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Abstract - GRK5 is a multifunctional protein that is 
able to move within the cell in response to various 
stimuli to regulate key intracellular signaling from 
receptor activation, on plasmamembrane, to gene 
transcription, in the nucleus. Thus, GRK5 is 
involved in the development and progression of 
several pathological conditions including cancer. 
Several reports underline the involvement of GRK5 
in the regulation of tumor growth even if they appear 
controversial. Indeed, depending on its subcellular 
localization and on the type of cancer, GRK5 is able 
to both inhibit cancer progression, through the 
desensitization of GPCR and non GPCR-receptors 
(TSH, PGE2R, PDGFR), and induce tumor growth, 
acting on non-receptor substrates (p53, AUKA and 
NPM1). All these findings suggest that targeting 
GRK5 could be an useful anti-cancer strategy, for 
specific tumor types. In this review, we will discuss 
the different effects of this kinase in the induction 
and progression of tumorigenesis, the molecular 
mechanisms by which GRK5 exerts its effects, and 
the potential therapeutic strategies to modulate them.  
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I. INTRODUCTION 

 
GRKs (G-protein-coupled- receptor kinases) are a 
family of serine/threonine kinases traditionally 
known for their ability to recognize and 
phosphorylate agonist-activated G-protein-coupled 
receptors (GPCRs), leading to their desensitization 
[1]. In particular, the agonist-dependent 
conformational change of the receptor renders the 
latter available for GRK-mediated-phosphorylation, 
leading to G-protein-uncoupling, to the increase of 
GPCR affinity for arrestins and clathrin-dependent 

receptor internalization [2]. In this manner, GRKs 
act as crucial negative regulators of a variety of 
GPCRs, including adrenergic receptors, muscarinic 
receptors, dopamine, opioid and chemokine 
receptors [3-6]. Seven subtypes of GRKs (GRK1–7) 
have been identified to date, subdivided into three 
groups depending on sequence homology: rhodopsin 
kinases or visual GRK subfamily (GRK1 and 
GRK7), the β-adrenergic receptor kinases subfamily 
(GRK2/GRK3) and the GRK4 subfamily (GRK4, 
GRK5 and GRK6) [1, 7, 8]. GRKs share a common 
basic structural architecture [1], characterized by a 
well-conserved central catalytic domain (∼270 aa), a 
variable-length carboxyl-terminal domain (∼105–
230 aa) and an N-terminal domain (∼185 aa) which 
includes a Regulator of G protein Signaling 
Homology (RH) domain [8, 9]. Several studies 
demonstrate that the expression and activity of 
GRKs are impaired in many pathological conditions 
[10-12]. Although GRKs are highly selective for 
agonist activated GPCRs, others substrates have 
been identified in the last decade. Indeed, GRKs are 
able to phosphorylate non-GPCR receptors, such as 
PDGF-receptor [13], and non–receptor substrates, 
such as tubulin, synucleins, the β-subunit of the 
epithelial Na+ channel, insulin receptor substrate 1 
(IRS-1), NF-kB inhibitor (IkBα), and others soluble 
substrates [14-18]. Moreover, GRKs regulate 
intracellular signaling also in a phosphorylation-
independent manner, through the direct interaction 
with a variety of proteins involved in cellular 
signaling and trafficking [19-21]. Thus GRKs are 
multifunctional proteins able to regulate key cellular 
processes, from receptor activation to nuclear 
transcription [22], in different cellular compartments 
[23-25] , due to their ability to move within the cell 
in response to stimuli [25, 26].  
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II. G-PROTEIN COUPLED RECEPTOR KINASE 
5 
 

Among GRKs, GRK5 is one of the most studied 
since it is involved in several pathologic conditions 
[27-29]. Indeed, GRK5 is up-regulated in failing 
human myocardium [29-31], and its over-expression 
in the heart reduced cardiac β-AR responsiveness 
[32, 33]. Several reports underline the involvement 
of GRK5 in the regulation of glucose metabolism 
[30, 34, 35]. Indeed, it has been shown that, the 
overexpression of GRK5 enhances the 
internalization of Glucagon Receptor, a GPCR that 
mediates hyperglycaemic effects of glucagon in 
Diabetes [36, 37]. Accordingly, GRK5 gene deletion 
in mice, leads to impaired glucose tolerance and 
insulin sensitivity [30]. GRK5 attenuates 
atherosclerosis through multiple cell type-specific 
mechanisms including desensitization of Tyrosine 
Kinase receptors, such as macrophage CSF-1R, and 
the SMC platelet-derived growth factor receptor-β 
(PDGFR) [28]. Several reports show that GRK5 is 
also involved in Parkinson disease, due to its ability 
to phosphorylate the α-synuclein, modulating 
dopamine-up-take [38, 39]. 
GRK5 effects on the regulation of intracellular 
signaling depend on cell type, stimuli, and kinase 
localization within the cell. GRK5 binds to cellular 
membranes through C-terminal polybasic domain 
and an N-terminal phosphatidyl- inositol -4-5-
bisphosphate (PIP2) binding site [40, 41]. While 
GRK2 and GRK3 are primarily cytoplasmic and are 
targeted to plasma membrane by binding Gβγ 
subunits through their C-terminal pleckstrin 
homology domain, GRK5 constitutively binds 
phospholipids and displays preferential membrane 
localization [19]. However, GRK5 is also able to 
localize into the nucleus, through means of 
functional nuclear localization sequence (NLS), that 
allows the kinase to enter the nucleus and bind DNA 
in vitro [24]. Such nuclear localization is regulated 
by intracellular calcium levels. Indeed, the activation 
of M3MR increases intracellular calcium levels and 
activates the calcium sensor protein, CaM, which on 
turn binds the N-terminal domain of GRK5 
promoting its nuclear export [24].  
GRK5 shuttles between the cytosol and the nucleus 
and regulates the activities of transcription factors at 
different levels. Indeed, GRK5 phosphorylates 
histone deacetylase 5 (HDAC5), a repressor of 
myocyte enhancer factor 2 (MEF2), leading to 
nuclear export of HDAC5 and activation of MEF2 
transcription activity, in cardiac hypertrophy [42]. 
Moreover, in a model of Parkinson disease, the 
nuclear accumulation of GRK5 inhibits gene 

transcription of apoptosis regulator bcl-2, probably 
increasing HDAC activity [43].  
Moreover, GRK5 regulates the activity of the 
transcription factor NFκB [44]. Since it binds the 
inhibitory protein of NFκB, IκBα, by means of the 
RH domain (GRK5-RH) and stabilize the complex 
IκBα/NFκB in the nucleus, thus inhibiting NFκB 
transcriptional activity. The intracardiac injection of 
an adenovirus encoding the N-terminal domain of 
GRK5, AdGRK5-NT, reduces left ventricular 
hypertrophy by inhibiting NFB-dependent 
hypertrophic gene expression [45]. Furthermore, 
Hullmann et al. showed that GRK5, acting in a 
kinase independent manner, is a facilitator of NFAT 
activity [46]. All this findings suggest that GRK5, 
trafficking within the cell, regulates key cellular 
processes that are involved in the development and 
progression of several pathological conditions.  
GRK5, in addition to the above described roles in 
the cytoplasm and recently discovered activities in 
the nucleus, is now also reported herein to be 
functionally localized to centrosomes [47]. The 
localization of this kinase within the centrosome 
suggests another way by which GRKs can affect 
cellular processes. 
 

III. ROLE OF GRK5 IN CANCER 
 

It’s known that the oncogenic phenotype derives 
from diverse genetic alterations that cause 
constitutive activation or a loss of function of 
proteins, such as the loss of allelic heterozygosity 
[48, 49]. Importantly, chromosome translocation of 
the 10q24 region has been specifically observed in 
several tumors, such as thyroid adenoma and glioma 
[50], suggesting that alteration of some genes in this 
region could affect the development of tumors. 
Since GRK5 maps on chromosome 10, at q24 region 
[51], it is likely that alteration of GRK5 gene, could 
be involved in certain thyroid or glia tumors. Several 
reports underline the involvement of GRK5 in the 
regulation of tumor growth. However, the effectS of 
GRK5 on cancer cell proliferation are controversial 
depending on its subcellular localization and on the 
type of cancer. In this review, we discuss these 
different effects of GRK5 on tumor progression, and 
the different molecular mechanisms by which GRK5 
exerts these effects. Moreover, we will debate about 
the potential therapeutic strategies for cancer 
focused on GRK5 as main target.  
 
A. GRK5 inhibits tumor growth by regulating      

GPCR signaling 
 

G protein-coupled receptors (GPCRs), the largest 
family of cell surface proteins involved in signal 



Translational Medicine @ UniSa - ISSN 2239-9747 2016, 14(6): 28-37

 

30 

transduction, have recently emerged as key 
regulators of tumor growth and metastasis [52]. 
Their role in the tumorigenic process depends on the 
specific tumor type and is due to their direct 
interaction or cross-talk with others receptors (i.e. 
EGF receptors) [52-54]. Thus, the pharmacological 
manipulation of these receptors is becoming an 
attractive goal for the development of novel 
strategies to target tumor progression and metastasis. 
In this context, it is not surprising that GRK5, could 
be a molecular target of these novel therapeutic 
strategies. Several studies show that GRK5 may be a 
negative regulator of cancer cell proliferation, 
mainly through its ability to desensitize GPCR on 
plasma membrane. Tsai et al. have shown that in 
colon cancer cells HCT116, the expression of 
Tazarotene-induced gene 1 (TIG-1), a putative 
tumor suppressor, inhibits cell proliferation by 
inducing GRK5 expression in response to PGE2 [55, 
56]. TIG1 suppresses PGE2-stimulated cell 
proliferation through inhibition of β-catenin 
pathway, and this effect is mediated by GRK5, since 
it is ameliorated by GRK5 siRNA. Moreover, the 
over-expression of GRK5 suppressed PGE2-
stimulated β-catenin activation in a dose dependent 
manner in HCT116 and DLD-1 cells (Fig.1).  
Also in thyroid cancer cells, GRK5 has negative 
effects on tumor growth, due to its ability to down-
regulate GPCRs activity, in particular TSH-receptor 
activity [57]. The TSH receptor, is a major 
determinant of thyroid function and most of  
 

 
 

Figure 1: TIG-1 inhibits PGE2-dependent cell proliferation 
through the induction of GRK5 expression 

PGE2 binds and stimulates EP2, a GPCR, that 
activates PI3K; PI3K converts PIP2 in PIP3, that 
recruits PDK1 and AKT on plasmamembrane. 
PDK1 phosphorylates and activates AKT, that 
inhibits GSK3β, blocking β-catenin degradation and 
promoting cell proliferation.  
TIG-1 induces GRK5 over-expression which on turn 
inhibits EP2, blocking its signaling transduction with 
an inhibitory effect on cell proliferation.  

the TSH effects on proliferation and differentiation 
of thyroid cells are mediated by cAMP via an 
adenylyl- cyclase-activating Gs protein [58]. Indeed, 
several thyroid cancer types (DTC) have high levels 
of cAMP compared with normal thyroid tissue 
(NTT), and it has been demonstrated that this is 
associated with a reduction of the expression of 
GRK5 gene and protein levels. The data suggest that 
GRK5 is involved in the regulation process of TSH-
stimulated cAMP response in human DTC. Thus, it 
is likely to speculate that GRK5 down-regulation of 
GPCRs could be one of the mechanisms that ensure 
a proliferative advantage to cancer cell, because the 
loss of GRK5 activity, allows the cell to escape to a 
control mechanism of the cellular growth.  
GRK5 inhibits cancer cell proliferation in the 
Kaposi’s sarcoma [59]. In tissues of patients with 
Kaposi’s sarcoma, human herpesvirus -8 (KSHV) is 
consistently present. This gamma-herpesvirus may 
be involved in the pathogenesis of primary effusion 
(or body cavity-based) lymphomas [60] and 
Kaposi’s sarcoma (KS) [61], and it contains a gene 
that encodes a G protein–coupled receptor (KSHV-
GPCR) [62]. KSHV-GPCR is constitutively 
activated and its expression stimulates cell 
proliferation and causes transformation of mouse 
fibroblasts [63, 64]. The co-expression of GRK5 
inhibits KSHV-GPCR–induced cell proliferation and 
prevents transformation of rodent fibroblasts. 
Altogether, these findings support the proof of 
concept that GRK5 inhibits tumor growth in 
different cancer cells, through the phosphorylation 
of GPCR (Fig. 2) on plasmamembrane.  
 
B. Non-GPCR receptors and tumor growth  
 
Besides GPCRs, other receptor signaling are 
involved in the development of cancer, such as 
Thirosine-kinase receptors (TRK) and Frizzled 
family receptors [65, 66]. It is known that the 
activation of these receptors is regulated by GRK5  
 

 
 
Figure 2 GRK5 inhibits tumor growth through phosphorylation 
of GPCR A) GPCRs are activated through the interaction with a 

specific ligand. The activated receptor, through G-protein, 
stimulates proliferative signaling. B-C) GRK5 interacts (B) and 
phosphorylates  (C) GPCR, promoting un-coupling of G-protein 

and inhibition of proliferative signaling. 
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in different cell types [67, 68], although it was never 
explored in cancer cells. Thus, it is likely that GRK5 
could regulate tumor growth also through the 
regulation of TRK and Frizzled receptors. This 
could be the inspiration for future studies.  
 
C. GRK5 promotes tumor growth 
 
Besides the above described inhibitory effect of 
GRK5 on tumor growth when it is located on plasma 
membrane, in other compartments GRK5 interacts 
with several intracellular molecules and modulates 
their stability and activity, thus favoring tumor 
development and progression. Here we report the 
effect of GRK5 on some of these molecules. 
 
D. GRK5 regulates p53 
 
An evidence that suggests the ability of GRK5 to 
promote tumorigenesis, is its ability to inhibits p53, 
participating to the regulation of genome integrity. 
p53 is a crucial tumor suppressor that induces cell 
cycle arrest or apoptosis in response to diverse 
stresses, and its function is regulated primarily at the 
level of protein stability through post-translational 
modifications such as phosphorylation and 
acetylation [69, 70]. It is well established that the 
misregulation of p53 level or activity compromises 
cellular apoptotic response and contributes to 
tumorigenesis [71, 72]. Chen et al have shown that 
GRK5 phosphorylates p53 at Thr-55 and promotes 
its degradation, thus inhibiting p53-mediated 
apoptosis both in vitro (Fig.3), in cultured human 
osteosarcoma cells, and in vivo [73]. In particular, 
GRK5 knockout mice show abnormal p53 levels and 
enhanced susceptibility in response to irradiation. 
These findings support an essential role of GRK5 to 
restrict p53 and protect genomic stability under 
physiological and pathological conditions. 
Moreover, this role of GRK5 was confirmed in 
humans, mice and bovines indicating that, it is 
conserved across species. How GRK5 coordinates 
with other p53 regulators in response to various  
 

 
 
Figure 3GRK5 promotes p53 degradation GRK5 interacts with 
and phosphorylates p53 leading to an increase of p53-MDM2 

interaction, which on turn induces poli-ubiquitination and 
degradation of p53. 

genotoxic stresses to maintain genomic stability 
remains to be further elucidated, but it is clear that 
GRK5 also acts as stimulator of pro-tumoral effect 
in the cell, representing a potential target to attenuate 
resistance to radiation that characterizes some types 
of cancer.  
 
E. GRK5 phosphorylates moesin  
 
Cancer metastasis involves the cell local invasion 
and migration so that detached cells from the 
primary tumor mass can colonize distant organs. 
Among the molecular mediators of cancer cell 
migration and invasion, moesin is part of ERM 
complex (Ezrin-Radixin-Moesin) that links 
membrane components to actin cytoskeleton, 
regulating cytoskeleton remodeling and cell 
adhesions [74, 75]. Altered expression or 
intracellular distribution of ERMs has been linked to 
tumor metastasis. In particular, ERM proteins 
interact with membrane through an N-terminal 
FERM domain, and with actin through C-terminal 
domain. The intra-molecular interaction between 
these two domains masks several binding sites 
leading to inactivation of ERM proteins [74]. The 
phosphorylation of ERM proteins by different 
kinases interrupts this intra-molecular interaction 
and activates the ERM-complex [74]. Chakraborty at 
al demonstrated that GRK5 colocalizes with moesin 
on the plasma membrane, catalyzes its 
phosphorylation at T66 residue, and regulates 
cellular distribution of moesin promoting actin 
remodeling and, then, invasion and metastasis of 
PC3 cells (Fig.4)[76]. Moreover, in a xenograft 
model of human prostate cancer, GRK5 silencing 
reduced tumor growth, invasion and metastasis [76]. 
Taken together, these results propose GRK5 as a key 
contributor to the growth and metastasis of prostate 
cancer. 
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F. GRK5 phosphorylates nucleophosmin, NPM1 
 Cancer cells are able to escape from normal 
mechanisms of cell cycle control; indeed, many 
“oncosuppressors” are genes that act as cell cycle – 
checkpoint, such as Rb and p53. These genes, 
determine a cell cycle arrest when the cellular 
genome has accumulated irreversible damages, or 
when the extracellular environment is not conducive 
to cell replications (i.e. without 
 

 
 
Figure 4GRK5 promotes cytoskeleton remodeling inducing 
cancer cell migration and invasion. In the inactive form of 
ERM-complex, the COOH and NH domains interact, 
determining a close conformation of the complex. GRK5 
phosphorylates an ERM-component (Moesin), interrupting this 
intra-molecular interaction and activating ERM-complex. In the 
activated form of the ERM- complex, the COOH domain 
interacts with cytoskeleton while the NH domain interacts with 
plasma membrane, inducing cytoskeleton remodeling and, 
consequently, cell migration and invasion. 

growth factors). Genetic alterations that determine 
loss of function of these genes are typical of cancer 
cell [77]. Among the regulator of cell cycle 
progression in cancer, GRK5 could represent a 
candidate molecule, given its nuclear localization 
and the identification of new nuclear substrates of 
this kinase. Indeed, it has been demonstrated that in 
the nucleus GRK5 interacts with and phosphorylates 
nucleophosmin (NPM1)[78], a multifunctional 
protein involved in the regulation of cell cycle, 
centrosomal duplication and apoptosis, that is 
overexpressed in several cancer types [79]. NPM1 
function is regulated primarily through 
phosphorylation by PLK1, that leads to the 
protection from cell death [80]; Indeed, the inhibitor 
of PLK1, that induces apoptosis, is used in the 
treatment of several cancers, including esophageal 
cancer [81], neuroblastomas [82], and others [83]. 
GRK5 phosphorylates NPM1 at Ser-4, a site shared 
with PLK1, suggesting the possibility of an interplay 
between GRK5 and PLK1, in the regulation of 
NPM1. In particular GRK5-depleted cells were more 
sensitive to apoptosis induced by PLK1 inhibition, 
while cells with high GRK5 levels exhibited reduced 
sensitivity to PLK1 inhibition [78]. GRK5-
dependent regulation of cell sensitivity to PLK1 
inhibitors is an important finding with potential 
implications in combined therapies with these 

inhibitors. Indeed, it is likely to speculate that in 
subjects with higher levels of GRK5, the 
administration of PLK1 inhibitor could be 
ineffective and that therapeutic approach based on 
both PLK1 and GRK5 inhibition, could be more 
effective than PLK1 inhibition alone, in certain 
cancer types characterized by hyperactivation of 
PLK1- signaling.  
Several other reports support the association 
between GRK5 activity and cell cycle regulation. In 
particular in Hela cells, breast cancer cells and also 
in non-trasformated cells, GRK5 localizes in 
centrosomes during interphase and promotes G2/M 
transition thus affecting cell cycle progression [47]. 
The knock down of GRK5 leads to G2/M arrest, 
even if the mechanism through which GRK5 exerts 
this effect is not clear yet.  
 

IV. TARGETING GRK5 AS POTENTIAL 
THERAPEUTIC STRATEGY FOR CANCER 

 
The regulation of the expression and activity of 
GRKs has yielded promising results in the treatment 
of multiple diseases, from heart failure and diabetes 
to cancer and inflammatory diseases, in several 
animal models and cell culture systems [17, 25, 84, 
85]. Given these findings, a selective inhibitor of 
GRK2 has been synthesized and tested both in 
cardiovascular diseases and tumors [18, 86-88]. On 
the opposite, whereas its inhibition strongly 
correlates with cardiac protection or regression of 
some tumors, to date no available specific inhibitors 
have been designed and synthesized for GRK5. To 
date, only one inhibitor of GRK5 has been recently 
reported [89], the amlexanox, that directly binds the 
active site of the kinase in a manner that mimics the 
adenine ring of ATP, and significantly inhibits 
MEF2 transcriptional activity, in association with 
the inhibition of GRK5 in cells. However, this 
inhibitor is not strictly selective for GRK5, and it 
has not been tested in cancer yet. It could be useful 
to synthesize specific inhibitor of GRK5 for the 
treatment of those tumors characterized, for 
instance, by low levels of the pro-apoptotic protein 
p53, to promote cell cycle arrest and apoptosis.  
On the opposite, given the anti-tumoral effect of 
GRK5 acting on GPCRs, the induction of GRK5 
levels could be the effective strategy for the 
treatment of GPCR-dependent tumors. Several 
compounds are available that induce CREB activity 
[90], a transcription factor that regulate the 
expression of several genes, including GRK5 gene. 
Thus the use of these compounds could be effective 
to induce GRK5 expression in cancer.  
Little is known about the nuclear effects of GRK5 in 
cancer. It is likely that GRK5 could enter the 
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nucleus and regulate the activity of transcription 
factors which on turn induce the expression of pro- 
and anti-apoptotic genes. It has been shown that 
GRK5 inhibits HDAC5 in the nucleus, promoting 
MEF2 expression in cardiac myocytes [22, 42]. 
Given the main role of this enzymes in cancer 
progression and the use of HDAC inhibitors as anti-
cancer drugs [91, 92], it could be interesting to 
evaluate such phenomenon also in tumor cells. 
An innovative strategy has been proposed that is 
specific for cancer and is based on a competitive 
interaction with GRK5 cytosolic substrates rather 
than inhibition of its activity, the TAT-RH peptide 
[93]. TAT-RH binds IBα, the inhibitory protein of 
NFB, thus stabilizing IBα– NFB complex and 
blocking NFB transcriptional activity. In cultured 
tumor cells, different dosages of TAT-RH reduced 
cell survival and increased apoptosis. In BALB/c 
mice, the anti-proliferative effects of TAT-RH 
appear to be dose-dependent and highest dose 
completely inhibits tumor growth. Thus, TAT-RH is 
a promising compound for the treatment of those 
tumors which are NFB dependent [94]. 
 

V. CONCLUSIONS AND FUTURE 
PROSPECTIVE 

 
GRK5 is a multifunctional protein that is able to 
move within the cell in response to various stimuli to 
regulate key intracellular signaling from receptor 
activation, on plasmamembrane, to gene transcription, 
in the nucleus. Thus, GRK5 is involved in the 
development and progression of several pathological 
conditions such as cardiac hypertrophy and failure, 
diabetes and cancer.  
The proof of concept that GRK5 is involved in the 
regulation of cancer progression derives from the 
discovery that GRK5 was part of a subset of gene 
targets required for mitotic progression in human 
cancer cells. However, its role in tumor growth is 
still complex and ambiguous, since GRK5 exerts 
opposite effects, depending on tumor cell type and 
kinase localization within the cell. Indeed, when the 
kinase is localized at plasma membrane, it often 
exerts an anti-tumoral effect, attenuating growth-
associated pathway through its ability to desensitize 
GPCR and non GPCR-receptors (TSH, PGE2R, 
PDGFR). On the contrary, when GRK5 moves to 
others compartments, such as cytosol and nucleus, it 
promotes tumor growth acting on non receptor- 
substrates, such as p53, AUKA and NPM1.  
Given these different effects of GRK5 on tumor 
growth, targeting GRK5 could be an useful anti-
cancer strategy, for specific tumor types. In this 
context, further studies will be needed to better 
define the nuclear effects of GRK5 and the 

possibility to regulate its subcellular localization in 
order to regulate its functions within the tumor cell 
as necessary.    
 

REFERENCES 

[1] J. A. Pitcher, N. J. Freedman, and R. J. 
Lefkowitz, "G protein-coupled receptor kinases," Annu 
Rev Biochem, vol. 67, pp. 653-92, 1998. 
[2] E. Reiter and R. J. Lefkowitz, "GRKs and beta-
arrestins: roles in receptor silencing, trafficking and 
signaling," Trends Endocrinol Metab, vol. 17, pp. 159-65, 
May-Jun 2006. 
[3] M. Tiberi, S. R. Nash, L. Bertrand, R. J. 
Lefkowitz, and M. G. Caron, "Differential regulation of 
dopamine D1A receptor responsiveness by various G 
protein-coupled receptor kinases," J Biol Chem, vol. 271, 
pp. 3771-8, Feb 16 1996. 
[4] R. R. Gainetdinov, L. M. Bohn, J. K. Walker, S. 
A. Laporte, A. D. Macrae, M. G. Caron, R. J. Lefkowitz, 
and R. T. Premont, "Muscarinic supersensitivity and 
impaired receptor desensitization in G protein-coupled 
receptor kinase 5-deficient mice," Neuron, vol. 24, pp. 
1029-36, Dec 1999. 
[5] I. Aramori, S. S. Ferguson, P. D. Bieniasz, J. 
Zhang, B. Cullen, and M. G. Cullen, "Molecular 
mechanism of desensitization of the chemokine receptor 
CCR-5: receptor signaling and internalization are 
dissociable from its role as an HIV-1 co-receptor," EMBO 
J, vol. 16, pp. 4606-16, Aug 1 1997. 
[6] C. Doll, F. Poll, K. Peuker, A. Loktev, L. Gluck, 
and S. Schulz, "Deciphering micro-opioid receptor 
phosphorylation and dephosphorylation in HEK293 
cells," Br J Pharmacol, vol. 167, pp. 1259-70, Nov 2012. 
[7] M. Oppermann, M. Diverse-Pierluissi, M. H. 
Drazner, S. L. Dyer, N. J. Freedman, K. C. Peppel, and R. 
J. Lefkowitz, "Monoclonal antibodies reveal receptor 
specificity among G-protein-coupled receptor kinases," 
Proc Natl Acad Sci U S A, vol. 93, pp. 7649-54, Jul 23 
1996. 
[8]   J. M. Willets, R. A. Challiss, and S. R. Nahorski, 
"Non-visual GRKs: are we seeing the whole picture?," 
Trends Pharmacol Sci, vol. 24, pp. 626-33, Dec 2003. 
[9] R. B. Penn, A. N. Pronin, and J. L. Benovic, 
"Regulation of G protein-coupled receptor kinases," 
Trends Cardiovasc Med, vol. 10, pp. 81-9, Feb 2000. 
[10] R. Gros, J. L. Benovic, C. M. Tan, and R. D. 
Feldman, "G-protein-coupled receptor kinase activity is 
increased in hypertension," J Clin Invest, vol. 99, pp. 
2087-93, May 1 1997. 
[11] M. Ungerer, M. Bohm, J. S. Elce, E. Erdmann, 
and M. J. Lohse, "Altered expression of beta-adrenergic 
receptor kinase and beta 1-adrenergic receptors in the 
failing human heart," Circulation, vol. 87, pp. 454-63, 
Feb 1993. 
[12] M. S. Lombardi, A. Kavelaars, P. M. Cobelens, 
R. E. Schmidt, M. Schedlowski, and C. J. Heijnen, 
"Adjuvant arthritis induces down-regulation of G protein-
coupled receptor kinases in the immune system," J 
Immunol, vol. 166, pp. 1635-40, Feb 1 2001. 



Translational Medicine @ UniSa - ISSN 2239-9747 2016, 14(6): 28-37

 

34 

[13] K. L. Hildreth, J. H. Wu, L. S. Barak, S. T. 
Exum, L. K. Kim, K. Peppel, and N. J. Freedman, 
"Phosphorylation of the platelet-derived growth factor 
receptor-beta by G protein-coupled receptor kinase-2 
reduces receptor signaling and interaction with the 
Na(+)/H(+) exchanger regulatory factor," J Biol Chem, 
vol. 279, pp. 41775-82, Oct 1 2004. 
[14] C. V. Carman, T. Som, C. M. Kim, and J. L. 
Benovic, "Binding and phosphorylation of tubulin by G 
protein-coupled receptor kinases," J Biol Chem, vol. 273, 
pp. 20308-16, Aug 7 1998. 
[15] A. N. Pronin, A. J. Morris, A. Surguchov, and J. 
L. Benovic, "Synucleins are a novel class of substrates for 
G protein-coupled receptor kinases," J Biol Chem, vol. 
275, pp. 26515-22, Aug 25 2000. 
[16] I. H. Lee, S. H. Song, C. R. Campbell, S. Kumar, 
D. I. Cook, and A. Dinudom, "Regulation of the epithelial 
Na+ channel by the RH domain of G protein-coupled 
receptor kinase, GRK2, and Galphaq/11," J Biol Chem, 
vol. 286, pp. 19259-69, Jun 3 2011. 
[17] M. Ciccarelli, J. K. Chuprun, G. Rengo, E. Gao, 
Z. Wei, R. J. Peroutka, J. I. Gold, A. Gumpert, M. Chen, 
N. J. Otis, G. W. Dorn, 2nd, B. Trimarco, G. Iaccarino, 
and W. J. Koch, "G protein-coupled receptor kinase 2 
activity impairs cardiac glucose uptake and promotes 
insulin resistance after myocardial ischemia," Circulation, 
vol. 123, pp. 1953-62, May 10 2011. 
[18] D. Sorriento, G. Santulli, A. Franco, E. 
Cipolletta, L. Napolitano, J. Gambardella, I. Gomez-
Monterrey, P. Campiglia, B. Trimarco, G. Iaccarino, and 
M. Ciccarelli, "Integrating GRK2 and NFkappaB in the 
Pathophysiology of Cardiac Hypertrophy," J Cardiovasc 
Transl Res, Jul 30 2015. 
[19] P. Penela, C. Ribas, and F. Mayor, Jr., 
"Mechanisms of regulation of the expression and function 
of G protein-coupled receptor kinases," Cell Signal, vol. 
15, pp. 973-81, Nov 2003. 
[20] K. Lorenz, M. J. Lohse, and U. Quitterer, 
"Protein kinase C switches the Raf kinase inhibitor from 
Raf-1 to GRK-2," Nature, vol. 426, pp. 574-9, Dec 4 
2003. 
[21] S. Liu, R. T. Premont, C. D. Kontos, S. Zhu, and 
D. C. Rockey, "A crucial role for GRK2 in regulation of 
endothelial cell nitric oxide synthase function in portal 
hypertension," Nat Med, vol. 11, pp. 952-8, Sep 2005. 
[22] Y. Zhang, S. J. Matkovich, X. Duan, J. I. Gold, 
W. J. Koch, and G. W. Dorn, 2nd, "Nuclear effects of G-
protein receptor kinase 5 on histone deacetylase 5-
regulated gene transcription in heart failure," Circ Heart 
Fail, vol. 4, pp. 659-68, Sep 2011. 
[23] A. Fusco, G. Santulli, D. Sorriento, E. Cipolletta, 
C. Garbi, G. W. Dorn, 2nd, B. Trimarco, A. Feliciello, 
and G. Iaccarino, "Mitochondrial localization unveils a 
novel role for GRK2 in organelle biogenesis," Cell 
Signal, vol. 24, pp. 468-75, Feb 2012. 
[24] L. R. Johnson, M. G. Scott, and J. A. Pitcher, "G 
protein-coupled receptor kinase 5 contains a DNA-
binding nuclear localization sequence," Mol Cell Biol, 
vol. 24, pp. 10169-79, Dec 2004. 
[25] D. Sorriento, A. Fusco, M. Ciccarelli, A. Rungi, 
A. Anastasio, A. Carillo, G. W. Dorn, 2nd, B. Trimarco, 

and G. Iaccarino, "Mitochondrial G protein coupled 
receptor kinase 2 regulates proinflammatory responses in 
macrophages," FEBS Lett, vol. 587, pp. 3487-94, Nov 1 
2013. 
[26] J. I. Gold, J. S. Martini, J. Hullmann, E. Gao, J. 
K. Chuprun, L. Lee, D. G. Tilley, J. E. Rabinowitz, J. 
Bossuyt, D. M. Bers, and W. J. Koch, "Nuclear 
translocation of cardiac G protein-Coupled Receptor 
kinase 5 downstream of select Gq-activating hypertrophic 
ligands is a calmodulin-dependent process," PLoS One, 
vol. 8, p. e57324, 2013. 
[27] Z. Suo, A. A. Cox, N. Bartelli, I. Rasul, B. W. 
Festoff, R. T. Premont, and G. W. Arendash, "GRK5 
deficiency leads to early Alzheimer-like pathology and 
working memory impairment," Neurobiol Aging, vol. 28, 
pp. 1873-88, Dec 2007. 
[28] J. H. Wu, L. Zhang, A. C. Fanaroff, X. Cai, K. C. 
Sharma, L. Brian, S. T. Exum, S. K. Shenoy, K. Peppel, 
and N. J. Freedman, "G protein-coupled receptor kinase-5 
attenuates atherosclerosis by regulating receptor tyrosine 
kinases and 7-transmembrane receptors," Arterioscler 
Thromb Vasc Biol, vol. 32, pp. 308-16, Feb 2012. 
[29] N. Dzimiri, C. Basco, A. Moorji, B. Afrane, and 
Z. Al-Halees, "Characterization of lymphocyte beta 2-
adrenoceptor signalling in patients with left ventricular 
volume overload disease," Clin Exp Pharmacol Physiol, 
vol. 29, pp. 181-8, Mar 2002. 
[30] L. Wang, M. Shen, F. Wang, and L. Ma, "GRK5 
ablation contributes to insulin resistance," Biochem 
Biophys Res Commun, vol. 429, pp. 99-104, Dec 7 2012. 
[31] Z. M. Huang, J. I. Gold, and W. J. Koch, "G 
protein-coupled receptor kinases in normal and failing 
myocardium," Front Biosci (Landmark Ed), vol. 16, pp. 
3047-60, 2011. 
[32] E. P. Chen, H. B. Bittner, S. A. Akhter, W. J. 
Koch, and R. D. Davis, "Myocardial function in hearts 
with transgenic overexpression of the G protein-coupled 
receptor kinase 5," Ann Thorac Surg, vol. 71, pp. 1320-4, 
Apr 2001. 
[33] H. A. Rockman, D. J. Choi, N. U. Rahman, S. A. 
Akhter, R. J. Lefkowitz, and W. J. Koch, "Receptor-
specific in vivo desensitization by the G protein-coupled 
receptor kinase-5 in transgenic mice," Proc Natl Acad Sci 
U S A, vol. 93, pp. 9954-9, Sep 3 1996. 
[34] Z. Xia, T. Yang, Z. Wang, J. Dong, and C. 
Liang, "GRK5 intronic (CA)n polymorphisms associated 
with type 2 diabetes in Chinese Hainan Island," PLoS 
One, vol. 9, p. e90597, 2014. 
[35] H. Li, W. Gan, L. Lu, X. Dong, X. Han, C. Hu, 
Z. Yang, L. Sun, W. Bao, P. Li, M. He, L. Sun, Y. Wang, 
J. Zhu, Q. Ning, Y. Tang, R. Zhang, J. Wen, D. Wang, X. 
Zhu, K. Guo, X. Zuo, X. Guo, H. Yang, X. Zhou, D. 
Consortium, A.-T. D. Consortium, X. Zhang, L. Qi, R. J. 
Loos, F. B. Hu, T. Wu, Y. Liu, L. Liu, Z. Yang, R. Hu, 
W. Jia, L. Ji, Y. Li, and X. Lin, "A genome-wide 
association study identifies GRK5 and RASGRP1 as type 
2 diabetes loci in Chinese Hans," Diabetes, vol. 62, pp. 
291-8, Jan 2013. 
[36] L. Krilov, A. Nguyen, T. Miyazaki, C. G. Unson, 
R. Williams, N. H. Lee, S. Ceryak, and B. Bouscarel, 
"Dual mode of glucagon receptor internalization: role of 



Translational Medicine @ UniSa - ISSN 2239-9747 2016, 14(6): 28-37

 

35 

PKCalpha, GRKs and beta-arrestins," Exp Cell Res, vol. 
317, pp. 2981-94, Dec 10 2011. 
[37] P. Shah, A. Vella, A. Basu, R. Basu, W. F. 
Schwenk, and R. A. Rizza, "Lack of suppression of 
glucagon contributes to postprandial hyperglycemia in 
subjects with type 2 diabetes mellitus," J Clin Endocrinol 
Metab, vol. 85, pp. 4053-9, Nov 2000. 
[38] P. Tarantino, E. V. De Marco, G. Annesi, F. E. 
Rocca, F. Annesi, D. Civitelli, G. Provenzano, V. 
Scornaienchi, V. Greco, C. Colica, G. Nicoletti, and A. 
Quattrone, "Lack of association between G-protein 
coupled receptor kinase 5 gene and Parkinson's disease," 
Am J Med Genet B Neuropsychiatr Genet, vol. 156B, pp. 
104-7, Jan 2011. 
[39] S. Hara, S. Arawaka, H. Sato, Y. Machiya, C. 
Cui, A. Sasaki, S. Koyama, and T. Kato, "Serine 129 
phosphorylation of membrane-associated alpha-synuclein 
modulates dopamine transporter function in a G protein-
coupled receptor kinase-dependent manner," Mol Biol 
Cell, vol. 24, pp. 1649-60, S1-3, Jun 2013. 
[40] M. M. Thiyagarajan, R. P. Stracquatanio, A. N. 
Pronin, D. S. Evanko, J. L. Benovic, and P. B. 
Wedegaertner, "A predicted amphipathic helix mediates 
plasma membrane localization of GRK5," J Biol Chem, 
vol. 279, pp. 17989-95, Apr 23 2004. 
[41] J. A. Pitcher, Z. L. Fredericks, W. C. Stone, R. T. 
Premont, R. H. Stoffel, W. J. Koch, and R. J. Lefkowitz, 
"Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced 
G protein-coupled receptor kinase (GRK) activity. 
Location, structure, and regulation of the PIP2 binding 
site distinguishes the GRK subfamilies," J Biol Chem, 
vol. 271, pp. 24907-13, Oct 4 1996. 
[42] J. S. Martini, P. Raake, L. E. Vinge, B. R. 
DeGeorge, Jr., J. K. Chuprun, D. M. Harris, E. Gao, A. D. 
Eckhart, J. A. Pitcher, and W. J. Koch, "Uncovering G 
protein-coupled receptor kinase-5 as a histone deacetylase 
kinase in the nucleus of cardiomyocytes," Proc Natl Acad 
Sci U S A, vol. 105, pp. 12457-62, Aug 26 2008. 
[43] P. Liu, X. Wang, N. Gao, H. Zhu, X. Dai, Y. Xu, 
C. Ma, L. Huang, Y. Liu, and C. Qin, "G protein-coupled 
receptor kinase 5, overexpressed in the alpha-synuclein 
up-regulation model of Parkinson's disease, regulates bcl-
2 expression," Brain Res, vol. 1307, pp. 134-41, Jan 11 
2010. 
[44] D. Sorriento, M. Ciccarelli, G. Santulli, A. 
Campanile, G. G. Altobelli, V. Cimini, G. Galasso, D. 
Astone, F. Piscione, L. Pastore, B. Trimarco, and G. 
Iaccarino, "The G-protein-coupled receptor kinase 5 
inhibits NFkappaB transcriptional activity by inducing 
nuclear accumulation of IkappaB alpha," Proc Natl Acad 
Sci U S A, vol. 105, pp. 17818-23, Nov 18 2008. 
[45] D. Sorriento, G. Santulli, A. Fusco, A. Anastasio, 
B. Trimarco, and G. Iaccarino, "Intracardiac injection of 
AdGRK5-NT reduces left ventricular hypertrophy by 
inhibiting NF-kappaB-dependent hypertrophic gene 
expression," Hypertension, vol. 56, pp. 696-704, Oct 
2010. 
[46] J. E. Hullmann, L. A. Grisanti, C. A. 
Makarewich, E. Gao, J. I. Gold, J. K. Chuprun, D. G. 
Tilley, S. R. Houser, and W. J. Koch, "GRK5-mediated 
exacerbation of pathological cardiac hypertrophy involves 

facilitation of nuclear NFAT activity," Circ Res, vol. 115, 
pp. 976-85, Dec 5 2014. 
[47] A. M. Michal, C. H. So, N. Beeharry, H. 
Shankar, R. Mashayekhi, T. J. Yen, and J. L. Benovic, "G 
Protein-coupled receptor kinase 5 is localized to 
centrosomes and regulates cell cycle progression," J Biol 
Chem, vol. 287, pp. 6928-40, Feb 24 2012. 
[48] C. Iobagiu, C. Lambert, M. Raica, S. Lima, A. 
Khaddage, M. Peoc'h, and C. Genin, "Loss of 
heterozygosity in tumor tissue in hormonal receptor genes 
is associated with poor prognostic criteria in breast 
cancer," Cancer Genet, vol. 208, pp. 135-42, Apr 2015. 
[49] S. Thiagalingam, S. Laken, J. K. Willson, S. D. 
Markowitz, K. W. Kinzler, B. Vogelstein, and C. 
Lengauer, "Mechanisms underlying losses of 
heterozygosity in human colorectal cancers," Proc Natl 
Acad Sci U S A, vol. 98, pp. 2698-702, Feb 27 2001. 
[50] S. van Zelderen-Bhola, R. Vink, J. Smit, H. 
Wessels, and H. Morreau, "Translocations 
(X;10)(p22;q24) and (1;10)(q21;q11) in a follicular 
adenoma of the thyroid without apparent involvement of 
the RET protooncogene," Cancer Genet Cytogenet, vol. 
112, pp. 178-80, Jul 15 1999. 
[51] R. T. Premont, A. D. Macrae, S. A. Aparicio, H. 
E. Kendall, J. E. Welch, and R. J. Lefkowitz, "The GRK4 
subfamily of G protein-coupled receptor kinases. 
Alternative splicing, gene organization, and sequence 
conservation," J Biol Chem, vol. 274, pp. 29381-9, Oct 8 
1999. 
[52] R. T. Dorsam and J. S. Gutkind, "G-protein-
coupled receptors and cancer," Nat Rev Cancer, vol. 7, 
pp. 79-94, Feb 2007. 
[53] T. W. Moody, B. Nuche-Berenguer, T. 
Nakamura, and R. T. Jensen, "EGFR Transactivation by 
Peptide G Protein-Coupled Receptors in Cancer," Curr 
Drug Targets, Jan 7 2015. 
[54] Y. Audigier, F. X. Picault, C. Chaves-Almagro, 
and B. Masri, "G Protein-Coupled Receptors in cancer: 
biochemical interactions and drug design," Prog Mol Biol 
Transl Sci, vol. 115, pp. 143-73, 2013. 
[55] C. C. Wu, F. M. Tsai, R. Y. Shyu, Y. M. Tsai, C. 
H. Wang, and S. Y. Jiang, "G protein-coupled receptor 
kinase 5 mediates Tazarotene-induced gene 1-induced 
growth suppression of human colon cancer cells," BMC 
Cancer, vol. 11, p. 175, 2011. 
[56] F. M. Tsai, C. C. Wu, R. Y. Shyu, C. H. Wang, 
and S. Y. Jiang, "Tazarotene-induced gene 1 inhibits 
prostaglandin E2-stimulated HCT116 colon cancer cell 
growth," J Biomed Sci, vol. 18, p. 88, 2011. 
[57] T. Metaye, E. Menet, J. Guilhot, and J. L. 
Kraimps, "Expression and activity of g protein-coupled 
receptor kinases in differentiated thyroid carcinoma," J 
Clin Endocrinol Metab, vol. 87, pp. 3279-86, Jul 2002. 
[58] G. Vassart and J. E. Dumont, "The thyrotropin 
receptor and the regulation of thyrocyte function and 
growth," Endocr Rev, vol. 13, pp. 596-611, Aug 1992. 
[59] E. Geras-Raaka, L. Arvanitakis, C. Bais, E. 
Cesarman, E. A. Mesri, and M. C. Gershengorn, 
"Inhibition of constitutive signaling of Kaposi's sarcoma-
associated herpesvirus G protein-coupled receptor by 



Translational Medicine @ UniSa - ISSN 2239-9747 2016, 14(6): 28-37

 

36 

protein kinases in mammalian cells in culture," J Exp 
Med, vol. 187, pp. 801-6, Mar 2 1998. 
[60] R. G. Nador, E. Cesarman, A. Chadburn, D. B. 
Dawson, M. Q. Ansari, J. Sald, and D. M. Knowles, 
"Primary effusion lymphoma: a distinct clinicopathologic 
entity associated with the Kaposi's sarcoma-associated 
herpes virus," Blood, vol. 88, pp. 645-56, Jul 15 1996. 
[61] M. K. Offermann, "Kaposi's sarcoma and HHV-
8," Trends Microbiol, vol. 4, p. 419, Nov 1996. 
[62] E. Cesarman, R. G. Nador, F. Bai, R. A. 
Bohenzky, J. J. Russo, P. S. Moore, Y. Chang, and D. M. 
Knowles, "Kaposi's sarcoma-associated herpesvirus 
contains G protein-coupled receptor and cyclin D 
homologs which are expressed in Kaposi's sarcoma and 
malignant lymphoma," J Virol, vol. 70, pp. 8218-23, Nov 
1996. 
[63] L. Arvanitakis, E. Geras-Raaka, A. Varma, M. C. 
Gershengorn, and E. Cesarman, "Human herpesvirus 
KSHV encodes a constitutively active G-protein-coupled 
receptor linked to cell proliferation," Nature, vol. 385, pp. 
347-50, Jan 23 1997. 
[64] C. Bais, B. Santomasso, O. Coso, L. Arvanitakis, 
E. G. Raaka, J. S. Gutkind, A. S. Asch, E. Cesarman, M. 
C. Gershengorn, and E. A. Mesri, "G-protein-coupled 
receptor of Kaposi's sarcoma-associated herpesvirus is a 
viral oncogene and angiogenesis activator," Nature, vol. 
391, pp. 86-9, Jan 1 1998. 
[65] M. K. Paul and A. K. Mukhopadhyay, "Tyrosine 
kinase - Role and significance in Cancer," Int J Med Sci, 
vol. 1, pp. 101-115, 2004. 
[66] P. Polakis, "Wnt signaling and cancer," Genes 
Dev, vol. 14, pp. 1837-51, Aug 1 2000. 
[67] J. H. Wu, R. Goswami, X. Cai, S. T. Exum, X. 
Huang, L. Zhang, L. Brian, R. T. Premont, K. Peppel, and 
N. J. Freedman, "Regulation of the platelet-derived 
growth factor receptor-beta by G protein-coupled receptor 
kinase-5 in vascular smooth muscle cells involves the 
phosphatase Shp2," J Biol Chem, vol. 281, pp. 37758-72, 
Dec 8 2006. 
[68] M. Chen, M. Philipp, J. Wang, R. T. Premont, T. 
R. Garrison, M. G. Caron, R. J. Lefkowitz, and W. Chen, 
"G Protein-coupled receptor kinases phosphorylate LRP6 
in the Wnt pathway," J Biol Chem, vol. 284, pp. 35040-8, 
Dec 11 2009. 
[69] A. J. Levine, "p53, the cellular gatekeeper for 
growth and division," Cell, vol. 88, pp. 323-31, Feb 7 
1997. 
[70] A. M. Bode and Z. Dong, "Post-translational 
modification of p53 in tumorigenesis," Nat Rev Cancer, 
vol. 4, pp. 793-805, Oct 2004. 
[71] F. Toledo and G. M. Wahl, "Regulating the p53 
pathway: in vitro hypotheses, in vivo veritas," Nat Rev 
Cancer, vol. 6, pp. 909-23, Dec 2006. 
[72] D. Sorriento, C. Del Giudice, A. Bertamino, M. 
Ciccarelli, I. Gomez-Monterrey, P. Campiglia, E. 
Novellino, M. Illario, B. Trimarco, N. De Luca, and G. 
Iaccarino, "New small molecules, ISA27 and SM13, 
inhibit tumour growth inducing mitochondrial effects of 
p53," Br J Cancer, vol. 112, pp. 77-85, Jan 6 2015. 
[73] X. Chen, H. Zhu, M. Yuan, J. Fu, Y. Zhou, and 
L. Ma, "G-protein-coupled receptor kinase 5 

phosphorylates p53 and inhibits DNA damage-induced 
apoptosis," J Biol Chem, vol. 285, pp. 12823-30, Apr 23 
2010. 
[74] M. Arpin, D. Chirivino, A. Naba, and I. 
Zwaenepoel, "Emerging role for ERM proteins in cell 
adhesion and migration," Cell Adh Migr, vol. 5, pp. 199-
206, Mar-Apr 2011. 
[75] D. J. Mackay, F. Esch, H. Furthmayr, and A. 
Hall, "Rho- and rac-dependent assembly of focal adhesion 
complexes and actin filaments in permeabilized 
fibroblasts: an essential role for ezrin/radixin/moesin 
proteins," J Cell Biol, vol. 138, pp. 927-38, Aug 25 1997. 
[76] P. K. Chakraborty, Y. Zhang, A. S. Coomes, W. 
J. Kim, R. Stupay, L. D. Lynch, T. Atkinson, J. I. Kim, Z. 
Nie, and Y. Daaka, "G protein-coupled receptor kinase 
GRK5 phosphorylates moesin and regulates metastasis in 
prostate cancer," Cancer Res, vol. 74, pp. 3489-500, Jul 1 
2014. 
[77] G. Della Porta, P. Radice, and M. A. Pierotti, 
"Onco-suppressor genes in human cancer," Tumori, vol. 
75, pp. 329-36, Aug 31 1989. 
[78] C. H. So, A. M. Michal, R. Mashayekhi, and J. 
L. Benovic, "G protein-coupled receptor kinase 5 
phosphorylates nucleophosmin and regulates cell 
sensitivity to polo-like kinase 1 inhibition," J Biol Chem, 
vol. 287, pp. 17088-99, May 18 2012. 
[79] S. Grisendi, C. Mecucci, B. Falini, and P. P. 
Pandolfi, "Nucleophosmin and cancer," Nat Rev Cancer, 
vol. 6, pp. 493-505, Jul 2006. 
[80] X. Liu and R. L. Erikson, "Polo-like kinase 
(Plk)1 depletion induces apoptosis in cancer cells," Proc 
Natl Acad Sci U S A, vol. 100, pp. 5789-94, May 13 2003. 
[81] T. Ito, F. Sato, T. Kan, Y. Cheng, S. David, R. 
Agarwal, B. C. Paun, Z. Jin, A. V. Olaru, J. P. Hamilton, 
F. M. Selaru, J. Yang, N. Matsumura, K. Shimizu, J. M. 
Abraham, Y. Shimada, Y. Mori, and S. J. Meltzer, "Polo-
like kinase 1 regulates cell proliferation and is targeted by 
miR-593* in esophageal cancer," Int J Cancer, vol. 129, 
pp. 2134-46, Nov 1 2011. 
[82] S. Ackermann, F. Goeser, J. H. Schulte, A. 
Schramm, V. Ehemann, B. Hero, A. Eggert, F. Berthold, 
and M. Fischer, "Polo-like kinase 1 is a therapeutic target 
in high-risk neuroblastoma," Clin Cancer Res, vol. 17, pp. 
731-41, Feb 15 2011. 
[83] M. Steegmaier, M. Hoffmann, A. Baum, P. 
Lenart, M. Petronczki, M. Krssak, U. Gurtler, P. Garin-
Chesa, S. Lieb, J. Quant, M. Grauert, G. R. Adolf, N. 
Kraut, J. M. Peters, and W. J. Rettig, "BI 2536, a potent 
and selective inhibitor of polo-like kinase 1, inhibits 
tumor growth in vivo," Curr Biol, vol. 17, pp. 316-22, 
Feb 20 2007. 
[84] H. A. Rockman, W. J. Koch, and R. J. 
Lefkowitz, "Seven-transmembrane-spanning receptors 
and heart function," Nature, vol. 415, pp. 206-12, Jan 10 
2002. 
[85] S. L. Belmonte and B. C. Blaxall, "G protein 
coupled receptor kinases as therapeutic targets in 
cardiovascular disease," Circ Res, vol. 109, pp. 309-19, 
Jul 22 2011. 
[86] X. Fu, S. Koller, J. Abd Alla, and U. Quitterer, 
"Inhibition of G-protein-coupled receptor kinase 2 



Translational Medicine @ UniSa - ISSN 2239-9747 2016, 14(6): 28-37

 

37 

(GRK2) triggers the growth-promoting mitogen-activated 
protein kinase (MAPK) pathway," J Biol Chem, vol. 288, 
pp. 7738-55, Mar 15 2013. 
[87] I. Gomez-Monterrey, A. Carotenuto, E. 
Cipolletta, M. Sala, E. Vernieri, A. Limatola, A. 
Bertamino, S. Musella, P. Grieco, B. Trimarco, E. 
Novellino, G. Iaccarino, and P. Campiglia, "SAR study 
and conformational analysis of a series of novel peptide G 
protein-coupled receptor kinase 2 inhibitors," 
Biopolymers, vol. 101, pp. 121-8, Jan 2014. 
[88] A. Carotenuto, E. Cipolletta, I. Gomez-
Monterrey, M. Sala, E. Vernieri, A. Limatola, A. 
Bertamino, S. Musella, D. Sorriento, P. Grieco, B. 
Trimarco, E. Novellino, G. Iaccarino, and P. Campiglia, 
"Design, synthesis and efficacy of novel G protein-
coupled receptor kinase 2 inhibitors," Eur J Med Chem, 
vol. 69, pp. 384-92, Nov 2013. 
[89] K. T. Homan, E. Wu, A. Cannavo, W. J. Koch, 
and J. J. Tesmer, "Identification and characterization of 
amlexanox as a G protein-coupled receptor kinase 5 
inhibitor," Molecules, vol. 19, pp. 16937-49, 2014. 
[90] M. Xia, R. Huang, V. Guo, N. Southall, M. H. 
Cho, J. Inglese, C. P. Austin, and M. Nirenberg, 

"Identification of compounds that potentiate CREB 
signaling as possible enhancers of long-term memory," 
Proc Natl Acad Sci U S A, vol. 106, pp. 2412-7, Feb 17 
2009. 
[91] S. Ropero and M. Esteller, "The role of histone 
deacetylases (HDACs) in human cancer," Mol Oncol, vol. 
1, pp. 19-25, Jun 2007. 
[92] R. W. Johnstone, "Histone-deacetylase 
inhibitors: novel drugs for the treatment of cancer," Nat 
Rev Drug Discov, vol. 1, pp. 287-99, Apr 2002. 
[93] D. Sorriento, A. Campanile, G. Santulli, E. 
Leggiero, L. Pastore, B. Trimarco, and G. Iaccarino, "A 
new synthetic protein, TAT-RH, inhibits tumor growth 
through the regulation of NFkappaB activity," Mol 
Cancer, vol. 8, p. 97, 2009. 
[94] D. Sorriento, M. Illario, R. Finelli, and G. 
Iaccarino, "To NFkappaB or not to NFkappaB: The 
Dilemma on How to Inhibit a Cancer Cell Fate 
Regulator," Transl Med UniSa, vol. 4, pp. 73-85, Sep 
2012. 

 

 
 

 

 

 

 


