum of the average time between two mes-
sages available in the emulation dictionary, 1/α, and the average
time between two transmissions, 1/λ.

Remark IV. For strictly positive α and λ we have:

R(α,λ1) + R(α,λ2) > R(α,λ1 + λ2) (4.7)

The latter inequality can be straightforwardly checked by exploit-
ing the definition of R(α,λ) in (4.5). Such inequality can be ex-
plained in the light of the physical interpretation of Theorem 1.
In fact, the LHS in (4.7) corresponds to the MIR of a botnet made
of two subnets: i) featuring transmission rates λ1 and λ2, respec-
tively, and ii) picking messages from two disjoint dictionaries, each
one with EDR equal to α. In contrast, the RHS corresponds to the

59

4. Randomized DDoS: formal model and performance evaluation

MIR of a botnet made of two subnets, still featuring transmission
rates λ1 and λ2, but picking messages from a common dictionary
with EDR α. Hence, the lower bound follows.

Remark V. The focus is on genuinely-distributed DoS attacks
where the number of bots is large, and the transmission rate of
each bot is not anomalous. For comparison purposes, let us con-
sider another DDoS strategy, where Btot disjoint (say, equal-size)
portions of the emulation dictionary are disseminated through the
botnet. Assuming for simplicity that all bots have unitary trans-
mission rates, the MIR of user u, and the MIR of the whole botnet
will be, respectively,

ρu =
α

α +Btot

, ρBtot =
∑

u∈Btot

ρu =
αBtot

α +Btot

, (4.8)

where the first relationship follows from Theorem 1, while the
second relationship follows from disjointness of the emulation (and,
hence, of the empirical) dictionaries.

On the other hand, for our coordinated DDoS with common
emulation dictionary, Theorem 1 gives:

ρu =
α

α + 1
, ρBtot =

αBtot

α +Btot
. (4.9)

Notably, the rightmost formulas in (4.8) and (4.9) reveal that the
MIR for the case of disjoint dictionaries is the same as the MIR
of a botnet using a common emulation dictionary. On the other
hand, the leftmost formulas in (4.8) and (4.9) reveal that the MIR
of a single bot for the case of disjoint dictionaries is approximately
Btot times smaller than the MIR of a single bot for the case of a
common emulation dictionary. Such a reduced degree of innova-
tion matches the observations reported below (5.1), concerning the
flaws of deterministic DDoS attacks based on disjoint emulation
dictionaries.

Remark VI. Assume that the traffic analyst must estimate α

based on the patterns collected from a certain subnet S. From (4.5)
and (4.6), we have α = λS ρS/(λS − ρS). Accordingly, a reasonable

60

4.5. The Botnet Identification Condition (BIC)

estimator of α can be obtained by replacing ρ and λ with their
empirical counterparts, yielding:

α̂S(t) !
λ̂S(t) ρ̂S(t)

λ̂S(t)− ρ̂S(t)
(4.10)

In view of Theorem 1, such estimator converges in probability to
α as t goes to infinity, for any S ⊆ Btot.

In contrast, when dealing with normal users, such an interpre-
tation fails in general, since: i) a limiting value α does not neces-
sarily exist, and ii) the generative mechanism of normal patterns is
not necessarily interpreted in terms of random picking from an em-
ulation dictionary. Nevertheless, the quantity α̂S(t) can be mean-
ingfully defined also for arbitrary subnets (i.e., composed also, or
even exclusively, by normal users), since it represents the ratio
between the empirical rate of “distinct” messages ρ̂S(t), and the
empirical rate of “repeated” messages λ̂S(t)− ρ̂S(t), scaled

2 by the
empirical transmission rate λ̂S(t). Such an interpretation is use-
ful since it is now independent from the particular model adopted
(transmission scheduling, botnet or normal behavior, etc.). In the
following, even when dealing with arbitrary subnets, I shall loosely
refer to α̂S(t) as the empirical, or estimated EDR.

Finally, exploiting (4.5) and (4.10), the empirical MIR ρ̂S(t),
for an arbitrary subnet S, can be expressed as:

ρ̂S(t) = R(α̂S(t), λ̂S(t)) (4.11)

4.5 The Botnet Identification Condi-

tion (BIC)

The coordination implied in the distributed DoS attack introduces
a certain amount of correlation between the empirical dictionaries
of the bots, due to the common emulation dictionary where mes-

2The scaling simply corresponds to expressing the result on a per-time-unit
basis, rather than on a per-transmission basis.

61

4. Randomized DDoS: formal model and performance evaluation

sages are selected. In contrast, the empirical dictionaries of two
normal users are expected to be weakly correlated, due to indepen-
dence among their activities. Likewise, the empirical dictionaries
of a bot and of a normal user are expected to be weakly correlated,
since the network employed by the botmaster to acquire the emula-
tion dictionary is usually not part of the network monitored by the
traffic analyst. On the other hand, even in the presence of normal
(thus, independent) users, it is realistic to assume a certain degree
of physiological correlation among the users’ activities. Distinct
users can reasonably share parts of their dictionaries, e.g., their
surfing activities might partly overlap, due to common interests,
popular web-pages, peculiar structure of the destination of inter-
est, etc. Similar considerations apply when dealing with a subset
of the botnet and a subnet made only of normal users. Given the
very limited amount of information and assumptions made, and
according to the above discussion, any meaningful strategy to dis-
criminate a normal from a malicious behavior, cannot but be based
on the degree of dependence among the users. In the considered
setting, a convenient way to measure the degree of dependence is
provided by the empirical message innovation rate in (4.3). How-
ever, the mere availability of a good network indicator does not
provide a quantitative way to discriminate normal users from bots.
In order to design an algorithm for botnet identification, we need
to define a proper identification threshold. To this aim, it is pos-
sible to use as reference case for a malicious behavior, the MIR
corresponding to the activity performed by a botnet. In order to
understand how such operation can be implemented, let us start
by considering the case that we must decide whether users 1 and
2 belong to a botnet. Assume for now that the empirical EDRs of
the two users obtained through (4.10) are comparable (the explicit
dependence on t being suppressed, for ease of notation, here and
in the forthcoming discussion):

α̂1 ≈ α̂2 ≈ α̂. (4.12)

62

4.5. The Botnet Identification Condition (BIC)

When both users belong to a botnet, in view of Theorem 1, for t
large enough we can write:

ρ̂{1,2} ≈ R(α̂, λ̂1 + λ̂2) ! ρ̂bot. (4.13)

Moreover, irrespectively of the users’ nature, the empirical MIR
of the aggregate subnet {1, 2} can be upper bounded by the MIR
corresponding to disjoint dictionaries, namely,

ρ̂{1,2} ≤ ρ̂1 + ρ̂2 = R(α̂1, λ̂1) + R(α̂2, λ̂2) ! ρ̂sum

≈ R(α̂, λ̂1) + R(α̂, λ̂2), (4.14)

where the second equality follows from (4.11), while the approxi-
mate equality follows from (4.12). Since from (4.7) we know that
ρ̂bot < ρ̂sum, it makes sense to introduce a threshold lying between
the two points ρ̂bot and ρ̂sum, formally, for ε ∈ (0, 1):

ρ̂bot < γ = ρ̂bot + ε(ρ̂sum − ρ̂bot) < ρ̂sum. (4.15)

When the two users belong to a botnet, from (4.13) it is possible to
see that, for large t, the empirical MIR ρ̂{1,2} converges to the value
ρ̂bot. On the other hand, using Theorem 1, it is easy to verify that
ρ̂sum − ρ̂bot converges in probability to a positive quantity, which
implies that, for any ε > 0, as time elapses, the empirical MIR
will stay sooner (higher ε) or later (lower ε) below the threshold γ,
yielding:

1 AND 2 are bots ⇒ ρ̂{1,2} < γ (4.16)

Consider now the case that at least one user is normal. Were the
dictionaries of the two users perfectly disjoint, we would clearly
observe, for any ε ∈ (0, 1), that ρ̂{1,2} ≈ ρ̂sum > γ. However, we
already noticed that some correlation is expected to exist even
among normal users, or among normal users and bots. It is also
natural to assume that such a correlation is weaker than the cor-
relation exhibited by groups of bots, since the latter are choosing

63

4. Randomized DDoS: formal model and performance evaluation

their messages from one and the same underlying dictionary.3 Ac-
cordingly, one might expect that, when at least one user is nor-
mal, for sufficiently small ε, the empirical MIR still stays above
the threshold, namely:

1 OR 2 are normal ⇒ ρ̂{1,2} > γ (4.17)

In summary, if the empirical MIR stays below γ, it is possible to
declare that the two users form a botnet, otherwise, we can declare
that at least one user is normal.

Two main points emerge. First, the essential feature enabling
a successful discrimination is the assumption in (4.17), which ac-
cordingly plays the role of a Botnet Identification Condition (BIC).
Second, the determination of the threshold γ relies on a tuning
parameter ε, which is in principle related to the intrinsic (and
unknown) properties of the normal traffic patterns. Remarkably,
the experimental study conducted in the forthcoming section will
show clearly that: i) the BIC can be safely used, and ii) the choice
of ε is by no means critical, even in the non-parametric scenario
where no prior information about the normal users’ behavior is
available.

Unfortunately, not all that glitters is gold. There is an im-
portant complication that has been deliberately overlooked so far.
According to the above explanation, we need to compare the em-
pirical MIR to the MIR of a reference botnet. However, a botnet
is characterized by a common underlying EDR α, while in practice
we shall typically have α̂1 ̸= α̂2 (especially when at least one user
is normal), implying that the approximation in (4.12) is unsup-
ported. One approach could be that of discarding ab initio the
botnet hypothesis whenever α̂1 and α̂2 are too dissimilar. The
qualification of being “too dissimilar” translates into the appear-
ance of some extra tuning parameter, possibly depending on time,
which we want definitely to avoid.

Another possibility is clearly that of choosing as reference EDR

3In making such assumption, it is assumed that the specific mechanism
used to build normal patterns has a minor influence.

64

4.5. The Botnet Identification Condition (BIC)

Figure 4.4: The Botnet Identification Condition and relationships
among ρ parameters.

some intermediate value comprised between α̂1 and α̂2. In this con-
nection, it is useful to remark that the näıve choice of the arith-
metic average does not work for the following reason. It can be
simply verified that, in general, there exist values of λ1,λ2,α1,α2 ∈
R

+ for which R(λ1,α1) + R(λ2,α2) < R(λ1 + λ2, 1/2(α1 + α2)),
implying that the empirical MIR, even for the case of disjoint dic-
tionaries, is not necessarily greater than the MIR of a botnet with
reference EDR given by the arithmetic average of α̂1 and α̂2. In
Fig. 4.4 an example is offered, aimed at understanding how to
build the BIC across a network made of two subnets (S1 and S2),
through the various ρ parameters. A systematic way to select a
proper intermediate value is substantially more involved, and is
the object of the following subsection.

4.5.1 Replacement and Reassignment proce-
dure

Let us consider two (disjoint) subnets S1 and S2, with focus on the
case that at least one of them is composed only by normal users,
with α̂S1 ̸= α̂S2 . Recall that we are considering a fixed time t, and
that the explicit dependence of all quantities upon t is suppressed

65

4. Randomized DDoS: formal model and performance evaluation

for ease of notation.

Since a botnet has common underlying EDR, and since we
want to compare the behavior of S1 ∪ S2 to that of a botnet, it
would be useful to envisage a new pair of traffic patterns for S1

and S2 possessing the following characteristics:
i) The individual EDRs of S1 and S2 are equal, namely (superscript
′ refers to the “new” patterns),

α̂′
S1

= α̂′
S2

= α̂′. (4.18)

ii) The transmission rate and the MIR of the network S1 ∪ S2

coincide with those of the original traffic patterns.

It is now useful to illustrate a Replacement and Reassignment
(RR) procedure, which finds such a new pair starting from the
original pattern configuration. Such a procedure relies on the in-
tuitive consideration that, if some messages are reassigned from
the subnet with highest EDR to the other subnet, the resulting
EDRs tend to keep each other closer. In order to avoid misun-
derstandings, it is worth remarking that the RR procedure does
not correspond to any real/physical operations made on the traffic
patterns. The RR procedure is a conceptual experiment used to
demonstrate that it is possible to construct two patterns possessing
the aforementioned requirements i) and ii).

The RR procedure goes as follows — see Fig. 4.5 for a pictorial
illustration.

1. Replacement of repeated messages. The traffic pattern of a
subnet S contains |DS| distinct messages, the remaining NS − |DS|
ones being repetitions of messages contained in DS. The first step
of the procedure amounts to replacing such NS − |DS| messages
by one and the same message, say it m∗, contained in DS. The
replacement is applied to both subnets S1 and S2, with the corre-
sponding replacing messages being m∗

1 and m∗
2. Since replacement

acts only on the message content, the transmission rates do not
change. Moreover, since replacement leaves unaltered the number
of distinct messages within each subnet, the MIR of the subnets,

66

4.5. The Botnet Identification Condition (BIC)

Replacement

Reassignment

Original
Patterns

!
"

"

"

!
!

!
!

!

#

$ $

$ $

$

$

$

$

!

!
!

!
!

!

"

"

"

%

%

%

%

DS1

DS2

DS1

DS1

DS2

DS2

DS1
DS2

DS2

DS2

DS1

DS1

m1
*=$m2

*=!

#

#

#

#

!"

!

!
"

!

!

" !

Figure 4.5: The RR procedure, pictorial exemplification.

and the MIR of S1 ∪ S2, are unaltered.4

2. Reassignment of messages. Some messages will be reassigned
from one subnet to the other subnet (only in one direction, namely,
either from S2 to S1 or from S1 to S2). For the sake of clarity,
assume that S2 is “passing” some of its messages to S1, with the
prescription that the replacing message m∗

2 is never passed. Since,
after replacement, all messages different fromm∗

2 appear only once
in the pattern of S2, we see that all messages passed to S1 are
necessarily distinct. The rate of messages (number of messages
normalized to the current time t) that are reassigned from S2 to
S1 is denoted by ∆. Accordingly, a negative ∆ will correspond
to the converse situation where S1 passes some of its messages to
S2. As a result, the transmission rates of the pattern configuration
after reassignment are:

(λ̂′
S1
, λ̂′

S2
) = (λ̂S1 +∆, λ̂S2 −∆). (4.19)

Moreover, since the correlation between the two patterns is weak
(recall that one of the subnets is composed only by normal users),

4The MIR is determined only by the content of the empirical dictionaries.

67

4. Randomized DDoS: formal model and performance evaluation

I assume that it is always possible to reassign messages that do
not belong to the intersection of the two empirical dictionaries.
Such assumption, along with the fact that all passed messages are
distinct, implies that, in terms of individual MIRs, what is lost by
a subnet is exactly gained by the other subnet. Formally:

(ρ̂′S1 , ρ̂
′
S2
) = (ρ̂S1 +∆, ρ̂S2 −∆). (4.20)

Note that not all values of ∆ are admissible. For instance, if mes-
sages from S2 are reassigned to S1, the rate of reassigned messages
cannot exceed the rate of distinct messages owned by S2, namely,
∆ ≤ ρ̂S2 . Likewise, in the converse case, −∆ ≤ ρ̂S1 , finally yield-
ing:5

−ρ̂S1 ≤ ∆ ≤ ρ̂S2 . (4.21)

Moreover, since the reassignment changes only the “owner” of a
given message, the MIR of the aggregate network S1 ∪ S2 is left
unaltered, namely, ρ̂′

S1∪S2
= ρ̂S1∪S2 .

3. Choice of ∆ for the equilibrium condition. At the end of
the reassignment procedure, the new EDRs corresponding to
S1 and S2 become, respectively, α̂′

S1
= λ̂′

S1
ρ̂′
S1
(λ̂′

S1
− ρ̂′

S1
), and

α̂′
S2

= λ̂′
S2
ρ̂′
S2
/(λ̂′

S2
− ρ̂′

S2
), where (4.10) has been exploited. In

order to get a common reference EDR α̂′, it is enforced the con-
dition in (4.18), which, using (4.19) and (4.20) into the latter two
equations, amounts to seek a value ∆

⋆ such that:

α̂′ =
(λ̂S1 +∆

⋆)(ρ̂S1 +∆
⋆)

λ̂S1 − ρ̂S1
=

(λ̂S2 −∆
⋆)(ρ̂S2 −∆

⋆)

λ̂S2 − ρ̂S2
, (4.22)

with the additional prescription that condition (4.21) is met.
Therefore, the explicit formula for ∆

⋆ is found by solving a
quadratic equation, and by simple algebra it can be verified that

5Actually, since we exclude the replacing messagesm∗

1 orm
∗

2 from the reas-
signment procedure, a subnet cannot pass all its distinct messages. However,
for large t the contribution of a single message becomes irrelevant.

68

4.5. The Botnet Identification Condition (BIC)

the solution fulfilling (4.21) is:

∆
⋆ =

λ̂S1 λ̂S2 − ρ̂S1 ρ̂S2

(λ̂S1 − ρ̂S1)− (λ̂S2 − ρ̂S2)

−

√

(λ̂S1 − ρ̂S1)(λ̂S2 − ρ̂S2)(λ̂S1 + ρ̂S2)(λ̂S2 + ρ̂S1)

(λ̂S1 − ρ̂S1)− (λ̂S2 − ρ̂S2)
.

(4.23)

From (4.22), it is easily verified that a positive ∆
⋆ corresponds to

α̂S1 < α̂′ < α̂S2 (while the latter two inequalities are reversed when
∆

⋆ < 0), implying that the subnet with the highest EDR “passes”
a fraction of its messages to the other subnet. In summary, one
can conclude that:

min(α̂S1 , α̂S2) ≤ α̂′ ≤ max(α̂S1 , α̂S2) (4.24)

According to the above explanation, when at least one of the sub-
nets is composed only by normal users, it is possible to write:

ρ̂sum(S1, S2) ! ρ̂S1 + ρ̂S2
(a)
= ρ̂′S1 + ρ̂′S2

(b)
= R(α̂′, λ̂′

S1
) + R(α̂′, λ̂′

S2
)

(c)
> R(α̂′, λ̂′

S1
+ λ̂′

S2
)

(d)
= R(α̂′, λ̂S1 + λ̂S2) ! ρ̂bot(S1, S2), (4.25)

where (a) follows from (4.20); (b) follows from (4.11); (c) fol-
lows from (4.7); and (d) follows from (4.19). On the other
hand, when S1 and S2 form a botnet, Theorem 1 implies that,
for t large enough, α̂S1 ≈ α̂S2 ≈ α, which in turn implies
that α̂′ ≈ α in view of (4.24). Therefore, in this case the in-
equality ρ̂sum(S1, S2) > ρ̂bot(S1, S2) is justified by the approxima-
tions: ρ̂sum(S1, S2) ≈ R(α,λS1) + R(α,λS2) and ρ̂bot(S1, S2) ≈
R(α,λS1 + λS2).

In conclusion, it has been show that, for arbitrary transmission

69

4. Randomized DDoS: formal model and performance evaluation

Figure 4.6: Time evolution of the empirical message innova-
tion rate ρ̂ (solid, black), compared to the identification thresh-
old γ (solid, red). For comparison purposes, the upper bound
corresponding to the case of disjoint dictionaries, ρ̂sum (dashed,
green), and the lower bound corresponding to the botnet case,
ρ̂bot (dashed, magenta) are displayed. Moving from left to right,
the different panels refer to i) the union of two normal users; ii)
the union of a botnet of size 10 and a normal user; and iii) the
union of a botnet of size 10 and a bot.

schedulings and message-picking policies, the empirical MIR of a
botnet with reference EDR value (4.22) does always provide a
lower bound to the sum of individual MIRs.6

4.5.2 Threshold setting

Let us introduce an intermediate threshold lying between the lower
bound and the upper bound in (4.25), namely, for ε ∈ (0, 1),

γ(S1, S2) = ρ̂bot(S1, S2) + ε [ρ̂sum(S1, S2)− ρ̂bot(S1, S2)] (4.26)

When S1 and S2 form a botnet, from Theorem 1 it is immediately
seen (recall that α̂′ will converge to the true α) that ρ̂S1∪S2 <

6The aforementioned result does not relate in any way to the deterministic
or Poisson scheduling and to the random message picking that characterize
the class of DDoS attacks considered in the present work.

70

4.5. The Botnet Identification Condition (BIC)

γ(S1, S2) as t → ∞.

When at least one of the subnets is made of normal users,
the degree of dependence among their patterns is low. Since i) it
has been shown that there exist two patterns, with common EDR,
α̂′, and with the same joint properties (overall transmission rate
and MIR) of the original patterns; and ii) the RR procedure only
replaces and/or reassigns messages, it is expected that the joint
MIR of a botnet with EDR α̂′ is lower than ρ̂S1∪S2 . Otherwise
stated, it is reasonable to assume that ρ̂S1∪S2 , even if not coinciding
with the upper bound ρ̂sum(S1, S2) in (4.25), is still sufficiently far
from the lower bound ρ̂bot(S1, S2). These considerations, for small
ε, implicitly define the following identification condition.

Botnet Identification Condition (BIC)

Let S1 and S2 be two subnets with S1

⋂
S2 = ∅. If at least one of

the subnets is composed only by normal users:

ρ̂S1∪S2 ≥ γ(S1, S2) (4.27)

It is worth remarking that the case of S1 arbitrary vs. S2 arbitrary
is not dealt with. This is not unintentional, since, as it will be
clear from Theorem 2, the two situations discussed are sufficient
to devise a consistent botnet identification algorithm.

In summary, the following recipe is derived:

S1 AND S2 contain only bots ⇒ ρ̂S1∪S2 < γ(S1, S1), (4.28)

S1 OR S2 contain only normal users ⇒ ρ̂S1∪S2 ≥ γ(S1, S1). (4.29)

Figure 4.6 shows the significance of the BIC. The normal users’
activity refers to a monitoring campaign conducted in a testbed
environment. The bots’ activity has been generated according to
the model described in Sec. 4.4. The details of such a campaign
will be given in the forthcoming section. In all the three panels
are displayed: the empirical MIR, the threshold γ in (4.26), along
with its upper (ρ̂sum) and lower (ρ̂bot) bounds. An observation
window of 2.5 min is considered. All the relevant quantities are
updated each 1 s, and both quantities are displayed as functions

71

4. Randomized DDoS: formal model and performance evaluation

of time, in the interval between 1 and 2.5 min.

In the leftmost panel, the case of a pair of normal users is
addressed. It is possible to see that the MIR stays (slightly) below
the upper bound, meaning that a certain degree of correlation
exists. However, the MIR stands clear above the threshold, as
prescribed by (4.29), and confirming the validity of the BIC.

In the middle panel, the two subnets under test, S1 and S2,
are a botnet of size 10, and a normal user, respectively. Conclu-
sions similar to those pertaining to a normal-normal pairing can
be drawn, substantiating again the BIC. It is possible further see
that, at the beginning of the observation window, the activities of
the two subnets are almost independent, i.e., the MIR essentially
matches the upper bound. As time elapses, a certain degree of
correlation appears, but the MIR still stays above the threshold.

Finally, in the rightmost panel, the case of a botnet/bot in-
teraction is addressed. One can see that the empirical MIR: i)
approaches, as time elapses, the quantity ρ̂bot, in perfect agree-
ment with Theorem 1, and ii) stands clear below the threshold,
in perfect agreement with (4.28).

In summary, the picture obtained from the above analysis re-
veals that the theoretical findings of Theorem 1, as well as the
conjectured behavior of the normal users implied by the BIC, are
confirmed over the experimental network traces.7

Before dwelling on the detailed description of the botnet identi-
fication algorithm, it is worth commenting on a possible limitation
of the proposed approach. There might be particular situations
where the BIC is violated because some normal users, even if act-
ing in uncoordinated manner, exhibit a certain degree of correla-
tion. Since the identification algorithm is presumed to discover
dependencies among traffic patterns, it could erroneously declare
the (honest) machines as bots. One example of the aforementioned
situations relates to the influence of traffic patterns of distinct

7The experiments have been repeated for many pairs of normal users. For
illustrative purposes, in Fig. 4.6 is reported one sample of such experiments,
which is representative of the observed behavior. The quantitative analysis
addressing the average behavior across users is deferred to Sec. 4.7.

72

4.6. The BotBuster algorithm

machines that perform the same automated update mechanisms
of programs and/or operating systems, i.e., during daily/weekly
update cycle.

4.6 The BotBuster algorithm

It is the time to focus on the derivation of the inference algorithm
aimed at disclosing a botnet possibly hidden in the network. The
BotBuster algorithm is described by the pseudo-code reported in
4.6, and basically exploits the fact that, given two disjoint subnets,
the BIC allows to discriminate the situation where both subnets
are part of a botnet, from the situation where at least one of them
is made of normal users. It will show that the proposed algorithm
possesses the fundamental requirement of consistency, namely, the
guarantee that the botnet is correctly identified as t grows.

Let us examine how the algorithm works. First, note that a
botnet made of one user, besides making little sense in practice,
is non-identifiable by any means, since I assumed that the char-
acteristics of the messages at a single-user level do not reveal any
special information. Now, at the beginning of the algorithm, user 1
is initially declared as a bot, namely, B̂ = {1}. Then, it is checked

whether users 1 and 2 form a botnet. If so, B̂ = {1, 2} is taken as

the current botnet estimate. If not, B̂ = {1} is retained. Then, it

is checked whether the currently estimated botnet B̂ forms a bot
with user 3, and so on. At the end of the inner loop, the algorithm
ends up with an estimate B̂. If the cardinality of the estimated
set is greater than one, it is taken as a current estimate.

The procedure is then restarted by choosing user 2 as initial
pivot, and sequentially checking the remaining users as explained
before. At the end of the inner loop, the algorithm ends up with
another estimate B̂. If the cardinality of the estimated set is
greater than one and greater than the cardinality of the previously
estimated set8, then it is taken as a current estimate. Otherwise,

8When t is large and the BIC is perfectly verified, the inner loop ends with
either an empty set or the true botnet. Thus, selecting the estimate with the

73

4. Randomized DDoS: formal model and performance evaluation

Algorithm: B̂new=BotBuster

N = {1, 2, . . . , N}; B̂new = ∅;
for b0 ∈ N do

B̂ = {b0};
for j ∈ N \ {b0} do

if ρ̂(B̂ ∪ {j}) < γ(B̂, {j}) then

B̂ = B̂
⋃
{j};

end

end

if |B̂| > max(1, |B̂new|) then

B̂new = B̂;
end

end

the previous estimate is retained. The procedure ends when all
users have been scanned as pivots.

It is possible to see that, under the BIC, all checks performed
by the algorithm will give eventually the right answer, with prob-
ability tending to 1 as t → ∞. BotBuster is accordingly expected
to provide a consistent botnet estimator, as will be stated and
proved in the forthcoming Theorem 2. The algorithm complexity
is O(N2) (only pairwise checks are performed), which is definitely
tolerable, since we are seeking, within a network of size N , a subset
of unknown size that matches some prescribed conditions. Finally,
the looping structure of the algorithm makes it naturally open to
parallelization, which is especially important for large networks.

In order to quantify the algorithm performance, we need to
choose some meaningful indicators. With reference to a network
N = {1, 2, . . . , N}, containing a botnet B, and letting B̂(t) be the
botnet estimated at time t by BotBuster, it is useful to introduce

highest cardinality might appear redundant. Such operation is instead useful
when operating under non-ideal conditions, as I shall explain soon.

74

4.6. The BotBuster algorithm

the following performance indices:

ηbot(t) =
E[|B̂(t) ∩B|]

|B|
, ηnor(t) =

E[|B̂(t) ∩ (N \B)|]

|N \B|
, (4.30)

namely, the expected fraction of correctly banned users (i.e., dis-
covered bots), and the expected fraction of incorrectly-banned
users (i.e., normal users erroneously declared as bots). Clearly,
ηbot(t) (resp., ηnor(t)) is not defined when B = ∅ (resp., when
B = N). We would like to see ηbot(t) → 1, and ηnor(t) → 0 as t
goes to infinity. Under the ideal assumption that the BIC is al-
ways verified, such requirement is in fact fulfilled, as stated in the
following theorem.

Theorem 2 (Consistency of BotBuster). Consider a network
N = {1, 2, . . . , N}, containing a botnet B, with |B| ̸= 1, launching
a randomized DDoS attack. The bots’ transmission policies are ei-
ther synchronous with constant transmission rate, or independent
Poisson processes, while the normal users’ transmission policies
are arbitrary. Then, for any finite emulation dictionary rate α,
the algorithm BotBuster is consistent, namely,

lim
t→∞

ηbot(t) = 1, lim
t→∞

ηnor(t) = 0 (4.31)

The claim for the case B = ∅ (resp., B = N) is intended to hold
with reference solely to ηnor(t) (resp., to ηbot(t)).

Proof. See Appendix A.3.

Theorem 2 reveals that the botnet estimated by BotBuster
converges to the true one as time elapses. The fundamental re-
quirement enabling such result is the BIC validity. On the other
hand, in real-world applications, the assumption that the BIC is
verified for all normal/normal and botnet/normal interactions, as
well as for all time epochs, is surely an over-idealized one. It can-
not be excluded that, occasionally, two independent users feature
an unusual degree of superposition between their empirical dictio-
naries, giving rise to spurious clusters of normal users that might

75

4. Randomized DDoS: formal model and performance evaluation

!"#$%$&'

!"#$%

%()(*

&$%'

%()

&$%'

!"#$%&'(&)*&+*,-&./-#*0%1%.

!"#$%&2(&+*,)%,&./-#*0%1%.

!"#$+$&'

!"#$%

Figure 4.7: Two-cycle example of BotBuster algorithm: i) Start
from a pivot node; ii) Perform comparison sequentially; iii) It-
erate over pivot node. Because of not all checks are needed, the
algorithm does not exhibit a combinatorial behavior and the com-
plexity amounts to O(N2).

be erroneously included in the estimated botnet. What is expected
to be true even in real-world applications, is that such cases are
rare and that the clusters’ cardinality is small. Now, since the
algorithm selects the estimate B̂ with the highest cardinality, and
since distributed DoS attacks with small botnet sizes make little
sense, estimated botnets of unreasonably small cardinality should
be easily ruled out by BotBuster. As a result, the final estimate is
likely to contain the true botnet, plus (possibly) a small fraction
of normal users. Thus, even under non-ideal operation conditions,
it is expected that ηbot(t) → 1 as t → ∞, whereas ηnor(t) possibly
takes on some small value. Figure 4.7 reports a two-cycle example
of BotBuster in order to show the basic functionality.

4.7 Numerical results and perfor-

mance evaluation

As regards the measuring stage that precedes the botnet identifi-
cation algorithm, the following pipeline has been adopted. Packets
are preliminarily filtered by using a popular software package for

76

4.7. Numerical results and performance evaluation

packet capturing and network protocol analysis. At the output
of such preliminary filtering stage: i) only the traffic directed to
the destination that is being monitored is retained; ii) among the
surviving packets, only the application-layer traffic is retained; iii)
the resulting packets are divided on the basis of their source IP
address, and are finally fed to the botnet identification algorithm.
A popular e-commerce website has been selected as target desti-
nation of the attack. Clearly, the normal users have no attacking
intent, they perform ordinary surfing activity. About 20 min of
(application-layer) traffic have been collected, from 10 indepen-
dent users, which were students and researchers working in our
laboratory, and carrying on their surfing activity almost indepen-
dently. In order to help understanding the nature and significance
of the dataset, it is useful to report that the total number of TCP
flows is about 26800, the median of flows across users is 2846, the
minimum number of flows is 1042, the maximum number of flows
is 3925, and the average packet size is 776 bytes. Supported by
these numbers, and by a trace-by-trace inspection, it is possible
to conclude that the activity of the users during the monitored
period is reasonably sustained, and compatible with typical traf-
fic, meaning that the patterns are neither trivial (users effectively
send requests) nor anomalous (users do not overload the destina-
tion with huge rates).

The collected streams have been partitioned into chunks of 2
min. In the forthcoming analysis, two perspectives are taken. In
one scenario, the number of normal users is 10, each user has
multiple 2-min chunks, and, per each trial, I choose randomly
one trace per user. In the other scenario, 2-min chunks belong-
ing to the same user have been treated as if they were coming
from distinct users. In this way, the number of normal users is
multiplied (fictitiously). This is clearly an approximation, since,
e.g., fictitious users stemming from the same user might feature an
additional-and-spurious degree of dependence. On the other hand,
this (possible) increase of dependence goes in the direction of (pos-
sibly) increasing the fraction of normal users mistakenly marked
as bots. Therefore, the simulations performed in the “multiplied”

77

4. Randomized DDoS: formal model and performance evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [min]

F
ra

c
ti

o
n
 o

f
b
a
n
n
e
d
 u

se
rs

B = 10, α = 10, for different thresholds

ϵ = 0.05, ηbot
ϵ = 0.1, ηbot
ϵ = 0.2, ηbot
ϵ = 0.05, ηnor
ϵ = 0.1, ηnor
ϵ = 0.2, ηnor

Figure 4.8: Fraction of banned users as a function of time, for dif-
ferent values of the threshold parameter ε. The monitored network
is composed of 10 normal users, and contains B = 10 bots. Solid
curves refer to correctly banned bots, whereas dashed curves refer
to erroneously banned normal users. The depicted curves are com-
puted over 100 Monte Carlo trials. Per each trial, 2-min chunks
of each user are randomly selected among the available chunks.

scenario are expected to provide a conservative performance as-
sessment.

The DDoS attack has been generated so as to fall into the class
described in Sec. 4.4. Given the dictionary of messages obtained
from the whole activity recorded in the laboratory, it is assumed
that, at epoch t, only the first ⌊e0+αt⌋ messages of such a dictio-
nary are available to the botnet, giving rise to the emulation dictio-
nary E (t), for fixed parameters e0 (size of the dictionary at t = 0)
and α. Independently at each bot, a Poisson time-scheduling is
randomly generated, and, per each transmission epoch t, each bot
picks messages at random from the currently available E (t). In
the forthcoming analysis, e0 will be set to value 100, unless stated
otherwise.

78

4.7. Numerical results and performance evaluation

4.7.1 Experimental threshold setting

It is useful to recall that the algorithm is non-parametric, namely,
it does not assume knowledge neither of the transmission rates, nor
of the parameters of the botnet emulation dictionary (e0 and α).
In contrast, the size of the network is obviously known. The only
input parameter is the factor ε appearing into (4.26). In Fig. 4.8 I
consider a network comprising 10 normal users plus 10 bots. The
botnet EDR is α = 10. I remark that such a value is compatible
with some of the empirical values α̂ estimated over the normal
users’ traces. The BotBuster algorithm has been implemented
for three values of the threshold parameter ε ∈ (0, 1), namely,
0.05, 0.1, and 0.2, and the estimates obtained for the fraction of
banned users have been averaged over 100 Monte Carlo trials. The
observation window lasts 2 min, and the simulation points refer
to the output of the algorithm taken each 1 s. It is possible to
see that the dashed curves are in practice invisible, revealing that
the estimated ηnor is almost zero for all the considered values of ε.
This behavior should be contrasted to what will be observed later
on in Fig. 4.12, where, in the absence of a botnet, the BIC was
occasionally violated. However, as discussed at the end of Sec. 4.6,
the spurious-and-small estimated clusters containing normal users
can be efficiently ruled out by the fact that the algorithm selects,
as a final estimate, only the cluster with maximum size, which is
expected to contain only bots.

With regard to the fraction of correctly identified bots, we
see that ηbot increases as ε increases from 0.05 to 0.2. In fact,
increasing ε makes it easier staying below the threshold, which
facilitates the inclusion of a node in the estimated botnet.

The analysis summarized in Fig. 3.3 reveals that the choice
of the threshold is not critical, and the algorithm offers excellent
performance for a relatively large range of ε. Indeed, recall that
ε ∈ (0, 1), and that ε must be “small”, so that ε = 0.05 up to 0.2
can be definitely considered a “large”, flexible range.

79

4. Randomized DDoS: formal model and performance evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [min]

F
ra

c
ti

o
n
 o

f
b
a
n
n
e
d
 u

se
rs

B = 10, ϵ = 0.2, for different EDRs

α = 0, ηbot
α = 10, ηbot
α = 50, ηbot
α = 0, ηnor
α = 10, ηnor
α = 50, ηnor

Figure 4.9: Fraction of banned users as a function of time, for
different values of the EDR α. The monitored network is composed
of 10 normal users, and contains B = 10 bots. Solid curves refer to
correctly banned bots, whereas dashed curves refer to erroneously
banned normal users. The depicted curves are computed over 100
Monte Carlo trials. Per each trial, 2-min chunks of each user are
randomly selected among the available chunks.

4.7.2 Role of Emulation Dictionary Rate

In Fig. 4.9, the different curves refer to three EDR values (which,
I recall, is not known to the algorithm). The threshold parameter
ε was set to 0.2. Let us start by examining the behavior of ηnor.
We see that, irrespectively of the EDR value, ηnor stays approxi-
mately constant at 0, which matches our previous evidences and
observations.

Let us switch to the analysis of ηbot. The lowermost curve
corresponds to the highest EDR value considered in the figure,
namely, to α = 50. Compared to what it has been observed in the
network traces collected in our testbed environment, such an EDR
is a kind of relatively high value. It is possible to note that the
average percentage of correctly identified bots is relatively large

80

4.7. Numerical results and performance evaluation

(> 80%), even at the beginning of the monitoring activity. Then,
the estimated ηbot increases, approaching unity as time elapses, in
perfect accordance with the theoretical results of Theorem 2.

Next I examine the influence of the EDR on the algorithm
performance. We see that the curves corresponding to ηbot move
upward as α decreases. This sounds perfectly reasonable, since α

quantifies the learning ability (i.e., the power) of the botnet. On
the other hand, for each value of α, the performance must eventu-
ally reach the limiting value of unity after a sufficiently long time.
In particular, the uppermost curve corresponds to the degenerate
case α = 0, namely, to the classical and well-documented case
where the botnet uses repeatedly the same patterns. As such, the
case α = 0 could be addressed by other (simpler) tools, since a
normal user will seldom feature such a small innovation rate. In
summary, the conducted analysis emphasizes that the performance
decreases with the botnet learning ability α.

4.7.3 Network size scaling

In order to ascertain the feasibility of the proposed methodology, it
is crucial to capture how the performance scales as the network size
is increased.9 In Fig. 4.10, the fraction of correctly banned users
for networks of increasing size, featuring a balanced proportion of
bots and normal users has been displayed. The rightmost group
of curves corresponds to a size of the initial dictionary chosen
as done in the previous numerical experiments (e0 = 100), while
the leftmost group corresponds to the limiting case of an almost
empty initial dictionary (e0 = 1). As to the rightmost family of
curves, the performance increases slowly when the size is varied
from 20 to 100, while it stays almost constant when the size is
varied from 100 to 200. The opposite behavior is observed for
the leftmost group. Joint inspection of the two cases implies the
following observations: i) no monotonic behavior emerges with
respect to N ; ii) the variation in performance when N is varied

9I shall consider the aforementioned scenario where normal users are ficti-
tiously multiplied by treating chunks of the same user as distinct users.

81

4. Randomized DDoS: formal model and performance evaluation

Figure 4.10: Fraction of correctly banned users as a function of
time, for different network sizes N (“multiplied” scenario — see
main text). The two groups of curves refer to different sizes of the
initial dictionary. Markers refer to a parallel implementation of
the BotBuster algorithm over 10 disjoint and equal-size subsets of
the entire network, for the case B = N − B = 100. The depicted
curves are computed over 100 Monte Carlo trials. In the insets, a
close-up of the curves in the range ηbot ≥ 0.5 is displayed, reporting
also the 95% confidence intervals (shaded areas).

up to an order of magnitude is modest. The latter clues are crucial
to support feasibility of the proposed algorithm.

In addition, in Fig. 4.10 I have reported the performance cor-
responding to a “partitioned” application of BotBuster (markers),
where the largest network (N = 200) is examined by splitting the
nodes into 10 sub-groups, and BotBuster is then launched in par-
allel over each sub-group. As it should be expected, such a parallel
application delivers approximately the performance corresponding

82

4.7. Numerical results and performance evaluation

to an individual sub-group.10 Otherwise stated, a parallel imple-
mentation over subnets, say, of 1/10 of the total network size,
keeps at least the promises of the performance corresponding to a
network 10 times smaller, with additional computational and/or
time savings. This is a further important element that supports
feasibility of the proposed method. Moreover, it should be noticed
that the implementation of BotBuster over the whole network (i.e.,
without splitting) offers the additional feature of performing joint
checks among the sub-groups, which would be skipped by a par-
allel implementation.

To complete the analysis, I report that ηnor (not displayed
to enhance readability) is practically zero in all the scenarios of
Fig. 4.10, irrespectively of the network size. Finally, it is useful to
stress that simulations were carried for networks up to 200 nodes,
and the algorithm was able to guarantee the real-time require-
ment, yet on a standard laptop, without memory/code optimiza-
tion, with such issues being beyond the scope of the work.

4.7.4 Multiple bots / Spoofed addresses

The setting considered in this work encompasses naturally the
relevant scenario of spoofed source IP addresses, which is becom-
ing rather common in DDoS attacks. In such scenario, each bot
can change its source IP address by (randomly) choosing from a
collection of spoofed addresses. In the randomized DDoS attack
considered in this work, the bot traffic streams are constructed
by picking subsequent messages independently from an emulation
dictionary that is shared among all the bots. Accordingly, a bot-
net of B nodes employing a set of A randomly spoofed addresses
(with A > B), is equivalent to a botnet of A nodes performing the
attack. Since the goal of the network analyst is banning the ma-
chines that launch the attack (not associating a physical machine
to its IP address), it is possible to conclude that the performed
analysis applies directly to the case of spoofed IP addresses, pro-

10A rough performance prediction can be easily made assuming an approx-
imate equipartition of bots among the sub-groups.

83

4. Randomized DDoS: formal model and performance evaluation

vided that the number of bots is replaced by the number of IP ad-
dresses globally employed by the botnet. For the sake of brevity,
such “effective” number will be still denoted by B.

There are at least two meaningful regimes to examine the case
of increasing number of bots and/or spoofed addresses: i) the
regime where B increases, while the individual bots’ transmission
rate, λbot, is constant, implying a growth of the total DDoS attack-
ing rate Bλbot; ii) the regime where B increases while keeping the
attacking rate constant. As regards the former regime, unlike the
analysis of the previous section, varying B corresponds to varying
the relative proportion of bots and normal users. This notwith-
standing, the evidences arising from the simulation pertaining to
such scenario are very similar to those observed in Fig. 4.10, and
are accordingly not reported. In summary, in this regime the de-
pendence of ηbot upon B is not obvious (no monotonic behavior
emerges with respect to B, which is partly explained by noting
that increasing B should augment the botnet “visibility”, but also
the number of possible algorithm mistakes), and the performance
is little sensitive to variations of B.

Let us now move on to examine the second regime of oper-
ation. It is expected that, for a given total attacking rate, the
botnet has more convenience in distributing its requests over more
bots and/or spoofed addresses, which corresponds to increasing B
while proportionally reducing λbot. Such scenario is illustrated in
Fig. 4.11. Since in this case increasing B implies a reduction of the
transmission rate, it is expected that the time to reach convergence
increases, and that the mutual dependencies are disseminated over
a larger number of bots, resulting into a reduced botnet identifi-
ability. Such behavior is reflected by the shifting of the curves in
Fig. 4.11.

From a practical perspective, there are two important evi-
dences arising from Fig. 4.11. First, increasing B by even one order
of magnitude does not jeopardize botnet identifiability (ηbot ≈ 0.99
before half a minute). Such a mild dependence is supported by
the following observation: convergence of the algorithm should
roughly depend upon the average number of transmissions λbot t.

84

4.7. Numerical results and performance evaluation

Figure 4.11: Fraction of banned users as a function of time, for
different botnet sizes B, in the constant attack-rate regime. The
monitored network contains 100 normal users (“multiplied” sce-
nario — see main text). Solid curves refer to correctly banned
bots, whereas dashed curves refer to erroneously banned normal
users. The depicted curves are computed over 100 Monte Carlo
trials. Shaded areas correspond to 95% confidence intervals.

Accordingly, the curves are expected to undergo a delay shift that
scales approximately as 1/λbot, i.e., almost linearly with B because
the product Bλbot is constant.

More remarkably, it is possible to see that a relatively strong
botnet power is required in order to impair substantially the algo-
rithm performance. Let us now see why. The rate of requests of
the “normal” part of the network scales as (N − B)λnor. Assume
that the request rate necessary to saturate the attacked website
resources must be κ times larger than the overall rate of normal
users. This implies the condition λbot/λnor = κ(N − B)/B. Now,
the rightmost curve (the more advantageous for the botnet) cor-

85

4. Randomized DDoS: formal model and performance evaluation

Figure 4.12: Fraction of banned users as a function of time, for
different values of the threshold parameter ε, and for different
network sizes. The monitored network contains no bots. The de-
picted curves are computed over 100 Monte Carlo trials. Per each
trial, 5-min chunks of each user are randomly selected among the
available chunks. In the insets, the pertinent curves are displayed
along with the 95% confidence intervals (shaded areas).

responds to the case that κ = 1 and λbot = λnor, namely, to the
optimistic (from the botnet perspective) assumptions that a rela-
tively low attack rate is sufficient to impair the target site (κ = 1),
and that the available number of bots and/or spoofed addresses
equals the number of normal users. In contrast, the leftmost curve
corresponds to the (perhaps more realistic) case that the botnet is
one order of magnitude smaller than the “normal” part of the net-
work. In order to increase substantially the time needed to reach
a satisfying accuracy, the botnet should use a number of bots that
exceeds the number of normal users by at least one order of mag-
nitude.

86

4.7. Numerical results and performance evaluation

4.7.5 No botnet setting

One might question that, in an IDS pipeline, a botnet identifica-
tion algorithm is usually triggered by (or coupled with) a detection
stage hunting for anomalous rises in the request rate. Thus, in the
absence of such anomaly, identifying a dependence among small
group of users does not imply (nor legitimate) a banning action.
Nevertheless, it is useful to verify that the algorithm works prop-
erly even with B = 0. Such analysis is also an indirect validation
of the BIC, since it focuses specifically on the dependencies among
normal users. In Fig. 4.12, I display the fraction of erroneously
banned users, ηnor, for several scenarios, namely: a network with
10 normal users, for three values of the threshold parameter ε; net-
works of increasing size, examined for the same value of ε. Unlike
the previous analysis, here I focus on a longer observation window,
in order to track possible (undesirable) increasing trends of ηnor.
Let us start by examining the dependence upon ε. Were the BIC
exactly verified for any subset of normal users, and for any time
epoch, the fraction of banned users should be always zero. As
already discussed, in practice the BIC is expected to be approxi-
mately verified. This notwithstanding, in Fig. 4.12 it is possible to
see that the percentage of erroneously banned users is very small
for all the thresholds in the considered range, never exceeding 6%.
Notably, such behavior suggests that a BIC violation is unlikely
to occur, and that, in any case, it involves small groups of users.
Thus, as happens for the case B > 0, the dependence of perfor-
mance upon the threshold is not critical. Let’s now examine the
variation in performance as the number of users increases. It is
possible to see that the performance approximately increases (see
curves corresponding to N = 10, 20, 30), but then approximately
decreases (N = 40). This behavior suggests that, as N grows, the
cardinality of spurious clusters is not significantly influenced by
the latter growth, which in turn implies a reduction in the relative
fraction of erroneously banned users. In summary, it is possible to
conclude that, as already shown for the case B > 0, the scaling of
performance with the network size does not emerge as an issue.

87

4. Randomized DDoS: formal model and performance evaluation

88

Chapter 5

Randomized DDoS attacks
in a multi-clustered
environment

5.1 The multi-clustered scenario

The key idea in this section is to extend the results obtained in
Sec. 4 to a more challenging environment. In this new setting,
in fact, the botnet is supposed to be spread across the network
in many non-overlapping clusters, each of which has access to an
emulation dictionary Ec(t), for c = 1, 2, . . . , C clusters as depicted
in Fig. 5.1. The new challenge is to reveal the presence of multiple
botnet clusters hidden in the network via a new algorithm derived
from BotBuster algorithm described in the previous section.

5.2 Network indicators for multi-

clustered DDoS

It is worth to re-arrange some network indicators introduced in the
previous section, in order to face the novel multi-clustered DDoS
attack. The empirical transmission rate and the empirical MIR
are again defined in accordance to (4.2) and (4.3) respectively.

89

5. Randomized DDoS attacks in a multi-clustered environment

!"#$%&

!"#$%&'()

!

"

!"#$%&'(* !"#$%&'(!

...

Figure 5.1: The botnet if made of C non-overlapping clusters.
Every cluster has the possibility to access its own emulation dic-
tionary Ec(t), for c = 1, 2, . . . , C.

As previously specified, the model for multi-clustered DDoS
constitutes a generalization of the DDoS class originally proposed
in [39]. The key assumption is that the botnet is made of C non-
overlapping clusters, each of which has access to an emulation
dictionary (at time t) denoted by Ec(t), for c = 1, 2, . . . , C. A
bot of the c-th cluster performs normal traffic emulation by pick-
ing admissible messages from Ec(t). In order to guarantee a non-
suspicious innovation rate, the dictionary is learned in a continu-
ous fashion, namely, its cardinality increases with t. To quantify
the richness of the emulation dictionary, it is possible to introduce
the Emulation Dictionary Rate (EDR) if the c-th cluster:

αc ! lim
t→∞

|Ec(t)|

t
(5.1)

When a bot of the c-th cluster transmits, it picks (uniformly at
random) a message from the available emulation dictionary Ec(t).
As a result of the transmission activity, to any subnet B of the
botnet it is possible to associate a certain empirical dictionary,
DB(t). At time t + s, such an empirical dictionary is possibly
increased by embodying the distinct messages (which were not

90

5.3. Malicious clusters identification algorithm

initially contained in DB(t)) picked during interval s by the bots
in B. As in the case of classical botnet environment where a
formalization of MIR is offered, it is useful to formalize the MIR
concept in a clusterized setting, by rephrasing the Theorem 1 of
Sec. 4:
Theorem 3 (MIR of a multi-clustered botnet). Let Btot be
a multi-clustered botnet, and let the transmission policies be ei-
ther synchronous with constant transmission rate, or independent
Poisson processes, with rates λu, for u ∈ Btot. Let B =

⋃C
c=1Bc,

where Bc is a subnet of the c-th botnet cluster, and let αc the EDR
of the c-th cluster. If Bc ̸= ∅, the (limiting) MIR of Bc is:

ρBc
=

αc λBc

αc + λBc

(5.2)

where λBc
=

∑

u∈Bc
λu is the aggregate transmission rate of Bc.

Moreover, the overall MIR of B fulfills the inequality:

ρB ≤
∑

c:Bc ̸=∅

αc λBc

αc + λBc

(5.3)

which is satisfied with equality when the emulation dictionaries of
the different clusters are mutually disjoint. "

As regards the individual-cluster MIR in (5.2), the result comes
directly from Theorem 1 in as described in Sec. 4. As regards the
overall MIR in (5.3), the result comes from the fact that the MIR is
sub-additive, while the equality follows because disjointness of the
emulation dictionaries implies disjointness of the corresponding
empirical dictionaries and, hence, additivity of the corresponding
MIRs.

5.3 Malicious clusters identification al-

gorithm

The possibility of a successful botnet identification relies on the
fact that bots and normal users are expected to behave quite differ-

91

5. Randomized DDoS attacks in a multi-clustered environment

ently as regards their degree of innovation. In fact, the members
of a botnet cluster produce their transmission activity by pick-
ing messages from one and the same emulation dictionary. The
implied commonalities between two members of the same botnet
cluster are expected to emerge in terms of a MIR that is lower
than the MIR that would be obtained, e.g., if the two users were
normal. This is because the mutual independence of the activi-
ties of two normal users, or of a normal user and a bot, implies
typically a low degree of correlation (some partial overlap could
arise due to, e.g., common interests, popular web-pages, peculiar
website structure), which is reflected in a small intersection be-
tween the corresponding (individual) empirical dictionaries. Such
heuristic argument has been made precise in Sec. 4. Specifically,
given two disjoint subnets, S1 and S2, two MIRs are introduced,
namely, the sum of MIRs: ρ̂sum(S1, S2) ! ρ̂S1 + ρ̂S2 , and the MIR

of a reference botnet: ρ̂bot(S1, S2) !
α̂′(S1,S2)(λ̂S1

+λ̂S2
)

α̂′(S1,S2)+λ̂S1
+λ̂S2

, with explicit

dependence upon t being suppressed for ease of notation. The
value α̂′(S1, S2) in the latter formula is a reference EDR estimated
from the data. Then, for ε ∈ (0, 1), an intermediate threshold is
defined as: γ(S1, S2) = ρ̂bot(S1, S2) + ε [ρ̂sum(S1, S2)− ρ̂bot(S1, S2)].
The heuristic reasoning about identifiability translates into the fol-
lowing conditions. When the two subnets belong to the same bot-
net cluster (below referred to as “joint case”), the empirical MIR,
ρ̂S1∪S2 , converges toward ρ̂bot as time elapses, as predicted by The-
orem 1. Next, consider the case that one subnet contains normal
users and/or bots belonging to clusters not contained in the other
subnet. In such case (below referred to as “nearly-disjoint case”)
it is realistic to assume that the degree of dependence between
the two subnets is lower than the degree of dependence observed
when both subnets belong to the same botnet cluster. The above
arguments lead to:

Joint case ⇒ ρ̂S1∪S2 < γ(S1, S1), (5.4)

Nearly-Disjoint case ⇒ ρ̂S1∪S2 ≥ γ(S1, S1). (5.5)

92

5.3. Malicious clusters identification algorithm

Algorithm: B̂=BotClusterBuster(traffic patterns, ε, κ, ξ)

N = {1, 2, . . . , N}; B̂ = ∅
for i ∈ N do

B̂i = {i}
for j ∈ N \ {i} do

if ρ̂(B̂i ∪ {j}) < γ(B̂i, {j}) then B̂i = B̂i

⋃
{j}

end

if |B̂i| = 1 then B̂i = ∅
if λ̂

B̂i
≤ κ

1 + κ
ξ λ̂N then B̂i = ∅ (cluster expurgation)

end

B̂ =

N⋃

i=1

B̂i

Actually, when (5.5) is exactly verified (the verification of (5.4)
being guaranteed, for t large enough, by Theorem 3), we shall say
that the Botnet Identification Condition (BIC) is fulfilled.

However, there is an issue that forbids successful applicability
of the BotBuster algorithm (see Sec. 4) to the multi-clustered
case addressed in this work. Such issue relates to the fact that (as
experimental verification reveals) the BIC is not always verified in
practice. As a result, during its flow, the algorithm occasionally
produces, along with the (nearly-)right botnet, spurious groups of
users that are not the right botnet. In the single-cluster case, such
pathology is remediated by choosing, at the end of the procedure
that scans all the nodes as pivots, the estimated botnet with the
highest cardinality. Such choice is based on the observation that
the cardinality of groups erroneously marked as botnet is typically
much smaller than the cardinality of a real botnet. In the multi-
clustered case, opting for the same maximum-cardinality rule is
clearly detrimental, since it would select only the largest botnet
cluster, which might be a largely insufficient measure of protection
to face the DDoS attack. Therefore, different strategies to face
a multi-clustered DDoS attack are necessary, and, some details

93

5. Randomized DDoS attacks in a multi-clustered environment

about them are offered in the following.

5.3.1 Algorithm examination

Let’s start to examine the main routing of BotClusterBuster,
whose pseudo-code is reported in the top of previous page. For
the sake of simplicity, dependence upon time is suppressed. Ini-
tially, the algorithm selects the first user as pivot (this operation
will be repeated for all N nodes). User 1 is initially declared as

a bot (B̂1 = {1}). Then, by means of (5.4) and (5.5), it is de-

clared whether users 1 and 2 form a botnet. If so, B̂1 = {1, 2},

otherwise B̂1 = {1}. Then, it is declared whether the currently

estimated botnet B̂1 forms a botnet with user 3, and so on. At the
end of this loop, a candidate botnet cluster B̂1 is obtained (if the
candidate cluster has cardinality equal to one, it is automatically
discarded). After iterating such inner loop over the entire set of
pivots, the algorithm ends up with a sequence of candidate clus-
ters, namely, B̂1, B̂2, . . . , B̂N . It is worth noting that, unlike the
BotBuster algorithm, all the candidate botnet clusters produced
in the intermediate algorithm steps should be retained, in order to
take into account the possible presence of multiple botnet clusters.
The situation is pictorially illustrated in Fig. 5.2, where are dis-
played the candidate botnet clusters estimated by the algorithm
at a certain time, with reference to a network composed by 100
normal users and 100 bots, with 4 true botnet clusters, with sizes
10, 20, 30, 40. The i-th “row” of the image represents the output of
the algorithm when user i is chosen as a pivot. A white pixel means
“estimated bot presence”, a black pixel means “estimated bot ab-
sence”. Accordingly, if the (i, j)-th pixel is white, the algorithm is
estimating that user j is a bot when user i is chosen as pivot. From
Fig. 5.2, it is possible to appreciate the emergence of 4 clusters,
corresponding to the true botnet clusters (bots are ordered so as to
appear well-clusterized in the image, a choice made only for clarity,
since the algorithm is clearly invariant to permutations). On the
other hand, we also see that a couple of small spurious clusters is
wrongly identified by the algorithm. Now, were the BIC verified,

94

5.3. Malicious clusters identification algorithm

!

"
#

$

!"#$%&#!'()#!*+$!
,-$&./)0'%1+.*%2%+13

"%4&*

5&1+

%.1+6

Figure 5.2: Algorithm applied to a network made of 100 bots and
100 normal users. Four significant clusters emerge (A,B,C,D), plus
spurious micro-clusters.

all checks performed by the algorithm would give the right answer
(with probability tending to 1 as t → ∞), and the sequence of can-
didate clusters would contain exclusively (repetitions of) the true
botnet clusters. Therefore, a sufficient criterion to produce the
global botnet estimates would consist of applying the union oper-
ator: B̂ =

⋃N
i=1 B̂i. The corresponding algorithm will be referred

to as UnionBotBuster. The pseudo-code for UnionBotBuster can
be retrieved from the pseudo-code of BotClusterBuster, by simply
skipping the instruction referred to cluster expurgation. However,
since in practice the BIC is only approximately verified, the union
rule would favor inclusion of spurious clusters. Therefore, some
refined criterion to select the best clusters is desirable.

Actually, the DDoS power can be measured in terms of the
global botnet transmission rate, λB. For a DDoS attack to be

95

5. Randomized DDoS attacks in a multi-clustered environment

effective, one expects that, for κ ≥ 1: λB = κλN\B, with λN\B

being the global transmission rate of normal users. The lower
bound κ = 1 corresponds to the optimistic (at the botnet’s side)
assumption that a low DDoS rate is sufficient to impair the target
site. In terms of the overall network transmission rate, one gets:
λB = κ

1+κ
λN. It is reasonable to assume that a true botnet cluster

concurs to the attack with a significant fraction of the attacking
rate, which leads to the following botnet membership condition:
for i = 1, 2, . . . , N , and for ξ ∈ (0, 1), the candidate cluster i is
retained if:

λ̂
B̂i

>
κ

1 + κ
ξ λ̂N ! τ, (5.6)

and is discarded otherwise. The final estimate is then produced
by applying the union operator to the survived clusters, namely,
B̂ =

⋃

i:λ̂
B̂i

>τ B̂i. In summary, it is possible to derive three rules

to identify the clusters:

• Max Rule: this rule selects only the maximum-size emerged
cluster. In the example shown in Fig. 5.2, the algorithm
would select cluster A.

• Union Rule: this rule select all clusters. In the exam-
ple shown in Fig. 5.2, the algorithm would select clusters
A,B,C,D, plus spurious micro-clusters.

• Cluster Selection: this rule retains the true clusters and ex-
purgates the spurious ones, by exploiting the structural prop-
erties of the candidate clusters. In the example shown in Fig.
5.2, the algorithm would select only clusters A,B,C,D,.

Let us now introduce two performance indices: for a network
N = {1, 2, . . . , N}, containing a botnet B (B̂(t) is the final botnet
estimated at time t):

ηbot(t) =
E[|B̂(t) ∩B|]

|B|
, ηnor(t) =

E[|B̂(t) ∩ (N \B)|]

|N \B|
, (5.7)

96

5.3. Malicious clusters identification algorithm

which are the expected fraction of correctly identified bots and the
expected fraction of normal users declared as bots, respectively. It
is possible to say that an identification algorithm is consistent if:

lim
t→∞

ηbot(t) = 1, lim
t→∞

ηnor(t) = 0 (5.8)

Theorem 4 (Consistency of the algorithms BotCluster-
Buster and UnionBotBuster). Let N = {1, 2, . . . , N} be a
network containing a multi-clustered botnet B, with asymptotically
disjoint emulation dictionaries. The bots’ transmission policies
are either synchronous with constant transmission rate, or inde-
pendent Poisson processes. The normal users’ transmission poli-
cies are arbitrary. If the BIC in (5.5) holds, then the algorithm
UnionBotBuster is consistent. Moreover, let λmin be the smallest
(limiting) transmission rate of a botnet cluster. If:

λmin >
κ

1 + κ
ξλN, (5.9)

then the algorithm BotClusterBuster is consistent. "

Consistency of UnionBotBuster holds because: i) by Theo-
rem 3, as t → ∞, a candidate cluster obtained starting with a bot
pivot converges to the true botnet cluster containing the pivot;
ii) since the BIC is assumed to be perfectly verified, a candidate
cluster obtained starting with a normal-user pivot converges to the
empty set. As regards BotClusterBuster, convergence of ηnor(t) to
zero is still implied by ii). On the other hand, successful inclusion
of all candidate clusters coming from a bot pivot requires that
the botnet-membership condition in (5.6) is verified for all clus-
ters, at least for t large enough. This amounts to assume that,
for the least favorable case (i.e., the cluster with the lowest trans-
mission activity) the threshold is crossed. Since such condition is
required asymptotically, the empirical values of the transmission
rates in (5.6), are replaced, in (5.9), by their limiting counterparts.
It is worth to remark that the theorem focuses on the case of (at
least asymptotically) disjoint emulation dictionaries.

97

5. Randomized DDoS attacks in a multi-clustered environment

5.4 Experimental results

Basically, the experimental campaign has been carried out by con-
sidering the same laboratory setting exploited in Sec. 4. Accord-
ingly, a popular e-commerce portal has been selected as target
destination of the attack. A standard software for packet captur-
ing and for performing a preliminary filtering has been deployed,
so: i) only the application-layer traffic directed to the target desti-
nation is retained; ii) the survived packets are divided on the basis
of source IP address, before being fed to the identification algo-
rithm. As in the case of DDoS attack faced in Sec. 4, more than
20 minutes of traffic, from 10 users (students/researchers in lab-
oratory based at University of Salerno) have been gathered. The
obtained traffic streams have been then partitioned into 1-minute
chunks. Then, each distinct chunk is treated as representative of a
distinct user, for a total number of equivalent normal users ≈ 200.
As regards the multi-clustered DDoS attack, an emulation dictio-
nary is needed. At this aim, all the distinct messages present in
the overall dataset have been first taken. Then, such ensemble
has been split into C disjoint sets, with C being the number of
clusters. Finally, at epoch t, the c-th emulation dictionary Ec(t) is
constituted by the first ⌊e0+αct⌋ messages of such ensemble (e0 is
the initial dictionary size, set to 100 messages in the simulations).
In a first set of experiments, the individual bot transmission rate
has been chosen as twice the average rate of normal users, and
the EDR has been chosen as compatible with the innovation rates
estimated over the normal users’ traces. Such choices are made
to let the bots well concealed in the midst of legitimate users.
An equal number (100) of normal users and bots, which is again
a favorable choice for the attacker has been chosen. With refer-
ence to such setting, a single-cluster DDoS attack has been first
launched. The botnet identification algorithms for this case are:
the BotBuster algorithm introduced in Sec. 4 (which selects the
maximum-cardinality cluster only), and the UnionBotBuster al-
gorithm. Then, a multi-clustered DDoS, where the 100 bots have
been split over C = 4 clusters, with sizes 10, 20, 30, 40 (cluster

98

5.4. Experimental results

Figure 5.3: Expected fraction of banned users (estimated over 100
Monte Carlo runs) as a function of time, for different types of
attack and identification algorithm, as detailed in the legend. The
network is made of 100 normal users and 100 bots.

ordering is immaterial, since, in our simulations, the bots are ran-
domly spread over the network) has been launched. The EDR
of each cluster has been correspondingly reduced by a factor 4.
For the multi-clustered scenario, the identification algorithms are
BotClusterBuster and UnionBotBuster. As regards the threshold
parameters of BotClusterBuster, the following values have been
chosen: κ = 1, ξ = 1/10. Both choices are not “too selective”,
in the sense that they tend to favor cluster inclusion, and, hence,
they tend to increase ηnor. In fact, κ = 1 corresponds to a low ref-
erence attacking rate. Likewise, ξ = 1/10 corresponds to assume
that the smallest cluster must contribute to the total attacking
rate for at least one tenth of the total, which seems a rather con-
servative choice.

99

5. Randomized DDoS attacks in a multi-clustered environment

In Fig. 5.3, ηbot and ηnor as functions of time are displayed.
Points of each curve correspond to the algorithms’ output sam-
pled each 0.25 seconds, with the average performance indices es-
timated over 100 Monte Carlo runs. As a general comment, it is
possible to note that all algorithms do their job properly, since:
i) the fraction of correctly banned users increases up to unity as
time elapses, matching the theoretical results about algorithms’
consistency; ii) the fraction of erroneously banned users is kept
small. It is not zero, as a consequence of the forewarned imper-
fect verification of the BIC. Let us first compare the single-cluster
case to the multi-clustered case. In particular, I focus on the
comparison between the maximal-cluster rule (single) and Bot-
ClusterBuster (multi). One can see that ηnor is in practice zero
for both cases (dashed red curve almost perfectly superimposed
to dashed black curve). Switching to ηbot, it is possible to see
that the performance in the multi-clustered case outperforms the
performance corresponding to the single-cluster case, but for un-
interesting small values of ηbot. Such behavior can be explained
as follows. The power of a botnet cluster is ruled by the EDR,
which, in the multi-clustered case, is smaller than the EDR of the
single-cluster case. Now, provided that the cluster selection oper-
ates properly, the main factor ruling the algorithm performance is
the EDR. Accordingly, the botnet identification is quicker in the
multi-clustered case (lower EDR ⇔ lower attack strength) than
in the single-cluster case (higher EDR ⇔ higher attack strength).
Let’s now move on examining the connections between the cluster-
expurgation rule and the union rule. The fraction of banned users
for the latter is always higher than that corresponding to the for-
mer. This behavior is expected, since the union rule does not at-
tempt to select the best cluster(s), but merges all candidate bots.
Clearly, the increase in the percentage of correctly banned users
is paid in the coin of an undesired increase of the wrongly banned
ones. In a second scenario (see Fig. 5.4), two different implementa-
tions of the multi-clustered DDoS are considered. In a first setting
(case 1 in Fig. 5.4), the identification problem is made more chal-
lenging by i) reducing the individual bots transmission rate (by a

100

5.4. Experimental results

Figure 5.4: Expected fraction of banned users (estimated over 100
Monte Carlo runs) as a function of time, for different parameters
of the multi-clustered DDoS and of the algorithms. The network
is made of 100 normal users and 100 bots.

factor 2); ii) reducing the size of the smallest botnet cluster, with
the cluster sizes being 5, 20, 30, 45. In the second setting (case 2
in Fig. 5.4), the reduced transmission rate is still considered, but
the cluster sizes are restored to the values 10, 20, 30, 40, while the
value of the cluster-selection parameter (ξ = 1/20) has been re-
duced. With this choice, we are in a sense over-estimating the
maximum number of clusters, and, hence, we are favoring the in-
clusion of spurious clusters in the final estimate. The results of
the experiments are displayed in Fig. 5.4. Let’s start by focusing
on the BotClusterBuster algorithm. As a general trend (applying
both to case 1 and case 2) one can see that the new challenges
(reduced transmission rate, reduced cluster size, reduced thresh-

101

5. Randomized DDoS attacks in a multi-clustered environment

old parameter) correspond to an increase of ηnor. This is expected,
since all the modifications w.r.t. the setting of Fig. 5.3 goes in the
direction of favoring the inclusion of spurious clusters. In contrast,
as regards ηbot, the situation changes in the two cases. In case 1,
the low value of the smallest cluster size (equal to 5), leads to a
violation of hypothesis (5.9), which forces BotClusterBuster to ex-
clude the smallest cluster, and in turn explains why ηbot saturates
to 0.95 as time elapses. Instead, in case 2, the variations of the
sensible parameters are not sufficient to impair consistency. As
regards the UnionBotBuster algorithm, considerations similar to
the cases in Fig. 5.3 can be drawn. However, since now the obser-
vation window is increased, it is possible to notice an increasing
trend in ηnor, which is probably due to the fact that, even if the
spurious clusters are typically few and small, the union rule tend
to enhance their contribution. As a result of the conducted analy-
sis, some useful insights can be gained. While no superiority of one
class of algorithms over the other class can be generally claimed,
it is possible to state that algorithms performing a cluster selec-
tion could be more appropriate in typical DDoS scenarios, for the
following reason. In a DDoS attack, the main goals of the net-
work defender are: i) avoiding that the destination site crashes;
ii) guaranteeing proper service to the legitimate users. Thus, it
seems preferable to ban few normal users (lower ηnor), at the price
of losing some bots (lower ηbot). Indeed, banning, e.g., 95% of
the bots should not impair the destination site, and keeping ηnor
as low as possible means minimizing the number of normal users
with denied service.

102

Chapter 6

High Availability (HA): an
effective prevention
strategy

6.1 HA concepts in modern data net-

works

Today, modern data networks have to cope with unpredictable
events such as natural disasters or increasingly sophisticated net-
work attacks. From an infrastructural viewpoint, the most ef-
fective way to face these issues is to guarantee high availability
requirements by designing redundancy strategies. With regard to
network and telecommunication systems, high availability refers to
an optimal redundant scheme satisfying the so-called “five nines”
condition, where a maximum downtime of 5 minutes and 26 sec-
onds per year is admitted. Accordingly, the present Section is
focused on the formalization of the network availability problem
(broadly intended, not only as a response to network attacks) along
with the consequent design of an optimal prevention strategy. In
particular, two statistical frameworks are proposed to model the
high availability requirements: the Universal Generating Function
(UGF) and the Stochastic Reward Networks (SRN). The former

103

6. High Availability (HA): an effective prevention strategy

(see Sect. 2.4) is exploited to find the system performance distri-
bution by considering the performance distribution of its elements
and, hence, it turns to be useful in evaluating the whole system
availability. Such a framework has been generalized by propos-
ing a novel (to the best author’s knowledge) Multi-dimensional
extension referred to as MUGF (Multi-dimensional UGF). The
latter (see Sect. 2.6) represents a state-space model exploited to
characterize the probabilistic behavior of network elements also
in terms of connections among them. UGF and SRN methods
have been evaluated by considering a Software Defined Network-
ing (SDN) setting and a Network Function Virtualization (NFV)
environment, respectively.

6.2 HA and Software Defined Net-

working (SDN)

SDN has been introduced as a novel paradigm in traffic engineer-
ing aimed at dramatically simplifying network control and man-
agement enabling innovation through network programmability.
Although classical traffic engineering techniques such as Asyn-
chronous Transfer Mode (ATM) or Multi Protocol Label Switching
(MPLS) were born with the objective of optimizing the perfor-
mance of communication flows by dynamically analyzing, predict-
ing and regulating the behaviour of transmitted data, the SDN
technology requires an additional step for exploiting global net-
work view, status and flow patterns/characteristics available for
better traffic control and management [74]. In a traditional net-
work element as the router, the data forwarding plane assumes
responsibility for packet buffering, packet scheduling, header mod-
ification and forwarding; forwarding functionalities include logic
and tables for choosing how to deal with incoming packets based
on characteristics such as Media Access Control (MAC) address,
Internet Protocol (IP) address, Virtual Local Area Network Iden-
tifier (VLAN ID) and so on. The control plane instead has its
principal role in applying control and routing protocols to the

104

6.2. HA and Software Defined Networking (SDN)

Figure 6.1: An overview of SDN/OpenFlow architecture with data
(dashed) and control (dotted) flows.

data traffic. The management plane, at last, allows network en-
gineers to configure and monitor the network devices. The key
idea behind SDN paradigm resides in decoupling data and con-
trol plane so as the latter could be directly programmable. The
most used protocol in an SDN environment is OpenFlow [75] en-
abling the communication between the control plane (represented
by the controller element) and the data plane (represented by a
set of SDN network elements called switches). The Fig. 6.1 de-
picts a schematic representation of an SDN architecture with its
characteristic elements.

6.2.1 SDN Controller performance model

Taking into account all the advantages and benefits a virtualized
SDN solution can bring, it is useful to focus on a scenario with
a single controller element hosting and supervising some virtual
instances as shown in Fig. 6.2, where every instance Si represents
the Master controller of the i-th service provider and is responsible
of managing a set of OpenFlow-capable switches. I refer to Si as
the i-th Virtual Provider Instance (VPI).

The main benefit of this approach lies in providing a flexible
and scalable network infrastructure that can be easily updated

105

6. High Availability (HA): an effective prevention strategy

Figure 6.2: An SDN Controller architecture with k Virtual
Provider Instances (VPIs).

by negotiating suitable Service Level Agreements (SLAs) with
providers resulting in better quality of delivered services. The
main drawback of this approach is that the physical controller
becomes a critical point of failure and some redundancy mech-
anisms have to be introduced. Even if a suitable model for an
SDN controller is mainly impacted by specific hardware and soft-
ware implementations, it is reasonable to consider the controller
element as composed by [76]:

• a core part, including all the hardware equipment (e.g. pro-
cessors, memories, power supply, blades etc.) and basic soft-

106

6.2. HA and Software Defined Networking (SDN)

ware (e.g. operating system, hypervisor etc.);

• a software part, representing the virtual instances of con-
troller, able to serve a certain number of OpenFlow connec-
tions towards a bundle of switches.

Since each VPI can manage a finite number of concurrent Open-
Flow sessions within its data network, I select as a performance
metric the number of the actual concurrent OpenFlow sessions
that each virtual operator is able to handle, namely its controller
serving capacity.

In the proposed model, each VPI in the controller node is sup-
posed to manage n OpenFlow concurrent sessions. Furthermore, I
suppose that every SDN controller can run k VPIs. A multi-state
performance model for SDN controller can be proposed under the
following hypotheses: each VPI and the core part of SDN con-
troller behaviour may be described by a two-state model: an ”up”
state and a ”down” state; failures and repairs are statistically in-
dependent; i-th VPI and core failures are statistically independent
Homogeneous Poisson processes (HPPs), resulting in independent
and exponential inter-failure arrivals and constant hazard rates λi

and λc, respectively; VPI and core repair times are independent
exponentially-distributed with rates µs and µc, respectively.

107

6. High Availability (HA): an effective prevention strategy

4

7

5

6

1

2

3

0

−1

λ1 µs λ3

µs

λ2
µs

λ2
µs

λ3

µs

λ1

µs

λ3

µs
λ1

µs

λ2
µs

µsλ3

µsλ2

µs

λ1

λc

λc

λc

λc

λc

λc

λc

λc

µc

Figure 6.3: A multi-state model of the SDN controller with 3
Virtual Provider Instances (VPI). It relies on a representation
via Continuous-Time Markov Chain (CTMC) where exponential
inter-failure arrivals and constant hazard rates are indicated by λi

and λc, respectively; VPI and core repair times are independent
exponentially-distributed with rates µs and µc, respectively.

108

6.2. HA and Software Defined Networking (SDN)

Table 6.1: Mapping between states and VPIs condi-
tion/performance triples.
State number VPIs condition Performance

7 (S1, S2, S3) (n, n, n)

6
(
S1, S2, S3

)
(n, n, 0)

5
(
S1, S2, S3

)
(n, 0, n)

4
(
S1, S2, S3

)
(0, n, n)

3
(
S1, S2, S3

)
(n, 0, 0)

2
(
S1, S2, S3

)
(0, n, 0)

1
(
S1, S2, S3

)
(0, 0, n)

0
(
S1, S2, S3

)
(0, 0, 0)

−1 (core fault)
(
S1, S2, S3

)
(0, 0, 0)

The resulting multi-state model of the SDN controller is a
Continuous-Time Markov Chain (CTMC), where every state con-
veys the information on the working conditions (and thus the serv-
ing capacity) of the k VPIs. For sake of simplicity, a CTMC model
is depicted in Figure 6.3, where k = 3 VPIs are supposed to work
on the same controller and where:

• the total number of states are 2k + 1, where the correspon-
dence between the state number and the triples containing
all the permutations of the up-down conditions of the VPIs
is illustrated in Table 6.1. The up and down condition of
the i-th VPI is indicated by Si and Si, respectively, and the
serving capacity of the VPI is correspondingly n or 0;

• state −1 refers to the condition that core component is not
working (core fault) and no VPI can be up, thus corresponds
to the triple

(
S1, S2, S3

)
for k = 3;

• from the state −1, one transition towards a completely re-
paired controller is assumed.

The state probabilities pj(t), j = −1, 0, 1, .., 2k − 1 can be ob-
tained by solving a system of differential equations. For the CTMC
in Figure 6.3, they are:

109

6. High Availability (HA): an effective prevention strategy

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

dp7(t)

dt
= µs[p4(t) + p5(t) + p6(t)] + µcp−1(t)+

−(λ1 + λ2 + λ3 + λc)p7(t)
dp6(t)

dt
= µs[p2(t) + p3(t)] + λ3p7(t)+

−(λ1 + λ2 + λc + µs)p6(t)
dp5(t)

dt
= µs[p1(t) + p3(t)] + λ2p7(t)+

−(λ1 + λ3 + λc + µs)p5(t)
dp4(t)

dt
= µs[p1(t) + p2(t)] + λ1p7(t)+

−(λ2 + λ3 + λc + µs)p4(t)
dp3(t)

dt
= µsp0(t) + λ3p5(t) + λ2p6(t)+

−(λ1 + λc + 2µs)p3(t)
dp2(t)

dt
= µsp0(t) + λ3p4(t) + λ1p6(t)+

−(λ2 + λc + 2µs)p2(t)
dp1(t)

dt
= µsp0(t) + λ2p4(t) + λ1p5(t)+

−(λ3 + λc + 2µs)p3(t)
dp0(t)

dt
= −(λc + 3µs)p0(t)+

+λ3p1(t) + λ2p2(t) + λ1p3(t)

dp−1(t)

dt
= −µcp−1(t) + λc

7∑

i=0

p(i)(t)

(6.1)

with initial conditions p7 = 1, pi = 0 with i = −1, 0, ..., 6, corre-
sponding to an initial fully working system.

The performance level in every state of the CTMC is a k-
tuple containing the serving capacity of the VPIs in that state, as
reported in Table 6.1 for k = 3.

In order to take into account redundancy units of the con-
troller that will be further introduced, it is possible to represent

110

6.2. HA and Software Defined Networking (SDN)

the performance levels of l-th controller by the set

g(l) = {g
(l)
−1, g

(l)
0 , ..., g

(l)

2k−1
}, (6.2)

where g
(l)
j =

(

g
(l)
1,j, ..., g

(l)
k,j

)

is the performance k-tuple, with

g
(l)
i,j the serving capacity of the i-th VPI (i.e., offered to the i-
th network) provided by the l-th parallel element in the state
j = −1, 0, ..., 2k − 1. Thus, the stochastic process G(l)(t) ∈ g(l)

represents the performance level of the l-th element at any instant
t ≥ 0, whose probability p

(l)
j (t) = Pr{G(l)(t) = g

(l)
j } is computed

by (6.1). Since we are interested on a performability evaluation in
long runs, it is useful to compute the steady-state probabilities

p
(l)
j = lim

t−→∞
Pr{G(l)(t) = g

(l)
j }. (6.3)

They can be derived by solving the equations (6.1), where all

the derivatives are posed equal to 0 and p
(l)
j (t) are replaced by p

(l)
j ,

together with the normalizing condition

2k−1∑

j=−1

p
(l)
j = 1. (6.4)

6.2.2 Multi-dimensional UGF

SDN controller is considered successful when it is able to meet a
required performance level (also referred to as demand) for each
network, then a vectorial demand W(t) = (W1(t), ...,Wk(t)) is
introduced.

In most practical cases, some redundancy may be necessary
to meet demand. In this work, the focus is on the Master-Slave
configuration, where replicas of the whole SDN controller (core and
software/VPIs parts) are admitted: in this configuration, all VPIs
relating to a single domain are synchronized and share the same
information on the network, so it is not relevant which redundant
VPI has managed which specific flow entry.

111

6. High Availability (HA): an effective prevention strategy

Then, the SDN controller is a logical node with h parallel el-
ements without flow dispersion [52], and the stochastic process
describing the serving capacity offered to the i-th network is

Gi(t) = max
l=1,...,h

G
(l)
i (t), (6.5)

being G
(l)
i (t) the i-th element of the k-tuple G(l)(t).

The steady-state values of the random processes Gi(t), for
i = 1, ..., k and t −→ ∞, can be represented by a (discrete) ran-
dom vector G = (G1, ..., Gk) with a multi-dimensional probability
function pG(·), given by the steady-state distribution of the over-
all CTMC model provided by the parallel nodes composing the
controller.

In line with [52], the controller instantaneous availability
ASDN(t) is the probability that the SDN controller at t > 0 is
in one of the states where performance is not less than demand
for each network Wi(t), i = 1, ..., k (acceptable states), viz.

ASDN(t) = Pr{Gi(t)−Wi(t) ≥ 0, ∀i = 1, ..., k}. (6.6)

For large t, the controller initial state has no practical influ-
ence on its availability. Therefore, given a constant demand level
Wi(t) = w, i = 1, ..., k, the stationary availability of the SDN con-
troller ASDN(w) can be determined by

ASDN(w) =
∑m

j=1 pG
(
gSDN
j

)
·

1
(
gSDN
i,j ≥ w, ∀i = 1, ..., k

)
,

(6.7)

where gSDN
j identifies the j-th (vectorial) state of the SDN con-

troller with parallel elements, being a CTMC with m states, and
1(True) = 1, and 1(False) = 0.

A convenient procedure to evaluate the system availability is
based on the Universal Generating Function (UGF) method, as
introduced in Sec. 2.4. The UGF of a discrete random variable X
is a polynomial-shape function u(z) =

∑I

i=1 qiz
xi , where X has I

values xi and qi = Pr{X = xi}. The UGF of the performance dis-
tribution of a multi-state system turns to be useful to evaluate its

112

6.2. HA and Software Defined Networking (SDN)

availability. Furthermore, the UGF of a series-parallel system can
be efficiently computed by composing the UGFs of all subsystems
through suitable operators for both series and parallel connections.
See [52] for further details.

However, the UGF approach must be extended to the multi-
dimensional case in order to handle performance random vectors,
such as G(l) and G.

Consequently, it is possible to define the Multi-dimensional
UGF (MUGF) u(z) of the k-dimensional random vector G, with
values in the set {g1, ..., gm} and multi-dimensional probability
function pG(·), as

u(z) =

m∑

j=1

pG(gj)

k∏

i=1

z
gi,j
i , (6.8)

where z = (z1, ..., zk).

Let h be the number of parallel elements without flow disper-
sion composing the SDN controller, whose serving capacity is ruled
by (6.5). The MUGF of the controller can be calculated by the
following π operator:

uSDN(z) =
∑

r

pr

k∏

i=1

z
gSDN
i,r

i = (6.9)

= π (u1(z), u2(z), ..., uh(z)) =

=

2k−1∑

j1=−1

2k−1∑

j2=−1

· · ·

2k−1∑

jh=−1

h∏

l=1

p
(l)
jl

k∏

i=1

z
maxl=1,...,h g

(l)
i,jl

i ,

where p
(l)
jl

are the steady-state probabilities in (6.3) corresponding

to the performance k-tuple g
(l)
jl

in (6.2). From (6.9), we derive pr
and gSDN

i,r that are used to compute the stationary availability of
the SDN controller by (6.7).

In order to minimize the cost of the SDN controller, it is rele-
vant to find the minimal number of parallel h∗ that meets a con-

113

6. High Availability (HA): an effective prevention strategy

dition on the stationary availability A0, viz.

h∗ = argmin
h∈N

(ASDN(w, h) ≥ A0) . (6.10)

6.2.3 A numerical example

In this section, a numerical example is provided as an applica-
tion of the methodology proposed in the previous sections. One
can suppose that every Service Provider has negotiated the same
Service Level Agreements (SLAs), resulting in the same number
of concurrent OpenFlow sessions managed by the SDN controller.
This assumption corresponds to a service demand level equal to
w = 9500 sessions per time unit, chosen to be close to the highest
performance level of a single VPI.

Each VPI has a capacity of n = 10000 sessions per time unit
while failure and repair rates are: λ1 = 3.858× 10−7 sec−1 (corre-
sponding to 1 fault per month for S1), λ2 = 7.716×10−7 sec−1 (cor-
responding to 2 fault per month for S2), λ3 = 1.157× 10−7 sec−1

(corresponding to 3 fault per month for S3), and µs = 1.666×10−3

sec−1 (corresponding to a mean repair time of 10 min for all VPIs).
It is worth noting that different failure rates for each VPI have
been assumed to take into account the possible differentiation in
terms of operating systems on board of each virtual operator, re-
sulting in VPIs with different behaviours. On the contrary, one
and the same value µs has been considered by presuming common
repair operations for each VPI (typically a mere reboot is enough).
Node core failure and repair rates are λc = 9.513×10−8 sec−1 (cor-
responding to 3 core faults per year) and µc = 6.944× 10−5 sec−1

(corresponding to a mean repair time of 4 hours for a technical ac-
tivity on site), respectively. Table 6.2 summarizes the illustrative
example data. With the considered values, the ”5 nines” avail-
ability of the SDN controller requires 3 parallel elements with a
stationary availability

ASDN(w, h)∣∣
w=9500
h=3

= p7 = 0.999999986

The steady-state probabilities of a single node are derived by

114

6.3. HA and Network Function Virtualization (NFV)

Table 6.2: Numerical data
Parameter Value

n 10000 sessions/time unit
λ1 3.858× 10−7 sec−1

λ2 7.716× 10−7 sec−1

λ3 1.157× 10−7 sec−1

µs 1.666× 10−3 sec−1

λc 9.513× 10−8 sec−1

µc 6.944× 10−5 sec−1

w 9500 sessions/time unit
A0 0.99999

solving (6.1) and (6.4), while the output performance levels and
steady-state probabilities of SDN controller after redundancy op-
timization are shown in Table 6.3.

6.3 HA and Network Function Virtu-

alization (NFV)

As enabler of fifth generation (5G) networks, NFV paradigm has
been conceived to boost the deployment of new services by adapt-
ing the classical virtualization concepts to the network environ-
ments. Therefore, classic network elements (e.g. routers, firewalls,
load balancers) are deployed in a cloud computing infrastructure
by means of virtual machines running on general purpose hard-
ware. The resulting architecture consists in a set of Virtualized
Network Functions (VNFs), realizing novel services. A composi-
tion of VNFs is often referred to as Service Function Chain (SFC),
and is typically governed by the Virtualized Infrastructure Man-
ager (VIM), namely, the key element of the whole NFV architec-
ture. The result is a system, referred in this section to as Network
Service (NS), composed by the VIM that plays a role of the man-
ager furnishing vital services for VNFs (deployment, fault control,
network and storage resources tuning etc.), and by the SFC that

115

6. High Availability (HA): an effective prevention strategy

Table 6.3: Steady-state probabilities and performance levels of
SDN controller after redundancy optimization.
Probability Performance (sessions/time unit)

Triples

2.561× 10−9 (0, 0, 0)
1.801× 10−12 (10000, 0, 0)
9.001× 10−13 (0, 10000, 0)
6.191× 10−9 (10000, 10000, 0)
5.999× 10−13 (0, 0, 10000)
3.5668× 10−9 (10000, 0, 10000)
1.527× 10−9 (0, 10000, 10000)
0.999999986 (10000, 10000, 10000)

provides the service itself by means of its VNFs. This kind of
deployment raises a critical availability issue, since the fault of an
individual block could compromise the whole functionality. In this
section, the main purpose is to characterize the NS availability in
terms of “five nines” availability requirement. Even if the goal is
the same, alternative techniques (in respects of ones used for SDN
controller modeling) have been exploited. Such a choice is moti-
vated by the particular structure of a Network Service that makes
it suited to be characterized by two different formalisms: i) the Re-
liability Block Diagrams (RBDs), a combinatorial model used to
characterize the high level dependencies among the elements, and
ii) the Stochastic Reward Networks (SRNs), a state-space model
exploited to typify the probabilistic behavior of the underlying
system structure that has been sketched in Sec. 2.6.

6.3.1 Modeling a network service via SRN

On the other hand, NFV allows the creation of an SFC by a chain
of VNFs traversed in a predefined order, that in the NFV con-
text, can be interpreted as a VNF Forwarding Graph (VNF-FG).
A VNF can be regarded as independent (often geographically sep-
arated from other VNFs) element composed by the following three

116

6.3. HA and Network Function Virtualization (NFV)

modules:

• software: a module implementing a service functionality;

• hardware: a module aggregating all physical components
(CPU, RAM, Power Supply etc.);

• hypervisor (often referred to as Virtual Machine Monitor
- VMM): a software layer acting as an interface between
hardware and software modules.

On the other hand, the Virtualized Infrastructure Manager is a
part of the MANO (MANagement and Orchestration domain) [77]
that performs some critical operations as managing a set of re-
sources (storage, networking etc.) to be deployed on demand,
mapping the virtual resources on the physical ones and managing
the chain of VNFs. In accordance to a common implementation
based on OpenStack, we consider the VIM (in a virtualized im-
plementation) as composed by five modules: hardware, hypervisor
(similar to those in SFC), and other three elements:

• database: devoted to store the critical data of the whole
system (inventory of hardware resources, register of available
VNFs and others);

• HAproxy : the High Availability proxy acts as a load balancer
distributing the load among the redundant VIM nodes;

• functional blocks: a collection of sub-elements accomplishing
several functionalities, such as nova-keystone (providing au-
thorization and authentication mechanisms), nova-scheduler
(dispatcher of computational requests), rabbitmq (allowing
the communication among internal components).

As before said, from an infrastructural viewpoint, it is possi-
ble to represent the NS in terms of an RBD as illustrated in Fig.
6.4, where it has been emphasized that an SFC is a chain of VNF
nodes. Being a series configuration, the NS is available (working)

117

6. High Availability (HA): an effective prevention strategy

Figure 6.4: RBD representation of the Network Service obtained
by aggregating VIM and SFC. The latter is in turn composed by
a sequence of VNFs.

when each subsystem (VIM, V NF1,...,V NFk) is available (work-
ing). Let’s start to separately analyze the SRN models for VIM
and for SFC (and hence for the VNFs) respectively. After, the two
models will be recombined in order to form the original Network
Service.

SRN Model of VIM

An SRN model is based on a Stochastic Petri Net and is rep-
resented by a bipartite directed graph, where a place (drawn as a
circle) accounts for a specific condition (e.g. a system element up
or down) and can contain one or more tokens, namely a param-
eter value associated to a condition. The distribution of tokens
(at a time t) is referred to as marking, and can be described by a
vector m = (m1, m2, . . . , mk) where mh is the number of tokens
in the place h. A transition (drawn as a rectangle) accounts for
a specific event (e.g. a system element that crashes), and lets
a token to be transferred from a place to another one, resulting
in a marking alteration. In particular, we discriminate between:
timed transitions (drawn as unfilled rectangles), associated to the
events whose times are assumed to be exponentially distributed
random variables with a given rate parameter (firing rate), and
immediate transitions (drawn as thin and filled rectangles), whose

118

6.3. HA and Network Function Virtualization (NFV)

Figure 6.5: SRN model of the VIM node. Such model follows the
classical OpenStack deployment.

transition time is equal to zero. When the firing rate of timed
transitions depends on tokens distribution in the SRN graph, we
use the symbol (#) nearby the correspondent transition and we
refer to as marking dependent transitions. A transition can be
optionally controlled by a guard function (indicated by g) that
assumes value 1 when transition has to be enabled. Besides, a
transition can be inhibited by an inhibitory arc (depicted as a line
with a blank unfilled circle nearby the correspondent transition).

The SRN model associated to the VIM node is reported in Fig.
6.5. It is useful to remark that the VIM subsystem is composed
by N redundant VIM nodes. Places PupDB [resp. PfDB], PupFB

[PfFB], PupHA [PfHA], PupVMM [PfV MM] and PupHW [PfHW] in-
dicate the conditions where the database, the functional blocks,
the HAproxy, the hypervisor and the hardware of the VIM are up
[down], respectively. The numbers in the places (tokens) repre-
sent the corresponding initial conditions. The transitions TfDB

119

6. High Availability (HA): an effective prevention strategy

Table 6.4: Guard Functions defined on the SRN model of VIM
structure

Guard Function Value

gA 1 if # PfV MM = 1, 0 otherwise
gB 1 if # PupVMM = 1, 0 otherwise

[TrDB], TfFB [TrFB], TfHA [TrHA], TfV MM [TrV MM] and TfHW

[TrHW] model the time to failure [repair] of database, functional
blocks, HAproxy, hypervisor and hardware, respectively. Let us
now briefly discuss the dynamics of such SRN. We start by con-
sidering a fully working system (namely all the elements are up
and running). As an exemplary case, I focus on the sub-model of
the HAproxy (similar considerations hold for database, functional
blocks, hypervisor and hardware modules). When HAproxy fails,
the transition TfHA is fired and the token removed from PupHA

is deposited into PfHA. In the considered model I also introduce
some immediate transitions to cope with common cause failures:
tDB, tFB and tHA (associated to database, functional blocks and
HAproxy, respectively) that are fired when the transition TfV MM

is fired, meaning that a hypervisor failure implies the three virtual
modules failure as well. Similarly, the immediate transition tVMM

accounts for a hypervisor failure as a consequence of a hardware
failure. The inhibitory arc between PupHW and tVMM compels the
hypervisor failure in case of hardware failure. The inhibitory arc
between PfHW and TrVMM forbids the hypervisor repair in case of
hardware failure. Besides, in order to formally describe the depen-
dencies among hypervisor and the three virtual modules (the case
of hardware failure is included in the case of hypervisor failure) it
is possible to introduce two guard functions gA and gB described in
Table 6.4. The guard function gA enables tDB, tFB and tHA when
hypervisor fails, namely, when a token is moved from PupVMM to
PfV MM . The guard function gB, instead, inhibits the repair of the
three virtual modules in case of hypervisor failure.

120

6.3. HA and Network Function Virtualization (NFV)

Figure 6.6: SRN model of a single Virtualized Network Function.

SRN Model of VNF

In this model, I adopt the realistic assumption that the number
of deployed VNFs can vary dynamically with the time, in accor-
dance to a pay-per-use cloud model. In an exemplary scenario, I
consider L replicas sharing a (time-varying) load, and M (extra)
replicas needed to satisfy a certain availability requirement. Thus,
when the load increases or decreases (as per day/night variations),
the number of replicas L changes, resulting in a possible variation
of the number of M replicas in order to preserve the desired avail-
ability.

Figure 6.6 shows the model of a single VNF. The place PupV NF

indicates the VNF working condition, implying that the hardware,
software and virtual resources are correctly working. The token
value inside PupV NF amounts to L + M , namely, the number of
initial working VNFs replicas. Let us analyze directly the evolu-
tion of such model. First of all I take into account the Scale-Out
(S-O) and Scale-In (S-I) operations corresponding to a provision-

121

6. High Availability (HA): an effective prevention strategy

ing phase (deploying replicas) and a de-provisioning phase (un-
deploying replicas) respectively. Thus, when an S-O operation is
requested, tso is fired and a token is deposited in place Pp, model-
ing the condition of a replica requested but not working yet, until
the token enters PupV NF after Tp is fired. It is worth noting that
the inhibitory arc from Pp to tso models the impairment of mul-
tiple provisioning stages. On the contrary, when an S-I operation
is requested, tsi is fired and the inhibitory arc from Pp to tso pre-
venting S-I operations during provisioning stages. In case of an
hardware failure, Tfhw is fired and a token passes from PupV NF to
Pmig, being the latter a place ruling a migration process (resources
are transferred into another hardware platform with no state loss).
Once Tm is fired, the migration is completed and the token can
come back into PupV NF . In case of a hypervisor failure, Tfvmm is
fired and a token enters Pfvmm. The repair procedure is governed
by Trvmm that, when fired, lets the token move into Pfvmm1. In
this place, two alternatives are admissible: i) the VMM repair
procedure is successful (e.g. a simple reboot solves the problem)
with a certain probability pvmm, resulting in firing transition tvmm1

and the returning in the working place PupV NF ; ii) the vmm repair
procedure is unsuccessful with probability (1− pvmm), the transi-
tion tvmm2 is fired, the token reaches place Pmig, and the migration
process described previously is activated. In case of software fail-
ure, Tfsw is fired and the token is deposited in Pfsw; the repair
process is ruled by Trsw and the token passes into Pfsw1. Simi-
lar to the previous case, two options are allowed: i) the software
repair procedure is successful with a certain probability psw, thus
tsw1 is fired and initial condition is gained; ii) the repair proce-
dure is vain with probability (1−psw), hence tsw2 is fired and place
Pfsw2 (indicating a tough fault condition needing a repairman) is
entered; once repair process is terminated, Trsw1 is fired and place
PupV NF is reached.

Finally, place PL (see the boxed sub-model) takes into account
the condition of L replicas that can be added (Tadd) or removed
(Trem). It is useful to note that transitions Tp, Tfhw, Tfvmm, Tfsw,
Trsw, Trvmm and Tm, depend only on the number of tokens in their

122

6.3. HA and Network Function Virtualization (NFV)

Table 6.5: Guard Functions defined on the SRN model of single
VNF

Guard Function Value

g1 1 if Ntot > L + M , 0 otherwise
g2 1 if Ntot < L + M , 0 otherwise
g3 1 if L < Lmax , 0 otherwise
g4 1 if L > Lmin , 0 otherwise

originating places, and their overall firing rates are proportional
to those numbers.

The guard functions present in this model are defined as fol-
lows. Said #Pk the number of tokens in the place k1, it is possible
to define Ntot the number of VNFs replicas in the SRN at time t
as: Ntot = #Pp+#PupV NF +#Pfvmm+#Pfsw+#Pfsw2+#Pmig,
where omit the time dependence is omitted 2. Guard g1 inhibits
S-I operations when Ntot undergoes the sum L+M . Similarly, g2
inhibits S-O operations when Ntot exceeds the sum L+M . Guard
g3 prevents that L exceeds the maximum number of admissible
replicas (Lmax) and g4 prevents that L could be lower than the
minimum number of admissible replicas (Lmin), as summarized in
Table 6.5.

SRN Model of Network Service

It’s now the time to consider the whole NS, given by the com-
bination of N VIM replicas and the L + M replicas of the three
VNFs arranged in a chain. As regards the VIM, let ri be the
reward value assigned to marking i and pi(t) the probability for
SRN in Fig. 6.5 to be in marking i at time t; according (2.17) it
is possible to express the instantaneous availability AV IM(t) as:

1In Petri Net jargon, there is a little abuse of (#) symbol that indicates
either number of tokens, and marking-dependent transitions.

2Places Pfvmm1 and Psw1 do not contribute to Ntot because the time spent
in such places is zero.

123

6. High Availability (HA): an effective prevention strategy

AV IM(t) =
∑

i∈I

ripi(t), (6.11)

where I is the set of tangible markings (markings where no im-
mediate transitions are enabled). The instantaneous availability
AV IM(t) in fact, is the probability that the VIM is available at time
t and, being the markings mutually exclusive, can be expressed as
the sum of the probabilities of all markings that at time t result
in a working condition for the VIM subsystem.

The reward value ri assumes value 1 for the markings iden-
tifying the VIM working conditions, namely all the operating
conditions where at least two Database instances (as typical in
many active-active configurations), one Functional Block and one
HAproxy are active. For all the remaining states, ri is set to 0.
Thus, the reward value can be written as:

ri =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 if
(
∑N

k=1#PupDB(k) ≥ 2
)

∧
(
∑N

k=1#PupFB(k) ≥ 1
)

∧
(
∑N

k=1#PupHA(k) ≥ 1
)

0 otherwise,

where k goes from 1 to the number of replicas N , and #PupDB(k),
#PupFB(k) and #PupHA(k), indicate the number of tokens in the
“up” places of virtual modules, for the k−th parallel element. The
hardware and hypervisor “up” conditions do not appear, being
included in expression when at least 1 virtual module is active.
The VIM steady-state availability is given by (6.11) as t → ∞,

AV IM = lim
t→+∞

AV IM(t) =
∑

i∈I

ripi, (6.12)

where pi is the steady-state probability of state i, i.e. pi =

124

6.3. HA and Network Function Virtualization (NFV)

limt→+∞ pi(t). A similar reasoning holds for the case of VNF.
Let sj be the reward value assigned to marking j and qj(t) the
probability for SRN in Fig. 6.6 to be in marking j at time t. The
expected reward value at time t for the VNF model corresponds
to:

AV NF (t) =
∑

j∈J

sjqj(t), (6.13)

where J identifies the set of tangible markings of the VNF model.
In this case, the reward value sj associated to the tangible marking
j follows:

sj =

⎧

⎨

⎩

1 if (#PupV NF ≥ #PL)

0 otherwise.

The VNF working condition (sj = 1) occurs when the number
of total replicas (represented by the tokens in PupV NF) is no less
than the number of regular replicas (represented by the tokens
in PL). Thus, steady-state availability for a VNF is obtained by
(6.13) as t → ∞,

AV NF = lim
t→+∞

AV NF (t) =
∑

j∈J

sjqj , (6.14)

where qj is the steady-state probability given by qj =
limt→+∞ qj(t).

Now, we are able to evaluate the steady-state availability of
the whole Network Service, composed by the series of VIM and
the 3 VNFs according to the RBD representation in Fig. 6.4.

The resulting Network Service availability ANS can be ex-
pressed as the product of the availabilities associated with the
VIM and SFC subsystems, namely

125

6. High Availability (HA): an effective prevention strategy

ANS = AV IM

3∏

m=1

A
(m)
V NF , (6.15)

where AV IM is derived by (6.12) and AV NF is computed by (6.14),
where m denotes the VNF m.

6.3.2 Experimental results

An exemplary application of the proposed approach is now pro-
vided, where system parameters assume specific values suggested
by the technical literature (e.g. [78]). The values of parameters
associated to VIM and to VNF are reported in Tables 6.6 and 6.7,
respectively. In order to respect the notation used in Figs. 6.5 and
6.6, we use uppercase subscripts for the VIM parameters and lower
case subscripts for the VNF parameters. The present availability
analysis has been carried out with the help of SHARPE [79], a
tool that allows to analyze SRN availability models. According
to elasticity concepts typical of cloud environments, I target two
exemplary different operating conditions, namely c1 and c2 associ-
ated to a dynamically variable load managed by the system, that
results in a different number of deployed replicas. I suppose that
in condition c1 (low load) VNFs share the load among two replicas
(Lc1 = 2), while in condition c2 (high load) they share the load

Table 6.6: Input parameters for the SRN representing the VIM
Parameter Description Value a)

1/λVM mean time to (DB,FB,HA) failure 3000 hours
1/λVMM mean time to hypervisor failure 5000 hours
1/λHW mean time to hardware failure 60000 hours
1/µVM mean time to (DB,FB,HA) repair 1 hour
1/µVMM mean time to hypervisor repair 2 hours
1/µHW mean time to hardware repair 8 hours

a) I assume the same failure/repair rate values (being deployed on similar VMs) for
database, functional blocks and HAproxy.

126

6.3. HA and Network Function Virtualization (NFV)

Table 6.7: Input parameters for the SRN representing the VNF
Parameter Description Value

1/λhw mean time to hardware failure 60000 hours
1/λsw mean time to software failure 3000 hours
1/λvmm mean time to hypervisor failure 5000 hours
1/µsw mean time to easy software repair 7 minutes
1/µsw1 mean time to tough software repair 2 hours
1/µvmm mean time to hypervisor repair 10 minutes
1/αp mean time to provisioning 20 minutes
1/αm mean time to migration 20 minutes
1/αs mean time to scaling (S-I/S-O) procedures 12 hours
psw probability of successful software repair 0.98
pvmm probability of successful hypervisor repair 0.99

Table 6.8: Availability Results of the whole Network Service
Setting Redundancy Level ANS

S1 Lc1 = 2, Lc2 = 3, Mc1 = 1, Mc2 = 1, N = 3 0.99998444
S2 Lc1 = 2, Lc2 = 3, Mc1 = 1, Mc2 = 2, N = 3 0.99999080
S3 Lc1 = 2, Lc2 = 3, Mc1 = 2, Mc2 = 2, N = 3 0.99999084
S4 Lc1 = 2, Lc2 = 3, Mc1 = 1, Mc2 = 1, N = 4 0.99998686
S5 Lc1 = 2, Lc2 = 3, Mc1 = 1, Mc2 = 2, N = 4 0.99999323
S6 Lc1 = 2, Lc2 = 3, Mc1 = 2, Mc2 = 2, N = 4 0.99999326

among three replicas (Lc2 = 3 ≥ Lc1).

Accordingly, it is possible to characterize the system in terms
of the number of extra replicas M guaranteeing the “five nines”
availability requirement, namely Mc1 and Mc2 ≥ Mc1 in the two
conditions of VNFs. I investigate also the influence of the num-
ber of VIM replicas N . It is useful distinguish 6 settings S1, ..., S6

representing different configurations, as reported in table 6.8 with
their corresponding availability value ANS. Figure 6.7 reports the
main results where, for visual comfort, the steady-state unavail-
ability of the Network Service (1−ANS) in said exemplary settings

127

6. High Availability (HA): an effective prevention strategy

S1 S2 S3 S4 S5 S6

Settings

10−5

10−4

1
−
A

N
S

Figure 6.7: Unavailability 1 − ANS of the Network Service for 6
settings S1, ..., S6 representing various replicas arrangements. The
horizontal dashed line represents the “five nines” requirement (1−
ANS = 10−5).

is shown. By comparing S1, S2, S3 with S4, S5, S6, it is evident
that an increase from N = 3 to N = 4 improves the NS avail-
ability. For N = 3, instead of considering greater values of N
for Mc1 = Mc2 = 1 (setting S1), it is possible to achieve the “five
nines” requirement by deploying Mc2 = 2 replicas (setting S2). By
incrementing Mc1 (setting S3), a negligible increment of NS avail-
ability is obtained. Similar considerations can be provided for the
N = 4 case (setting S4, S5, S6). Given a “five nines” availabil-
ity constraint, S2 is the minimal cost setting in terms of deployed
replicas.

128

6.3. HA and Network Function Virtualization (NFV)

Sensitivity Analysis

Generally, a sensitivity analysis concerns the robustness of the
system with respect to deviations of some system parameters from
their nominal values. I analyze the influence of two crucial param-
eters on the availability of the minimal cost setting S2, such as:

• λSW , influencing the transition Tfsw of the VNF model re-
ported in Fig. 6.6 governing the software failures;

• λVMM(= λvmm), influencing both the transition TfV MM of
the VIM model (Fig. 6.5), and the transition Tfvmm of the
the VNF model (Fig. 6.6) (since I assume the same hyper-
visor for both).

Figure 6.8 shows that the reciprocal of failure rate of the soft-
ware part can be relaxed from 3000 hours (nominal value) to 2500

1500 2000 2500 3000 3500 4000 4500

1/λSW [h]

0.999986

0.999988

0.99999

0.999992

A
N
S

Figure 6.8: Influence of the software failure rate on the overall
system.

129

6. High Availability (HA): an effective prevention strategy

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

1/λVMM [h]

0.999986

0.999988

0.99999

0.999992

A
N
S

Figure 6.9: Influence of the hypervisor failure rate on the overall
system (same hypervisor for both VIM and VNFs).

hours by still guaranteeing the “five nines” requirement indicated
with a horizontal dashed line. Similarly, Fig. 6.9 shows that the
working value of 5000 hours for 1/λVMM can be reduced to 4300
hours with no side effects on the desired availability condition.

130

Chapter 7

Concluding remarks

Nowadays, the problem of characterizing, modeling, revealing, and
mitigating network massive attacks is intriguing and challenging.
Within the present work, the candidate intends to offer a statisti-
cal perspective about the aforementioned aspects. Actually, three
main macro contributions emerge in this work. The first twos
concern the security aspects and models that characterize i) prop-
agative and ii) distributed attacks, considered as two sides of the
same coin, even if they exhibit different peculiarities. The third
contribution pertains to the resilience and availability concepts iii)
of network infrastructures as a general prevention strategy (not
only against network attack).

As regards the first contribution, the candidate proposes to
adopt Kendall′s birth-and-death process as an analytical model to
characterize the threat propagation phenomenon. In particular,
two properties emerge: firstly, it represents a stochastic scheme
useful to account for the complexity of real-world data networks;
secondly, it is able to catch the basic features of threat propagation
effect by means of some parameters with a meaningful physical in-
terpretation. By using notable properties of the adopted Kendall′

model, the optimal resource allocation problem (namely, the opti-
mal mitigation strategy) has been solved in two conditions: known
and unknown (estimated via MLE) infection parameters.

131

7. Concluding remarks

As regards the second contribution, the candidate introduces
a formal model for a randomized DDoS attack, where a botnet
is able to emulate a normal traffic by picking legitimate messages
from a dictionary built by a botmaster. Such a model allows to
characterize the botnet learning ability, and to discover the nature
of a node (malicious or normal) through an indicator called MIR
(Message Innovation Rate). By exploiting such a MIR, an algo-
rithm allowing to reveal a possibly hidden botnet in the network
has been designed from the scratch. Actually, the presented con-
tribution has been enriched by considering a further sophistication
of the randomized DDoS attack, where a botnet is spread among
many clusters with its own emulation dictionary. Accordingly, the
aforementioned algorithm has been extended to take into account
the multi-clustered setting.

As regards the third (and more recent) contribution, the can-
didate proposes a formalization of the network availability issue,
broadly intended as designing an optimal redundant strategy for
the network infrastructure useful to account for undesirable events
(failures, attacks, etc.). At this aim, two frameworks are intro-
duced: a) the Universal Generating Function (UGF), where an
extension to cope with multi-dimensional quantities referred to
as Multi-dimensional UGF (MUGF) has been devised; b) the
Stochastic Reward Networks (SRNs), useful to model complex
state-spaced systems. UGF and SRN techniques have been evalu-
ated in a Software Defined Networking scenario and in a Network
Function Virtualization (NFV) environment, respectively.

The problem of analyzing and mitigating distributed attacks
is interesting and multifaceted, so, many open issues emerge to
address future works. As regards to the propagative nature of
such attacks, further investigation could be devoted at explor-
ing the connection between the threat diffusion mechanisms and
the underlying network topology where interesting results derived
from percolation theory could be exploited. As regards to the dis-
tributed nature of threats, a possible extension of the proposed
randomized DDoS model could concern the adoption of more so-
phisticated distributions to characterize the transmission schedul-

132

ing activity of the botnet that, in this work, is assumed to follow a
Poisson law. Another possibility is to consider a more challenging
multi-clustered setting, where the clusters could have the property
of being partially or almost totally overlapped. Finally, as regards
the availability issues, an interesting progress could regard the
adoption of more realistic models (e.g. Weibull, Lognormal) to
characterize failures and repairs during the transient regimes.

133

7. Concluding remarks

134

Appendix A

Appendices

A.1 Appendix 1

Proof of Property 2. The various claims of the theorem will be
proved following the route traced in [80]. Specifically, for a given
random process to converge in distribution, we must prove that:
i) the MGF, for each t, exists for |x| < r1, and that ii) the MGF
converges to a limiting function for all |x| ≤ r2 < r1. Under these
conditions, it is shown in [80] that the limiting function defines,
for |t| ≤ r2, the MGF of the limiting distribution.

We start by considering the case ρ < 1. We know that the
range for the MGF is x < ln(1/πt). We observe that:

ln(1/πt) = ln(1/ρ) + ln
1− ρe∆t

1− e∆t
> ln(1/ρ). (A.1)

Accordingly, we can set r1 = ln(1/ρ). Since in view of (3.12):

lim
t→∞

πt = lim
t→∞

qt = ρ. (A.2)

we conclude that, for all |x| ≤ r2 < r1, the MGF in (3.13) con-
verges to:

lim
t→∞

Ψ(x; t) =

(
1− ρ

1− ρ ex

)η

(A.3)

135

A. Appendices

which follows easily by noting that, The MGF in (3.13) converges
to the MGF of a negative binomial random variable with param-
eters η and ρ [61]. Let us move on considering the case ρ > 1.
We must therefore focus on weak convergence of the scaled ran-
dom process I(t)e−∆t. For ease of notation, we set δt ! e−∆t, and
introduce the MGF of the scaled process, namely,

Ψ̃(x; t) ! E[exI(t)δt] = Ψ(xδt; t)

=

(
1− πt

1− πt exδt

)η+n0
(
1− qt e

xδt

1− qt

)n0

. (A.4)

The range for the MGF of the scaled process is x < e∆t ln(1/πt).
We have that:

e∆t ln(1/πt) = e∆t ln
1− e−∆t/ρ

1− e−∆t
> (1− 1/ρ). (A.5)

where we used the inequality ln 1−ax
1−x

> (1 − a)x that holds when
0 < a < 1 and x > 0. Accordingly, we set r1 = 1 − 1/ρ. Since
δt vanishes as t → ∞, we use the known Taylor’s approximation
exδt ≈ 1 + xδt, yielding:

Ψ̃(x; t) ≈
(

1− πt

1− πt − πtxδt

)η+n0
(
1− qt − qtxδt

1− qt

)n0

(

1

1− πtx
δt

1−πt

)η+n0 (

1− qtx
δt

1− qt

)n0

. (A.6)

We see from the definitions in (3.12) that:

1− πt !
1− 1/ρ

e∆t − 1/ρ
, 1− qt !

ρ− 1

e∆t − 1
, (A.7)

and, hence, we have that:

lim
t→∞

δt

1− πt

=
ρ

ρ− 1
, lim

t→∞

δt

1− qt
=

1

ρ− 1
, (A.8)

136

A.1. Appendix 1

yielding:

lim
t→∞

Ψ̃(x; t) =

(

1

1− xρ

ρ−1

)η+n0 (

1− x

ρ− 1

)n0

. (A.9)

which is the MGF in (3.19), with choices: r = η, s = ρ, and
m = m0. Finally, the result for the intermediate regime ρ = 1 can
be obtained as done for the case ρ > 1, using the expressions for
πt and qt reported in (3.16), and defining δt = 1/(λt). In this case,
the range for the MGF of the scaled process is x < (λt) ln(1/πt),
and we have that:

(λt) ln(1/πt) = (λt) ln
1

1 + 1/(λt)
> 1. (A.10)

Accordingly, we set r1 = 1. Then, using 3.16 we obtain:

lim
t→∞

δt

1− πt

= lim
t→∞

λt+ 1

λt
= 1, lim

t→∞

δt

1− qt
=

λt

λt
= 1, (A.11)

finally yielding:

lim
t→∞

Ψ(xδt; t) =
1

(1− x)η
, (A.12)

which corresponds to a unit-mean gamma random variable with
shape parameter equal to η.

Lemma 1. Let D > 0. For all D ≥ ∆, the random process
I(t)e−Dt admits almost surely a (finite) limit.

Proof. Let us preliminarily evaluate the expectation of I(t),
namely,

m(t) ! E[I(t)]. (A.13)

Note that m(t) can be obtained by taking the first derivative of
the moment generating function in (3.13), and evaluating it for
x = 0. However, it is perhaps simpler to obtain it in the following
direct manner. We have that:

E[I(t + ε)|I(t) = n] = n + (n+ η)λε− nµε. (A.14)

137

A. Appendices

Taking expectation with respect to I(t), and letting ε → 0, we get:

dm

dt
= ∆m+ λη (A.15)

Solving (A.15) with the initial condition m(0) = I(0) = n0 gives:

m(t) =

(

n0 +
ρη

ρ− 1

)

e∆t − ρη

ρ− 1
. (A.16)

Due to Markovianity, Eq. (A.16) implies also that, for 0 ≤ s < t:

E[I(t)|{I(τ)}τ≤s] =

(

I(s) +
ρη

ρ− 1

)

e∆(t−s) − ρη

ρ− 1
. (A.17)

Let us now introduce the following shifted-scaled version of I(t),
namely,

Z(t) =

(

I(t) +
ρη

ρ− 1

)

e−Dt. (A.18)

with D > 0 and D ≥ ∆. Using (A.17), it is readily verified that:

E[Z(t)|{Z(τ)}τ≤s] = Z(s)e−(D−∆)(t−s) ≤ Z(s), (A.19)

which means that the process Z(t) is a supermartingale. Using
now (A.16) into (A.18), we also see that, by application of the
triangle inequality:

E[|Z(t)|] ≤ m(t)e−Dt +
ρη

|ρ− 1|
e−Dt

=

(

n0 +
ρη

ρ− 1

)

e−(D−∆)t

+ ρηe−Dt

(
1

|ρ− 1|
− 1

ρ− 1

)

. (A.20)

Now, according to the Martingale Convergence Theorem, since
supt≥0 E[|Z(t)|] < ∞, we can conclude that the limit of Z(t) exists
and is finite almost surely [73]. Such result immediately implies
that also the limit of I(t)e−Dt exists and is finite almost surely.

138

A.2. Appendix 2

A.2 Appendix 2

In the following, the symbol o(gn) will denote a function such that
o(gn)/gn → 0 as n → ∞. Also, when convenient for notational
reasons, the expectation of X is denoted by X̄ .

Proposition 1 (Useful recursion). Let a, c > 0, b ∈ R, n ∈ N,
ηn = 1− 1/(c+ an), and fn = ηn fn−1 + b. We have:

fn = f0

n∏

ℓ=1

ηℓ + b

(

1 +
n∑

k=2

n∏

ℓ=k

ηℓ

)

, (A.21)

or:

fn = f0

n∏

ℓ=1

ηℓ +
ab

1 + a

[

n+
(

1 +
c

a

)
(

1−
n∏

ℓ=1

ηℓ

)]

, (A.22)

and the following limit holds:

lim
n→∞

fn
n

=
ab

1 + a
(A.23)

Proof. First, observe that:

f1 = f0η1 + b, f2 = f0η1η2 + b(1 + η2), . . . (A.24)

which yields (A.21) by recursion. Let now f̂n denote the RHS
in (A.22). By the induction principle, the claim in (A.22) will be
proved if we show that f1 = f̂1, and that

fn = f̂n ⇒ fn+1 = f̂n+1 (A.25)

Making explicit the definition of η1 where needed, we have:

f̂1 = η1f0 +
ab

1 + a
(1 + 1/a) = η1f0 + b = f1. (A.26)

139

A. Appendices

Assuming now that fn = f̂n, we can write

fn+1 = ηn+1 f̂n + b = f0

n+1∏

ℓ=1

ηℓ −
ab

1 + a

(

1 +
c

a

) n+1∏

ℓ=1

ηℓ

+
ab

1 + a

(

n+ 1 +
c

a

)(

1− 1

c + a(n+ 1)

)

+ b

︸ ︷︷ ︸

= ab
1+a [n+1+(1+ c

a)]

= f̂n+1.

(A.27)

Finally, the claim in (A.23) follows by observing that the term
∏n

ℓ=1 ηℓ in (A.22), vanishes as n → ∞.

Corollary 1 (Small perturbations). Let a, b > 0, n ∈ N, and let
fn be a nonnegative sequence such that:

fn ≤ fn−1

(

1− 1

an + o(n)

)

+ b+ o(1). (A.28)

Then:

lim sup
n→∞

fn
n

≤ ab

1 + a
. (A.29)

If the inequality in (A.28) is reversed, the constant b can be relaxed
to be an arbitrary real number, and:

lim inf
n→∞

fn
n

≥ ab

1 + a
. (A.30)

Proof. Clearly, it suffices to prove (A.29). In the following, ε > 0
is an arbitrarily small constant. For n large enough, and for all
c ∈ R, we have:

0 < 1−
(

1

an+ o(n)

)

≤ 1− 1− ε

c+ an
. (A.31)

Moreover, we have b + o(1) ≤ b + ε. Since fn is nonnegative by

140

A.2. Appendix 2

assumption, a certain n0 exists, such that, for all n > n0:

fn ≤ fn−1

(

1− 1− ε

c+ an

)

+ b+ ε. (A.32)

Introducing, for m = 1, 2, . . . , the definition

ηm = 1− 1− ε

c+ a(n0 +m)
= 1− 1

c+an0

1−ε
+ a

1−ε
m
. (A.33)

from (A.32) we get, by recursion:

fn0+m ≤ fn0

m∏

ℓ=1

ηℓ + (b+ ε)

(

1 +

m∑

k=2

m∏

ℓ=k

ηℓ

)

. (A.34)

In view of (A.33), Proposition 1 allows to conclude that:

lim sup
n→∞

fn
n

≤
a

1−ε
(b+ ε)

1 + a
1−ε

, (A.35)

and, hence, the claim in (A.29) follows from arbitrariness of ε.

Proof of Theorem 1. First, we prove the claim for the synchronous
scheduling, where all bots transmit regularly at intervals of con-
stant duration τ = 1/λ. Accordingly, we consider a slotted system
with discrete time index n ≥ 0, and introduce the quantities:

Dn ! DB(nτ), Mn ! |Dn|, En ! E (nτ), en ! |En|, (A.36)

where we further observe that:

lim
n→∞

en
nτ

= α ⇒ en = ατ n + o(n). (A.37)

Now, for the synchronous case, it suffices to show that:

Mn

nτ

p−→ αBλ

α +Bλ
⇔ Mn

n

p−→ ατ B

ατ +B
! ρ, (A.38)

where B is the cardinality of subnet B. Observe preliminarily

141

A. Appendices

that, by the orthogonality principle, we can write:

E

[(
Mn

n
− ρ

)2
]

= E

[(
Mn − M̄n

n

)2
]

+

(
M̄n

n
− ρ

)2

, (A.39)

and, since mean-square convergence implies convergence in prob-
ability [66], it suffices to show that, as n → ∞, both terms on
the RHS in (A.39) vanish.1 We start by showing that M̄n/n → ρ.
At time n, the probability that k bots out of B pick a message
outside Dn−1 is (conditionally on Mn−1):

(
B

k

)(

1− Mn−1

en

)k (
Mn−1

en

)B−k

. (A.40)

Let us introduce the binomial random variable X̂n, with probabil-
ity mass function given by (A.40), whose (conditional) expectation
and variance are:

E[X̂n|Mn−1] = B

(

1− Mn−1

en

)

, (A.41)

and

VAR[X̂n|Mn−1] = B

(

1− Mn−1

en

)
Mn−1

en
. (A.42)

In order to build Dn, we must select all the distinct messages
among the k available ones. Ignoring repetitions, we can write:

Mn ≤ Mn−1 + X̂n, (A.43)

and, taking expectations:

M̄n ≤ M̄n−1

(

1− 1

ατn/B + o(n)

)

+B, (A.44)

having used (A.41) and the expression of en appearing on the RHS

1In fact, we prove a stronger result in terms of mean-square convergence.

142

A.2. Appendix 2

in (A.37). Direct application of Corollary 1 now yields:

lim sup
n→∞

M̄n

n
≤ ατ B

ατ +B
. (A.45)

Let us now prove the above (reversed) inequality for the lim inf.
To this aim, we split En into C non-overlapping cells:

En =

C⋃

c=1

Ec,n,

⌊
|En|

C

⌋

≤ |Ec,n| ≤
⌊
|En|

C

⌋

+ 1, (A.46)

where C is an arbitrary integer.

Since we focus on the regime where n → ∞, it can be safely
assumed that the initial number of words in the emulation dictio-
nary obeys: e0 ≥ C. Let now:

Dn =

C⋃

c=1

Dc,n, Mc,n ! |Dc,n|, Mn =

C∑

c=1

Mc,n, (A.47)

and the events, for j = 1, 2, . . . , B, and c = 1, 2, . . . , C:

Aj,c ! {bot j picks a message belonging to Ec,n \ Dc,n−1}.
(A.48)

Then we have, for any j:

P[Aj,c|Mc,n−1] =
|Ec,n|−Mc,n−1

|En|
! pc,n, (A.49)

with the dependence of pc,n upon Mc,n−1 being suppressed for ease
of notation. From (A.46), we have:

1

C
− 1

en
− Mc,n−1

en
≤ pc,n ≤ 1

C
+

1

en
− Mc,n−1

en
. (A.50)

Now, Mc,n−1 increases by at least 1 whenever at least one bot picks
a new message belonging to the c-th cell. This implies:

E[Mc,n|Mc,n−1] ≥ Mc,n−1 +Bpc,n − (Bpc,n)
2, (A.51)

143

A. Appendices

where we used the inequality (1 − p)B ≤ 1 − Bp + (Bp)2. On
the other hand, for large n and small ε > 0, from (A.50), we get
p2c,n ≤ (1/C + 1/en)

2 ≤ C−2 + ε, and, hence, from (A.51):

E[Mc,n|Mc,n−1] ≥ Mc,n−1 +Bpc,n −
(
B

C

)2

− ε′, (A.52)

for a certain small ε′. Conversely, using the lower bound in (A.50),
and averaging over Mc,n−1, for large n we get:

M̄c,n ≥ M̄c,n−1

(

1− B

en

)

+
B

C

(

1− B

C

)

− ε′′, (A.53)

for a certain small ε′′. Summing over c, we get:

M̄n ≥ M̄n−1

(

1− B

en

)

+B

(

1− B

C

)

− C ε′′

︸ ︷︷ ︸

b

= M̄n−1

(

1− 1

ατ/B + o(n)

)

+ b, (A.54)

having used en in (A.37). Invoking now Corollary 1, we obtain:

lim inf
n→∞

M̄n

n
≥ ατ b

ατ +B
≥ ατ B

ατ +B
, (A.55)

where the latter inequality follows from the definition of b, since
C and ε are arbitrary. Equation (A.55), along with (A.45), yields
that the second term on the RHS in (A.39) vanishes. Let us switch
to the first term in (A.39). In view of the ascertained convergence
of expectations, the variance will be proved to vanish if we show
that: E[M2

n]/n
2 → ρ2. Now, in the light of (A.43), we can write:

E[M2
n|Mn−1] ≤ M2

n−1 + E[X̂2
n|Mn−1] + 2Mn−1E[X̂n|Mn−1], which,

144

A.2. Appendix 2

using (A.41) and (A.42), yields:

vn ≤ vn−1
n− 1

n

[

1− 2B

en
+

B(B − 1)

e2n

]

+ B
M̄n−1

n

(

2− 2B − 1

en

)

+
B2

n
, (A.56)

having also introduced the definition vn ! E[M2
n]/n. Now, the

first term appearing on the RHS can be represented as

vn−1

(

1− 1
ατ

ατ+2B
n+ o(n)

)

. (A.57)

Likewise, the second term appearing on the RHS in (A.56) can be
written as 2Bρ+ o(1). Applying Corollary 1, we get:

lim sup
n→∞

E[M2
n]

n2
= lim sup

n→∞

vn
n

≤ 2Bρ

ατ
ατ+2B

1 + ατ
ατ+2B

= ρ2. (A.58)

Now, subadditivity of limit superior implies:

lim sup
n→∞

E

[(
Mn − M̄n

n

)2
]

≤ lim sup
n→∞

E[M2
n]

n2
+ lim sup

n→∞

(

−M̄2
n

n2

)

≤ 0, (A.59)

with the latter inequality coming from (A.58), and from M̄n/n →
ρ. The claim for the synchronous case is so proved.

As regards the Poisson case, we consider again the slotted
system in (A.36), but for the fact that τ is now an arbitrarily
small interval. Let A denote the number of transmission at-
tempts in a single slot, that is, a Poisson random variable with
expectation Ā =

∑

u∈B λuτ = λBτ . Since the A transmissions
correspond to A independent choices of messages from the em-
ulation dictionary, for small τ the system behaves as if we had
A synchronous bots, where A is now random. Thus, the proof

145

A. Appendices

B̂1 = {1}, E2 =
{

ρ̂
B̂1∪{2} < γ(B̂1, {2})

}

, . . . EB =
{

ρ̂
B̂B−1∪{B} < γ(B̂B−1, {B})

}

,

EB+1 =
{

ρ̂
B̂B∩{B+1} ≥ γ(B̂B, {B + 1})

}

, . . . EN =
{

ρ̂
B̂B∩{N} ≥ γ(B̂B , {N})

}

.

(A.62)

for the Poisson case boils down to modify slightly the previ-
ous proof in order to take into account such additional random-
ness. Specifically, Eq. (A.44) should be modified by consider-
ing a random number of bots A, and then taking expectations,
yielding:2 M̄n ≤ M̄n−1(1 − Ā/en) + Ā. Likewise, Eq. (A.51)
becomes: E[Mc,n|Mc,n−1] ≥ Mc,n−1 + 1 − E[(1 − pc,n)

A|Mn−1].
Since, for the Poisson random variable A, it is easy to show that
E[(1−p)A] = e−Āp ≤ 1− Āp+(Āp)2, the conclusion in (A.38) still
holds true, with B simply replaced by Ā. Finally, the inequality
in (A.56) becomes:

vn ≤ vn−1
n− 1

n

[

1− 2Ā

en
+

A(A− 1)

e2n

]

+
M̄n−1

n

(

2Ā− A(2A− 1)

en

)

+ A2. (A.60)

Having shown that all the equations used to prove the pertinent
convergence hold true with B replaced by Ā, we conclude that:
Mn

n

p−→ ατ Ā
ατ+Ā

= αλB

α+λB

.

A.3 Appendix 3

Proof of Theorem 2. Let us focus on a single step of the BotBuster
loop, i.e., the algorithm behavior for a fixed b0. Consider first the
case that b0 is a normal user, and introduce, for j ∈ N \ {b0}, the
events: Ej = {ρ̂{b0}∪{j} ≥ γ({b0}, {j})}. Eq. (4.29) reveals that,

2We implicitly use: i) the independence between scheduling policy and
message picking, and ii) the memoryless property of the Poisson process.

146

A.3. Appendix 3

for any j, P[Ej] → 1 as t → ∞. But we also have that, for b0
normal,

P[inner loop outputs B̂ = {b0}] = P[∩j∈N\{b0}Ej] → 1, (A.61)

where the convergence follows by the fact that each of the events
has probability converging to one as t → ∞.

In contrast, if b0 is a bot, we distinguish two cases: i) if j
is normal, from (4.29) we conclude that ρ̂{b0}∪{j} ≥ γ({b0}, {j})
with probability converging to one as t → ∞, while ii) if j is a
bot, from (4.28) we conclude that ρ̂{b0}∪{j} < γ({b0}, {j}) with
probability converging to one as t → ∞. Assume now, without
loss of generality, that the first B users are bots, that b0 = 1, and
that the remaining users are normal. In (A.62), we introduce the
events corresponding to the inner loop over index j, as well as
the associated botnet estimates at step j, denoted by B̂j. After
noticing that, in the definition of these events, the inequality signs
in the threshold comparisons are different for j ≤ B and for j > B,
it is seen that the event B̂ = {1, 2, . . . , B} corresponds to the event
∩N
j=2Ej. Since, in view of the above points i) and ii), we have

P[Ej] → 1, we conclude that (if b0 = 1 is a bot):

P[inner loop outputs B̂ = {1, 2, . . . , B}] = P[∩N
j=2Ej] → 1,

(A.63)
which implies the validity of (5.8).

147

A. Appendices

148

Bibliography

[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. DDoS
in the IoT: Mirai and other botnets. Computer, 50(7):80–84,
2017.

[2] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and
M. Conti. A survey on the security of stateful SDN
data planes. IEEE Communications Surveys Tutorials,
19(3):1701–1725, 2017.

[3] S. Lal, T. Taleb, and A. Dutta. NFV: Security threats and
best practices. IEEE Communications Magazine, 55(8):211–
217, 2017.

[4] A. D. Keromytis. A comprehensive survey of Voice over IP
security research. IEEE Communications Surveys Tutorials,
14(2):514–537, 2012.

[5] M. Di Mauro and M. Longo. Skype traffic detection: A deci-
sion theory based tool. In 2014 International Carnahan Con-
ference on Security Technology (ICCST), pages 1–6, 2014.

[6] M. Di Mauro and C. Di Sarno. A framework for internet data
real-time processing: A machine-learning approach. In 2014
International Carnahan Conference on Security Technology
(ICCST), pages 1–6, 2014.

[7] M. Di Mauro and M. Longo. Revealing encrypted WebRTC
traffic via machine learning tools. In 2015 12th Interna-

149

BIBLIOGRAPHY

tional Joint Conference on e-Business and Telecommunica-
tions (ICETE), pages 259–266, 2015.

[8] M. Di Mauro and M. Longo. A decision theory based tool
for detection of encrypted WebRTC traffic. In 2015 18th
International Conference on Intelligence in Next Generation
Networks, pages 89–94, 2015.

[9] M. Di Mauro and C. Di Sarno. Improving SIEM capabili-
ties through an enhanced probe for encrypted Skype traffic
detection. Journal of Information Security and Applications,
38(PP):85–95, 2018.

[10] V. Karyotis and M.H.R. Khouzani. Malware Diffusion Mod-
els for Modern Complex Networks: Theory and Applications.
Morgan Kaufmann, 2016.

[11] C.C. Zou, W. Gong, and D. Towsley. Code Red worm propa-
gation modeling and analysis. In Proc. of the 9th ACM Con-
ference on Computer and Communications Security, pages
138–147, 2002.

[12] S. Shin, G. Gu, N. Reddy, and C. P. Lee. A large-scale empir-
ical study of Conficker. IEEE Transactions on Information
Forensics and Security, 7(2):676–690, 2012.

[13] Worm infects millions of computers worldwide.
http://www.nytimes.com/2009/01/23/technology/

internet/23worm.html?_r=1&em.

[14] N.T.J. Bailey. The elements of Stochastic Processes with ap-
plications to the natural sciences. John Wiley and Sons, New
York, 1964.

[15] W.O. Kermack and A.G. McKendrick. A contribution to the
mathematical theory of epidemics. Proc. of Royal Society of
London, Series A, 115(772):700–721, 1927.

[16] P.J. Costa. Applied Mathematics for the Analysis of Biomed-
ical Data. John Wiley and Sons, New York, 2017.

150

BIBLIOGRAPHY

[17] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita. Botnet in
DDoS attacks: Trends and challenges. IEEE Communications
Surveys Tutorials, 17(4):2242–2270, 2015.

[18] S. Wen, W. Zhou, J. Zhang, Y. Xiang, W. Zhou, W. Jia,
and C. C. Zou. Modeling and analysis on the propagation
dynamics of modern email malware. IEEE Transactions on
Dependable and Secure Computing, 11(4):361–374, 2014.

[19] V. Karyotis and S. Papavassiliou. Macroscopic malware prop-
agation dynamics for complex networks with churn. IEEE
Communications Letters, 19(4):577–580, 2015.

[20] S. Eshghi, M. H. R. Khouzani, S. Sarkar, and S. S.
Venkatesh. Optimal patching in clustered malware epi-
demics. IEEE/ACM Transactions on Networking, 24(1):283–
298, 2016.

[21] T. Wang, C. Xia, Z. Li, X. Liu, and Y. Xiang. The spatial-
temporal perspective: The study of the propagation of mod-
ern social worms. IEEE Transactions on Information Foren-
sics and Security, 12(11):2558–2573, 2017.

[22] S. H. Sellke, N.B. Shroff, and S. Bagchi. Modeling and au-
tomated containment of worms. IEEE Transactions on De-
pendable and Secure Computing, 5(2):71–86, 2008.

[23] T.E. Harris. The Theory of Branching Processes. Springer-
Verlag, 1967.

[24] IA. Farina, C. Fantacci, and M. Frasca. Stochastic filtering
of a random Fibonacci sequence: Theory and applications.
Signal Processing, 104:212–224, 2014.

[25] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kin-
dred. Statistical approaches to DDoS attack detection and
response. In Proc. DARPA Information Survivability Con-
ference and Exposition, pages 303–314 vol.1, 2003.

151

BIBLIOGRAPHY

[26] Y. Xiang, K. Li, and W. Zhou. Low-rate DDoS attacks
detection and traceback by using new information metrics.
IEEE Transactions on Information Forensics and Security,
6(2):426–437, 2011.

[27] J. Luo, X. Yang, J. Wang, J. Xu, J. Sun, and K. Long. On a
mathematical model for low-rate shrew DDoS. IEEE Trans-
actions on Information Forensics and Security, 9(7):1069–
1083, 2014.

[28] Global DDoS threat landscape.
https://www.incapsula.com/blog/

ddos-global-threat-landscape-report-q2-2015.html.

[29] Layer 7 DDoS. http://blog.sucuri.net/2014/02/

layer-7-ddos-blocking-http-flood-attacks.html.

[30] ETSI. Network Functions Virtualisation (NFV) reliability;
report on models and features for end-to-end reliability. Tech-
nical report, 2016.

[31] Y. Yamato, Y. Nishizawa, S. Nagao, and K. Sato. Fast and
reliable restoration method of virtual resources on OpenStack.
IEEE Transactions on Cloud Computing (In Press), 2015.

[32] H. Khazaei, J. Miic, V. B. Miic, and N. B. Mohammadi.
Availability analysis of cloud computing centers. In 2012
IEEE Global Communications Conference (GLOBECOM),
pages 1957–1962, 2012.

[33] X. Zhang, C. Lin, and X. Kong. Model-driven dependability
analysis of virtualization systems. In 2009 Eighth IEEE/ACIS
International Conference on Computer and Information Sci-
ence, pages 199–204, 2009.

[34] J. Dantas, R. Matos, J. Araujo, and P. Maciel. An availability
model for eucalyptus platform: An analysis of warm-standby
replication mechanism. In 2012 IEEE International Confer-
ence on Systems, Man, and Cybernetics, pages 1664–1669,
2012.

152

BIBLIOGRAPHY

[35] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi.
Scalable analytics for iaas cloud availability. IEEE Transac-
tions on Cloud Computing, 2(1):57–70, 2014.

[36] D. S. Kim, J. B. Hong, T. A. Nguyen, F. Machida, J. S.
Park, and K. S. Trivedi. Availability modeling and analy-
sis of a virtualized system using Stochastic Reward Nets. In
2016 IEEE International Conference on Computer and Infor-
mation Technology (CIT), pages 210–218, 2016.

[37] E. Ataie, R. Entezari-Maleki, L. Rashidi, K. S. Trivedi,
D. Ardagna, and A. Movaghar. Hierarchical stochastic models
for performance, availability, and power consumption analy-
sis of IaaS clouds. IEEE Transactions on Cloud Computing,
PP(99):1–1, 2017.

[38] V. Matta, M. Di Mauro, M. Longo, and A. Farina. Cyber-
threat mitigation exploiting the birth-death-immigration
model (under review). IEEE Transactions on Information
Forensics and Security.

[39] V. Matta, M. Di Mauro, and M. Longo. Botnet identification
in randomized DDoS attacks. In 2016 24th European Signal
Processing Conference (EUSIPCO), pages 2260–2264, 2016.

[40] V. Matta, M. Di Mauro, and M. Longo. DDoS attacks with
randomized traffic innovation: Botnet identification chal-
lenges and strategies. IEEE Transactions on Information
Forensics and Security, 12(8):1844–1859, 2017.

[41] V. Matta, M. Di Mauro, and M. Longo. Botnet identifica-
tion in multi-clustered DDoS attacks. In 2017 25th European
Signal Processing Conference (EUSIPCO), pages 2171–2175,
2017.

[42] G. Carullo, M. Di Mauro, M. Galderisi, M. Longo,
F. Postiglione, and M. Tambasco. Object Storage in Cloud
Computing Environments: An Availability Analysis, pages
178–190. Springer International Publishing, 2017.

153

BIBLIOGRAPHY

[43] M. Di Mauro, M. Longo, and F. Postiglione. Reliability anal-
ysis of the controller architecture in Software Defined Net-
works, pages 1503–1510. Talyor and Francis Group, 2015.

[44] M. Di Mauro, M. Longo, F. Postiglione, R. Restaino, and
M. Tambasco. Availability Evaluation of the virtualized in-
frastructure manager in network function virtualization envi-
ronments, pages 2591–2596. Talyor and Francis Group, 2016.

[45] M. Di Mauro, M. Longo, F. Postiglione, G. Carullo, and
M. Tambasco. Service function chaining deployed in an NFV
environment: An availability modeling. In 2017 IEEE Con-
ference on Standards for Communications and Networking
(CSCN), pages 42–47, 2017.

[46] M. Di Mauro, G. Galatro, M. Longo, F. Postiglione, and
M. Tambasco. Availability evaluation of a virtualized IP Mul-
timedia Subsystem for 5G network architectures, pages 2203–
2210. Talyor and Francis Group, 2017.

[47] M. Di Mauro, M. Longo, F. Postiglione, G. Carullo, and
M. Tambasco. Software defined storage: Availability model-
ing and sensitivity analysis. In 2017 International Symposium
on Performance Evaluation of Computer and Telecommuni-
cation Systems (SPECTS), pages 1–7, 2017.

[48] M. Di Mauro, M. Longo, F. Postiglione, and M. Tambasco.
Availability Modeling and Evaluation of a Network Service
Deployed via NFV, pages 31–44. Springer International Pub-
lishing, 2017.

[49] M. Di Mauro M. Longo and F. Postiglione. Performabil-
ity evaluation of Software Defined Networking infrastruc-
tures. In Proceedings of the 10th EAI International Confer-
ence on Performance Evaluation Methodologies and Tools on
10th EAI International Conference on Performance Evalua-
tion Methodologies and Tools, pages 88–95, 2017.

154

BIBLIOGRAPHY

[50] D. Kendall. On the generalized birth-and-beath process. 19,
11 1948.

[51] I.A. Ushakov. A universal generating function. Sov. J. Com-
put. Syst. Sci., 24(5):37–49, 1986.

[52] G. Levitin. The Universal Generating Function in Reliability
Analysis and Optimization. Springer Publishing Company,
Incorporated, 2010.

[53] D. Pollard. Convergence of Stochastic Processes. Springer-
Verlag, New York, 1984.

[54] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of gen-
eralized stochastic Petri nets for the performance evaluation
of multiprocessor systems. ACM Transactions on Computer
Systems, 2(2):93–122, 1984.

[55] R.A. Howard. Dynamic Probabilistic Systems, Vol II: Semi-
Markov and Decision Processes. John Wiley and Sons, New
York, 1971.

[56] J.K. Muppala, G. Ciardo, and K.S. Trivedi. Stochastic Re-
ward Nets for reliability prediction. In Communications in
Reliability, Maintainability and Serviceability, pages 9–20,
1994.

[57] L. Kleinrock. Queueing Systems. Volume I: Theory. John
Wiley and Sons, New York, 1975.

[58] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the
internet in your spare time. In Proc.USENIX Security Sym-
posium, pages 303–314 vol.1, 2003.

[59] S. Yu, G. Gu, A. Barnawi, S. Guo, and I. Stojmenovic. Mal-
ware propagation in large-scale networks. IEEE Transactions
on Knowledge and data engineering, 27(1):170–179, 2015.

155

BIBLIOGRAPHY

[60] R.N. Nucho. Transient behavior of the Kendall birth-death
process. Applications to capacity expansion for special ser-
vices. The Bell System Technical Journal, 60(1):57–87, 1981.

[61] N.L. Johnson, S. Kotz, and N. Balakrishnan. Continuous
Univariate Distributions, Volume 1. John Wiley and Sons,
Inc., 1994.

[62] M. Abramowitz and I. A. Stegun. Handbook of Mathematical
Functions. Courier Corporation, 1964.

[63] P. Jagers. Convergence of general branching processes and
functionals thereof. Journal of applied probability, 11(3):471–
478, 1974.

[64] P. Olofsson96. General branching processes with immigration.
Journal of applied probability, 33(4):940–948, 1996.

[65] T.R. Maltus. An Essay on the principle of population. J.
Johnson in St. Paul’s Church-yard, London, 1798.

[66] H. Shao. Mathematical Statistics. Springer-Verlag, New York,
2003.

[67] A. Gut. Probability: a Graduate course, 2nd ed. Springer,
New York, 2013.

[68] F.W. Crawford. Estimation for general birth-death pro-
cess. Journal of the American Statistical Association,
109(506):730–747, 2014.

[69] N. Keiding. Estimation in the birth process. Biometrika,
61(1):71–80, 1974.

[70] S. Marano, V. Matta, and L. Tong. Distributed detection
in the presence of Byzantine attacks. IEEE Transactions on
Signal Processing, 57(1):16–29, 2009.

[71] M. Barni and B. Tondi. The source identification game: An
information-theoretic perspective. IEEE Transactions on In-
formation Forensics and Security, 8(3):450–463, 2013.

156

BIBLIOGRAPHY

[72] M. Mardani and G.B. Giannakis. Estimating traffic and
anomaly maps via network tomography. IEEE/ACM Trans-
actions on Networking, 24(3):1533–1547, 2016.

[73] S. Ross. Stochastic Processes. John Wiley and Sons, Inc.,
1996.

[74] I.F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou. A
roadmap for traffic engineering in Software Defined Networks.
Computer Networks, 71:1–30, 2014.

[75] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-
Flow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, 2008.

[76] M. Guida, M. Longo, F. Postiglione, K.S. Trivedi, and X. Yin.
Semi-Markov models for performance evaluation of failure-
prone IP multimedia subsystem core networks. Proceedings
of the Institution of Mechanical Engineers, Part O: Journal
of Risk and Reliability, 227(3):290–301, 2013.

[77] ETSI. Network Functions Virtualisation: An introduction,
benefits, enablers, challenges and call for action. Technical
report, 2012.

[78] R. De S. Matos, P. Maciel, F. Machida, K. Dong Seong, and
K.S. Trivedi. Sensitivity analysis of server virtualized sys-
tem availability. IEEE Transactions on Reliability, 61(4):994–
1006, 2012.

[79] R.A. Sahner and K.S. Trivedi. Reliability modeling using
SHARPE. IEEE Transactions on Reliability, 36(2):186–193,
1987.

[80] J.H. Curtiss. A note on the theory of Moment Generating
Functions. 13(4):430–433, 12 1942.

157

