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Introduction

It is going to be about a problem which is probably the most primi-

tive in partial di�erential equations theory, namely to know whether an

equation does, or does not, have a solution. In particular, the theory

of general elliptic boundary value problems in smooth domains was de-

veloped in the second half of 20th century by Maz′ya, I.G.Petrovskii,

M.I.V ishik, Y a.B.Lopantiskii, V.A.Kondrat′ev, S.Agmon, A.Douglis,

L.Nirenberg, M.Schechter, J.Necas, J.L.Lions, E.Magenes.

Fundamental results in this theory are:

• a priori estimates for the solutions in di�erent function spaces;

• the Fredholm property of the operator corresponding to the bound-

ary value problem;

• regularity assertions of the solutions.

In this work we are interested in strong solutions of a Dirichlet prob-

lem for an elliptic linear operator. At this aim, let Ω be an open subset

of Rn, n ≥ 2. Given any p ∈]1, +∞[, a linear uniformly elliptic boundary
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value problem in non divergence form consists of





Lu := −∑n
i,j=1 aij

∂2

∂xi∂xj
u +

∑n
i=1 ai

∂
∂xi

u + au = f in Ω,

u = 0 on ∂Ω, f ∈ Lp(Ω),

(1)

for the unknown function u de�ned on Ω.

The uniform ellipticity of the operator will be expressed, as usual,

by the requirement

∃ ν > 0 :
n∑

i,j=1

aij ξi ξj ≥ ν|ξ|2 a.e. in Ω , ∀ ξ ∈ Rn. (2)

We refer to the problem (1) as the homogeneus Dirichlet problem for

the linear operator L and we are interested in strong solutions for it.

Namely, a strong solution of (1) is a twice weakly di�erentiable func-

tion, u ∈ W 2,p(Ω), p ∈]1, +∞[, that satis�es the equation Lu = f almost

everywhere (a.e.) in Ω and assumes the boundary values in the sense

of
◦

W 1,p(Ω). This concept makes sense for f ∈ Lp(Ω) and when the

coe�cients aij are measurable functions such that

aij = aji ∈ L∞(Ω). (3)

A reasonable strong solvability theory of (1) cannot be built up with-

out suitable additional hypotheses on leading coe�cients.
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Introduction

Indeed, if aij are continous functions in Ω̄

aij ∈ C0(Ω̄) (4)

a satisfactory theory (known "Lp-theory") exists. It provides solvability

and regularity for (1) in Sobolev spaces W 2,p(Ω) for p > 1 (see the

classical monographs [31], [36], [23]).

Unfortunately, even if Ω is bounded and su�ciently regular, simply

assuming (2) - (3) it is not enough to ensure the strong solvability as

shown by C. Pucci. For relevant counterexamples we refer to [33], [38],

[42]. It is well known that the planar case, n = 2, exhibits a remarkable

exception of such a situation, as shown by G. Talenti in [48], but just

whenever p is 2 or is su�ciently close to 2. The exact range I of admissible

values of the parameter p assuring the well-posedness has been recently

determined in [2]: it does not depend on p, but just on the value of the

ellipticity constant ν ≤ 1 of the di�erential operator L, namely I :=

[2(1 + ν2)−1, 2(1 − ν2)−1]. The lower critical exponent of I coincides

with the one conjectured by C.Pucci in [40], who also proved that the

uniqueness of the solution fails for values of p smaller than it.

The next step of the theory deals with weakening the continuity

assumption (4). The motivation is linked to the fact that mathematical

modeling of numerous physical and engineering phenomena lead to the

boundary value problems for discontinuous parabolic or elliptic operators

which require strong solutions.
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In the framework of discontinuous coe�cients (we refer to [34] for a

general survey on the subject), special attention is paid to the so-called

Cordes condition introduced by H. O. Cordes in the study of Hölder con-

tinuity of the solutions to (1). The Cordes condition enabled G.Talenti

([47]) to derive strong solvability in W 2,2(Ω) of the Dirichlet problem for

the operator L. Another class of discontinuous coe�cients is that intro-

duced by C.Miranda in [35] and formed by functions belonging to the

Sobolev space W 1,n(Ω), ((aij)xk
∈ Ln(Ω)), n ≥ 3. First generalization in

this direction have been carried on, always considering a bounded and

su�ciently regular set Ω, assuming that the derivatives belong to some

wider spaces. In particular, in [1] the (aij)xk
are in the weak-Ln space,

while in [18] they are supposed to be in an appropriate subspace of the

classical Morrey space L2p,n−2p(Ω), where p ∈]1, n/2[. In [21] the leading

coe�cients are supposed to be close to functions whose derivatives are

in Ln(Ω). Althought these two types of discontinuity are substantially

di�erent, the approaches in studying boundary value problems are uni-

�ed on the base of elegant Miranda - Talenti inequality which permits an

exact computation of the costants appearing in L2 - a priori bounds (see

chapter (1.4) of [34]).

In the development of the Lp - theory, for p ∈]1, +∞[ and for any

regular enough open subset Ω of Rn, n ≥ 2, one need to impose certain

restrictions on the behaviour of the measurable and bounded leading co-

e�cients. In two pioneer articles of '90s, [19, 20], F.Chiarenza, M.Frasca

and P.Longo succeeded to modify the classical methods to obtain Lp
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Introduction

estimates of solutions to (1) which allowed to move from (4) into the

conditions that aij belong to the Sarason class V MO of functions whose

integral oscillations over balls shrinking to a point coverges uniformly to

zero (see [43]). It turns out to assume a kind of continuity in the average

sense instead of pointwise sense. Roughly speaking, the approach goes

back to A.Calderon and A.Zygmund and makes use of an explicit repre-

sentation formula for the second derivatives D2u of any solutions to (1).

Thus, if the coe�cients aij have a "small integral oscillation" (that is,

aij ∈ V MO) then the Lp - norm of D2u is bounded in term of Lp - norm

of f and this holds for any p ∈]1, +∞[. Taking into account the fact

that V MO contains as proper subsets C0(Ω) and W 1,n(Ω), then the Lp

- theory of operators with V MO principal coe�cients is a generalization

of what was known before 1990 if the domain Ω is bounded in Rn and

n ≥ 3. This weaking continuity of coe�cients, as we note in variuous

applications, generates boundary value problems for elliptic equations

whose ellipticity is ”disturbed” in the sense that some degeneration or

singularity appears. This ”bad” behaviour can be caused by the coe�-

cients of the corresponding di�erential operator and, near the boundary

∂Ω, it can be deal with two situations:

or may exclude the solvability of the Dirichlet problem in classical no

weighted Sobolev spaces;

or the problem is solvable in classical Sobolev spaces but from the be-

haviour of the coe�cients near the boundary ∂Ω we could deduce
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the analogous one for the solution (see [45], [58]).

For degenerate partial di�erential equations, i.e., equations with var-

ious types of singularities in the coe�cients, it is natural to look for

solutions in weighted Sobolev spaces ([29], [57], [13]).

We note that the role of a weight function consists in �xing the

behaviour at in�nity of the functions belonging to the weighted Sobolev

space and of their derivatives and near the not regular part of boundary

of the domain.

In this framework, we can insert our work. In chapter 1, we deal

with introducing the weight functions and their corresponding weighted

Sobolev spaces to investigate, �rst of all, why to choose a weighted

Sobolev space instead of classical Sobolev spaces and, after, how to se-

lect a certain type of weight functions than the other ones. This choice

mainly depends by the necessity to obtain a new Sobolev space also Ba-

nach space (see [30]). In this point of view, on a subset Ω di Rn, n ≥ 2

, not necessary bounded, two new classes of weight functions are intro-

duced and their properties are examined:

1. G(Ω): this class, introduced yet by M. Troisi in [54], is de�ned as

the union of sets Gd(Ω) for any d ∈ R+:

G(Ω) =
⋃

d∈R+

Gd(Ω),

where Gd(Ω) is the class of measurable functions m : Ω → R+ such
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that

sup
x,y∈Ω
|x−y|<d

m(x)

m(y)
< +∞ , (5)

2. Ck(Ω): this class is de�ned as the set of the functions ρ : Ω → R+

such that ρ ∈ Ck(Ω), k ∈ N0, and

sup
x∈Ω

|∂αρ(x)|
ρ(x)

< +∞, ∀ |α| ≤ k. (6)

We stress the point that Ck(Ω) weight functions are more regular

than G(Ω) - functions. Althought, G(Ω) weights have the favourable

property to admit among its members a regularization function, that

is a function of the same weight type but also belonging to C∞(Ω), so a

more regular function than a Ck(Ω) weight.

Chapters 2 and 3 are devoted to the study of the solvability of the

Dirichlet problem:





u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω)

Lu = f, f ∈ Lp
s(Ω),

(7)

where Ω is an unbounded and su�ciently regular open subset of Rn (n ≥
2), p ∈ ]1, +∞[, L is the uniform elliptic second order linear di�erential

operator de�ned by

L = −
n∑

i,j=1

aij
∂2

∂xi ∂xj

+
n∑

i=1

ai
∂

∂xi

+ a , (8)
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with coe�cients aij = aji ∈ L∞(Ω), i, j = 1, . . . , n, s ∈ R, p ∈ ]1, +∞[,

W 2,p
s (Ω),

◦
W1,p

s (Ω) and Lp
s(Ω) suitable weighted Sobolev spaces on Ω.

In particular, we con�ne the problem to G(Ω) - weighted Sobolev

space. In detail we assume that:

• in chapter 2, Ω is an unbounded domain of Rn, for any n ≥ 3;

• in chapter 3, Ω is an unbounded domain of the plane (n = 2).

Instead, in chapter 4, we deal with the solvability in Ck(Ω) - weighted

Sobolev spaces 



u ∈ W 2,2
s (Ω)∩ ◦

W1,2
s (Ω)

Lu = f , f ∈ L2
s(Ω) ,

(9)

where Ω is an unbounded domain of Rn, for any n ≥ 2.

In chapter 2, we start with certain a priori estimates for the opera-

tor L, obtained by means of the following properties, just introduced in

chapter 1:

(I) topological isomorphism :

u −→ σsu

(from W k,p
s (Ω) to W k,p(Ω) or from

◦
W 1,p

s (Ω) to
◦

W k,p(Ω)). It leads

to go from weighted spaces to no-weighted spaces and to get their

properties.
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Introduction

(II) compactness and boundedness : of multiplying operator

u −→ βu (10)

de�ned in a weighted Sobolev space and which takes values in a weighted

Lebesgue space.

We recall that when Ω is bounded, the problem of determining a

priori bounds has been investigated by several authors under various

hypotheses on the leading coe�cients. It is worth to mention the results

proved in [35], [19], [20], [55] and [56], where the coe�cients aij are

required to be discontinuous. If the open set Ω is unbounded, a priori

bounds are established in [51] and [9] with analogous assumptions to

those required in [35]. In ([14], [10], [11]), under similar hypotheses

asked in ([19], [20]), the above estimates are obtained too. Here, we

extend some results of [19] and [20] to a G(Ω) - weighted case.

Actually, we do that just assuming the following hypotheses, listed

below, on the coe�cients and on the weight functions:

• aij (in addition to simmetry and boundedness) locally V MO(Ω)

and at in�nity close to certain eij, belonging to a suitable subset of

V MO(Ω),

• ai and a having sommability conditions of local character,

• weight function, s-th power of a function m ∈ G(Ω), not bounded

at in�nity and with derivates of its regularization function having

13



suitable in�nity conditions,we get the following a priori bound:

||u||W 2,p
s (Ω) ≤ c

(
||Lu||Lp

s(Ω) + ||u||Lp(Ω1)

)
∀ u ∈ W 2,p

s (Ω)∩ ◦
W

1,p
s (Ω),

(11)

where s ∈ R, Ω is su�ciently regular and Ω1 is a bounded open subset

of Ω. This a priori bound allows to deduce that L is a semi-Fredholm

operator, that is it has close range and �nite - dimensional kernel, which

is an essential property to state the solvability of the problem (7).

We wish to stress that an analogous estimate has been obtained in

[12], in a di�erent situation. Indeed, in [12] the open set Ω has singular

boundary and the coe�cients of the operator L are singular near a subset

of ∂Ω. Hence, in [12], the weight function goes to zero on such subset of

∂Ω and then also the weighted Sobolev spaces are di�erent with respect

to those considered in this dissertation.

After this, by a method of continuity along a parameter, using a priori

estimate (11) and the topological isomorphism, it is possible taking an

advantage of an existence and uniqueness result for the following no-

weighted problem (see [11])





u ∈ W 2,p(Ω)∩ ◦
W1,p(Ω),

Lu = f , f ∈ Lp(Ω) ,

(12)

in order to establish a uniqueness and existence theorem for G(Ω) - prob-

lem (7) for any n ≥ 3.
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In chapter 3, the solvability of the G(Ω) - problem (7) for unbounded

domains of the plane is presented. Note that the recent contributions

to the W 2,p - solvability, p ∈]1, +∞[, in domains of R2, bounded as well

unbounded, are collected in [15], [16], [17]. Then, we extend the results of

[17] to a weighted case. Indeed, using some results in [17], we show that

a priori estimate (11) for the solutions of (7), when Ω is an unbounded

C1,1 domains of the plane for the solutions, leads to an existence and

uniqueness theorem.

In chapter 4, we deal with Ck(Ω) - weighted Sobolev spaces on un-

bounded domains of Rn, n ≥ 2. As a main result we describe a weighted

and a not-weighted a priori W 2,2-bound. These are obtained under hy-

potheses of Miranda's type on the leading coe�cients and supposing that

their derivatives (aij)xk
belong to a suitable Morrey type space, which is a

generalization to unbounded domains of the classical Morrey space. No-

tice that the existence of the derivatives is of crucial relevance in our anal-

ysis, since it allows us to rewrite the operator L in divergence form and to

use some known results concerning variational operators. A straightfor-

ward consequence of our argument is the following W 2,2-bound, having

the only term ‖Lu‖L2(Ω) in the right hand side,

‖u‖W 2,2(Ω) ≤ c‖Lu‖L2(Ω) ∀u ∈ W 2,2(Ω)∩ ◦
W

1,2(Ω), (13)

where the dependence of the constant c is explicitly described. This

kind of estimate often cannot be obtained when dealing with unbounded
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domains and clearly immediately takes to the uniqueness of the solution

of problem (12) for p = 2.

In the framework of unbounded domains, under more regular con-

ditions on the boundary, an analogous a priori bound can be found in

[50], where more regular assumptions on the aij are taken into account.

We quote here also the results of [7], where, in the spirit of [21], the

leading coe�cients are supposed to be close, in a speci�c sense, to func-

tions whose derivatives are in spaces of Morrey type and have a suitable

behaviour at in�nity.

We show that the W 2,2-bound obtained in (13) allows us to extend

our result passing to the C2(Ω) weighted case. Infact, using (13) we get

the following C2(Ω) weighted W 2,2
s -bound:

‖u‖W 2,2
s (Ω) ≤ c‖Lu‖L2

s(Ω) ∀u ∈ W 2,2
s (Ω)∩ ◦

W
1,2
s (Ω).

From this a priori estimate, assuming that the weight function satis-

�es also conditions at in�nity

lim
|x|→+∞

(
ρ(x) +

1

ρ(x)

)
= +∞ and lim

|x|→+∞
ρx(x) + ρxx(x)

ρ(x)
= 0,

we deduce the solvability of problem (9).

Existence and uniqueness results for similar problems in the weighted

case, but with di�erent weight functions and di�erent assumptions on the

coe�cients have been proved in [22]. Recent results concerning a priori
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estimates for solutions of the Poisson and heat equations in weighted

spaces can be found in [28], where weights of Kondrat'ev type are con-

sidered.

As a �nal remark, looking at results and methods described in the

present work, we notice that all presented issues can be seen as extension

of classical boundary value problems for uniformly linear elliptic oper-

ators by means a weakening of conditions on leading coe�cients. Such

conditions mainly concern about the behaviour of leading coe�cients

which is described by means the class VMO. Thus, we can expect that a

suitable and calibrated interplay between conditions on coe�cients and

on the nature of the domain leads to an interesting enlargement of the

repertoire of solvability conditions for elliptic problems once new suitable

conditions on leading coe�cients are explored.
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Notation and function spaces

Let G be any Lebesgue measurable subset of Rn and Σ(G) be the

collection of all Lebesgue measurable subsets of G.

For F ∈ Σ(G),

• |F | denote the Lebesgue measure of F ;

• D(F ) is the class of restrictions to F of functions ζ ∈ C∞
◦ (Rn) with

F̄ ∩ supp ζ ⊆ F ;

• if X(F ) is a space of functions de�ned on F , we denote by Xloc(F )

the class of all functions g : F → R such that ζ g ∈ X(F ) for any

ζ ∈ D(F ).

For any x ∈ Rn and r ∈ R+, we put B(x, r) = {y ∈ Rn : |y−x| < r},
Br = B(0, r) and F (x, r) = F ∩B(x, r).

Now let us recall the de�nitions of the function spaces in which the

coe�cients of the operator (3.3) will belong to.

For n ≥ 2, λ ∈ [0, n[, p ∈ [1, +∞[ and �xed t in R+, the space of

19



Morrey type Mp,λ(Ω, t) is the set of all functions g in Lp
loc(Ω) such that

‖g‖Mp,λ(Ω,t) = sup
τ∈]0,t]
x∈Ω

τ−λ/p‖g‖Lp(Ω(x,τ)) < +∞, (14)

endowed with the norm de�ned in (14). It is easily seen that, for any

t1, t2 ∈ R+, a function g belongs to Mp,λ(Ω, t1) if and only if it belongs

to Mp,λ(Ω, t2), moreover the norms of g in these two spaces are equiv-

alent. This allows us to restrict our attention to the space Mp,λ(Ω) =

Mp,λ(Ω, 1).

We now introduce three subspaces of Mp,λ(Ω) needed in the sequel.

The set V Mp,λ(Ω) is made up of the functions g ∈ Mp,λ(Ω) such that

lim
t→0

‖g‖Mp,λ(Ω,t) = 0,

while M̃p,λ(Ω) and Mp,λ
◦ (Ω) denote the closures of L∞(Ω) and C∞

◦ (Ω) in

Mp,λ(Ω), respectively. We point out that

Mp,λ
◦ (Ω) ⊂ M̃p,λ(Ω) ⊂ V Mp,λ(Ω).

We put Mp(Ω) = Mp,0(Ω), V Mp(Ω) = V Mp,0(Ω), M̃p(Ω) = M̃p,0(Ω)

and Mp
◦ (Ω) = Mp,0

◦ (Ω). Hence, one can consider the subset Mp(Ω) of

Lp
loc(Ω̄) consisting of those functions g such that

||g||Mp(Ω) = sup
x∈Ω

||g||Lp(Ω(x,1)) < +∞ . (15)
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Notation and function spaces

Endowed with such norm, Mp(Ω) is a Banach space, strictly bigger than

the Lebesgue space Lp(Ω) when Ω is unbounded. Equivalently, we de-

note by M̃p(Ω) and Mp
o (Ω) the closure of L∞(Ω) and C∞

o (Ω) in Mp(Ω),

respectively.

Recall that for a function g in Mp(Ω) the following characterization

holds:

• g ∈ Mp
◦ (Ω) ⇐⇒ limτ→0+

(
pg(τ) + ||(1− ζ1/τ )g||Mp(Ω)

)
= 0,

where

pg(τ) = sup
E∈Σ(Ω)

supx∈Ω |E(x,1)|≤τ

||χEg||Mp(Ω) , τ ∈ R+ ,

and ζr, r ∈ R+, is a function in C∞
◦ (Rn) such that

0 ≤ ζr ≤ 1 , ζr |Br
= 1 , supp ζr ⊂ B2r .

• g ∈ M̃p(Ω) if and only if the function

τg(t) = sup
E∈Σ(Ω)

supx∈Ω |E(x,1)|≤t

||χEg||Mp(Ω) t ∈ R+ ,

vanishes when t goes to zero.

We want to de�ne the moduli of continuity of functions belonging to
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M̃p,λ(Ω) or Mp,λ
◦ (Ω). To this aim, let us put, for h ∈ R+ and g ∈ Mp,λ(Ω),

F [g](h) = sup
E∈Σ(Ω)

sup
x∈Ω

|E(x,1)|≤ 1
h

‖g χ
E
‖Mp,λ(Ω).

Recall �rst that for a function g ∈ Mp,λ(Ω) the following characterization

holds:

g ∈ M̃p,λ(Ω) ⇐⇒ lim
h→+∞

F [g](h) = 0,

while

g ∈ M̃p,λ
◦ (Ω) ⇐⇒ lim

h→+∞

(
F [g](h) + ||(1− ζh)g||Mp,λ(Ω)

)
= 0,

where ζh denotes a function of class C∞
o (Rn) such that

0 ≤ ζh ≤ 1 , ζh|
B(0,h)

= 1 , supp ζh ⊂ B(0, 2h).

Thus, if g is a function in M̃p,λ(Ω) a modulus of continuity of g in M̃p,λ(Ω)

is a map ∼
σp,λ[g] : R+ → R+ such that

F [g](h) ≤ ∼
σp,λ[g](h), lim

h→+∞
∼
σp,λ[g](h) = 0 .

While, if g belongs to Mp,λ
o (Ω) a modulus of continuity of g in Mp,λ

o (Ω)
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Notation and function spaces

is an application σo
p,λ[g] : R+ → R+ such that

F [g](h) + ‖(1− ζh) g‖Mp,λ(Ω) ≤ σo
p,λ[g](h),

lim
h→+∞

σo
p,λ[g](h) = 0 .

Then a modulus of continuity of g in M̃p(Ω) is a map σ̃p[g] : R+ → R+

such that

σ̃p[g](t) ≥ τg(t) ∀t ∈ R+ , lim
t→0+

σ̃p[g](t) = 0 .

Indeed, if g ∈ Lp(Ω), the function

ωp[g](t) := sup
E∈Σ(Ω)
|E|≤t

||g||Lp(E) t ∈ R+

is clearly non-negative and limt→0+ ωp[g](t) = 0, so it is a modulus of

continuity of g in Lp(Ω).

Finally, we introduce the following functional spaces: if Ω has the

property

|Ω(x, r)| ≥ Arn ∀ x ∈ Ω , ∀ r ∈ ]0, 1] (16)

where A is a positive constant independent of x and r, then it is possible

to consider the space BMO(Ω, τ) (τ ∈ R+) of functions g ∈ L1
loc(Ω̄) such

that

[g]BMO(Ω,τ) = sup
x∈Ω

r∈]0,τ ]

∫
�

Ω(x,r)

|g −
∫
�

Ω(x,r)

g| < +∞ ,
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where ∫
�

Ω(x,r)

g = |Ω(x, r)|−1

∫

Ω(x,r)

g.

When g ∈ BMO(Ω) = BMO(Ω, τA), with

τA = sup

{
τ ∈ R+ : sup

x∈Ω
r∈]0,τ ]

rn

|Ω(x, r)| ≤
1

A

}
,

we say that g ∈ V MO(Ω) if [g]BMO(Ω,τ) → 0 for τ → 0+.

Just note that the assumption (16) above implies that Ω is not too

'narrow', and it is clearly satis�ed by any domain Ω having the internal

cone property, therefore by any C1,1-domain.

Let us �nish proving an useful lemma:

Lemma 1 If Ω has the uniform C1,1-regularity property and

g, gx ∈





V M r(Ω), r > 2 for n = 2,

V M r,n−r(Ω), r ∈]2, n] for n > 2,

then g ∈ V MO(Ω).

Proof − For n > 2 the result can be found in [8], combining Lemma

4.1 and the argument in the proof of Lemma 4.2.

Concerning n = 2, we �rstly apply a known extension result, see

[7] Corollary 2.2, stating that any function g such that g, gx ∈ V M r(Ω)

admits an extension p(g) such that p(g), (p(g))x ∈ V M r(R2).

Then, we prove that for all x0 ∈ R2 and t ∈ R+, there exists a
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Notation and function spaces

constant c ∈ R+ such that

∫
�

B(x0,t)

∣∣∣p(g)−
∫
�

B(x0,t)

p(g)
∣∣∣ ≤ c

(
t

r−2
r ‖(p(g))x‖Lr(B(x0,t))

)
, (17)

indeed, in view of the above considerations, if (17) holds true, one has

that p(g) ∈ V MO(R2), so g ∈ V MO(Ω).

Consider the function

g∗ : z ∈ R2 → p(g)(x0 + tz) ∈ R.

By Poincaré-Wirtinger inequality and Hölder inequality one gets

∫
�

B(x0,t)
|p(g)(x)− ∫

�
B(x0,t)

p(g)(x)| =

π−1
∫

B(0,1)
|g∗(z)− ∫

�
B(0,1)

g∗(z)| ≤ c1

∫
B(0,1)

|(g∗)z(z)| =

c1 t−1
∫

B(x0,t)
|(p(g))x(x)| ≤ c1 t−1|B(x0, t)| r−1

r ‖(p(g)x‖Lr(B(x0,t)),

this gives (17). ut
A more detailed account of properties of the above de�ned function

spaces can be found in [25, 43, 50, 52, 53].
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Chapter 1

Weight functions and weighted

Sobolev spaces

The general framework in which we develop our work is the relation-

ship between the Dirichlet problem associated to a linear elliptic operator

and the Sobolev spaces in which its solution may live.

The main goal of this chapter is to introduce the weight functions and

their corresponding weighted Sobolev spaces to investigate about some

reasons that lead to choose certain weight functions. Finally, two new

classes of weighted functions are studied.

1.1 Why the weighted Sobolev spaces?

Let us start with basic de�nitions.

De�nition 1.1.1 Let Ω be an open subset in Rn. By the symbol T(Ω),
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1.1. Why the weighted Sobolev spaces?

we denote the set of all measurable almost everywhere (a.e.) in Ω, positive

and �nite functions t = t(x), x ∈ Ω.

Elements of T(Ω) will be called weight functions.

De�nition 1.1.2 Let Ω ⊂ Rn, p ≥ 1, t ∈ T(Ω). By the symbol Lp
t (Ω)

we denote the set of all measurable functions u = u(x), x ∈ Ω such that

||u||p
Lp

t (Ω)
=

∫

Ω

|u(x)|pt(x)dx < +∞

For t(x) ≡ 1 we obtain the usual Lebesgue space Lp(Ω).

Remark 1.1.3 Lp
t (Ω) equipped with the norm || · ||Lp

t (Ω) is a Banach

space.

De�nition 1.1.4 Let Ω ⊂ Rn a domain with a boundary ∂Ω, t a vector

of non-negative (positive a.e.) measurable functions on Ω, i.e. a weight

t = {tα = tα(x), x ∈ Ω, |α| ≤ k}

where k is a non-negative integer, α is a multiindex, i.e., α ∈ Nn
0 or

equivalently

α = (α1, α2, ..., αn) αi ∈ N0

|α| = α1 + α2 + ...αn.

Let us de�ne the Sobolev space with weight t, W k,p
t (Ω), where p is a

number, 1 ≤ p ≤ +∞, as the set of all functions u ∈ Lp
t (Ω) ∩ L1

loc(Ω)
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Chapter 1. Weight functions and weighted Sobolev spaces

such that their distributional derivatives ∂αu, ∀|α| ≤ k are again elements

of Lp
t (Ω) ∩ L1

loc(Ω) (i.e., ∂αu are regular distributions).

The expression

||u||W k,p
t (Ω) =

( ∑

|α|≤k

||∂αu||Lp
t (Ω)

) 1
p

(1.1)

obviously is a norm on the linear space W k,p
t (Ω).

The usefulness of the spaces Lp
t (Ω) is self-evident, for example, in

the theory of orthogonal polynomials. Concerning the weighted Sobolev

space W k,p
t (Ω), as a remarkable example, we refer to the application of

these spaces in the theory of boundary-value problems for PDEs.

Let us start to investigate the homogeneous Dirichlet problem asso-

ciated to a Laplace operator:





−∆u + u = f

u|∂Ω = 0.

(1.2)

As everyone knows, after multiplying the equation by the function u,

integrating the resulting identity over Ω and using the Green's Formula,

we obtain - thanks to the boundary condition - the integral identity

n∑
i=1

∫

Ω

(
∂u

∂xi

)2

dx +

∫

Ω

u2dx =

∫

Ω

fudx.
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1.1. Why the weighted Sobolev spaces?

The left hand side of this identity represents the square of the norm

of the function u in the Sobolev space W 1,2(Ω), so that the relation can

be written also in the form

||u||2W 1,2(Ω) =

∫

Ω

fudx.

This relation is the starting point of the theory of the weak solutions

of boundary-value problem for elliptic equations.

Let us consider, now, a linear elliptic di�erential operator L of the

second order (for simplicity)

L = −
n∑

i,j=1

aij
∂2

∂xi ∂xj

+
n∑

i=1

ai
∂

∂xi

+ a. (1.3)

We shall assign a bilinear form

a(u, v)

de�ned for u, v from a certain subspace V ⊂ W 1,2(Ω) (the subspace V

being determined by the boundary conditions), and instead of solving

the boundary-value problem for the equation

Lu = f
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Chapter 1. Weight functions and weighted Sobolev spaces

we consider the identity

a(u, v) =< f, v > ∀ v ∈ V. (1.4)

The equivalence below is essential for the existence of a solution of

the problem (1.4)

a(u, u) = ||u||2W 1,2(Ω). (1.5)

The possibility to resolve this equation depends on the existence of a

space to which the function u belongs. In several situations, it's not pos-

sible to �nd this function in the classical Sobolev spaces but it's necessary

to modify suitably the spaces in order to obtain this function.

Let us investigate some of these situations:

• Equations with perturbed ellipticity: instead of the equation

(1.2), we'll concern a di�erent equation

−
n∑

i=1

∂

∂xi

(
ρi(x)

∂u

∂xi

)
+ ρ0(x)u = f on Ω

where the coe�cients of the operator ρi = ρi(x), i = 0, ..., N , are

non-negative functions de�ned on Ω,

� degenerate: ρi(x) → 0 for x → x0 ∈ ∂Ω.

or

� have a singularity: ρi(x) →∞ for x → x0 ∈ ∂Ω.
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1.1. Why the weighted Sobolev spaces?

With the same procedure as the problem (1.2), we arrive at the

integral identity

n∑
i=1

∫

Ω

(
∂u

∂xi

)2

ρi(x)dx +

∫

Ω

u2ρ0(x)dx =

∫

Ω

fudx.

Consequently, if L is a linear di�erential operator with perturbed

ellipticity, then we can still associated it with the corresponding

bilinear form a(u, v). Indeed, if there is a suitable weight t such

that

a(u, u) = ||u||2
W 1,2

t (Ω)
(1.6)

we can try to solve the problem (1.4); obviously in this case V ⊂
W 1,2

t (Ω).

So, the weighted spaces make possible to enlarge the class of equa-

tions which are solvable by functional-analytical method.

• Nonhomogeneous Dirichlet problem: To solve the boundary

value problem: 



−∆u + u = f

u|∂Ω = g;

in the classical Sobolev space, we have to satisfy two conditions:

1. g ∈ W
1
2
,2(∂Ω), i.e. g is the trace of g̃ ∈ W 1,2(Ω) on ∂Ω,

2. f is a continuous linear functional over the space
◦

W1,2(Ω), i.e.

f ∈ W−1,2(Ω).
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Chapter 1. Weight functions and weighted Sobolev spaces

If one of these conditions fails the classical theory of Sobolev spaces

cannot be applied. We can make an attempt to �nd a suitable

weight t for which the theory of weak solutions can be extended

also to the case of the weighted space W 1,2
t (Ω). Indeed, we look

for certain weights t for which there exists analogue of the known

existence and uniqueness theorem for the weak solution of the clas-

sical boundary value problem. Otherwise, contrary to the previous

case, the weight it's not a priori given by the equation.

• Unbounded domains: In this case, in addition to the boundary

condition on ∂Ω required by the Dirichlet problem, we need to ask

also conditions at in�nity which prescribes the behaviour of the

solutions u(x) for |x| → ∞. These requirements can be described

throught weight functions. So, the weighted spaces allow to study

also functions de�ned on unbounded domains. Main results about

the above application are due to L.D.Kundjavcev and his succe-

sors B.Hanouzet, A.Avantaggiati, M.Troisi and R.A.Adams.

• A domain with corners or edges: The re�ection of these ge-

ometric features of the domain Ω may be found in the properties

of solution of boundary value problems on Ω. Near of a corner or

an edge the solution u of the boundary value problem may have a

singularity well characterized by a suitable weight. This weight is

most usually a power of the distance from the singular set on ∂Ω.
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1.2. How to choose suitably a weight

So, a weighted space can help us to describe the qualitative properties

of solutions of boundary value problems. On the other hand, it may

have a ”practical” aspect as well: weighted spaces have proved useful,

for example, in connection with the approximate solution of boundary

value problems by means the �nite element method.

1.2 How to choose suitably a weight

The most reasonably motivation to choose a class of weight functions

than another one lies in looking for those classes for which the correspond-

ing weighted Sobolev space is guaranteed to be complete, i.e. a Banach

space. Further, it is shown how to modify the de�nition of the weighted

space if the weight function do not belong to the class mentioned.

De�nition 1.2.1 Let p > 1. We shall say that a weight function t ∈
T(Ω) satis�es condition Bp(Ω) and write t ∈ Bp(Ω) if

t−
1

(p−1) ∈ L1
loc(Ω).

Theorem 1.2.2 Let Ω ⊂ Rn be an open set, p > 1, t ∈ Bp(Ω). Then

Lp
t (Ω) ↪→ L1

loc(Ω)

(↪→ continous embedding).
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Using the usual assumption of a regular distribution in D'(Ω) of a

function in L1
loc(Ω), we conclude that

Lp
t (Ω) ⊂ L1

loc(Ω) ⊂ D′(Ω) (1.7)

for t ∈ Bp(Ω). Therefore, for functions u ∈ Lp
t (Ω) with t ∈ Bp(Ω),

the distributional derivatives ∂αu of u have sense.

Remark 1.2.3 If the weight function t satis�es the condition Bp(Ω), in

view of (1.7), the assumption ∂αu ∈ Lp
t (Ω) ∩ L1

loc(Ω) in the de�nition

(1.1.4) can be replaced by the assumption ∂αu ∈ Lp
t (Ω).

Theorem 1.2.4 If t ∈ Bp(Ω), the space W 1,p
t (Ω) is a Banach space if

equipped with the norm (1.1).

Now, we introduce exceptional sets de�nition of the weighted Sobolev

spaces which causes the non-completeness. These sets are composed by

the points on that the weight functions are not Bp(Ω).

De�nition 1.2.5 Let t ∈ T(Ω), p > 1 and denote

Mp(t) = {x ∈ Ω :

∫

Ω∩U(x)

t−
1

p−1 (y)dy = +∞ ∀ U(x) of x}

Obviously, Mp(t) = ∅ for t ∈ Bp(Ω) .

Let us denote

B =
⋃

t/∈Bp(Ω)

Mp(t) (1.8)
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1.3. Ck(Ω) - weight functions

De�nition 1.2.6 Let Ω, p and t be as in de�nition (1.1.1), with t ∈
T(Ω). Let B be the set from (1.8). Then we de�ne the Sobolev space with

weight t,

W 1,p
t (Ω)

as the space W 1,p
t (Ω\B) , considered in the sense of de�nition (1.1.4)

Remark 1.2.7 Another way how to guarantee the completeness of the

weighted Sobolev space is to de�ne it as the completion of the set W 1,p
t (Ω)

from de�nition (1.1.4) with respect to the norm (1.1). However, in this

case the completion could contain nonregular distributions or functions

whose distributional derivatives are not regular distributions.

Therefore, de�nition (1.2.6) seems to be more natural.

Let us introduce two new classes of weight functions. Obviously, the

related weighted Sobolev spaces are Banach spaces. We work with weight

functions or s-th power of them. Their role is to check the run of the

functions, and their derivatives, belonging to weighted Sobolev spaces.

Speci�cally, the weight functions �x the behaviour of those functions at

in�nity on unbounded domains and correct it near not regular parts of

the boundary of the domain.

1.3 Ck(Ω) - weight functions

Let Ω be an open subset of Rn, not necessarily bounded, n ≥ 2. We

introduce a class of weight functions de�ned on Ω. To this aim, given
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k ∈ N0, we consider a function ρ : Ω̄ → R+ such that ρ ∈ Ck(Ω̄) and

sup
x∈Ω

|∂αρ(x)|
ρ(x)

< +∞, ∀ |α| ≤ k. (1.9)

Remark 1.3.1 If ρ ∈ Ck(Ω̄) and satis�es (1.9), then ρ, ρ−1 ∈ L∞loc(Ω̄).

As an example, we can think of the function

ρ(x) = (1 + |x|2)t, t ∈ R.

In the following lemma, we show a property, needed in the sequel, con-

cerning this class of weight functions.

Lemma 1.3.2 If assumption (1.9) is satis�ed, then

sup
x∈Ω

|∂αρs(x)|
ρs(x)

< +∞ ∀s ∈ R, ∀ |α| ≤ k. (1.10)

Proof − The proof is obtained by induction. From (1.9) we get

|(ρs)xi
| = |sρs−1ρxi

| ≤ c1ρρs−1 = c1ρ
s, i = 1, ..., n,

with c1 positive constant depending only on s. Thus (1.10) holds for

|α| = 1.

Now, let us assume that (1.10) holds for any β such that |β| < |α|
and any s ∈ R, and �x a β such that |β| = |α| − 1. Then, using (1.9)
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1.3. Ck(Ω) - weight functions

and by the induction hypothesis written for s− 1, we have

|∂αρs| = |∂β(ρs)xi
| = |∂β(sρs−1ρxi

)| ≤
c2

∑

γ≤β

|∂β−γρxi
∂γρs−1| ≤ c3ρρs−1 = c3ρ

s, for i = 1, ..., n,

with c3 positive constant depending only on s. Hence, (1.10) holds true

also for α. ut

Now, let us study some properties of the class of weighted Sobolev

spaces with weight function of the above mentioned type.

We can de�ne for k ∈ N0, p ∈ [1, +∞[ and s ∈ R, given a weight

function ρ satisfying (1.9), the space W k,p
s (Ω) of distributions u on Ω

such that ρs∂αu ∈ Lp(Ω) for |α| ≤ k, equipped with the norm:

‖u‖W k,p
s (Ω) =

∑

|α|≤k

‖ρs∂αu‖Lp(Ω) < +∞, (1.11)

and we denote by
◦

W k,p
s (Ω) the closure of C∞

◦ (Ω) in W k,p
s (Ω) and put

W 0,p
s (Ω) = Lp

s(Ω).

Lemma 1.3.3 Let k ∈ N0, p ∈ [1, +∞[ and s ∈ R. If assumption (1.9)

is satis�ed, then there exist two constants c1, c2 ∈ R+ such that

c1||u||W k,p
s (Ω) ≤ ||ρtu||W k,p

s−t(Ω) ≤ c2||u||W k,p
s (Ω), (1.12)

∀t ∈ R, ∀u ∈ W k,p
s (Ω), with c1 = c1(t) and c2 = c2(t).
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Proof − Observe that from (1.10) we have

|∂α(ρtu)| ≤ c1

∑

β≤α

|∂α−βρt ∂βu| ≤ c2|ρt∂βu|,

with c2 ∈ R+ depending only on t. This entails the inequality on the

right hand side of (1.12).

To get the left hand side inequality, it is enough to show that

|ρt∂αu| ≤ c3

∑

β≤α

|∂β(ρtu)|, (1.13)

with c3 ∈ R+ depending only on t.

We will prove (1.13) by induction. From (1.10) one has

|ρtuxi
| = |(ρtu)xi

− (ρt)xi
u| ≤ c4

(
(ρtu)x + ρt|u|),

for i = 1, ..., n, with c4 ∈ R+ depending only on t. Hence, (1.13) holds

for |α| = 1.

If (1.10) holds for any β such that |β| < |α|, then, using again (1.10)

and by the induction hypothesis, we have

|ρt∂αu| ≤ |∂α(ρtu)|+ c5

∑

β<α

|∂α−βρt||∂βu| ≤

|∂α(ρtu)|+ c6

∑

β<α

|ρt∂βu| ≤ c7

∑

β≤α

|∂β(ρtu)|,

with c7 ∈ R+ depending only on t. ut
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1.3. Ck(Ω) - weight functions

Let us specify a general density result, true whenever the Sobolev

space is weighted with a weight function in the class L∞loc(Ω) with its

inverse.

Lemma 1.3.4 Let k ∈ N0, p ∈ [1, +∞[ and s ∈ R. If Ω has the segment

property and assumption (1.9) is satis�ed, then D(Ω̄) is dense in W k,p
s (Ω).

Proof − The proof follows by Lemma 2.2 in [46], since clearly both

ρ, ρ−1 ∈ L∞loc(Ω̄). ut

This allows us to prove the following inclusion:

Lemma 1.3.5 Let k ∈ N0, p ∈ [1, +∞[ and s ∈ R. If Ω has the segment

property and assumption (1.9) is satis�ed, then

W k,p
s (Ω)∩ ◦

W
k,p(Ω) ⊂ ◦

W
k,p
s (Ω).

Proof − The density result stated in Lemma 1.3.4 being true, we can

argue as in the proof of Lemma 2.1 of [22] to obtain the claimed inclusion.

ut

From this last lemma we easily deduce that, if Ω has the segment

property, also Ck
o (Ω) ⊂ ◦

Wk,p
s (Ω).

Now, we introduce the essential property of Ck(Ω)-weight class, named

topological isomorphism.

Lemma 1.3.6 Let k ∈ N0, p ∈ [1, +∞[ and s ∈ R. If Ω has the segment
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property and assumption (1.9) is satis�ed, then the map

u −→ ρsu

de�nes a topological isomorphism from W k,p
s (Ω) to W k,p(Ω) and from

◦
Wk,p

s (Ω) to
◦

Wk,p(Ω).

Proof − The �rst part of the proof easily follows from Lemma 1.3.3

with t = s. Let us show that u ∈ ◦
Wk,p

s (Ω) if and only if ρsu ∈ ◦
Wk,p(Ω).

If u ∈ ◦
Wk,p

s (Ω), there exists a sequence (φh)h∈N ⊂ C∞
o (Ω) converging

to u in W k,p
s (Ω). Therefore, �xed ε ∈ R+, there exists h0 ∈ N such that

‖ρs(φh − u)‖W k,p(Ω <
ε

2
, ∀h > h0. (1.14)

Fix h1 > h0, clearly ρsφh1 ∈
◦

W k,p(Ω), because of its compact support.

Therefore, there exists a sequence (ψn)n∈N ⊂ C∞
o (Ω) converging to ρsφh1

in W k,p(Ω). Hence, there exists n0 ∈ N such that

‖ψn − ρsφh1‖W k,p(Ω) <
ε

2
, ∀n > n0. (1.15)

Putting together (1.14) and (1.15) we get

‖ψn − ρsu‖W k,p(Ω) ≤ ‖ψn − ρsφh1‖W k,p(Ω) + ‖ρsφh1 − ρsu‖W k,p(Ω) < ε,

∀n > n0. Thus ρsu ∈ ◦
W k,p(Ω). Viceversa, if we assume that ρsu ∈

◦
W k,p(Ω), we �nd a sequence (φh)h∈N ⊂ C∞

o (Ω) converging to ρsu in
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1.4. G(Ω) - weight functions

W k,p(Ω). Hence, there exists h0 ∈ N such that

‖ρ−sφh − u‖W k,p
s (Ω) <

ε

2
, ∀h > h0. (1.16)

Fix h1 > h0, since ρ−sφh1 ∈ Ck
o (Ω), which is contained in

◦
W k,p

s (Ω) by

Lemma 1.3.5, there exists a sequence (ψn)n∈N ⊂ C∞
o (Ω) converging to

ρ−sφh1 in
◦

Wk,p
s (Ω). Therefore, there exists n0 ∈ N such that

‖ψn − ρ−sφh1‖W k,p
s (Ω) <

ε

2
, ∀n > n0. (1.17)

From (1.16) and (1.17) we get

‖ψn − u‖W k,p
s (Ω) ≤ ‖ψn − ρ−sφh1‖W k,p

s (Ω) + ‖ρ−sφh1 − u‖W k,p
s (Ω) < ε,

∀n > n0. So that u ∈ ◦
Wk,p

s (Ω). ut

1.4 G(Ω) - weight functions

Here, we introduce a class of weight functions de�ned on Ω, an open

subset of Rn, not necessarily bounded, with n ≥ 2, and d ∈ R+. Denoted

by Gd(Ω) the set of all measurable functions m : Ω → R+ such that

sup
x,y∈Ω
|x−y|<d

m(x)

m(y)
< +∞ (1.18)
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we say G(Ω) be the class of weight functions de�ned as:

G(Ω) =
⋃

d∈R+

Gd(Ω).

Examples of functions in G(Ω) are functions of distance type, as:

m(x) = et|x| , m(x) = (1 + |x|2)t , x ∈ Ω, t ∈ R.

In order to pick out G(Ω) functions we draw up a list of their prop-

erties:

• m ∈ G(Ω) if and only if there exist d, γ ∈ R+ such that

γ−1 m(y) ≤ m(x) ≤ γ m(y) ∀ y ∈ Ω , ∀x ∈ Ω(y, d) (1.19)

where γ ∈ R+ is independent of x and y.

• if m ∈ G(Ω) then

m, m−1 ∈ L∞loc(Ω̄). (1.20)

• m ∈ G(Ω) if and only if ∃ d ∈ R+ such that

sup
x,y∈Ω
|x−y|<d

∣∣∣∣ log
m(x)

m(y)

∣∣∣∣ < +∞. (1.21)

• if m ∈ G(Ω), then:

ms ∈ G(Ω), λm ∈ G(Ω) ∀s ∈ R, λ ∈ R+.
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1.4. G(Ω) - weight functions

• Lemma 1.4.1 Let m be a positive function de�ned on Ω. If log m ∈
Lip(Ω) then m ∈ G(Ω).

Proof − By the hypothesis, there exists a constant L ∈ R+ such

that for each x, y ∈ Ω

|logm(x)− logm(y)| ≤ L|x− y|. (1.22)

Let x, y ∈ Ω such that |x−y| < d (d ∈ R+). From (1.22) we deduce

that ∣∣∣∣log
m(x)

m(y)

∣∣∣∣ ≤ Ld ∀y ∈ Ω, ∀x ∈ Ω(y, d)

and we have the result. ut

• Lemma 1.4.2 (regularization function σ)

If m ∈ G(Ω) and Ω has the cone property, then there exists a func-

tion σ ∈ G(Ω) ∩ C∞(Ω̄) such that

c1m(x) ≤ σ(x) ≤ c2m(x) ∀x ∈ Ω, (1.23)

sup
x∈Ω

|∂ασ(x)|
σ(x)

< +∞ ∀α ∈ Nn
0 , (1.24)

sup
x∈Ω

|∂ασs(x)|
σs(x)

< +∞ ∀α ∈ Nn
0 , ∀s ∈ R (1.25)

where c1, c2 ∈ R+ are dependent only on n, Ω,m.

Proof − Since m ∈ G(Ω) there exists a positive number d such
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that m ∈ Gd(Ω). We assign a function g ∈ C∞
◦ (Rn) such that

g ≥ 0 , g|B 1
2

= 1 , supp g ⊂ B1

and put

σ : x ∈ Ω −→
∫

Ω

m(y) g
(x− y

d

)
dy .

Since

σ(x) =

∫

Ω(x,d)

m(y) g
(x− y

d

)
dy ∀x ∈ Ω ,

by (1.19), it follows that: ∀ x ∈ Ω,∀ y ∈ Ω(x, d)

c−1m(x)

∫

Ω(x,d)

g
(x− y

d

)
dy ≤

∫

Ω(x,d)

m(y) g
(x− y

d

)
dy ≤

≤ c m(x)

∫

Ω(x,d)

g
(x− y

d

)
dy.

So, on the one hand

c m(x)

∫

Ω(x,d)

g
(x− y

d

)
dy ≤ c m(x)

(
sup

Ω(x,d)

g
)|Ω(x, d)| ≤

≤ c m(x) c ωndn = c2(n,m, Ω) m(x),

on the other hand, by hypotheses on function g:

c1(n,m, Ω) m(x) ≤ c−1m(x)c ωn

(
d

2

)n

≤ c−1m(x)

∫

Ω(x, d
2
)

g
(x− y

d

)
dy ≤
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1.4. G(Ω) - weight functions

≤
∫

Ω(x,d)

m(y) g
(x− y

d

)
dy = σ(x)

then, putting together the previous estimates we obtain the (1.23).

Thus, by the equivalence (1.23) and continuity of g, σ ∈ G(Ω) ∩
C∞(Ω̄).

Moreover, using jet (1.19), for all α ∈ Nn
0 and x ∈ Ω, we have:

|∂ασ(x)| ≤ γ m(x)d−|α|
∫

Ω(x,d)

∣∣∣g(|α|)
(x− y

d

)∣∣∣ dy ≤ c3m(x),

where c3 depends on n, Ω,m, α, and then (1.24) follows.

By the induction procedure on the length of α ∈ Nn
0 , it is easy to

prove (1.25).

• Lemma 1.4.3 If Ω has the property that there exist r0 ∈ R+ and

x0 ∈ Ω\Br0 such that xx0 ⊂ Ω ∀x ∈ Ω\Br0, then for any m ∈ G(Ω)

we have

c−1
0 e−c|x| ≤ m(x) ≤ c0e

c|x| ∀x ∈ Ω,

where c and c0 depend only on n, Ω and m.

Proof − Fix x ∈ Ω. If x ∈ Ω\Br0 then xx0 ⊂ Ω and by Lagrange's

theorem, using (1.24), we have

|logσ(x)− logσ(x0)| =
n∑

i=1

σxi
(x)

σ(x)
· |x− x0| ≤ c|x− x0| (1.26)

where c ∈ R+ depends on n, Ω,m. So, with easy computations and
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from (1.12), we have the result.

Otherwise if x ∈ Ω ∩Br0 , from (1.20), we have the result. ut

If m ∈ G(Ω), k ∈ N0, 1 ≤ p < +∞ and s ∈ R, we de�ne the space

W k,p
s (Ω) of distributions u on Ω such that ms∂αu ∈ Lp(Ω) for |α| ≤ k,

equipped with the norm

‖u‖W k,p
s (Ω) =

∑

|α|≤k

‖ms∂αu‖Lp(Ω). (1.27)

Moreover, denote by
◦

W k,p
s (Ω) the closure of C∞

◦ (Ω) in W k,p
s (Ω) and put

W 0,p
s (Ω) = Lp

s(Ω).

A more detailed account of properties of the above de�ned spaces

can be found, for instance, in [54]. Now, by (1.25), we can easily deduce

the following topological map. It allows to pass from weighted Sobolev

spaces to classical Sobolev spaces in order to take advantage of their

theory.

Lemma 1.4.4 Let k ∈ N0, 1 ≤ p < +∞ and s ∈ R. If Ω has the cone

property, m ∈ G(Ω) and σ is the function de�ned in Lemma 1.4.2, then

the map

u −→ σsu

de�nes a topological isomorphism from W k,p
s (Ω) to W k,p(Ω) and from

◦
Wk,p

s (Ω) to
◦

Wk,p(Ω).
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1.5. Some embedding results in G(Ω) - weighted
Sobolev spaces

We can obtain the above equivalence as for Ck(Ω) weight functions,

here we underline only that for topological isomorphism from W k,p
s (Ω) to

W k,p(Ω) (or from
◦

Wk,p
s (Ω) to

◦
Wk,p(Ω)) we means

u ∈ W k,p
s (Ω) ⇔ σsu ∈ W k,p(Ω)

or equivalently that ∃ c1, c2 ∈ R+ (independent of u) such that

c1||σsu||W k,p ≤ ||u||W k,p
s
≤ c2||σsu||W k,p(Ω),

1.5 Some embedding results in G(Ω) - weighted

Sobolev spaces

In the study of several elliptic problems with solutions in Sobolev

spaces (with or without weight), at the aim to obtain existence and

uniqueness theorems it is sometimes necessary to estabilish regularity

results and a priori estimates for the solutions. These issues rely on some

embeddings for the operator

u ∈ W k,p
s (Ω) → gu ∈ Lp

s(Ω).

Moreover, if L is the associated operator to the corresponding elliptic

problem, these results can prove the boundedness and the compactness

48



of L, when g is a coe�cient of the operator.

Let m be a function of class G(Ω). We consider the following condi-

tion:

(h0) Ω has the cone property, p ∈]1, +∞[, s ∈ R, k, t are numbers

such that:

k ∈ N, t ≥ p, t ≥ n

k
, t > p if p =

n

k
, g ∈ M t(Ω).

By Theorem 3.1 of [24] we easily obtain the following.

Theorem 1.5.1 If the assumption (h0) holds, then for any u ∈ W k,p
s (Ω)

we have gu ∈ Lp
s(Ω) and

||gu||Lp
s(Ω) ≤ c ||g||Mt(Ω)||u||W k,p

s (Ω), (1.28)

with c dependent only on Ω, n, k, p and t.

Corollary 1.5.2 If the assumption (h0) holds and g ∈ M̃ t(Ω), then for

any ε ∈ R+ there exists a constant c(ε) ∈ R+ such that

||gu||Lp
s(Ω) ≤ ε||u||W k,p

s (Ω) + c(ε)||u||Lp
s(Ω) ∀u ∈ W k,p

s (Ω), (1.29)

where c(ε) depends only on ε, Ω, n, k, p, t, σ̃[g].
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1.5. Some embedding results in G(Ω) - weighted
Sobolev spaces

Proof − Fix ε > 0 and let c be the constant in (1.28). Since g ∈ M̃ t(Ω),

then there exists gε ∈ L∞(Ω) such that ||g − gε||Mt(Ω) <
ε

c
. By Theorem

1.5.1

||gu||Lp
s(Ω) ≤ c ||g − gε||Mt(Ω)||u||W k,p

s (Ω) + ||gε||L∞(Ω)||u||Lp
s(Ω)

for any u in W k,p
s (Ω), and then the result follows. ut

Corollary 1.5.3 If the assumption (h0) holds and g ∈ M t
◦(Ω), then for

any ε ∈ R+ there exist a constant c(ε) ∈ R+ and a bounded open subset

Ωε ⊂⊂ Ω with the cone property such that

||gu||Lp
s(Ω) ≤ ε||u||W k,p

s (Ω) + c(ε)||u||Lp(Ωε) ∀u ∈ W k,p
s (Ω), (1.30)

where c(ε) and Ωε depend only on ε, Ω, n, k, p,m, s, t, σ◦[g].

Proof − Fix ε > 0 and let c be the constant in (1.28). Since g ∈
M t
◦(Ω), there exists gε ∈ C∞

◦ (Ω) such that ||g − gε||Mt(Ω) <
ε

c
. Let Ωε

be a bounded open subset of Ω, with the cone property, such that supp

gε ⊂ Ωε, hence by Theorem 1.5.1 and (1.20), it follows that

||gu||Lp
s(Ω) ≤ c ||g − gε||Mt(Ω)||u||W k,p

s (Ω) + ||gεu||Lp
s(Ωε)

≤ ε||u||W k,p
s (Ω) + ||gεm

s||L∞(Ωε)||u||Lp(Ωε) (1.31)

for any u in W k,p
s (Ω), and then we have the result. ut
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Theorem 1.5.4 If the assumption (h0) holds and g ∈ M t
◦(Ω), then the

operator

u ∈ W k,p
s (Ω) −→ gu ∈ Lp

s(Ω) (1.32)

is compact.

Proof − Let (un)n∈N be a sequence of functions which weakly converges

to zero in W k,p
s (Ω). Therefore there exists b ∈ R+ such that ||un||W k,p

s (Ω) ≤
b for every n ∈ N.

For ε > 0, from Corollary 1.5.3, there exist c(ε) ∈ R+ and a bounded

open subset Ωε ⊂⊂ Ω with the cone property such that

||gun||Lp
s(Ω) ≤

ε

b
||un||W k,p

s (Ω) + c(ε)||un||Lp(Ωε) ∀n ∈ N. (1.33)

Since W k,p
s (Ω) ⊂ W k,p(Ωε), we obtain the result from a well-known com-

pact embedding theorem. ut

Remark 1.5.5 : Comparing G(Ω) and Ck(Ω)

Di�erence: Ck(Ω) weights are more regular than G(Ω) - functions, but

these type of weights admit among their members a regularization

function σ ∈ G(Ω) ∩ C∞(Ω) of the same weight type but belonging

to C∞(Ω), so more regular than a Ck(Ω) function.

Similarity: Both admit a topological isomorphism, i.e. a map u → ϑsu

from W k,p
s (Ω) to W k,p(Ω) or from

◦
W k,p

s (Ω) to
◦

W k,p(Ω), where ϑ

is any weight function. For G(Ω) class, ϑ is choosen as the regu-

51



1.5. Some embedding results in G(Ω) - weighted
Sobolev spaces

larization function σ, while for Ck(Ω), it is just ρ, a Ck(Ω) weight

function.
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Chapter 2

The Dirichlet problem in G(Ω) -

weighted Sobolev spaces on

unbounded domains

In this chapter we prove an existence and uniqueness theorem for the

following G(Ω) - weighted problem





u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω)

Lu = f, f ∈ Lp
s(Ω)

(2.1)

where s ∈ R, p ∈ ]1, +∞[,W 2,p
s (Ω),

◦
W1,p

s (Ω) and Lp
s(Ω) are suitable G(Ω)

- weighted Sobolev spaces on an unbounded domain and L is the uni-
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2.1. A priori estimates

formly elliptic second order linear di�erential operator de�ned by

L = −
n∑

i,j=1

aij
∂2

∂xi ∂xj

+
n∑

i=1

ai
∂

∂xi

+ a . (2.2)

At this aim, using a general embedding result of section (1.5) about the

multiplication operator

u ∈ W 2,p
s (Ω) → gu ∈ Lp

s(Ω)

when g is a coe�cient of L, we obtain some a priori estimates for the

operator. Then, taking advantage of one of a priori bounds, an existence

and uniqueness result in no - weighted spaces and the topological iso-

morphism (1.4.4), we are able to estabilish an existence and uniqueness

theorem for weighted problem (2.1).

2.1 A priori estimates

Thanks to embedding results of section (1.5), we get two a priori esti-

mates for the G(Ω)- Dirichlet problem. We recall that when Ω is bounded,

several authors have been investigated the problem of determining a pri-

ori bounds under various hypotheses on the leading coe�cients. It is

worth to mention the results proved in [35], [19], [20], [55], [56], where

the coe�cients aij are required to be discontinuous. If the open set Ω is

unbounded, a priori bounds are established in [51], [9] with analogous as-

sumptions to those required in [35], while in [14], [10], [11], under similar
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Chapter 2. The Dirichlet problem in G(Ω) - weighted Sobolev
spaces on unbounded domains

hypotheses asked in [19], [20], the above estimates are obtained. Now,

we extend some results of [19], [20] to a weighted case.

Assume that Ω is an unbounded open subset of Rn, n ≥ 3, with the

uniform C1,1-regularity property, p ∈ ]1, +∞[ and s ∈ R.
Consider in Ω the di�erential operator

L = −
n∑

i,j=1

aij
∂2

∂xi ∂xj

+
n∑

i=1

ai
∂

∂xi

+ a , (2.3)

with the following conditions on the coe�cients:

(h1)





aij = aji ∈ L∞(Ω) ∩ V MOloc(Ω̄) , i, j = 1, . . . , n ,

∃ ν > 0 :
n∑

i,j=1

aij ξi ξj ≥ ν|ξ|2 a.e. in Ω , ∀ ξ ∈ Rn ,

there exist functions eij, i, j = 1, . . . , n, g and µ ∈ R+ such that

(h2)





eij = eji ∈ L∞(Ω) ∩ V MO(Ω) , i, j = 1, . . . , n ,

n∑
i,j=1

eijξiξj ≥ µ|ξ|2 a.e. in Ω, ∀ ξ ∈ Rn ,

g ∈ L∞(Ω) , lim
r→+∞

n∑
i,j=1

||eij − g aij||L∞(Ω\Br) = 0 ,

(h3) ai ∈ M̃ t1(Ω), i = 1, . . . , n , a ∈ M̃ t2(Ω) ,
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2.1. A priori estimates

where

t1 ≥ p, t1 ≥ n, t1 > p if p = n ,

t2 ≥ p, t2 ≥ n/2, t2 > p if p = n/2 .

Under assumptions (h1) - (h3), by Theorem 1.5.1, the operator

L : W 2,p
s (Ω) → Lp

s(Ω) is bounded.

Let

L0 = −
n∑

i,j=1

aij
∂2

∂xi∂xj

.

Theorem 2.1.1 Suppose that assumptions (h1), (h2) and (h3) hold. Then

there exist r0, c ∈ R+ such that:

||u||W 2,p
s (Ω) ≤ c

(||Lu||Lp
s(Ω) + ||u||Lp

s(Ω)

) ∀ u ∈ W 2,p
s (Ω)∩ ◦

W
1,p
s (Ω),

where c depends only on n, p, t1, t2, Ω, ν, µ, ||aij||L∞(Ω), ||eij||L∞(Ω), ||g||L∞(Ω),

η[ζ2r0aij], η[eij], σ̃[ai], σ̃[a], m, s, and r0 depends only on n, p, Ω, µ, ||eij||L∞(Ω),

η[eij].

Proof − Let u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω). By Lemma 1.4.4 we have that

σsu ∈ W 2,p(Ω)∩ ◦
W

1,p(Ω).
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Chapter 2. The Dirichlet problem in G(Ω) - weighted Sobolev
spaces on unbounded domains

Then, by Theorem 3.1 of [10], there exist r0 and c0 ∈ R+ such that

||σsu||W 2,p(Ω) ≤ c0

(
||L0(σ

su)||Lp(Ω) + ||σsu||Lp(Ω)

)
, (2.4)

where c0 depends on n, p, Ω, ν, µ, ||aij||L∞(Ω), ||eij||L∞(Ω), ||g||L∞(Ω), η[ζ2r0aij],

η[eij], and r0 depends on n, p, Ω, µ, ||eij||L∞(Ω), η[eij]. Since

L0(σ
su) = σsLu− s(s− 1)σs−2

n∑
i,j=1

aijσxi
σxj

u− 2sσs−1

n∑
i,j=1

aijσxi
uxj

+

− sσs−1

n∑
i,j=1

aijσxixj
u− σs

n∑
i=1

aiuxi
− σsau , (2.5)

from (2.4) and (2.5) we have

||σsu||W 2,p(Ω) ≤ c1

(||σsLu||Lp(Ω) + ||σsu||Lp(Ω)+ (2.6)

+
n∑

i,j=1

||σs−2σxi
σxj

u||Lp(Ω)+
n∑

i,j=1

||σs−1σxi
uxj
||Lp(Ω)+

+
n∑

i,j=1

||σs−1σxixj
u||Lp(Ω)+

n∑
i=1

||σsaiuxi
||Lp(Ω) + ||σsau||Lp(Ω)

)
,

where c1 depends on the same parameters as c0 and on s.

By Theorem 4.7 of [3], for all i = 1, ..., n we have:

||uxi
||Lp

s(Ω) ≤ c2

(
||uxx||

1
2

Lp
s(Ω)

||u||
1
2

Lp
s(Ω)

+ ||u||Lp
s(Ω)

)
, (2.7)

where c2 depends on Ω,m, n, p.
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2.1. A priori estimates

Moreover, from Corollary 1.5.2, for any ε ∈ R+ and i = 1, . . . , n there

exist c1(ε), c2(ε) ∈ R+ such that:

||aiuxi
||Lp

s(Ω) ≤ ε||u||W 2,p
s (Ω) + c1(ε)||uxi

||Lp
s(Ω) , (2.8)

||au||Lp
s(Ω) ≤ ε||u||W 2,p

s (Ω) + c2(ε)||u||Lp
s(Ω) , (2.9)

where c1(ε) depends on ε, Ω, n, p, t1,
∼
σ [ai] and c2(ε) depends on ε, Ω, n, p,

t2,
∼
σ [a].

From (2.6)-(2.9), Lemma 1.4.2 and Lemma 1.4.4, it follows

||u||W 2,p
s (Ω) ≤ c3

(||Lu||Lp
s(Ω) + ||u||Lp

s(Ω) + ε||u||W 2,p
s (Ω)+ (2.10)

+c3(ε)(||uxx||
1
2

Lp
s(Ω)

||u||
1
2

Lp
s(Ω)

+ ||u||Lp
s(Ω))

)
,

where c3 depends on the same parameters as c0 and on s,m, and c3(ε)

depends on ε, Ω, n, p, t1, t2,
∼
σ [ai],

∼
σ [a].

For ε = 1
2c3

, from (2.10) we have

||u||W 2,p
s (Ω) ≤ c4

(||Lu||Lp
s(Ω) + ||u||Lp

s(Ω) + ||uxx||
1
2

Lp
s(Ω)

||u||
1
2

Lp
s(Ω)

)
, (2.11)

where c4 depends on the same parameters as c3 and on t1, t2,
∼
σ [ai],

∼
σ [a].

Using Young's inequality and (2.11), we get the result. ut

Now we carry on displaying a priori bound in which there is a bounded
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Chapter 2. The Dirichlet problem in G(Ω) - weighted Sobolev
spaces on unbounded domains

open set. This estimate will be useful in the sequel to state the existence

of the solution of the problem (2.1).

Add the following assumptions on the coe�cients of L and on the

weight function:

(h4)





(eij)xh
∈ M t,n−t

◦ (Ω) , with t ∈ ]2, n] , i, j, h = 1, . . . , n ,

ai ∈ M t1◦ (Ω) , i = 1, . . . , n ,

a = a′ + b, a′ ∈ M t2◦ (Ω), b ∈ L∞(Ω), b0 = ess inf
Ω

b > 0,

g0 = ess inf
Ω

g > 0 ,

lim
|x|→+∞

σx + σxx

σ
= 0 ,

where t1 and t2 are de�ned as in (h3).

Theorem 2.1.2 Suppose that assumptions (h1), (h2) and (h4) hold. Then

there are a real positive number c and a bounded open Ω1 ⊂⊂ Ω with the

cone property such that:

||u||W 2,p
s (Ω) ≤ c

(
||Lu||Lp

s(Ω) + ||u||Lp(Ω1)

)
∀ u ∈ W 2,p

s (Ω)∩ ◦
W

1,p
s (Ω),

where c and Ω1 are dependent only on n, p, Ω, ν, µ, g0, b0, t, t1, t2,

m, s, ||aij||L∞(Ω), ||eij||L∞(Ω), ||g||L∞(Ω), ||b||L∞(Ω), η[ζ2r0aij], σ0[(eij)x],

σ0[ai], σ0[a
′
].
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2.1. A priori estimates

Proof − Let u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω). By Lemma 1.4.4 we have that

σsu ∈ W 2,p(Ω)∩ ◦
W

1,p(Ω).

Applying Theorem 3.3 of [11] to the operator L0 + b, we have that there

exist a real number c0 ∈ R+ and an open bounded subset Ω0 ⊂ Ω with

the cone property such that

||σsu||W 2,p(Ω) ≤ c0

(
||(L0 + b)(σsu)||Lp(Ω) + ||σsu||Lp(Ω0)

)
,

where c0 and Ω0 are dependent on n, p, Ω, ν, µ, g0, b0, t, ||aij||L∞(Ω), ||eij||L∞(Ω),

||g||L∞(Ω), ||b||L∞(Ω), η[ζ2r0aij], σ0[(eij)x], and r0 depends on n, p, Ω, µ, g0, b0,t,

||eij||L∞(Ω), ||g||L∞(Ω), ||b||L∞(Ω), σ0[(eij)x].

Proceeding as in the proof of Theorem 2.1.1, we have

||u||W 2,p
s (Ω) ≤ c1

(||Lu||Lp
s(Ω) + ||u||Lp(Ω0)+

n∑
i,j=1

||σs−2σxi
σxj

u||Lp(Ω) +

+
n∑

i,j=1

||σs−1σxi
uxj
||Lp(Ω)+

n∑
i,j=1

||σs−1σxixj
u||Lp(Ω) +

+
n∑

i=1

||aiuxi
||Lp

s(Ω) + ||a′u||Lp
s(Ω)

)
, (2.12)

where c1 depends on the same parameters as c0 and on m, s.

From Corollary 1.5.3 and (1.6) of [50] it follows that for any ε ∈ R+

and i, j = 1, . . . , n there exist c1(ε), c2(ε), c3(ε) ∈ R+ and some bounded

open subsets Ω1(ε) ⊂⊂ Ω, Ω2(ε) ⊂⊂ Ω, Ω3(ε) ⊂⊂ Ω with the cone
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property such that

||σs−2σxi
σxj

u||Lp(Ω) ≤ ε||u||W 2,p
s (Ω) + c1(ε)||u||Lp(Ω1(ε)) , (2.13)

||σs−1σxi
uxj
||Lp(Ω) ≤ ε||u||W 2,p

s (Ω) + c2(ε)||uxj
||Lp(Ω2(ε)) , (2.14)

||σs−1σxixj
u||Lp(Ω) ≤ ε||u||W 2,p

s (Ω) + c3(ε)||u||Lp(Ω3(ε)) , (2.15)

where c1(ε), c2(ε), c3(ε), Ω1(ε), Ω2(ε), Ω3(ε) are dependent on ε, Ω, n, p,m, s.

Using again Corollary 1.5.3 and Theorem 4.7 of [3] we have that there

exist c4(ε), c5(ε) ∈ R+ and bounded open sets Ω4(ε) ⊂⊂ Ω, Ω5(ε) ⊂⊂ Ω

with the cone property such that:

||aiuxi
||Lp

s(Ω) ≤ ε||u||W 2,p
s (Ω) + c4(ε)||uxi

||Lp(Ω4(ε)) ≤ (2.16)

≤ ε||u||W 2,p
s (Ω) + c4(ε)

(||uxx||
1
2

Lp(Ω4(ε))||u||
1
2

Lp(Ω4(ε)) + ||u||Lp(Ω4(ε))

)
,

||a′u||Lp
s(Ω) ≤ ε||u||W 2,p

s (Ω) + c5(ε)||u||Lp(Ω5(ε)) , (2.17)

where c4(ε) and Ω4(ε) depend on ε, Ω, n, p, m, s, t1, σ0[ai] and c5(ε), and

Ω5(ε) depend on ε, Ω, n, p,m, s, t2, σ0[a
′].

From (2.12)-(2.17) and Young's inequality we have the result. ut

From the latter result we obtain that L : W 2,p
s (Ω) → Lp

s(Ω) is a semi-

Fredholm operator, i.e. the kernel is �nite dimensional and the range is

closed (see Theorem 5.2 of [44]).
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2.2. Tools

Let us approach introducing necessary tools to obtain existence and

uniqueness of the problem (3.1).

At �rst of all, from now on, we will focus our attention on weight

functions m in G(Ω) such that:

lim
|x|→+∞

m(x) = +∞ (2.18)

or

lim
|x|→+∞

m(x) = 0. (2.19)

Without loss of generality, we can assume that only (2.18) holds. In

fact, if the assumption (2.18) doesn't hold and then (2.19) holds we could

give again the same proofs choosing like σ the regularization function of

the function 1
m
.

2.2 Tools

Let �x a cuto� function f ∈ C∞
◦ (R+) such that

0 ≤ f ≤ 1, f(t) = 1 if t ∈ [0, 1], f(t) = 0 if t ∈ [2, +∞[. (2.20)

Then we can de�ne a sequence of functions (ζk)k∈N by

ζk : x ∈ Ω −→ f

(
σ(x)

k

)
∀k ∈ N. (2.21)
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If Ωk = {x ∈ Ω : σ(x) < k }, we easily have, for every k ∈ N, that

0 ≤ ζk ≤ 1, ζk = 1 on Ωk, ζk = 0 on Ω \ Ω2k, ζk ∈ C∞
◦ (Ω). (2.22)

Now we can show that suitably combining the functions ζk and σ,

we can determine a sequence of functions (ηk)k∈N, whose elements play

a fundamental role in the sequel.

Let us de�ne, for every k ∈ N,

ηk(x) = 2k ζk(x) + (1− ζk(x))σ(x), x ∈ Ω. (2.23)

Simple calculations show that

σ(x) ≤ ηk(x), if x ∈ Ω2k (2.24)

ηk(x) ≤ (1 + ck)σ(x), if x ∈ Ω2k (2.25)

σ(x) = ηk(x), if x ∈ Ω \ Ω2k, (2.26)

where ck ∈ R+ depends only on k. So for any k ∈ N, it holds that

σ ∼ ηk (2.27)

and

σs ∼ ηs
k ∀s ∈ R. (2.28)

Moreover, for every k ∈ N the following estimates about derivatives
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2.2. Tools

hold

(
(ηk)x

ηk

)
(x) =

(
(ηk)xx

ηk

)
(x) = 0, if x ∈ Ωk

(
(ηk)x

ηk

)
(x) ≤ c1

(σx

σ

)
(x), if x ∈ Ω \ Ωk

(
(ηk)xx

ηk

)
(x) ≤ c2

(
σ2

x + σσxx

σ2

)
(x), if x ∈ Ω \ Ωk,

and, more generally,

(
(ηk)x

ηk

)
(x) ≤ c3 sup

x∈Ω\Ωk

(σx

σ

)
(x) ∀x ∈ Ω (2.29)

(
(ηk)xx

ηk

)
(x) ≤ c4 sup

x∈Ω\Ωk

(
σ2

x + σ σxx

σ2

)
(x) ∀x ∈ Ω (2.30)

(2.31)

with c1, c2, c3 and c4 independent of k.

Now, we are in the position to prove the uniqueness and the exis-

tenxce of the solution of the problem (2.1). We remark that we obtain

an existence and uniqueness theorem in according to this schem: we start

stating

• the uniqueness of the solution of the G(Ω)- Dirichlet problem
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deducing it from existence and uniqueness for the same but no-

weighted problem

we carry on proving

• the existence of the solution applying the method of continuity

along a parameter by means some tools as a weighted a priori

bound, the topological isomorphism, some properties of regular-

ization function.

2.3 A uniqueness result

Let assume that Ω is an unbounded open subset of Rn, n ≥ 3, with the

uniform C1,1-regularity property. Moreover, let p ∈ ]1, +∞[ and s ∈ R.
Consider in Ω the di�erential operator

L = −
n∑

i,j=1

aij
∂2

∂xi ∂xj

+
n∑

i=1

ai
∂

∂xi

+ a (2.32)

with the following conditions on the coe�cients:

(h1)





aij = aji ∈ L∞(Ω) ∩ V MOloc(Ω̄) , i, j = 1, . . . , n ,

∃ ν > 0 :
n∑

i,j=1

aij ξi ξj ≥ ν|ξ|2 a.e. in Ω , ∀ ξ ∈ Rn ,
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2.3. A uniqueness result

there exist functions eij, i, j = 1, . . . , n, g and µ ∈ R+ such that

(h
′
2)





eij = eji ∈ L∞(Ω) , i, j = 1, . . . , n ,

(eij)xh
∈ M t,n−t

◦ (Ω) , with t ∈]2, n] , i, j, h = 1, . . . , n ,
n∑

i,j=1

eijξiξj ≥ µ|ξ|2 a.e. in Ω , ∀ ξ ∈ Rn ,

g ∈ L∞(Ω) , g0 = ess inf
Ω

g > 0 , g ∈ Lip(Ω) ,

lim
r→+∞

n∑
i,j=1

||eij − g aij||L∞(Ω\Br) = 0 ,

(h
′
3)





ai ∈ M t1◦ (Ω) , i = 1, . . . , n ,

a = a′ + b , a′ ∈ M t2◦ (Ω) , b ∈ L∞(Ω) , b0 = ess inf
Ω

b > 0 ,

a0 = ess inf
Ω

a > 0 ,

where

t1 > n if p ≤ n , t1 = p if p > n ,

t2 > n/2 if p ≤ n/2 , t2 = p if p > n/2 .

Adding the following assumption on the weight function

(h′4) lim
k→+∞

sup
Ω\Ωk

σx + σxx

σ
= 0 ,
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we can prove our uniqueness theorem.

Theorem 2.3.1 Assume (h1) � (h
′
4) true. Then the problem





u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω)

Lu = 0

(2.33)

has only the zero solution.

Proof − From Theorem 4.3 of [11] and from the bounded inverse the-

orem (see Theorem 3.8 of [44]), there exists c1 ∈ R+ such that

||u||W 2,p(Ω) ≤ c1||Lu||Lp(Ω) ∀u ∈ W 2,p(Ω)∩ ◦
W

1,p(Ω) . (2.34)

Fix u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω). Since ηs

ku ∈ W 2,p(Ω)∩ ◦
W1,p(Ω) ∀k ∈ N (see

Lemma 3.4 of [4]), from (2.34) then there exists c2 ∈ R+, independent of

u and k, such that

||ηs
k u||W 2,p(Ω) ≤ c2||L(ηs

ku)||Lp(Ω). (2.35)

For simplicity, in the sequel, we will write ηk = η. Since

L(ηsu) = ηsLu− s

n∑
i,j=1

aij

(
(s− 1)ηs−2ηxi

ηxj
u + ηs−1ηxixj

u +

+ 2ηs−1ηxi
uxj

)
+ s

n∑
i=1

aiη
s−1ηxi

u , (2.36)
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2.3. A uniqueness result

from (2.35) and (2.36) we have:

||ηs u||W 2,p(Ω) ≤ c3

(
||ηs Lu||Lp(Ω) +

n∑
i,j=1

(||ηs−2ηxi
ηxj

u||Lp(Ω) +

+ ||ηs−1ηxixj
u||Lp(Ω) + ||ηs−1ηxi

uxj
||Lp(Ω)

)
+

+
n∑

i=1

||aiη
s−1ηxi

u||Lp(Ω)

)
, (2.37)

where c3 ∈ R+ is independent of u and k. From Theorem 1.5.1 with

s = 0 and from (2.29) we get:

||aiη
s−1ηxi

u||Lp(Ω) ≤ c4 sup
Ω\Ωk

σx

σ
||ai||Mt1 (Ω)||ηsu||W 1,p(Ω) , (2.38)

where c4 is independent of u and k.

Thus, by (2.29), (2.30), (2.37) and (2.38), with easy computations,

we obtain the bound:

||ηs u||W 2,p(Ω) ≤ c5

[
||ηs Lu||Lp(Ω) +

(
sup
Ω\Ωk

σ2
x + σ σxx

σ2
+ (2.39)

+ sup
Ω\Ωk

σx

σ

)
||ηs u||W 2,p(Ω)

]
,

where c5 is independent of u and k.

By hypothesis (h
′
4), there exists k0 ∈ N such that:

(
sup

Ω\Ωk0

σ2
x + σ σxx

σ2
+ sup

Ω\Ωk0

σx

σ

)
≤ 1

2 c5

. (2.40)
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Now, if we denote with η the function ηk0 , from (2.39) and (2.40) we

can deduce that:

||ηs u||W 2,p(Ω) ≤ c6||ηs Lu||Lp(Ω) , (2.41)

and then, using (2.28), from (2.41) we obtain that:

||u||W 2,p
s (Ω) ≤ c7||Lu||Lp

s(Ω) , (2.42)

with c6, c7 independent of u, and then the claimed result. ut

2.4 Existence results

The aim of this section is to establish some existence results concern-

ing the problem 



u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω)

Lu = f, f ∈ Lp
s(Ω).

(2.43)

We start with a lemma which we will need in the proof of our main

existence result.

Lemma 2.4.1 Let

L0 = −
n∑

i,j=1

aij
∂2

∂xi∂xj
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2.4. Existence results

and assume that (h1),(h
′
2),(h

′
4) hold. Then the Dirichlet problem





u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω)

L0u + cu = f , f ∈ Lp
s(Ω)

(2.44)

where

c = 1 +
∣∣∣− s(s + 1)

n∑
i,j=1

aij
σxi

σ

σxj

σ
+ s

n∑
i,j=1

aij

σxixj

σ

∣∣∣ , (2.45)

is uniquely solvable.

Proof − Note that u is a solution of the problem (2.44) if and only if

w = σsu is a solution of the problem





w ∈ W 2,p(Ω)∩ ◦
W1,p(Ω)

−
n∑

i,j=1

aij(σ
−sw)xixj

+ cσ−sw = f , f ∈ Lp
s(Ω) .

(2.46)

Since, for any i, j ∈ {1, . . . , n}

∂2

∂xi∂xj

(σ−sw) = σ−swxixj
− 2sσ−s−1σxi

wxj
+ s(s + 1)σ−s−2σxi

σxj
w +

− sσ−s−1σxixj
w,
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then (2.46) is equivalent to the problem





w ∈ W 2,p(Ω)∩ ◦
W

1,p(Ω)

L0w +
n∑

i=1

αiwxi
+ αw = σsf

(2.47)

where:

αi = 2s
n∑

j=1

aij

σxj

σ
, i = 1, . . . , n,

α = c− s(s + 1)
n∑

i,j=1

aij
σxi

σ

σxj

σ
+ s

n∑
i,j=1

aij

σxixj

σ
.

By Theorem 4.3 of [11], (1.6) of [50] and (1.24), we obtain that (2.47) is

uniquely solvable and then the problem (2.44) is uniquely solvable too.

ut

Theorem 2.4.2 Suppose that conditions (h1) � (h
′
4) hold. Then the

problem 



u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω)

Lu = f , f ∈ Lp
s(Ω)

(2.48)

is uniquely solvable.

Proof − For each τ ∈ [0, 1] put

Lτ = τL + (1− τ)(L0 + c) ,
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2.4. Existence results

where c is the function de�ned by (2.45). The operator

τ ∈ [0, 1] 7−→ Lτ ∈ B(W 2,p
s (Ω)∩ ◦

W
1,p
s (Ω), Lp

s(Ω))

is clearly continuous. By Theorem 5.2 of [4] and Theorem 2.3.1 we can

say that the operator Lτ has closed range and null kernel. Now, by

Lemma 4.1 of [11], there exists a positive real number c0 such that

||u||W 2,p
s (Ω) ≤ c0||Lτu||Lp

s(Ω) , (2.49)

∀u ∈ W 2,p
s (Ω)∩ ◦

W
1,p
s (Ω) , ∀τ ∈ [0, 1].

Using the Lemma 2.4.1, the problem





u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω)

L0u + cu = f , f ∈ Lp
s(Ω)

(2.50)

is uniquely solvable.

Therefore, this latter result and the estimate (2.49) allow to use the

method of continuity along a parameter (see, e.g., Theorem 5.2 of [23])

in order to prove that the problem





u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω)

Lu = f , f ∈ Lp
s(Ω)

(2.51)

is likewise uniquely solvable. The proof is now complete. ut
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Chapter 3

The Dirichlet problem in G(Ω) -

weighted Sobolev spaces on

unbounded domains of the plane

Here, we deal with existence and uniqueness results for solution of the

Dirichlet problem weighted with G(Ω) - functions in unbounded domains

of the plane. Actually, we consider the following Dirichlet problem:





u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω) ,

Lu = f , f ∈ Lp
s(Ω) ,

(3.1)

where s ∈ R, p ∈ ]1, +∞[, W 2,p
s (Ω),

◦
W 1,p

s (Ω) and Lp
s(Ω) are suitable

weighted Sobolev spaces on an unbounded domains in R2. Our �rst

purpose is to collect the recent contributions to the W 2,p− solvability in
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3.1. W 2,p - solvability in bounded planar
domains

domains in R2, bounded as well unbounded, for any value of p in the

range ]1, +∞[, of the no weighted problem:





u ∈ W 2,p(Ω)∩ ◦
W1,p(Ω) ,

Lu = f , f ∈ Lp(Ω) ,

(3.2)

(see [15, 16, 17]).

3.1 W 2,p - solvability in bounded planar

domains

Let Ω be a bounded C1,1 - open subset of R2 and let p ∈ ]1, +∞[.

Consider in Ω the uniformly elliptic second order linear di�erential oper-

ator

L = −
2∑

i,j=1

aij
∂2

∂xi ∂xj

+
2∑

i=1

ai
∂

∂xi

+ a , (3.3)

and the following hypotheses on its coe�cients:

(h1)





aij = aji ∈ L∞(Ω) ∩ V MO(Ω), i, j = 1, 2 ,

∃ ν ∈ R+ :
2∑

i,j=1

aij(x)ξiξj ≥ ν|ξ|2 a.e. in Ω, ∀ ξ ∈ R2 ;
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spaces on unbounded domains of the plane

(H2)





ai ∈ Lr(Ω), i = 1, 2,

where r > 2 if p ≤ 2 , r = p if p > 2 ,

a ∈ Lp(Ω) .

Then, by Sobolev embedding theorem, the linear operator L de�ned in

W 2,p(Ω) attains its values into Lp(Ω) and it is bounded. Moreover, as

proved in [15], one also infers an a priori estimate, some regularity prop-

erties and the solvability result. We just list them without proofs.

Lemma 3.1.1 Under (h1) and (H2), then a positive constant c exists

such that

||u||W 2,p(Ω) ≤ c
(||Lu||Lp(Ω) + ||u||Lp(Ω)

) ∀u ∈ W 2,p(Ω)∩ ◦
W

1,p(Ω),

c depends on Ω, p, ν, ||aij||L∞(Ω), η[p(aij)], ||ai||Lr(Ω), ||a||Lp(Ω), ωr[ai],

ωp[a], where p(aij) is an extension of aij to R2 of class L∞(R2)∩V MO(R2).

Lemma 3.1.2 Under (h1) and (H2), then any solution u of the problem





u ∈ W 2,q(Ω)∩ ◦
W1,q(Ω) , with q ≤ p,

Lu ∈ Lp(Ω) ,

belongs to W 2,p(Ω).

Theorem 3.1.3 Under (h1) and (H2), if essinfΩa ≥ 0, then problem

(3.2) is uniquely solvable in W 2,p(Ω) and the solution u satis�es the a

75



3.2. W 2,p- solvability in unbounded planar
domains

priori bound

||u||W 2,p(Ω) ≤ c||f ||Lp(Ω),

with c ∈ R+ depending on Ω, p, ν, ||aij||L∞(Ω), η[p(aij)], ||ai||Lr(Ω),

||a||Lp(Ω), ωr[ai], ωp[a] and where p(aij) is the extension of aij to R2 con-

sidered in Lemma 3.1.2.

3.2 W 2,p- solvability in unbounded planar

domains

Now let Ω be an unbounded uniformly-C1,1 open set in R2 and, as

above, let p ∈ ]1, +∞[. Consider the di�erential operator L de�ned in

(3.3) and the following hypotheses on its coe�cients:

(h′1)





aij = aji ∈ L∞(Ω) ∩ V MOloc(Ω̄), i, j = 1, 2 ,

∃ ν ∈ R+ :
2∑

i,j=1

aij(x)ξiξj ≥ ν|ξ|2 a.e. in Ω, ∀ ξ ∈ R2 ;

there exist functions eij and g and a constant µ ∈ R+ s. t.

(h′′1)





eij = eji ∈ L∞(Ω) ∩ V MO(Ω) , i, j = 1, 2 ,
2∑

i,j=1

eij(x)ξiξj ≥ µ|ξ|2 a.e. in Ω, ∀ξ ∈ R2 ,

g ∈ L∞(Ω),

lim
ρ→+∞

2∑
i,j=1

||eij − g aij||L∞(Ω\Bρ) = 0;
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(H ′
2)





ai ∈ M̃ r(Ω), i = 1, 2,

where r > 2 if p ≤ 2 , r = p if p > 2 ,

a ∈ M̃p(Ω) .

We like to stress that assumptions (h′1)-(h′′1) are weaker than the one

express by (h1) above when the underlying domain Ω is unbounded, as

exhibited in Section 6 of [10].

First we report an a priori estimate for solutions to (3.2) (see [17],

Theorem 3.2), by determining suitable localizations of the stated problem

in order to apply Lemma (3.1.2).

Lemma 3.2.1 Under (h′1)-(h′′1) and (H ′
2), then there exist positive real

numbers ρ0, c such that

||u||W 2,p(Ω) ≤ c
(||Lu||Lp(Ω) + ||u||Lp(Ω)

) ∀u ∈ W 2,p(Ω)∩ ◦
W

1,p(Ω),

with c depending only on Ω, p, r, ν, µ, ||aij||L∞(Ω), ||eij||L∞(Ω), ||g||L∞(Ω),

η[p(ζ2ρ0aij)], η[p(eij)], σ̃r[ai], σ̃p[a].

Moreover, the following global regularity result holds

Lemma 3.2.2 Under (h′1)-(h′′1) and (H ′
2), if u is a solution of the prob-

lem




u ∈ W 2,q
loc (Ω̄) ∩

o

W 1,q
loc(Ω̄) ∩ Lqo(Ω), with q ∈ ]1, p], qo ∈ [1, p],

Lu ∈ Lp(Ω),
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3.2. W 2,p- solvability in unbounded planar
domains

then u belongs to W 2,p(Ω).

It is now possible to give answer to the strong solvability of (3.2). In

order to prove the uniqueness result is however necessary to handle with

a suitable maximum principle, established in [16] for arbitrary domains

of Rn, n ≥ 2. It is well known, in fact, that the classical Aleksandrov-

Bakel'man-Pucci principle requires the solution to belong to W 2,n
loc (Ω) ∩

Co(Ω).

Since in this case the assumptions on the coe�cients are much

weaker, we prefer to write them down as

(hM)





aij = aji ∈ L∞loc(Ω) ∩ V MOloc(Ω) , i, j = 1, . . . , n ,

ai ∈ Lr
loc(Ω), i = 1, . . . , n,

where r > n if p ≤ n, r = p if p > n,

a ∈ Lp
loc(Ω) ,

∃ν ∈ L∞loc(Ω) : ν(x) > 0 a.e. in Ω ,
n∑

i,j=1

aijξiξj ≥ ν(x)|ξ|2 a.e. in Ω , ∀ξ ∈ Rn ,

for any open subset E ⊂⊂ Ω , essinfEν > 0 , essinfEa > 0.

Then we mention the following result (see [16], Theorem 4.1)

Theorem 3.2.3 Let Ω be an arbitrary open set in Rn, n ≥ 2. Suppose

that p > n
2
and (hM) holds. If u is a solution of the problem

u ∈ W 2,p
loc (Ω) , Lu ≥ 0 ,
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then u does not have any positive relative maximum in Ω.

As consequence it has been deduced

Corollary 3.2.4 Under the assumption of Theorem 3.2.3, the problem





u ∈ W 2,p
loc (Ω) , Lu = 0 ,

lim
x→xo

u(x) = 0 ∀xo ∈ ∂Ω ,

lim
|x|→+∞

u(x) = 0 if Ω is unbounded,

has only the zero solution.

Hence we are now in position to show contributions to the study

of strong solvability of (3.2) in unbounded planar domains in the fol-

lowing two theorems contained in [17]. We begin with the uniqueness

result, which turns out combining the regularity property of the di�er-

ential operator L proved in Lemma (3.2.2) with the previous Corollary

(3.2.4).

Theorem 3.2.5 Assume (h′1), (H
′
2) and a ≥ a0 a.e. in Ω for some

a0 ∈ R+; if p ≤ 2, suppose also (h′′1). Then the problem

(D)





u ∈ W 2,p
loc (Ω̄) ∩W 1,p

o (Ω) ,

Lu = 0,

admits only the zero solution in Ω.
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3.2. W 2,p- solvability in unbounded planar
domains

Assuming

(h′E)





(eij)xh
, ai ∈ M r

o (Ω) , i, j, h = 1, 2 ,

where r > 2 if p ≤ 2 , r = p if p > 2 ,

a = a′ + b, where a′ ∈ Mp
o (Ω), b ∈ L∞(Ω), bo = essinfΩb > 0,

g ∈ Lip(Ω̄) , go = essinfΩg > 0 ,

we conclude establishing

Theorem 3.2.6 If (h′1), (h′E) hold and a ≥ a0 a.e. in Ω for some

a0 ∈ R+, then the Dirichlet problem

(Dp)





u ∈ W 2,p(Ω)∩ ◦
W1,p(Ω) ,

Lu = f , f ∈ Lp(Ω) ,

is uniquely solvable.

Remark 3.2.7 In order to illustrate that assumptions of Theorem 3.2.6

does not imply (aij)xh
to be into Mp

o (Ω), we sketch the following example.

Let Ω :=]−∞,∞[×]− 1, 1[ ⊂ R2. De�ne αij := 2δij and

aij := αij +
sin

(
1 + e|x|

2)

1 + |x| δij , i, j = 1, 2.

Then the functions aij verify the assumptions (h′1), (h′E), whereas (aii)xh

do not belong to Mp
o (Ω) for any p ∈ [1, +∞[ and i, h = 1, 2.
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Now, we are ready to introduce our results about W 2,p
s - solvability

on unbounded domains of the plane. At this aim, we start stating

3.3 A G(Ω) - weigthed a priori estimate

Let Ω be an unbounded open subset of R2, with the uniform C1,1-

regularity property, and let p ∈ ]1, +∞[, s ∈ R. Consider in Ω the di�er-

ential operator L (3.3) with the following conditions on the coe�cients:

(h′1)





aij = aji ∈ L∞(Ω) ∩ V MOloc(Ω̄) , i, j = 1, 2 ,

∃ ν > 0 :
2∑

i,j=1

aij ξi ξj ≥ ν|ξ|2 a.e. in Ω , ∀ ξ ∈ R2 ,

there exist functions eij, i, j = 1, 2, g and µ ∈ R+ such that

(h2)





eij = eji ∈ L∞(Ω) , (eij)xh
∈ M t

◦(Ω) , i, j, h = 1, 2 ,

2∑
i,j=1

eijξiξj ≥ µ|ξ|2 a.e. in Ω , ∀ ξ ∈ R2 ,

g ∈ L∞(Ω) , lim
r→+∞

2∑
i,j=1

||eij − g aij||L∞(Ω\Br) = 0 ,

g ∈ Lip(Ω̄) , g0 = ess inf
Ω

g > 0 ,

(h3)





ai ∈ M t
◦(Ω) , i = 1, 2 ,

a = a′ + b , a′ ∈ Mp
◦ (Ω) , b ∈ L∞(Ω) , b0 = ess inf

Ω
b > 0 ,
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3.3. A G(Ω) - weigthed a priori estimate

where

t > 2 if p ≤ 2 , t = p if p > 2 .

Let us �x m ∈ G(Ω) such that (2.18) and

(h4) lim
|x|→+∞

σx + σxx

σ
= 0

hold.

We are able to prove the following a priori estimate.

Theorem 3.3.1 Suppose that the hypotheses (h′1) - (h4) hold. Then

there are a positive constant c0 and a bounded open subset Ω0 ⊂⊂ Ω

with the cone property such that:

||u||W 2,p
s (Ω) ≤ c0

(||Lu||Lp
s(Ω) + ||u||Lp(Ω0)

)
, ∀ u ∈ W 2,p

s (Ω)∩ ◦
W

1,p
s (Ω) .

(3.4)

Proof − Notice that the boundedness of the operator L : W 2,p
s (Ω) →

Lp
s(Ω) follows from Theorem 1.5.1.

Denote by L0 the principal part of the operator, that is

L0 = −
2∑

i,j=1

aij
∂2

∂xi∂xj

.

Let us �x u ∈ W 2,p
s (Ω)∩ ◦

W 1,p
s (Ω). By means of the topological
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isomorphism (1.4.4) we have that

σsu ∈ W 2,p(Ω)∩ ◦
W

1,p(Ω) .

Applying Theorem 5.2 of [17] and the bounded inverse theorem (see

Theorem 3.8 of [44]) to the operator L0 + b, we get

||σsu||W 2,p(Ω) ≤ c1

(||(L0 + b)(σsu)||Lp(Ω)

)
,

where c1 is a constant independent of u. Using again the topological

isomorphism (1.4.4), with simple calculations, we have:

||u||W 2,p
s (Ω) ≤ c2

(
||Lu||Lp

s(Ω)+
2∑

i,j=1

(||σxi
σxj

σ−2u||Lp
s(Ω) + ||σxi

σ−1uxj
||Lp

s(Ω)+

+ ||σxixj
σ−1u||Lp

s(Ω)

)
+

2∑
i=1

||aiuxi
||Lp

s(Ω) + ||a′u||Lp
s(Ω)

)
, (3.5)

where c2 is independent of u. From Corollary 1.5.3 and (1.6) in [50] we

deduce that for any ε ∈ R+ and i, j = 1, 2 there exist c1(ε), c2(ε), c3(ε) ∈
R+ and some bounded open subsets Ω1(ε), Ω2(ε), Ω3(ε) ⊂⊂ Ω with the

cone property such that

||σxi
σxj

σ−2u||Lp
s(Ω) ≤ ε||u||W 2,p

s (Ω) + c1(ε)||u||Lp(Ω1(ε)) , (3.6)

||σxi
σ−1uxj

||Lp
s(Ω) ≤ ε||u||W 2,p

s (Ω) + c2(ε)||uxj
||Lp(Ω2(ε)) , (3.7)

||σxixj
σ−1u||Lp

s(Ω) ≤ ε||u||W 2,p
s (Ω) + c3(ε)||u||Lp(Ω3(ε)) , (3.8)
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3.3. A G(Ω) - weigthed a priori estimate

where c1(ε), c2(ε), c3(ε), Ω1(ε), Ω2(ε), Ω3(ε) are dependent only on ε, Ω, p,

m, s.

Applying again Corollary 1.5.3 we have that there exist c4(ε), c5(ε) ∈
R+ and some bounded open subsets Ω4(ε), Ω5(ε) ⊂⊂ Ω with the cone

property such that:

||aiuxi
||Lp

s(Ω) ≤ ε||u||W 2,p
s (Ω) + c4(ε)||uxi

||Lp(Ω4(ε)) , (3.9)

||a′u||Lp
s(Ω) ≤ ε||u||W 2,p

s (Ω) + c5(ε)||u||Lp(Ω5(ε)) , (3.10)

where c4(ε) and Ω4(ε) depend on ε, Ω, p, m, s, t, σ0[ai], and c5(ε) and Ω5(ε)

depend on ε, Ω, p, m, s, t, σ0[a
′].

Combining the above estimates (3.5) - (3.10), we obtain

||u||W 2,p
s (Ω) ≤ c3

(
||Lu||Lp

s(Ω) + ε||u||W 2,p
s (Ω)+

+ c6(ε)
(||u||Lp(Ω6(ε)) + ||ux||Lp(Ω6(ε))

))
, (3.11)

where c3 is independent of u, c6(ε) and Ω6(ε) depend only on ε, Ω, p, m, s,

t, σ0[ai], σ0[a
′].

On the other hand, by the Gagliardo - Nirenberg inequality

||ux||Lp(Ω6(ε)) ≤ c7(ε)
(
||uxx||

1
2

Lp(Ω6(ε))||u||
1
2

Lp(Ω6(ε)) + ||u||Lp(Ω6(ε))

)
, (3.12)

with c7(ε) ∈ R+ dependent on ε, Ω and p. So (3.11), (3.12) and (1.20)

lead to:
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||u||W 2,p
s (Ω) ≤ c3

(
||Lu||Lp

s(Ω) + ε||u||W 2,p
s (Ω)+

+ c8(ε)(||uxx||
1
2

Lp
s(Ω6(ε))

||u||
1
2

Lp
s(Ω6(ε))

+ ||u||Lp(Ω6(ε)))
)

, (3.13)

with c8(ε) ∈ R+ dependent on ε, Ω, p, m, s, t, σ0[ai], σ0[a
′].

Now, if we choose ε = 1
2c3

and use the Young's inequality, from (3.13)

we get the result. ut
Now, we can display

3.4 W 2,p
s -solvability on unbounded domains

of the plane

We begin this section with the uniqueness theorem for the homoge-

neous Dirichlet problem in the plane.

Theorem 3.4.1 Suppose that the hypotheses (h
′
1) - (h4) hold. Then the

problem 



u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω)

Lu = 0 ,

(3.14)

has only the zero solution.

Proof − The proof is similar to that given in 2.3.1, taking into account

to apply Theorem 5.2 in [17] in place of Theorem 4.3 in [11]. ut
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3.4. W 2,p
s -solvability on unbounded domains

of the plane

Lemma 3.4.2 Assume that (h4) is true. Then the Dirichlet problem





u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω) ,

−∆u + cu = f , f ∈ Lp
s(Ω) ,

(3.15)

where

c = 1 +
∣∣∣− s(s + 1)

2∑
i=1

σ2
xi

σ2
+ s

2∑
i=1

σxixi

σ

∣∣∣ , (3.16)

is uniquely solvable.

Proof − Note that u is a solution of the problem (3.15) if and only if

w = σsu is a solution of the problem





w ∈ W 2,p(Ω)∩ ◦
W1,p(Ω) ,

−
2∑

i=1

(σ−sw)xixi
+ cσ−sw = f , f ∈ Lp

s(Ω) .
(3.17)

Since, for any i ∈ {1, 2}

(σ−sw)xixi
= σ−swxixi

− 2sσ−s−1σxi
wxi

+ s(s + 1)σ−s−2σ2
xi

w +

− sσ−s−1σxixi
w ,

then (3.17) is equivalent to the problem





w ∈ W 2,p(Ω)∩ ◦
W

1,p(Ω) ,

−∆w +
n∑

i=1

αiwxi
+ αw = σsf ,

(3.18)
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where

αi = 2s
σxi

σ
, i = 1, 2 ,

α = c− s(s + 1)
2∑

i=1

σ2
xi

σ2
+ s

2∑
i=1

σxixi

σ
.

By Theorem 5.2 of [17], (1.6) of [50] and (1.24), we obtain that (3.18) is

uniquely solvable and then the problem (3.15) is uniquely solvable too.

ut

The obtained results up to here allow to prove the existence and

uniqueness theorem for the solution of the Dirichlet problem in the plane.

Theorem 3.4.3 Suppose that the conditions (h′1) - (h4) hold. Then the

problem 



u ∈ W 2,p
s (Ω)∩ ◦

W1,p
s (Ω) ,

Lu = f , f ∈ Lp
s(Ω) ,

(3.19)

is uniquely solvable.

Proof − For each τ ∈ [0, 1] we put

Lτ = τL + (1− τ)(−∆ + c) ,

where c is the function de�ned by (3.16). From Theorem 1.5.1 the oper-

ator

τ ∈ [0, 1] 7−→ Lτ ∈ B(W 2,p
s (Ω)∩ ◦

W
1,p
s (Ω), Lp

s(Ω))

is continuous. By Theorem 3.3.1 we can say that the operator Lτ has

closed range and by Theorem 3.4.1 it has the kernel null. Then, applying
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3.4. W 2,p
s -solvability on unbounded domains

of the plane

Lemma 4.1 of [11], there exists a positive real number c1 such that

||u||W 2,p
s (Ω) ≤ c1||Lτu||Lp

s(Ω) , (3.20)

∀u ∈ W 2,p
s (Ω)∩ ◦

W
1,p
s (Ω) , ∀τ ∈ [0, 1] .

Therefore, Lemma 3.4.2 and the estimate (3.20) allow to use the

method of continuity along a parameter (see, e.g., Theorem 5.2 of [23])

in order to prove that the problem (3.19) is uniquely solvable. ut
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Chapter 4

The Dirichlet problem in C2(Ω) -

weighted Sobolev spaces

In this chapter, we obtain some a priori bounds in W 2,2 space for a

class of uniformly elliptic second order di�erential operators, before in a

no weighted case after in a C2(Ω) weighted case. We deduce a uniqueness

and existence theorem for the associated Dirichlet weighted problem on

unbounded domains of Rn, n ≥ 2,





u ∈ W 2,2
s (Ω)∩ ◦

W1,2
s (Ω) ,

Lu = f , f ∈ L2
s(Ω) ,

(4.1)

where s ∈ R, W 2,2
s (Ω),

◦
W 1,2

s (Ω) and L2
s(Ω) are weighted Sobolev spaces

where the weight ρs is power of a function ρ : Ω̄ → R+, of class C2(Ω̄).
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4.1. A no weighted a priori bound

4.1 A no weighted a priori bound

We want to prove a W 2,2-bound for an uniformly elliptic second order

linear di�erential operator.

Let us start proving an useful lemma. For reader's convenience, we

recall here some results proved in [14], adapted to our needs.

Lemma 4.1.1 If Ω is an open subset of Rn having the cone property and

g ∈ M r,λ(Ω), with r > 2 and λ = 0 if n = 2, and r ∈]2, n] and λ = n− r

if n > 2, then

u −→ g u (4.2)

is a bounded operator from W 1,2(Ω) to L2(Ω). Moreover, there exists a

constant c ∈ R+, such that

‖g u‖L2(Ω) ≤ c ‖g‖Mr,λ(Ω) ‖u‖W 1,2(Ω) , (4.3)

with c = c (Ω, n, r).

Furthermore, if g ∈ M̃ r,λ(Ω), then for any ε > 0 there exists a constant

cε ∈ R+, such that

‖g u‖L2(Ω) ≤ ε ‖u‖W 1,2(Ω) + cε‖u‖L2(Ω), (4.4)

with cε = cε(ε, Ω, n, r,
∼
σr,λ[ g]). If g ∈ M t,µ(Ω), with t ≥ 2 and µ > n−2t,

then the operator in (4.2) is bounded from W 2,2(Ω) to L2(Ω). Moreover,
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there exists a constant c′ ∈ R+, such that

‖g u‖L2(Ω) ≤ c′ ‖g‖M t,µ(Ω) ‖u‖W 2,2(Ω) , (4.5)

with c′ = c′(Ω, n, t, µ).

Furthermore, if g ∈ M̃ t,µ(Ω), then for any ε > 0 there exists a constant

c′ε ∈ R+, such that

‖g u‖L2(Ω) ≤ ε ‖u‖W 2,2(Ω) + c′ε‖u‖L2(Ω), (4.6)

with c′ε = c′ε(ε, Ω, n, t, µ,
∼
σ t,µ[ g]).

Proof − The proof easily follows from Theorem 3.2 and Corollary 3.3

of [14]. ut

From now on we assume that Ω is an unbounded open subset of

Rn, n ≥ 2, with the uniform C1,1-regularity property.

We consider the di�erential operator

L = −
n∑

i,j=1

aij
∂2

∂xi ∂xj

+
n∑

i=1

ai
∂

∂xi

+ a , (4.7)

with the following conditions on the coe�cients:

(h1)





aij = aji ∈ L∞(Ω), i, j = 1, . . . , n ,

∃ ν > 0 :
n∑

i,j=1

aij ξi ξj ≥ ν|ξ|2 a.e. in Ω , ∀ ξ ∈ Rn ,
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4.1. A no weighted a priori bound

(h2)





(aij)xj
, ai ∈ M r,λ

o (Ω) , i, j = 1, . . . , n ,

with r > 2 and λ = 0 if n = 2 ,

with r ∈]2, n] and λ = n− r if n > 2 ,

(h3)





a ∈ M̃ t,µ(Ω) , with t ≥ 2 and µ > n− 2t ,

ess inf
Ω

a = a0 > 0.

We explictly observe that under the assumptions (h1) - (h3) the operator

L : W 2,2(Ω) → L2(Ω) is bounded, as a consequence of Lemma 4.1.1. We

are now in position to prove the above mentioned a priori estimate.

Theorem 4.1.2 Let L be de�ned in (4.7). Under hypotheses (h1)-(h3),

there exists a constant c ∈ R+ such that

‖u‖W 2,2(Ω) ≤ c‖Lu‖L2(Ω), ∀u ∈ W 2,2(Ω)∩ ◦
W

1,2(Ω) , (4.8)

with c = c(Ω, n, ν, r, t, µ, ||aij||L∞(Ω), σo
r,λ[(aij)xj

], σo
r,λ[ai],

∼
σ t,µ[a], a0).

Proof − Let us put

L0 = −
n∑

i,j=1

aij
∂2

∂xi ∂xj

and �x u ∈ W 2,2(Ω)∩ ◦
W1,2(Ω). Lemma 1 being true, Lemma 3.1 of [17]

(for n = 2) and Theorem 5.1 of [14] (for n > 2) apply, so that there exists
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a constant c1 ∈ R+ such that

‖u‖W 2,2(Ω) ≤ c1(‖L0u‖L2(Ω) + ‖u‖L2(Ω)),

with c1 = c1(Ω, n, ν, ||aij||L∞(Ω), σo
r,λ[(aij)xj

]). Therefore,

‖u‖W 2,2(Ω) ≤ c1(‖Lu‖L2(Ω) + ‖u‖L2(Ω)+

∑n
i=1 ‖aiuxi

‖L2(Ω) + ‖au‖L2(Ω)).

(4.9)

On the other hand, from Lemma 4.1.1 one has





‖aiuxi
‖L2(Ω) ≤ ε‖u‖W 2,2(Ω) + cε‖uxi

‖L2(Ω),

‖au‖L2(Ω) ≤ ε‖u‖W 2,2(Ω) + c′ε‖u‖L2(Ω),

(4.10)

with cε = cε(ε, Ω, n, r, σo
r,λ[ai]) and c′ε = c′ε(ε, Ω, n, t, µ,

∼
σ t,µ[a]).

Furthermore, classical interpolation results give that there exists a con-

stant K ∈ R+ such that

‖ux‖L2(Ω) ≤ Kε‖u‖W 2,2(Ω) +
K

ε
‖u‖L2(Ω), (4.11)

with K = K(Ω). Combining (4.9), (4.10) and (4.11) we conclude that
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there exists c2 ∈ R+ such that

‖u‖W 2,2(Ω) ≤ c2(‖Lu‖L2(Ω) + ‖u‖L2(Ω)), (4.12)

with c2 = c2(Ω, n, ν, r, t, µ, ||aij||L∞(Ω), σo
r,λ[(aij)xj

], σo
r,λ[ai],

∼
σ t,µ[a]).

To show (4.8) it remains to estimate ‖u‖L2(Ω). To this aim let us

rewrite our operator in divergence form

Lu = −
n∑

i,j=1

(aijuxi
)xj

+
n∑

i=1

( n∑
j=1

(aij)xj
+ ai

)
uxi

+ au , (4.13)

in order to adapt to our framework some known results concerning opera-

tors in variational form. Following along the lines the proofs of Theorem

4.3 of [49] (for n = 2) and of Theorem 4.2 of [52] (for n > 2), with op-

portune modi�cations - we explicitly observe that the continuity of the

bilinear form associated to (4.13) in our case is an immediate consequence

of Lemma 4.1.1 - we obtain that

‖u‖L2(Ω) ≤ c3‖Lu‖L2(Ω), (4.14)

with c3 = c3(n, ν, r, σo
r,λ[(aij)xj

], σo
r,λ[ai], a0). Putting together (4.12) and

(4.14) we obtain (4.8).

The W 2,2-bound obtained in Theorem 4.8 allows us to show an a

priori estimate in the weighted case. At this aim, let us introduce the

following
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Let us consider the class of Ck(Ω̄) - weight functions, as in section

1.3, with k = 2. Let be a weight ρ : Ω̄ → R+, ρ ∈ C2(Ω̄) and such that

(1.9) is satis�ed (for k = 2). Moreover, we assume that

lim
|x|→+∞

(
ρ(x) +

1

ρ(x)

)
= +∞ and lim

|x|→+∞
ρx(x) + ρxx(x)

ρ(x)
= 0. (4.15)

An example of a function verifying our hypotheses is given by

ρ(x) = (1 + |x|2)t, t ∈ R\{0}.

We associate to ρ a function σ de�ned by





σ = ρ if ρ → +∞ for |x| → +∞,

σ =
1

ρ
if ρ → 0 for |x| → +∞.

(4.16)

Clearly σ veri�es (1.9) and

lim
|x|→+∞

σ(x) = +∞, lim
|x|→+∞

σx(x) + σxx(x)

σ(x)
= 0. (4.17)

Now, let us �x a cuto� function f ∈ C∞
◦ (R̄+) such that

0 ≤ f ≤ 1, f(t) = 1 if t ∈ [0, 1], f(t) = 0 if t ∈ [2, +∞[.
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Then, set

ζk : x ∈ Ω̄ −→ f

(
σ(x)

k

)
, k ∈ N

and

Ωk = {x ∈ Ω : σ(x) < k }, k ∈ N. (4.18)

By our de�nition it follows that ζk ∈ C∞
◦ (Ω̄) and

0 ≤ ζk ≤ 1, ζk = 1 on Ωk, ζk = 0 on Ω \ Ω2k, k ∈ N.

Finally, we introduce the sequence

ηk : x ∈ Ω̄ −→ 2k ζk(x) + (1− ζk(x))σ(x), k ∈ N.

For any k ∈ N, one has

ηk = ζk(2k − σ) + σ ≥ σ in Ω2k, (4.19)

ηk ≤ 2k + σ ≤
( 2k

infΩ2k
σ

+ 1
)
σ = (ck + 1)σ in Ω2k, (4.20)

ηk = σ in Ω \ Ω2k, (4.21)

where ck ∈ R+ depends only on k. This entails that

σ ∼ ηk, ∀k ∈ N. (4.22)
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Concerning the derivatives, easy calculations give that, for any k ∈ N,

(ηk)x = (ηk)xx = 0 in Ωk, (4.23)

(ηk)x = σx, (ηk)xx = σxx in Ω \ Ω2k, (4.24)

(ηk)x ≤ c1σx, (ηk)xx ≤ c2

(
σ2

x

σ
+ σxx

)
in Ω2k \ Ωk, (4.25)

with c1 and c2 positive constants independent of x and k.

From (4.19), (4.21), (4.23), (4.24) and (4.25), we obtain, for any

k ∈ N,

(ηk)x

ηk

≤ c′1
σx

σ
in Ω, (4.26)

(ηk)xx

ηk

≤ c′2
σ2

x + σσxx

σ2
in Ω, (4.27)

where c′1 and c′2 are positive constants independent of x and k.

Combining (4.23), (4.26) and (4.27) we have also, for any k ∈ N,

(ηk)x

ηk

≤ c′1 sup
Ω\Ωk

σx

σ
in Ω, (4.28)

(ηk)xx

ηk

≤ c′2 sup
Ω\Ωk

σ2
x + σσxx

σ2
in Ω. (4.29)

We conclude this section proving the following lemma:

Lemma 4.2.1 Let σ and Ωk, k ∈ N, be de�ned by (4.16) and (4.18),
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respectively. Then

lim
k→+∞

sup
Ω\Ωk

σx(x) + σxx(x)

σ(x)
= 0. (4.30)

Proof − Set

ϕ(x) =
σx(x) + σxx(x)

σ(x)
, x ∈ Ω̄

and

ψk = sup
Ω\Ωk

ϕ, k ∈ N.

By the second relation in (4.17) the supremum of ϕ over Ω\Ωk is actually

a maximum, thus, for every k ∈ N, there exists xk ∈ Ω\Ωk such that

ψk = ϕ(xk).

To prove (4.30) we have to show that limk→+∞ ψk = 0.

We proceed by contradiction. Hence, let us assume that there exists

ε0 > 0 such that, for any k ∈ N, there exists nk > k such that ψnk
=

ϕ(xnk
) ≥ ε0.

If the sequence (xnk
)k∈N is bounded, there exists a subsequence (x′nk

)k∈N

converging to a limit x ∈ Ω̄, and by the continuity of σ, (σ(x′nk
))k∈N con-

verges to σ(x). On the other hand, x′nk
∈ Ω\Ωk, thus σ(x′nk

) ≥ nk, which

is in contrast with the fact that (σ(x′nk
))k∈N is a convergent sequence.

Therefore (xnk
)k∈N is unbounded, so that there exists a subsequence

(x′′nk
)k∈N such that limk→+∞ |x′′nk

| = +∞. Thus, by the second relation

in (4.17) one has limk→+∞ ϕ(x′′nk
) = 0. This gives the contradiction since

ϕ(x′′nk
) ≥ ε0. ut
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4.3 A weighted a priori bound

Now, we are in the position to state a W 2,2
s (Ω̄)- a priori bound for an

uniformly elliptic second order linear di�erential operator.

Theorem 4.3.1 Let L be de�ned in (4.7). Under hypotheses (h1)-(h3),

there exists a constant c ∈ R+ such that

‖u‖W 2,2
s (Ω) ≤ c‖Lu‖L2

s(Ω), ∀u ∈ W 2,2
s (Ω)∩ ◦

W
1,2
s (Ω) , (4.31)

with c = c(Ω, n, s, ν, r, t, µ, ||aij||L∞(Ω), ||ai||Mr,λ(Ω), σo
r,λ[(aij)xj

], σo
r,λ[ai],

∼
σ t,µ[a], a0).

Proof − Fix u ∈ W 2,2
s (Ω)∩ ◦

W 1,2
s (Ω) . In the sequel, for sake of sim-

plicity, we will write ηk = η, for a �xed k ∈ N. Observe that η satis�es

(1.9), as a consequence of (4.26) and (4.27), so that Lemma 1.3.6 applies

giving that ηsu ∈ W 2,2(Ω)∩ ◦
W 1,2(Ω) . Therefore, in view of Theorem

4.1.2, there exists c0 ∈ R+, such that

||ηs u||W 2,2(Ω) ≤ c0||L(ηsu)||L2(Ω), (4.32)
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with c0 = c0(Ω, n, ν, r, t, µ, ||aij||L∞(Ω), σo
r,λ[(aij)xj

], σo
r,λ[ai],

∼
σ t,µ[a], a0).

Easy computations give

L(ηsu) = ηsLu− s

n∑
i,j=1

aij

(
(s− 1)ηs−2ηxi

ηxj
u + ηs−1ηxixj

u +

+ 2ηs−1ηxi
uxj

)
+ s

n∑
i=1

aiη
s−1ηxi

u. (4.33)

Putting together (4.32) and (4.33) we deduce that

||ηs u||W 2,2(Ω) ≤ c1

(
||ηs Lu||L2(Ω) +

n∑
i,j=1

(||ηs−2ηxi
ηxj

u||L2(Ω) +

+ ||ηs−1ηxixj
u||L2(Ω) + ||ηs−1ηxi

uxj
||L2(Ω)

)
+

+
n∑

i=1

||aiη
s−1ηxi

u||L2(Ω)

)
, (4.34)

where c1 ∈ R+ depends on the same parameters as c0 and on s.

On the other hand, from Lemma 4.1.1 and (4.28) we get

||aiη
s−1ηxi

u||L2(Ω) ≤ c2 sup
Ω\Ωk

σx

σ
||ai||Mr,λ(Ω)||ηsu||W 1,2(Ω), (4.35)
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with c2 = c2(Ω, n, r). Combining (4.28), (4.29), (4.34) and (4.35), with

simple calculations we obtain the bound

||ηs u||W 2,2(Ω) ≤ c3

[
||ηs Lu||L2(Ω) +

(
sup
Ω\Ωk

σ2
x + σ σxx

σ2
+ (4.36)

+ sup
Ω\Ωk

σx

σ

)
||ηs u||W 2,2(Ω)

]
,

where c3 depends on the same parameters as c1 and on ‖ai‖Mr,λ(Ω).

By Lemma 4.2.1, it follows that there exists ko ∈ N such that

(
sup

Ω\Ωko

σ2
x + σ σxx

σ2
+ sup

Ω\Ωko

σx

σ

)
≤ 1

2 c3

. (4.37)

Now, if we still denote by η the function ηko , from (4.36) and (4.37)

we deduce that

||ηs u||W 2,2(Ω) ≤ 2c3||ηs Lu||L2(Ω). (4.38)

Then, by Lemma 1.3.3 and by (4.22), written for k = ko, we have

∑

|α|≤2

||σs∂αu||L2(Ω) ≤ c4||σsLu||L2(Ω), (4.39)

with c4 depending on the same parameters as c3 and on ko.

This last estimate being true for every s ∈ R, we also have

∑

|α|≤2

||σ−s∂αu||L2(Ω) ≤ c5||σ−sLu||L2(Ω). (4.40)
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4.4. Uniqueness and existence results

The bounds in (4.39) and (4.40) together with the de�nition (4.16) of σ,

give estimate (4.3.1). ut

4.4 Uniqueness and existence results

This section is devoted to the proof of the solvability of the Dirichlet

problem (4.1).

Lemma 4.4.1 The Dirichlet problem





u ∈ W 2,2
s (Ω)∩ ◦

W1,2
s (Ω) ,

−∆u + bu = f , f ∈ L2
s(Ω) ,

(4.41)

where

b = 1 +
∣∣∣− s(s + 1)

n∑
i=1

σ2
xi

σ2
+ s

n∑
i=1

σxixi

σ

∣∣∣ ,

is uniquely solvable.

Proof − Observe that u is a solution of problem (4.41) if and only if

w = σsu is a solution of the problem





w ∈ W 2,2(Ω)∩ ◦
W1,2(Ω) ,

−∆(σ−sw) + bσ−sw = f , f ∈ L2
s(Ω) .

(4.42)
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Clearly, for any i ∈ {1, · · · , n},

∂2

∂x2
i

(σ−sw) = σ−swxixi
−2sσ−s−1σxi

wxi
+s(s+1)σ−s−2σ2

xi
w−sσ−s−1σxixi

w,

then (4.42) is equivalent to the problem





w ∈ W 2,2(Ω)∩ ◦
W1,2(Ω) ,

−∆w +
∑n

i=1 αiwxi
+ αw = g , g ∈ L2(Ω) ,

(4.43)

where

αi = 2s
σxi

σ
, i = 1, · · · , n, α = b−s(s+1)

n∑
i=1

σ2
xi

σ2
+s

n∑
i=1

σxixi

σ
, g = σsf .

Using Theorem 5.2 in [17] (for n = 2), Theorem 4.3 of [11] (for n > 2),

(1.6) of [50] and the hypotheses on σ, we obtain that (4.43) is uniquely

solvable and then problem (4.41) is uniquely solvable too. ut

Theorem 4.4.2 Let L be de�ned in (4.7). Under hypotheses (h1) � (h3),

the problem 



u ∈ W 2,2
s (Ω)∩ ◦

W1,2
s (Ω) ,

Lu = f , f ∈ L2
s(Ω) ,

(4.44)

is uniquely solvable.
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Proof − For each τ ∈ [0, 1] we put

Lτ = τ(L) + (1− τ)(−∆ + b) .

In view of Theorem 4.3.1

||u||W 2,2
s (Ω) ≤ c||Lτu||Lp

s(Ω),

∀u ∈ W 2,2
s (Ω)∩ ◦

W
1,2
s (Ω) , ∀τ ∈ [0, 1] .

Thus, taking into account the result of Lemma 4.4.1 and using the

method of continuity along a parameter (see, e.g., Theorem 5.2 of [23]),

we obtain the claimed result. ut
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