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Abstract 
 
 
 
 

In this work, design and validation techniques of two soft sensors for the 
estimation of the motorcycle vertical dynamic have been proposed. The aim 
of this work is to develop soft sensors able to predict the rear and front stroke 
of a motorcycle suspension. This kind of information are typically used in the 
control loop of semi-active or active suspension systems. Replacing the hard 
sensor with a soft sensor, enable to reduce cost and improve reliability of the 
system. An analysis of the motorcycle physical model has been carried out to 
analyze the correlation existing among motorcycle vertical dynamic quantities 
in order to determine which of them are necessary for the development of a 
suspension stroke soft sensor. More in details, a first soft sensor for the rear 
stroke has been developed using a Nonlinear Auto-Regressive with 
eXogenous inputs (NARX) neural network. A second soft sensor for the front 
suspension stroke velocity has been designed using two different techniques 
based respectively on Digital filtering and NARX neural network. As an 
example of application, an Instrument Fault Detection (IFD) scheme, based 
on the rear stroke soft sensor, has been shown. Experimental results have 
demonstrated the good reliability and promptness of the scheme in detecting 
different typologies of faults as losing calibration faults, hold-faults, and 
open/short circuit faults thanks to the soft sensor developed. 
Finally, the scheme has been successfully implemented and tested on an ARM 
microcontroller, to confirm the feasibility of a real-time implementation on 
actual processing units used in such context.





 

XIII 

Introduction 
 
 
 
 

Today we can assist to an increasing adoption of sensors and electronic 
devices inside automobiles and motorcycles. They are widely employed in 
different types of applications like Electronic fuel injection (EFI), Antilock-
braking system (ABS), Electronic stability program (ESP), Active or 
Semi- Active suspension system and so on. 
The correct operation of each subsystem strongly depends on the reliability 
and accuracy of the sensors output involved in the control loop, therefore, it 
becomes fundamental the introduction of strategies aimed to reduce the 
number of sensors involved in it. 
As an example, one of the new most critical subsystems in the motorcycle 
context is represented by the semi-active or active suspension system, which 
compared to classical suspension systems, can change the damping coefficient 
as a function of the suspension stroke velocity, the pitch rate, and/or other 
measurements about the vertical dynamic of the motorcycle. A suspension 
system directly influences comfort and stability, ensuring the contact between 
tires and road, and at the same time isolating the vehicle frame from the road 
roughness; for these reasons, the control-strategy of a semi-active or active 
suspensions system need to be performant and reliable. 
The quantities that must be measured to have an optimal control strategy come 
out from a set of sensors typically composed by biaxial/triaxial gyroscopes, 
relative stroke sensors and longitudinal velocity sensor. More in details, the 
biaxial/triaxial gyroscopes are used to measure yaw, roll, and pitch; the stroke 
sensors are used to measure the vertical extensions and vertical compressions 
of the rear and front suspensions and the longitudinal velocity sensors are used 
to measure the motorcycle speed. The correct operation of all the sensors 
involved in the control-loop, influence the performance of a semi-active or 
active suspension system, mainly in terms of response time, control accuracy 
and stability.  
For example, the linear potentiometers are the most used sensors for linearity 
and simplicity as stroke sensors, but they suffer of wear, tear and aging higher 
than the other sensors involved in the control loop, reducing in the long run 
the performance of the system.  
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To save the efficiency and the effectiveness of the suspension control strategy 
a “Soft Sensor” could be used.  
More in details, “Soft Sensor” generally means the process of estimating any 
system or process variable by adopting mathematical models, replacing some 
physical devices, and using data acquired from some other available sensors. 
It is possible to differentiate two principal categories of soft sensors: Model-
driven and Data-driven. The first typology of soft sensors is commonly based 
on First Principle Models (FPM), they are also known as phenomenological 
models or white-box model (Fortuna, Graziani, Rizzo, & Xibilia, 2007). More 
in details, the FPMs describe the physical background of phenomena, 
calculating the value of interest thanks to these equations. This approach does 
not consider any disturbances of the ideal conditions, and it works only 
considering the ideal steady-state conditions of the model. Due to this 
motivation, other kind of soft sensor devoted to the data driven models, gained 
on popularity. The data-driven models are fully based on the data recorded 
during the phenomena and they are also called black-box models.  
For a data-driven approach, different predictive techniques are available 
ranging from statistical methods such as Principle Component Regression or 
Support Vector Machine (Zhang, Yin, & Wang, 2017) to soft computing 
methods like Artificial Neural Networks (Capriglione D. , Carratù, 
Pietrosanto, & Sommella, 2017) or Neuro-Fuzzy Systems. 
Theoretically, no explicit knowledge is needed for the development and 
management of a soft sensor based on this type of models, however, in some 
practical scenarios there is an undeniable amount of knowledge required to 
achieve adequate performance. This knowledge is usually applied to data pre-
processing and model selection. This kind of soft sensing approaches are also 
named grey-box models and it is located between the phenomenological 
models and the data-driven approaches. Wide applications can be 
accomplished by soft sensors. One of the dominant application areas of soft 
sensors is the online prediction of a quantities which cannot be measured 
directly from the sensors available in the system. For these reasons it is of 
huge interest to obtain prediction about these quantities at higher sampling 
rate and/or at lower financial burden, which is exactly the role of the soft 
sensors. This kind of soft sensor application field is commonly named On-line 
Prediction. Also, in Process Monitoring and Instrument Fault Detection (IFD) 
techniques, the use of soft sensors is important. These tasks mean to the 
detection of abnormal conditions of the observed variable and identification 
of the deviation source. The need of IFD schemes for assuring the correct 
operation of devices devoted to passenger comfort and safety is today urgent 
also in the motorcycle context.  
Soft sensors could represent a good solution successfully applied to solve 
different problems varying from an implementation of a diagnostic algorithm 
for MOSFET fault detection and identification in a DC-AC converter Class-
E2 (Catelani, et al., 2018) to the evaluation of elongation speed in a 
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motorcycle electro-hydraulic suspension using a couple of accelerometers 
(Delvecchio, Spelta, Perico, & Savaresi, 2010). 
The development of a soft sensor in the motorcycle suspension systems field, 
may be useful for multipurpose, first of all, the inferential model intended to 
reduce the measuring hardware requirements may result into a significant 
source of budget saving and increasing the control loop reliability, indeed, the 
fault probability is strongly influenced by the amount of the devices operating 
in the harsh environment. Probably, the main application of the soft sensor is 
the Sensor Validation, a particular kind of fault detection, in which the system 
to be monitored is a sensor or a set of sensors, following the 
physical/analytical redundancy-based approach typically exploited in the 
automotive safety.  
In order to estimate vertical dynamic quantities of a motorcycle, many authors 
have proposed different schemes with different aims, all based on the main 
hypothesis of the Half-Car model (Spelta, Delvecchio, & Savaresi, 2010). 
Although this model is simple and easily used, it does not allow the steering 
and the linkage nonlinear effects to be correctly estimated in terms of the 
corresponding varying wheel base and transfer load. 
Following the black and gray box approach, in this thesis two types of soft 
sensors regarding motorcycle suspension system will be presented taking into 
account the nonlinear effects previously presented: a first one, useful for the 
reconstruction of the rear suspension stroke uses a Nonlinear Auto-Regressive 
with eXogenous inputs (NARX) network and a second one, based on 
accelerometers able to estimate the front suspension stroke velocity trough 
different methods.  
An IFD scheme able to detect faults occurring on the rear stroke sensor in a 
semi-active suspension system, will be also presented. The IFD is done by 
comparing the actual sensor output with the expected one provided by the soft 
sensor developed.  
The IFD scheme will be characterized in order to evaluate the promptness and 
reliability in detecting faults introduced by open/short circuit, mechanical 
locking (hold faults) and uncalibrated sensors (due to slight variations of the 
input/output sensor curve). 
On the other hand, such application’s scenario is very challenging for both 
real time execution and on-board effective implementation of such schemes. 
Indeed, hard constraints are imposed on hardware/software solutions to be 
used mainly in terms of costs, compactness, weights, current consumption, 
electromagnetic interference issues, even if smartness and reactivity are 
demanded by control systems. For these reasons, the Thesis ends with the 
implementation on a low-cost general-purpose ARM-based microcontroller of 
the developed IFD scheme for the rear stroke sensor. 
 
 





 

 

Chapter I 
The motorcycle suspension 

systems 
 
 
 
 

Today all vehicles are equipped with a suspension system responsible to 
ensure the contact between tires and road, and at the same time isolates the 
vehicle frame from the road roughness (Cossalter V. , 2002). 
For economical reason and minor complexity, most of the commercial 
vehicles are equipped with passive suspensions; they are composed of two 
parallel elements: a shock absorber (Ks spring) and a viscous damper (C). The 
parameters about the passive suspension are fixed and chosen by the 
manufacturer in order to obtain a compromise value between the comfort and 
the handling of the vehicle. Generally, a “soft” setup aims to improve comfort, 
absorbing (and thus compensating) the roughness of the road but reducing the 
road holding due to the wide vertical oscillations of the vehicle and the 
consequent large fluctuations in the contact force between tire and road. On 
the other hand, a “hard” setup aims to guarantees better adherence reducing 
the passenger comfort due to an increase of the vertical stresses on the vehicle 
body (Gobbi & Mastinu, 2001) . 
While improving the ride comfort is achievable whit minimizing the vertical 
mass accelerations, the handling (sometimes referred to as "buoyancy 
control") can be maximized with the minimization of the fluctuations of 
contact force between tire and road, keeping the height of the sprung masses 
with respect to the ground constant, against forces of various kinds 
(aerodynamics, load transfers, etc.) that act on the body during braking, 
accelerating and cornering actions. It would be desired, that the suspensions 
were simultaneously “soft” towards the roughness of the road and “rigid” 
towards external inertial forces, but it seems clear that there are two 
conflicting specifications. A good behavior could be achieved by the adoption 
of a compromise among the two specifications. In motorsport competitions, 
cars have very stiff suspension, offering performance in terms of trim and road 
holding, but useless in everyday life. The performances reachable with passive 
suspensions are limited by the simplicity of the actuation devices and by the 
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limited number of freedom degrees. In order to obtain both the performances, 
a passive suspension system could be replaced with a semi-active or active 
suspension system (Sun & Yang, 2009). Rarely they are used on regular 
vehicle, due to the not easy control strategy and not negligible cost.  
The semi-active suspensions systems are composed, in the same way of the 
passive suspensions, by the two classical elements, but with the difference that 
there is an actuator and a related control system able to suitably change the 
damping constant coefficients of the damper. 
In the active suspension systems, in addition to the spring and the damper, 
there is a third element named actuator, able to generate an internal time-
variable force F(t) between the vehicle chassis and the wheel.  
These systems allow, through a right regulation of the impressed force, to 
stabilize the movement of the sprung masses and obtain higher performances 
with respect to passive suspension systems. The regulation in both the semi-
actives and actives suspension systems is based on the measures regarding the 
vertical dynamic of a motorcycle and a suitable control strategy (Hrovat, 
1997) . 
 
 
I.1 Physical model of the suspension systems 

In this section various physical models for passive, active and semi-active 
suspension systems have been reported. All the models presented belong to 
the class of linear systems, characterized by a low complexity usually required 
for the design of suitable control system. More complex and accurate models, 
generally strongly non-linear, can be developed and are used in practice as an 
off-line analysis and verification tool. The determination of parameter values 
is extremely problematic in complex models and, in the most cases, the 
calibration is carried out with data-driven approaches. 
Considering the class of linear systems, there are different categories of 
mathematical models and the choice depends on the purpose (analysis, 
synthesis) and on the information needed from it. As well we know, a vehicle 
is composed by a huge and complex system with a very high number of 
interacting components. (see Figure I.1). 

 
The physical models are divided into three main categories: 

 
• "Quarter-Car" models 
 
• "Half-Car" models 
 
• "Full-Car" models 
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Figure I.1 Main blocks of a vehicle 

The quarter-car model describes the vertical dynamics of a quarter of the entire 
vehicle, concentrating the analysis on a single wheel and on the relative 
suspension system. The vehicle is essentially divided into four sections that 
are modeled separately, neglecting mutual interactions. By this way, it is 
possible to study only the vertical dynamic (heave) without any possibility to 
characterize other dynamics as the roll, pitch, and yaw (see Figure I.2) (Yao 
& Zheng, 2006). In Figure I.3 a dynamic model representative of the quarter-
car scheme of a passive suspension system is depicted. 

 

 

Figure I.2 Main motions of a vehicle 
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Figure I.3 The quarter-car model 

In the half-car model, the car is seen "sideways" (see Figure I 4). The front 
wheel and the rear wheel, with the relative suspensions, are modeled in a 
coupled manner. This model allows to represent the pitch motions in addition 
to the vertical dynamic of the front and rear parts of the vehicle. 
 

 

Figure I.4 The half-car model 

In the full-car model the entire vehicle is considered. All possible vehicle 
dynamics, including roll and yaw, can be analyzed. The body is represented 
as a non-deformable parallelepiped with 6 degrees of freedom. (Figure I.5). 
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Figure I.5 The full-car model 

Considering the quarter-car model, where the single suspension is analyzed, it 
is possible to find different separated elements: 

• Elastic part; 
• Damper; 
• Mechanism that regulates their movements. 

Also, the tires exhibit a damper behavior, with respect to the vibrations 
characterized by a high frequency and low amplitude, while the suspensions 
contribute to the damping oscillations characterized by a lower frequency and 
wider amplitude as depicted in Figure I.6 (Liguori, Paciello, Paolillo, 
Pietrosanto, & Sommella, 2013).  
 

 

Figure I.6 Acceleration Power Spectrum of the motorcycle vibrations  
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About the motorcycle context, the unsprung masses are typically composed 
by all those things connected to the ground, while the sprung masses are all 
the elements placed above the suspension and rigidly fixed between them. 

 
I.1.1 The spring 

One of the elements that composes the suspension is the elastic part, also 
named spring (see Figure I.7). Its function is to store the energy coming from 
the impact against an asperity of the road surface. 

 

Figure I.7 The spring  

Considering Figure I.7 and assuming no friction between the mass and the 
plane, the equation that regulates the movements of the mass m is: 

ܨ ൌ  (I.1)  ݔ݇

where k is the stiffness constant of the spring and x is the stroke of m. Putting 
the mass m in a position different from the equilibrium, the spring will be 
charged with potential energy given by the following equation: 

E୮ ൌ
୩୶మ

ଶ
  (I.2) 

When the mass m is left free, it will tend to return to the equilibrium position; 
during the movement, the potential energy is transformed into kinetic energy 
whose expression is 

Eୡ ൌ
୫୴మ

ଶ
   (I.3) 

where v is the speed of the mass. 
Returning to the original position, all the potential energy has been 
transformed into kinetic energy and therefore the system is not yet in 
equilibrium due to inertia that will continue move the mass. 
This process, under ideal conditions, would go indefinitely following the 
following law. 

Eୡ  E୮ ൌ
୫୴మ

ଶ


୩୶మ

ଶ
ൌ cost  (I.4) 
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This phenomenon reported in Figure I.8 is an example of the "simple harmonic 
motion" whose descriptive law is: 

x ൌ x sinሺω	tሻ			 (I.5) 

in which ݔ is the amplitude of the oscillation and ω is the natural pulsation 
of the system that is related to the elastic constant of the spring and to the 
mass. 
 

 

Figure I.8 Simple harmonic motion 

If the spring is stressed with a repeated force overtime with pulsation Ω, there 
would be oscillations of different amplitudes. When the pulsation Ω matches 
with the natural pulsation ω of the system, critical conditions are reached: a 
positive trend of the oscillations amplitude leads to break the system. For the 
reason previously mentioned, a suspension composed by only the elastic 
element cannot be used. 
Therefore, an element able to reduce the number of oscillations in the slight 
time as possible, must be introduced. This aim is typically assigned to the 
damper. 
 
I.1.2 The damper 

The main function of the damper is to dissipate the energy transmitted from 
the road surface, in order to reduce the oscillation of the elastic element. In 
Figure I.9 the mass-spring system with the addition of the damper is shown. 
 

 

Figure I.9 The damper 
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The force impressed by the damper is proportional to the stroke velocity of 
the mass m according to the law: 

F ൌ cv ൌ cxሶ   (I.6) 

where F is the damping force, c is the damping constant and ݔሶ  is the velocity 
of the mass m.  
The introduction of the damper in the system, is able to transform the "simple 
harmonic motion" into a "damped harmonic motion", that is an oscillating 
motion in which the amplitude of the oscillations tends to decrease over time 
as shown in Figure I.10. 
 

 

Figure I.10 Muted harmonic motion 

 
The ideal condition would be one in which, the system stops after a single 
oscillation: this target can be achieved with a precise value of c, named critical 
damping (see Figure I.11). 
 

 

Figure I.11 Damped harmonic motion in critical damping condition 
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I.2 Passive suspension systems 

Conventional or passive suspension systems (see Figure I.12) are composed 
by a coil spring steel and a fluid damper (oil or gas); the former has the task 
of temporarily accumulate energy while the latter to dissipates it. 
 

 

Figure I.12 Passive suspension 

The "force-displacement" or "force-speed" characteristics of these types of 
suspensions are not adjustable by the user, so once fixed in the design phase, 
they remain unchangeable (spring constant ks and damper value C , see Figure 
I.13). For this reason, a trade-off between a rigid suspension which ensures 
greater road holding but paying in terms of comfort, and a soft suspension that 
reduces the vibrations coming from the road surface but reducing tightness 
especially in turns, must be selected. 
 

 

Figure I.13 Model of a passive suspension 
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It is important to specify that the suspension is never stressed by traction, 
indeed, the springs are mounted in order to be always more or less compressed 
since it is desired that the suspension does not work due to small stresses 
(typically managed by the tire). This initial compression, called preload, 
allows a degree of freedom in the vehicle setting: adjusting the preload, it is 
possible to choose between a harder or softer behavior. Note that a preload 
adjustment does not change the spring stiffness constant, therefore, with this 
adjustment, can be set the threshold after which the suspension starts to work. 
The stiffness k has been assumed constant, obtaining a relationship between 
load and linear displacement, however the springs for the suspensions are 
often fabricated in order to have an increasing k with the growth of the load. 
The preload is also important for setting the static height of the vehicle from 
the ground. 
 
I.3 Active suspension systems 

In the active suspensions, in addition to the spring and the damper, there is 
also an actuator able to generate a force F(t) variables over time among the 
sprung and the unsprung masses (see Figure I.14). 
 

 

Figure I.14 Model of an active suspension 

 
An active suspension needs several sensors to measure the dynamic of the 
vehicle, in order to give to the control system information to establish the 
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intensity of the force F(t) that must be applied to obtain the desired damping. 
This “modulation” of the damping force makes the performance of the active 
suspension better than the passive suspension, although, a perfectly accurate 
and performant actuator is required. Therefore, an active suspension is able to 
dissipate energy and inject it into the system (hence the name of "active 
suspension") through the actuator; the benefits in terms of performance are 
considerable, but there are some negative aspects: 
 

 Need of an electro-mechanical system that drives the actuators, with 
the relative accessories (collecting tanks, servo valves, amplifiers, 
etc.) (Audino, 2007) . 
  

 Need of an actuator able to provide to the sprung mass the 
"calculated" force. 

 
 Need of sensors (accelerometers, speed sensors, stroke sensors, etc.) 

 
 Need of hardware and software for the suspensions system control 

 
It follows an increase of the vehicle weight, larger consumption (also due to 
the energy need by the actuator system), higher cost and lower reliability due 
to the large number of components. Theoretically, the performance of an 
active suspensions system is limited only by the necessary power. As an 
example, it can be assumed that an active suspension system for cars needs an 
increase in power between 5 and 15 kW for each wheel and an increase in 
weight between 20 and 30 kg for each wheel (Guglielmino, Sireteanu, 
Stammers, Ghita, & Giuclea, 2008). A semi-active suspension system could 
be a compromise solution between the simplicity and low cost of a passive 
suspension system and the high performance with high cost of an active 
suspension system. 

 
I.4 Semi-active suspension systems 

Semi-active suspension system represents the best compromise among costs 
and performance, achievable from a suspension. The controllability of these 
systems come from the presence of a damper capable of modifying their 
damping characteristic in real-time. The damping change is possible 
modifying the opening of the valves, through which the oil flows, or changing 
the physical properties of the latter (viscosity). For this reason, these types of 
suspensions are named "semi-active", i.e. they do not require active power for 
the control. 
An active damper in parallel with the conventional spring, allows a controlled 
energy dissipation in real-time (see Figure I.15). 
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Figure I.15 Semi-active suspension scheme 

The main advantage of this type of suspension system is the possibility to 
change the damping without the presence of an actuator, indeed, the active 
damper is often made by a mechanical, electrical, or magnetical system that 
reacts to a feedback control system. 
It is possible to differentiate three types of semi-active suspensions, according 
to the type of phenomenon that regulates the variation of the damping 
coefficient (Acocella, Anchini, Paciello, Pietrosanto, & Sommella, 2010) : 
 

 Continuously Damping Control suspensions (CDC). 

 Electrorheological suspensions (ER). 

 Magnetorheological suspensions (MR). 

Continuously Damping Control dampers (CDC) 

The CDC damper is based on the variation of the orifices size, connecting the 
upper and lower chamber of the damper piston. 
When the suspension is excited by a road bump, the oil is forced to pass 
through the holes in the piston. The variation of the orifices section leads with 
an alteration of the viscous friction and a consequent change of the suspension 
speed. In this way, a variable stiffness of the suspension is obtained. A section 
of a CDC damper is shown in Figure I.16, where it is possible to notice the 
mechanism responsible the orifices variation. The response time for a CDC 
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suspension is approximately 30-40ms. The mechanism that acts on the orifices 
is driven by a solenoid valves, that require currents ranging from 0 to 1.5 A. 
The power required by this type of suspension is estimated at around 10 W. 
 

 

Figure I.16 CDC damper 

Electrorheological suspensions (ER). 
 
This type of suspension is characterized by the use of an electrorheological 
fluids, categorized as colloidal fluids able to change their viscosity with the 
application of an electric field perpendicular to the flow direction. The low 
cost and the fast response time make ER systems very interesting in the field 
of semi-active suspensions. 
Under the influence of a suitable electric field, the fluid changes its viscosity 
from fluid to almost solid; this phenomenon is possible thanks to the presence 
of polarizable particles immersed in a non-conducting oil. Whit respect to the 
CDC suspension, the electrorheological fluid can change its characteristics in 
above 15ms. This type of technology results to be very functional, however 
there are some modeling problems with the electrorheological fluid. 
 
Magnetorheological suspensions (MR) 

The main characteristic of a magnetorheological suspension is the particular 
fluid present inside it. This type of fluid is composed by an oil with rheological 
properties that can be altered by applying a magnetic field: a variable damping 
can be done changing this field. (Paciello & Sommella, Smart sensing and 
smart material for smart automotive damping, 2013) 
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Figure I.17 The magnetorheological fluid 

 
Magnetorheological fluids belong to the same family of electrorheological 
fluids and consist in a normal oil, enhanced with ferromagnetic microscopic 
(a few micron) particles, able to modify the internal viscosity reversibly and 
suddenly proportionally to the applied field. Without the application of a 
magnetic field, the ferromagnetic particles do not modify the classical 
newtonian behavior of the fluid; by the application of a magnetic field, the 
ferromagnetic particles arrange themselves in an ordered manner forming 
chains perpendicular to the direction of the fluid flow, opposing it and 
producing a behavior of a semi-solid fluid, able to change the stiffness of the 
suspension. Whit respect to the other types of suspensions, the 
magnetorheological fluid can change its characteristics in above 30 ns. The 
magnetorheological suspension is composed by a cylinder containing a 
floating piston, which separates the area with the magnetorheological fluid by 
the area with a gas.  
The electromagnetic coil located inside the piston is able to generate the 
magnetic field by applying an electric current ranging from 0.1 A to 2 A. 
Figure I.18 shows a double tube shock absorber with a blind piston (without 
holes) and an electromagnetic coil positioned in the upper part of the figure. 
The coil is integral with the two cylinders and when the magnetic field varies, 
them limits the passage of the magnetorheological fluid from an external 
chamber to the internal one (extension) and vice versa (compression). The gas 
present in this suspension is necessary, as well as in all suspensions, to 
compensate the volume variation due to the movement of the piston. 
Although both electrorheological and magnetorheological fluids are 
potentially excellent tools for a dynamic regulation of the stiffness in a 
suspension system, in recent years studies have focused on MR fluids since 
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they have better electro-physical properties (Paciello & Pietrosanto, 
Magnetorheological Dampers: A New Approach of Characterization, 2011). 
 

 

Figure I.18 Magnetorheological suspension 

 
 
I.5 A real case: The MAGNETO system 

During the Ph.D. , in order to the develop, test, and evaluate different soft-
sensors and an IFD scheme, a semi-active suspension system named Magneto 
System was used. Magneto was developed by SPRING OFF s.r.l., a spinoff of 
the University of Salerno in collaboration with MUPO s.r.l.  
The Magneto System was born from an idea of Gerardo Acocella, track 
engineer in the Superstock 1000 World Championship (2007-2009 with the 
Ducati Junior Team, 2010-2015 with the BMW Motorrad Italy Team, from 
2015 with Honda SBK). 
The experience in the field of electronics and digital signal processing, 
developed by the measurement laboratory of the University of Salerno, 
together with the experience gained in international motorcycle competitions 
(WSBK), has allowed the development of an electronically controlled 
suspension system for motorcycles able to adapt both to the road profile and 
to the rider's driving style (European Patent No. 2250038, 2012) . 
The Magneto system is showed in Figure I.19 and it is principally composed 
by: 
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 Electronic fork and Mono-shock (based on magnetological fluid) 
 

 Control unit 
 

 Linear potentiometers 
 

 
 

Figure I.19 The Magneto kit 

The innovative Magneto system is able to modify in real time the response of 
the suspensions using the measurement information related to the vertical 
dynamics of the vehicle. 
The control unit represents the technological solution, able to regulate in real 
time the damping characteristics of both the magnetorheological fork and 
monoshock. The control unit, thanks to the data achievable by suitable 
sensors, controls the suspension system ensuring the instant adaptation to the 
road profile and to the dynamic conditions of the bike (acceleration, braking, 
curves), in order to ensure the best set-up allowed by the pilot driving style in 
all drive conditions. 
Actually, the system developed by Spring Off is available as an aftermarket 
product for all enthusiasts who want the highest level of performance from the 
suspensions while respecting maximum safety. Furthermore, the system is 
designed to allow the continuous updating of the strategy, keeping the safety 
characteristics in the guide and reliability of the product unchanged. 
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I.5.1 Description of the MAGNETO control system 

The suspension control system is composed by several hardware elements. 
The main component is represented by a microcontroller located in the 
electronic control unit (ECU) that deals with: management and acquisition of 
the signals coming from a set of sensors and the CAN-BUS, the elaboration 
of the control strategy, and the generation of the signals for the actuator. 
There is also a data logger suitable for sniffing the traffic over CAN-BUS, 
able to store all the data exchanged among the sensors in the motorcycle 
system. The presence of a data-logger is fundamental for the storage of data 
necessary for the post-analysis. 
Only the pushed integration of all these tools, makes it possible to obtain a 
performing, innovative, and at the same time robust and reliable system. 
 

Electronic Control Unit (ECU) 
 

The control unit of the Magneto system (see Figure I.20) is a microcontroller-
based system responsible of the digital signal processing functionality. The 
firmware manages: 
 

 The acquisition from the sensors; 

 The management of the signals present on CAN bus; 

 The selection of the setup parameter; 

 The execution of the control strategy; 

 The generation of the control signal able to drive the dampers 

 

Figure I.20 ECU of the Magneto system 
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More in details, about the acquisition of the analog signals, each sensor is 
connected to an analog input of the microcontroller which use a sampling 
frequency of 1 kHz and a quantization with a variable number of bits, while 
the digital sensors are directly connected to the digital bus available on the 
microcontroller. 
The control unit is able to load the configuration setup into the control strategy 
firmware, which contain information on: 
 

 the acquisition channels (if analog, is possible to set the number of 
bits and the sampling frequency), the type of coding used, and the 
CAN channel on which this acquisition will be identified; 
  

 the calibration coefficients of the sensors and the relative units of 
measurement; 
 

 the characteristic parameters of the control strategy 
 

The processing of the control strategy consists in a suitably mixing of the 
signals coming from sensors in order to obtain an output value, which 
represents the type of damping desired. 
 
 
Data logger 
 
The MDLog (Motorbike Datalogger) is a professional microcontroller-based 
unit, able to sniff all the traffic present on the CAN bus network and acquiring 
both digital and analog signals. The main characteristics of the MDLog are: 
 

 8 GB of memory 

 4 analog channels 

 4 digital channels 

 CAN-BUS port 

 Sampling frequency up to 1 kHz. 

The MDLog is equipped with an ad-hoc software for managing and analyzing 
data. It is possible to configure which signals must be stored, the resolution 
(number of bits), the type of encoding (range and unit of measure) and the 
sampling rate.  
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Once the acquisition parameters have been programmed, data capture starts 
when the control unit is switched on. 
A suitable software allows to download the contents of the memory and 
organizes the data according to the acquisition settings; it can also mask and 
reorder data in a database and export them in different formats. 
 
I.5.2 Description of the MAGNETO damping system  

The magneto system uses the magnetorheological dampers as depicted in 
Figure I.21 and previously described. The variation of the damping coefficient 
of the suspensions is obtained thanks to the application of a magnetic field. 
The magnetic field is applied through a solenoid immersed in the 
magnetorheological fluid. 

 

Figure I.21 The Magneto suspensions 

The electrical current is provided to the coils of the two dampers thanks to a 
power amplifier, which supply power to the system. The choice of the right 
current value to be applied, depends on the model that binds the damping force 
to the injected current and to the suspension stroke velocity. The control 
strategy instantly calculates the optimal value of the damping force, which is 
converted into the current to be injected through the amplifiers (see Figure 
I.22) (Acocella, Anchini, Paciello, Pietrosanto, & Sommella, 2010). 
 

 

Figure I.22 Block Diagram of the MAGENTO driver system 

 





 

 

Chapter II 
Hard and soft sensors for the 

control of a semi-active 
suspension system 

 
 
 
 

A semi-active suspension system is a typical example of an electronic 
subsystem in the motorcycle sector; it replaces the operation of a mechanical 
subsystem with an electromechanical equivalent that can be controlled. 
To understand the basilar rules needed for the dynamic control of a semi-
active suspensions system, in the following paragraphs a description of the 
control strategy and the sensors set involved are shown. 
Searching the best behavior of the motorcycle attitude, different signals, and 
parameters regarding the status of the vertical dynamic must be monitored. To 
determine the useful information, it is important to highlight which and how 
many sensors are necessary for the acquisition of information. The model 
underlying the control rules with their relative used quantities will be shown 
in the next paragraph. 
 
 
II.1 Physical dynamics in a motorcycle system  

The motorcycle and the rider are subjected to a series of motions during the 
driving phase. More in details, during the steering, these motions allowing the 
curve to be made without falling. The motorcycle, indeed, differently from the 
car, presents only a dynamic balance without a static balance. The motorcycle 
stays in the vertical position thanks to the gyroscopic effect of the wheels and 
the corrections made by the pilot especially at low speed. The fundamental 
motions regarding the attitude of a motorcycle that allow the steering are 
mainly three: the pitch, the roll, and the yaw motions. These motions are 
generated in consequence of a phenomenon named load transfer. This 
phenomenon occurs during both the acceleration and deceleration phases of 
the motorcycle, since the braking and accelerating forces are generated at 
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ground level, therefore distant from the point where the center of gravity is 
located. So, during the phases of speed variation, moments are generated from 
the forces mentioned which tend to rotate the body of the motorcycle. 
 
 
II.1.1 Center of gravity in a motorcycle body 

 
The body center of gravity is defined as that point in which, all the weight of 
the object in question is acting. Clearly, it is an ideal concept for a motorcycle, 
since its weight is distributed in all the space occupied. However, it is an 
approximation particularly useful for obtaining good practical results. Being 
a three-dimensional body, is it possible to consider the motorcycle as a solid 
body and therefore consider, due to the good symmetry of the vehicle, the 
position of the center of gravity located approximately on the vertical 
longitudinal plane passing through the vehicle centerline. The two other 
coordinates of the center of gravity position, can be defined within the 
previously mentioned plane considering the height from the road surface h and 
the distance b from the projection, on the road surface, of the center of the rear 
wheel (see Figure II.1). 
The center of gravity position influences significantly the dynamic behavior 
of the motorcycle, particularly in the acceleration and braking phases. 
 

 

Figure II.1 Coordinates of the motorcycle center of gravity 
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II-I.2 The pitch motions 

This type of motion consists in the longitudinal lowering of the motorcycle 
front part during braking and in its consequent lifting in the acceleration phase 
as it is possible to see in Figure II.2. Indeed, a rotation is generated around the 
transverse axis passing through the vehicle center of gravity. It is easy to 
understand how this behavior, although mediated by the actions of the 
suspensions, is caused by the load transfer from one axis to another as 
consequence of a motorcycle speed variation. 
In addition to the load transfer phenomenon, the pitching is also caused by the 
steering: the rotation of the steering causes (keeping ideally the center of the 
wheel fixed) the detachment of the tire from the ground. Clearly the wheel 
will keep contact with the ground, causing a slight pitching movement. 
 

 

 

Figure II.2 Motorcycle pitch motion 

 
II.1.3 The roll motions 

The roll motion consists in the motorcycle rotation around the straight line 
connecting the contact points of the tires with the road surface (longitudinal 
axis) (see Figure II.3). The roll motion is fundamental because it allows to 
oppose at the centrifugal force when the motorcycle cornering. It is often 
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possible see in competitions, the behavior of the driver which tilts the 
motorcycle as much as possible, moving the body towards the center of the 
curve, with the intent of opposite the centrifugal force. Must be noticed that a 
roll motion cause also, a slight pitching motion. 
 

 

Figure II.3 Motorcycle roll motion 

 
II.1.4 The yaw motions 

The yaw motion determines the rotation of the motorcycle around its vertical 
barycentric axis during the steering phase (see Figure II.4). Also, this motion 
generates an inertial moment, caused by the disposition trough the 
longitudinal side of the vehicle of the masses, placed in a far position from the 
center of gravity. 

 

Figure II.4 Motorcycle yaw motion 
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II.1.5 Role of suspensions 

The suspensions have the function of absorbing the irregularities of the road 
surface, keeping the wheels in contact with the ground, minimizing the 
motorcycle vertical displacements and compensating the load variations due 
to the distribution of the "sprung" and the "unsprung" masses. The aim is to 
keep the motorcycle's attitude as constant as possible, i.e. the wheelbase 
measurements, the front chassis, and the position of the center of gravity in all 
conditions, in order to compensate all the motions of the motorcycle. 
From the efficiency of the suspension system, therefore, depends the comfort 
and the quality of the road holding. 
The suspensions, which elastically connect the wheels to the frame, must have, 
as reported in Chapter I, two separate but complementary functions: the 
springing and the damping ones. The former ensures the absorption of 
irregularities (and any load variation acting according to the plane having the 
center of gravity and the tire contact points to the ground). The latter dampens 
the movement in both directions (compression and extension) of the spring, 
avoiding rebounds and reducing oscillations; influence, in other words, the 
stroke velocity of the suspensions. 
 
 
II.2 Pitch driven control strategy 

As said previously, the suspension must keep the motorcycle's attitude 
constant, in any condition. Considering a motorcycle suspension, they can 
compensate the vertical movements of the suspended mass, varying the pitch 
angle. 
Controlling the pitch angle value in a short period to the nominal value could 
be defined as the best-work condition, but the nominal value mentioned, 
however, is not constant and it depends on many factors as: the distribution of 
loads (one passenger, two passengers, one passenger with luggage and so on), 
the speed of the motorcycle, the acceleration, the slope of the road surface, 
etc. . Therefore, it is preferable to control the pitch angle derivative, i.e. the 
pitch (Liguori, Paciello, Paolillo, Pietrosanto, & Sommella, 2014). The task 
of the suspensions must behave to oppose the pitch motion.  
A primitive control strategy could use as feedback the measure of the 
difference of the pitch from zero; the difference, being the error achieved by 
the system, can be evaluated in different ways, as: 
 

 Maximum of the absolute instantaneous error 

 Maximum of the relative instantaneous error 

 Integral of the maximum error in a certain time interval 
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 Integral of the relative error in a certain time interval 

The choice of the right criterion for the feedback calculation, depends 
significantly on the vehicle use context. In a city driving context, if the 
absolute maximum pitch error and the vertical velocity of the motorcycle are 
limited, the comfort is preferred; on the other hand, if it would be highlighted 
the sport performance, it is essential that the motorcycle keeps stable its 
attitude using as parameter for the control strategy, the integral of the relative 
error in a given time interval (Guglielmino, Sireteanu, Stammers, Ghita, & 
Giuclea, 2008) .  
However, the pitch stabilization is not always enough; for example, if the aim 
is to get a good comfort, it is important to avoid rapid vertical variations of the 
front and rear side of the motorcycle, so the strategy based on the only 
correction of the pitch in these situations could be no longer correct (Cossalter, 
Doria, Garbin, & Lot, 2006). Therefore, it would be necessary recognize 
different events and manages it appropriately, considering for example the 
velocity stroke of the suspension as parameter to be used in the control 
strategy.  
 
II.2.1 Typology of control scheme 

The suspension system can be modelled as a dynamic Multiple Inputs 
Multiple Outputs (MIMO) system in which there are many inputs and outputs. 
Considering the easy pitch strategy previously presented, the system can be 
seen as a Single Input Single Output (SISO) model: the output variable to be 
controlled is the pitch for which a measure of this parameter is required; as 
input, a mechanical force for the active suspension, or the shock absorber 
damping coefficient for the semi-active suspension, must be considered. 
The pitch control strategy can be achieved with a classic control scheme, as is 
well known from the theory of automatic controls. There are two principal 
schemes of control: open loop or closed loop; the closed loop is the 
widespread in the vast majority of systems because it has important 
advantages: 
 

 Less sensitivity to the parametric variations of the system. 

 It does not require a very deep knowledge of the system. 

 Immunity to disturbances.  

 Finer control  

 Improving of the system stability.  

 

A simple schematic of closed loop control is reported in Figure II.5 



Hard and soft sensors for the control of a semi-active suspension systems 

27 

 

Figure II.5 Example of a closed loop strategy 

Instead, in order to avoid large variations of the vertical suspension velocity, 
an open loop control that measures the front and rear vertical speeds and 
decides when bypass the pitch controller, forcing a softening of the 
suspension, could be used. 
For any control scheme a set of quantities about the vertical dynamic of the 
motorcycle must be measured. The principal quantitates are: pitch or pitch 
angle, front, and rear suspension stroke (necessary to calculate the stroke 
velocity of the suspension and reveal when the wheel rises from the ground). 
However, the roll signal, the yaw angle, the longitudinal speed of the 
motorcycle may be useful, to detect situations of poor balance of the vehicle 
and to make the grip of the motorcycle safer. 
 
 
II.3 Set of sensors needed for the control strategy 

A fundamental aspect to provide a good suspension control is the measure of 
the motorcycle dynamics. These measures take place through the use of 
several sensors (Marek, 2011), which follow the characteristic motions of a 
motorcycle. A sensor converts analog quantities into electrical signals (see 
Figure II.6). 
 

 

Figure II.6 Sensing process 

 
In particular, the pitch, the roll and the yaw motions are measured with a 
gyroscopic sensor, while stroke sensors are used to measure the vertical 
extensions of the front and rear suspended masses (Liguori, Paciello, Paolillo, 
Pietrosanto, & Sommella, 2015). Therefore, each specific sensor installed, 
provides the acquisition of each movements of interest. In the following a brief 
description of the sensors involved will be shown. 
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II.3.1 Stroke sensors 

There are many devices that can be used to measure the stroke of an object. 
For example, a modulation can be used: 
 

 The capacity between two armatures of a capacitor (capacitive 
sensors); 
 

 The mutual inductance between two windings (inductive sensors); 
 

 The partition factor of a potentiometer (resistive sensors) 
 

 Hall voltage in a sensor coupled to a permanent magnet if the object 
is ferromagnetic (magnetic sensors); 
 

 Light interception by a rotating or translating grating (optical sensors). 
 

More in details, resistive potentiometer sensors are the most used to measure 
the vertical extensions and compressions of the front and rear suspensions. 
The potentiometer is the simplest electrical position sensor. A movable cursor 
is placed on a fixed resistor in this kind of device. The resistance of the circuit 
among any of the two terminals and the cursor, obviously depends on the 
position of the latter. It is clear that the potentiometer is a "modulating" sensor, 
since in order to obtain useful electrical information, it is necessary to put it 
into a circuit which supply an auxiliary power source. Using the Ohm’s law 
to analyze the resistive potentiometer, the output voltage comes out from a 
fraction of the supply voltage; therefore, the mechanical action (the quantity 
to be measured) acts by modulating the supply voltage in output. 
These sensors are generally used to obtain an electrical output from elastic 
elements used in mechanical devices and are constituted by a resistive element 
(cylinder), on which a moving contact (mobile part) is able, driven by the 
mechanical parts, to measure the motions (see Figure II.7).  

 

Figure II.7 Linear potentiometer 
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In this way, thanks to the position of the slider leaded by the suspension stroke, 
the potentiometer will have different voltage level in output. 
The characteristics, which influence the choice of a potentiometer are various, 
among which could be highlighted: 
 

 The maximum applicable voltage; 
 

 The electric stroke, which determines the maximum distance 
detectable;  

 
 The stroke speed, which expresses how many meters the sensor is able 

to travel in a second;  
 

 The precision referred to the repeatability of the measure;  
 

 The output characteristic, which shows in percentage how much the 
output values follow a linearity law;  

 
 The resolution, which indicates the smallest variation of values that 

the sensor is able to detect. 
 

The measurement of the vertical stroke of a vehicle does not require a very 
high accuracy, while its important to have: mechanical and electrical strength, 
ease of use and low cost. Linear potentiometer sensors are easy to use, have a 
low cost and provide a high value of the output signal; however, they are 
affected by friction, inertial effects and wear which cause a premature aging. 
 
II.3.2 Gyroscopes 

Gyroscopes are used for angular velocity measurements. The gyroscope is a 
body (cylinder, disk, etc.) with rotation symmetry with respect to an axis (said 
gyroscopic axis), supported by a frame (suspension) and which can be putted 
in rapid rotation (see Figure II.8). 
The gyroscope is therefore a rotating physical device which, due to the law of 
conservation of angular momentum, tends to keep its axis of rotation oriented 
in a fixed direction. A homogeneous cylindrical mass, which rapidly turns 
around its barycentric axis (stable axis of rotation), has centrifugal forces that 
develop perfectly balanced with each other. In this way, no one internal force 
can influence the rotary motion or generate vibrations changing the rotary 
motion. There are several types of gyroscopes: laser gyroscope, hemispherical 
resonator gyroscope, vibrating gyroscope. 
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Figure II.8 The gyroscope model 

Recently, most of the gyroscopes are in developed in Micro Electro-
Mechanical Systems (MEMS) technology. A MEMS gyroscope is composed 
by a vibrating system consisting of a suspended mass through an elastic 
system that allow it to move in the x, y, and z directions. 
  
II.3.3 Accelerometers 

An accelerometer is a measuring instrument capable of detecting and/or 
measuring acceleration, by performing the calculation of the force measured 
against the mass of the object. 

 

Figure II.9 Operation principle of an accelerometer 
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In most accelerometers, the principle of operation is the same: they are based 
on the detection of the inertia of a mass when it is subjected to an acceleration 
as shown in Figure II.9. 
The mass is suspended from an elastic element, while some type of sensor 
detects its displacement from the fixed structure of the device. In the presence 
of an acceleration, the mass (which is equipped with its own inertia) moves 
from its resting position proportionally to the acceleration detected. The 
sensor transforms this displacement into an electrical signal. 
 
II.3.4 Longitudinal speed sensors 

The speed sensors are typically based on the Hall effect. They are integrated 
units having the transducer, magnet, and electronics that are used to provide 
the speed sensing. Usually the speed sensor uses a gear wheel added to the 
part in rotation (see Figure II.10). 
 

 

Figure II.10 Speed sensor 

For a motorcycle semi-active suspension system, typically can be needed up 
to five sensors. 
The use of many sensors poses some problems: 
 

 The acquisition system must acquire many input channels, thus 
increasing its complexity, processing time, and therefore reducing the 
control band; 
 

 Each sensor is exposed to the possibility of failure; therefore, the 
reliability of the system is reduced; 
 

 Each sensor has a cost, not only the unit cost of the devices, but also 
the cost of development both in terms of time and human resources; 
 

 The sensors have a weight and a size that can be a not negligible 
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problem in a motorcycle. 
 

On the other hand, having many sensors has the advantage of: 
 
 Accurately monitor the condition of the motorcycle; 

 
 Exploit analytical redundancy to perform diagnostics pursue on the 

system; 
 

However, the set of sensors can be reduced if there are redundancy 
information among the quantities analyzed: a particular measure could be 
done without a direct measure but using other sensors in order to implement a 
“Soft Sensor” (Ruhm, 2007).  
 
 
II.4 Soft sensors  

More in details, “Soft Sensor” means the process of estimating any system or 
process variable by adopting mathematical models, replacing some physical 
devices, and using data acquired from some other available sensors. It is 
possible to differentiate two principal categories of soft sensors: Model-driven 
and Data-driven. The first typology of soft sensors is based on First Principle 
Models (FPM). More in details, the FPMs describe the physical background 
of phenomena, calculating the value of interest thanks to these equations. This 
approach does not consider any disturbances of the ideal conditions, and it 
works only considering the ideal conditions of the model without non-
linearity. The data-driven models are fully based on the data recorded during 
the phenomena.  
For a data-driven approach, different predictive techniques are available and 
range from statistical methods such as Principle Component Regression or 
Support Vector Machines to soft computing methods like Artificial Neural 
Networks or Neuro-Fuzzy Systems.  
Soft sensors can carry out wide applications as in (Norgia, Boniolo, Tanelli, 
Savaresi, & Svelto, 2009) and (Liguori, Paciello, Pietrosanto, & Sommella, 
2014). One of the dominant application areas of soft sensors is the online 
prediction of a quantities, which cannot be measured directly from the sensors 
available in the system.  
The idea to adopt a soft sensor in a semi-active suspension system like the 
Magneto system described in Chapter I can gives different advantages as: 
 

 Reduction of the system cost due to the minor number of cables and 
sensors. 
 

 Improvement of the reliability of the system. 
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 Improvement of the safety through an implementation of an IFD 

scheme based on an analytical redundancy. 
 

More in details, the attention has been focused on the first and third points: a 
reduction of the set of sensors used in the previously presented Magneto 
system and an IFD scheme for the rear linear potentiometer will be shown. 
The reduction of the number of sensors represent a significant economic 
saving, both for its own cost but also for the integration and installation costs. 
On the other hand, the reduction of the number of sensors tends to improve 
safety, since less sensors make the system more reliable, and since IFD 
scheme, on the critical sensors like the potentiometers, could be implemented 
thanks to the redundancy introduced (Capriglione, Carratù, Sommella, & 
Pietrosanto, 2018). 
The model used for the study of motorcycle motion is the half-car explained 
in Chapter I; since we are interested in analyzing the pitch motion, whose 
analysis is satisfactory and quite simple. 
This model is composed by the rigid suspended masses, which are connected, 
at the two ends with two spring-damper systems (spring and shock absorber) 
through two articulated joints. In sequence, they are attached to the two 
unsprung masses (wheels and all that is rigidly connected to them), which rest 
connected to the ground through a spring (tires). 
An external stress causes a variation of the pitch, it may come from a different 
distribution of the suspended mass, due to an acceleration variation, or to an 
irregularity of the road surface. In both cases the suspensions and the tires 
contribute to tone down these variations. The most significant variations occur 
in the suspension, while the tire is slightly deformed. According to the model, 
the control strategy has to measure the pitch angle and the suspension motions 
in terms of stroke. Neglecting the presence of the tires, the model is simplified 
further; as reported in Figure II.11 and Figure II.12, the pitch angle is 
geometrically related to the vertical heights of the suspended mass in both the 
extremity. 
 

 

Figure II.11 Pitch motion during acceleration 
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Figure II.12 Pitch motion during breaking 

 
Then measuring two of the three parameters available among pitch angle, 
front, and rear height, the third parameter can be obtained indirectly. The three 
signals are redundant among them: for example, measuring the two heights, 
the pitch angle is equal to: 

φ ൌ sinିଵ ቀ
౨౨ି౨౪
୍୬୲ୣ୰ୟ୶୪ୣ

ቁ (II.1) 

where φ is the pitch angle with positive reference in braking, Prear is the stroke 
of the rear suspension, Pfront is the stroke of the front suspension and interaxle 
is the distance between the centers of the two wheels. Reversing the eq. (II.1) 
it is possible to calculate: 

P୰୭୬୲ ൌ P୰ୣୟ୰ െ Interaxle ∗ sinφ  P୰ୣୟ୰ ൌ Interaxle ∗ sinφ  Ant 

where φ ൌ pitch dt. (II.2) 

It is also possible to calculate the pitch from the φ angle, making a derivative 
with eq. (II.3): 

pitch ൌ
ୢ

ୢ୲
ൌ

ୢ

ୢ୲
ቂsinିଵ ቀ

౨౨ି౨౪
୍୬୲ୣ୰ୟ୶୪ୣ

ቁቃ	 (II.3) 

Unfortunately, this model although simple, does not accurately replicate the 
physic of the motorcycle. In particular, the three sensors are not enough to 
accurately describe the vertical dynamics of the motorcycle, indeed: 
 

 It is not possible to perfectly detect the vertical height of the 
suspended mass on both the front and rear extremities, because it 
also depends on the oscillations of the rubber that are not directly 
detectable; however, these variations are quite limited in amplitude 
and frequency. 
 

 The pitch sensor is a gyroscope that detects the pitch angle 
variation with respect to the axis perpendicular to the weight force; 
if the road surface is rising or falling, the pitch detected will no 
longer refer to the road surface, but to the horizon axis, whereby 
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the geometric link of the three parameters is altered; also in this 
case this effect is rather limited in amplitude. 

 
 The load variation due to the number of passengers or luggage 

change the interaxle distance. 
 

 The interaxle distance is not constant and it depends on the 
leverage of the rear wheel and on load variations.   

 
In order to exploit a more precise model of the motorcycle dynamic to develop 
a more accurate soft sensors, methods based on data driven approach could be 
adopted. In the following Chapters innovative modelling methods will be 
shown paying attention on the Neural Networks and Digital filtering 
techniques. 

 
II.5 The test bed  

It is now reported a description of the test bed used for the aim of this Thesis. 
A SUZUKI GSX-1000 motorcycle, equipped with an experimental set of 
sensors and a Magneto Kit described in Chapter I, has been used. The sensors 
have been located in different places on the motorcycle (see Figure II.13) in 
order to obtain information about the vertical dynamic of the vehicle. The 
sensors mounted on the motorcycle are reported in table II.1. To develop the 
Soft Sensors and an IFD scheme presented in the following Chapters, different 
measurement campaigns based on real data acquired on the field was 
performed. In each Chapters a detail of the particular motorcycle riding will 
be shown. The data logging achieved thanks to the MDLog presented in 
Chapter I, has been done with reference to the following signals: fork stroke, 
pitch rate, vehicle speed, rear shock stroke, front wheel vertical acceleration, 
rear wheel vertical acceleration and body acceleration. Data recording was 
carried out at the sampling frequency of 1 kHz. 
 

Table II.1 Sensors used on the test bed 

 

Sensor Type  Model  Manufacturer  Symbol 

Linear stroke sensor  SLS130  Penny & Giles 
Sfront 

Srear 

Magnetic encoder  970‐011  Dorman  Vbike 

Gyroscope  L3GD20 
ST 
Microelectronics 

Gyro 

Accelerometer  LIS331H  ST 
Microelectronics 

Accfront 

Accrear 
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Figure II.13 Test Bed 

 
 



 

 

Chapter III 
Rear stroke soft sensor based on 

NARX network 
 
 
 
 

This chapter describe the soft sensing of the rear suspension stroke through a 
suitable exploitation of the analytical redundancy existing among the vertical 
dynamics quantities of a two-wheeled vehicles. Indeed, as reported in Chapter 
II the behaviour of a motorcycle may be firstly modelled by a rigid system, 
where the rear suspension stroke, although greatly dependent from the road 
profile, also considers the heavy movement of the front suspension and the 
pitch of the vehicle frame. 
More in details, a data-driven approach is applied to provide the mathematical 
model which allows the rear suspension stroke to be inferred from a set of 
influential variables during the motorcycle riding also described in Chapter II. 
 
 
III.1 The rear stroke soft sensor 

The aim is the selection of a model structure among different (candidate) 
representations, wherein a set of dependent variables, i.e.  the system outputs 
are the consequence of a set of independent variables, i.e. the system inputs.  
Since the main hypothesis of the Half-Car Model reported in Chapter II (i.e. a 
steady state condition for the motorcycle dynamics) does not allow the 
steering and the linkage nonlinear effects to be correctly estimated in terms of 
the corresponding varying wheel base and transfer load, the Nonlinear Auto-
Regressive with eXogenous inputs (NARX) model appeared as the most 
straightforward choice. 
This kind of solution is generally more efficient than Nonlinear Moving 
Average (NMA) models; nevertheless, the corresponding prediction 
capability is limited to small steps since the error propagation of the system 
output through the closed loop. Then, the approach based on exogenous inputs 
was performed by considering observation intervals proportional to the system 
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dynamics in order to limit the model error propagation when a great number 
of predicted output samples is considered. 
Following the research trend (Capriglione D. , Carratù, Pietrosanto, & 
Sommella, 2017), according to which NARX Artificial Neural Network 
(ANN) has emerged as an effective solution to the problems of both system 
prediction (estimation of the next value of the output signal) and nonlinear 
filtering (when the system output is a noise-free version of the input signal), 
the design of the soft stroke sensor was based on a recurrent network, with 
feedback connections enclosing several layers according to the equation: 

y(t)= f (y(t-1), ..., y(t-ny), u(t-1), ..., u(t-nu)) (III.1) 

where the next value of the dependent output y(t) is regressed on previous 
values of both the output signal and an independent (exogenous) input signal 
u(t), whilst a Feed-Forward NN is adopted to approximate the function f. 
Model selection also includes the identification of the relevant model inputs 
from the candidate set of independent variables (regression selection). It was 
performed through the analysis (in terms of magnitude) of the estimated cross-
correlation between each candidate input and the dependent variable of 
interest. As a result, only the fork stroke, the pitch rate and the vehicle speed 
appear to be the relevant inputs and included in the considered model structure 
(see Figure III.1). For the model estimation, data samples corresponding to 
about 60 minutes of the motorcycle riding was considered as the Training Set, 
whereas the remaining data were used as the Test Set for the next model 
validation. 
In details, the soft sensor for the rear suspension stroke was modelled by 
exploiting the Neural Network Toolbox included in MathWorks MATLAB™ 
and considering the Serial Parallel scheme for the Network Training: 
considering as the model feedback the true output instead of the estimated 
sample allows the Static Back-Propagation to be adopted for training the 
network and more accurate results to be achieved (More details in Appendix 
I).  
The model estimation of NARX Network was performed by varying the 
number N of neurons in the hidden layer (ranging from 5 to 25) and the tapped 
delay din for inputs and output signal (ranging from 10 ms to 100 ms), thus 
resulting in a total of 25 combinations. More in details, the training of the soft 
sensor was performed by adopting the Levenberg-Marquardt algorithm and a 
maximum of 1000 epochs for each parameter’s configuration. 
As a result, the NARX Network characterized by N = 15 neurons in the hidden 
layer, din = 100 ms, showed the best performance in terms of minimum 
prediction error about the training dataset and was considered for the 
development of the Soft Sensor. More details about the development of the 
NARX network, the training and validation process will be given in section 
III.3. In Appendix I there are more information about the NARX models. 
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Figure III.1 Scheme of the rear stroke soft sensor 

 
III.2 The measurement setup for the rear stroke soft sensor 

The designer of a soft sensor should typically adopt the trial and error 
procedure depicted in Figure III.2, which includes three main steps: Data 
Collection and Filtering, the definition and estimation of a Model Structure, 
and the Model Validation. 

 

 

Figure III.2 The trial and error procedure 

 
When the model fails the validation phase, the designer should go back to any 
of the previous steps and use all available insight to critically try different 
choices until the success of the model validation indicates that the procedure 
can stop. The data driven approach has been applied for the soft sensor design 
and validation of the rear suspension stroke by considering the SUZUKI GSX-
1000 model as test motorcycle (described In Chapter II). From the available 
sensors on the test bed, for the rear stroke soft sensor only the sensors included 
in Table III.1 have been used. The basis of any data driven approach is a 
measurement campaign which may give a suitable insight into the relevant 
variables, the system order, the delays, the sampling time, the operating range 
and the nonlinearity about the process of interest. Then, the soft sensor 
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designer should perform the critical analysis of the available data to choose 
the candidate influential variables and the main events. 
 

Table III.1 Main sensors used for the rear stroke soft sensor 

Sensor Type  Model  Manufacturer  Symbol  Mounting notes 

Linear stroke 
sensor 

SLS130  Penny & Giles 

Sfront 
fixed to the fork and measuring 
the front suspension stroke 

Srear 
mounted between the frame and 
rear wheel and measuring the 

rear suspension stroke 

Magnetic 
encoder 

970‐011  Dorman  Vbike 
fixed to the front wheel and 
measuring the motorcycle 

(longitudinal) speed 

Gyroscope  L3GD20  ST  Gyro 
fixed to the frame and measuring 
the motorcycle pitch and roll 

velocities 

 
Moreover, in order to remove offsets, mitigate high frequency noise, and 
prevent the larger magnitude variables to be dominant over smaller ones, the 
designer should perform the identification process by including suitable 
digital data filtering and scaling. Finally, to prevent the influence of 
inconsistent data, the designer should apply suitable outlier identification 
strategies. 
About the data collection for the system of interest, the motorcycle riding 
refers to a test lap which includes various profiles (cobblestone stretch, urban 
and extra-urban road, concentrated obstacles) in order to introduce different 
excitation modes of the suspension system. 
As a result, a data logging was achieved with reference to the following 
signals: fork stroke, pitch rate, vehicle speed, as independent variables and the 
rear shock stroke as dependent variable. Data recording was carried out at the 
sampling frequency of 1 kHz, then a resampling at 100 Hz was performed to 
match the dynamics of the semi-active suspension and the loop frequency 
typically adopted by the control strategies. 
The min-max normalization method was adopted for data scaling, whereas the 
detection of outliers was performed according to the 3σ edit rule with a robust 
scaling proposed in (Bi & Berrett, 2003), so that the mean and standard 
deviation of each variable of interest are replaced respectively by the median 
and the median absolute deviation from the median. 
 
III.3 Tuning of the NARX network 

In order to obtain good performance with the use of a NARX network, it is 
important to dedicate particularly attention on the tuning parameters related to 
the network achievable with the training process. The network has been 
trained to predict the output signal of the rear stroke sensor in a motorcycle 
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suspension system, starting from measurements done by the sensors set 
introduced in paragraph 2. More in details, the training process aims, thanks 
to a training dataset, to tune the parameters of the neural network, necessary 
to obtain the right reconstruction of the output. The NN toolbox of MATLAB 
was used to carry out the mathematical analysis and the simulation of the 
network created. 
Firstly, an accurate analysis regarding the input data for the training process 
must be done; for this reason, dozen files containing sets of acquisitions 
performed riding on different types of road have been investigated. It is a good 
point the selection of a training dataset containing a high dynamic of the 
analysed quantity. For the purpose, the training set on which the network was 
trained, has been chosen without excessive anomalous trends and with an 
excursion of all possible conditions (see Figure III.3). The importance to 
choose the correct training set help to exalt the generalization properties of the 
neural network, indeed the use of a training set without a high dynamic 
excursion, could introduce errors in the reconstruction of signals in which 
there are more excursions than the training set. 
 

   

Figure III.3 Example of training dataset 

 
The rear suspension stroke will be delayed by an asperity of the road compared 
to the front suspension stroke. The time delay can be calculated thanks to the 
motorcycle wheelbase and a fixed longitudinal speed; it would be more correct 
to implement a delay calculation related to the speed of the motorcycle, but it 
will be left to future implementations (De Luca & Doria, 2007). For this 
reason, a forward shift of 5 samples has been operated on the signal measured 
by the rear stroke sensor and used as training dataset, in order to synchronize 
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the rear stroke signal with the front stroke signal which is above 50ms in 
advance.  
Also, a normalization operation has been done on the data used as input for 
the neural network referring on each sensor range: 0-150 [mm] for the front 
suspension stroke, -80, 80 [°/s] for the gyroscope, 0-200 [km/h] for the 
longitudinal speed and 0-110 [mm] for the rear suspension stroke. 
Remembering that for a NARX networks, the output is given by a non-linear 
function related to the value of the output considered in the previous instants 
and from the value of the exogenous variable also observed in the past 
moments, therefore it is necessary to choose the number of instants 
corresponding to the samples observed in the past moments; this type of 
parameter will be named din. 
For the training process the Levenberg-Marquardt algorithm as training 
function has been selected. The training function is responsible to update the 
weight and link values according to the training grade. The training algorithms 
of nonlinear systems can normally be divided in two principal groups: gradient 
descent algorithms and Gauss-Newton algorithms.  
The Levenberg-Marquardt (LM) training algorithm has been developed to 
work on the strengths of the two groups in order to take advantage of both. 
More in details, the LM algorithm is an iterative regression technique, now 
considered standard for solving multivariable nonlinear problems. The 
algorithm can be described as composed of a slow, but converging gradient 
descent phase, followed by a faster Gauss-Newton resolver. Unlike the classic 
Error Back Propagation algorithm, the LM algorithm does not suffer of a 
rather slow convergence with the consequent risk of occurring in local 
minima. Moreover, the LM algorithm is particularly fast in learning with 
respect to Error Back Propagation (EBP) algorithm, especially when the 
number of inputs is particularly high. Other training functions were also 
evaluated, but the LM algorithm has demonstrate the best generalization 
properties. The LM algorithm is also called as "Bayesian regularization 
process" (Chaki, 2019). 
Also, the number of epochs in which the training was performed represent an 
important parameter: increasing the minimum number of training periods has 
a positive effect on the error committed by the network. For the aim a 
maximum of 1000 epochs have been selected after the evaluation of the mean 
epochs required for a good training process (less than 1000). 
Another important parameter to choose for the training process is the number 
of neurons in the hidden layer N which is directly proportional to the 
complexity of the neural network. There is not a theory to indicate the correct 
number of neurons N, but some indications could be achieved from the 
behaviour of the training set reconstruction during the training process. 
Indeed, if the size of the neural network is too small, they will be unable to 
learn the relevant information from the training set and therefore they will 
have a limited capacity for generalization, vice versa if the size is too big, the 
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network will begin to memorize the details of the training set and it will fail 
to learn the basic rules, obtaining however a little generalization.  
In Figure III.4 is reported the output (blue line) of an undersized network 
unable to predict the signal on which it was trained (red line).  

 

 

Figure III.4 Magnification of the undersized NARX output (red line) versus 
the Training set (blu line) 

 
Oversizing the neural network by increasing the number of neurons does not 
help in terms of results, but simply worsens the functioning of the network, 
causing in some cases resonance phenomena.  
As reported in paragraph III.1 the training process has been done on a series-
parallel scheme. The series-parallel scheme is important for the training of the 
NARX network since it has as input also the real signal of the rear stroke 
sensor, enabling a better reconstruction of the same. 
Clearly, the necessity to give as input the rear stroke sensor corresponding to 
the desired output, excludes the use of the series-parallel scheme in a context 
different from the training process. For this reason, the series-parallel scheme 
must be converted into a parallel-parallel architecture, removing as input the 
data coming from the rear stroke sensor and putting in feedback as input the 
predicted output (see Figure III.5). 
One of the best practices is to not underestimate the performance of the 
series- parallel network since it represents the best theoretical performance 
achievable with a parallel-parallel network. An example of prediction of the 
Training set with the series-parallel scheme is reported in Figure III.6 
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Figure III.5 Conversion from Series-Parallel to Parallel-Parallel scheme 

 

Figure III.6 Prediction of the Training set 
 

Considering the tunable parameter previously presented, in order to find the 
best architecture, the number of neurons N and the number of samples din were 
varied. With a data-driven approach, table III.2 was created to perform a first 
skimming, using as threshold of acceptance the Er,mean % < 10% defined as: 

E୰,% ൌ 100 ∗ mean୧ሺ
หଢ଼౦ିଢ଼౪ห

|ଢ଼౪|
ሻ	 (III.2) 

Where yp is the predicted output and yt is the reference output coming from 
the rear stroke sensor. 
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Table III.2 Comparison between 25 neural networks 

N number of neurons  din number of samples  Er,mean%<10% ? 
5  1  No 

5  3  No 

5  5  No 

5  7  No 

5  10  Yes 

10  1  No 

10  3  No 

10  5  Yes 

10  7  Yes 

10  10  No 

15  1  No 

15  3  No 

15  5  No 

15  7  Yes 

15  10  Yes 

20  1  No 

20  3  Yes 

20  5  No 

20  7  Yes 

20  10  Yes 

25  1  No 

25  3  Yes 

25  5  No 

25  7  No 

25  10  No 
 
The table shows a set of 25 analyzed neural networks, but only 10 of them 
present a prediction error ܧ,%	lower the 10% and will be considered in the 
next steps. 
In order to compare the performance of different (ANNs) architectures, rather 
than use synthetic indexes like the ܧ,%	that provides information only on the 
overall performance of a neural network, a graphical tools useful for providing 
both synthetic and detailed indications on the actual performance of the 
network have been adopted and will be presented: the Regression Error 
Characteristics (REC). 
The Regression Error Characteristics (REC) curve plots on the y-axis the 
relative occurrences of the regression function outputs that are within a given 
error range (tolerance, on the x-axis). Thus, the resulting curve is the 
(estimated) cumulative distribution function (CDF) of the relative regression 
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error Er, defined as the relative difference between the model prediction yp (at 
each sampling point) and the corresponding true output yt measured by the 
actual sensor:  

E୰ ൌ 	 ቚ
୷౦ି୷౪
୷౪

ቚ (III.3) 

The area over the curve (AOC) represents the expected mean error (biased 
estimation) and provides a measure of the mean accuracy: the closer curve to 
the y-axis represents the better performance exhibited by the estimated model 
(see Figure III.7). 
It is easy to observe, the integral information provided by the REC curve 
disregards the time evolution of the regression error. On the other hand, the 
'local accuracy' represented by the regression errors corresponding to 
consecutive (predicted) output samples is fundamental within the context of 
the sensor validation (Betta, Capriglione, Pietrosanto, & Sommella, 2011). 
  

 

Figure III.7 Example of a REC curve 

 
The REC reported in Figure III.8 shows a comparison between the 10 neural 
networks achieved by the observation of table III.2. The figure shows that the 
networks with N=15, 20 and 25 neurons and din=10 respectively, present the 
best performance in term of REC. The last choice among the tree last neural 
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network architecture has been made evaluating each architecture on 5 test set, 
in order to estimate the behavior on new sets of data never used before. 
 

 

Figure III.8 REC: Comparison among the best 10 neural networks on 
Training set 

 
In the figures below (Figure III.9 to Figure III.11) are reported the Regression 
Error Characteristics of the three best neural networks obtained on different 
Testing sets not related to each other. 
 

 

Figure III.9 REC: Comparison among different tests set using din=10 and 
Neurons =15. 



Chapter III 

48 

 

Figure III.10 REC: Comparison among different test sets using din=10 and 
Neurons =20 

 

 
 

Figure III.11 REC: Comparison among different test sets using din=10 and 
Neurons =25 
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It is possible to observe that regardless the architecture of the network, the 
performance varies depending on the test set used. The neural network does 
not reconstruct different sets with the same error.  
In order to determine which of the three neural networks presents the best 
performance, the Regression Error Characteristics obtained with the Test set  1 
and 3 has been plotted on the same graph. These Test sets have been chosen 
for the comparison since they cover almost all the real situations in which the 
motorcycle can be gather. 
 

 

Figure III.12 REC: Comparison among test set 1 and 3 using the three best 
neural networks achieved 

 
The Figure III.12 above shows a slightly difference between the three 
networks, but the one with 15 neurons and din=10 presents the best 
performance in both the test sets and has been chosen for the further analysis. 
 
 
III.4 Performance of the rear stroke soft sensor 

The NARX Network achieved, has been used to predict the rear suspension 
stroke using as input a Test set and considering the parallel-parallel scheme. 
The results shown in Figure III.13 (entire Test set) and Figure III.14 
(magnification), highlight the particularly good capability of predicting the 
reference (measured) rear stroke (blue line). In details, the mean value for the 
relative regression error Er according with Eq. III.1 is equal to 4%. 
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Figure III. 13 Prediction of the rear suspension stroke 

 

 

Figure III. 14 Magnification of Figure III.13 

 
However, the “local accuracy” represented by the regression errors 
corresponding to consecutive (predicted) output samples is fundamental 
within the context of the sensor validation. As an example, when the focus is 
devoted to the fault detection performance, once a suitable threshold has been 
selected as tolerable error, the ANN able to guarantee a small percentage of 
error exceeding the threshold during a fixed time interval may be preferred to 
a different model which assures the lowest mean error (on the whole data set) 
but it is characterized by many time intervals when a higher percentage of 
threshold overcoming occurs. 
This feature may be highlighted by the Sliding Occurrence Error (SOE) curve 
(Figure III.15): with reference to a moving window constituted by LS 
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successive samples, it plots the error tolerance (defined as the mean relative 
deviation Emean,L) on the x-axis and the corresponding relative occurrences in 
the moving window of the regression error on the y-axis. In details, at each 
sample point, the maximum absolute deviation Emean,L is defined according to: 

E୫ୣୟ୬,ሺiሻ ൌ 		
ଵ


∑ ቚ

୷౦ሺ୧ି୩ሻି୷ౣሺ୧ି୩ሻ

୷ౣሺ୧ି୩ሻ
ቚିଵ

୩ୀ 		 (III.4) 

where Ls is the number of samples included in the window length L. In other 
words, the SOE curve represents the survivor function of the error tolerance. 
 

 

Figure III.15 SOE curve 

 
A further comparison between the rear stroke sensor achieved with the NARX 
Network soft sensor and the rear stroke achieved with the Half Car Model 
(HCM) equations (presented in Chapter II, section 2) has been performed in 
terms of the provided local accuracy by considering the corresponding SOE 
curves, which are reported in Fig III.16.  
For each sensor, the results about the mean relative deviation of the predicted 
output have been determined for two values of the sliding window length L 
(10 ms and 0.5 s). The opposite behaviors showed by the soft sensors, as the 
window length increasing, highlight the NARX Network is more effective in 
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the signal tracking of the reference rear stroke during short time observation 
intervals. As an example, about the worst predicted cases (ten percent of the 
Test set), the minimum value for the relative deviation Emean, L decreases from 
5% to 4% for the NARX Network, whereas the analogous amount for the 
HCM stroke sensor increases from 20% to 21%. 
 

 

Figure III.16 SOE: Comparison among HCM soft sensor and NARX soft 
sensor 

 



 

 

Chapter IV 
Front stroke velocity soft sensors 

based on accelerometers 
 
 
 
 

As previously reported in chapter II, the vertical dynamic of a motorcycle 
should be measured from a set of sensors, which may include gyroscope, 
accelerometers, stroke sensors and/or new sensors.  
This last topic is strategic for massive exploitation of semi-active suspensions 
because the adopted sensors (as external devices to the embedded system 
controller) are crucial as for both reliability and cost of the whole system 
(Carratù, Pietrosanto, Sommella, & Paciello).  
In this chapter, two different soft sensors have been developed to predict the 
suspension stroke velocity from acceleration measurement: a former based on 
digital filtering techniques and latter based on an Artificial Neural Networks 
(ANN). Both the approaches rely to the signals acquired by accelerometers 
installed on body and wheels of a motorcycle.  

.  
IV.1 The measurement setup 

 
Both the front soft sensors developed to estimate the measurement of the 
suspension stroke velocity have been evaluated with reference to a Suzuki 
GSX-1000 motorcycle adopted as experimental test bed and described in 
Chapter II. More in details, the sensors used for the aim are (see Figure IV.1): 

 
•a linear potentiometer P, measuring the front suspension stroke; 
•a triaxial accelerometer S1, fixed to the motorcycle steering; 
•a triaxial accelerometer S2, fixed to the front wheel; 
•a triaxial accelerometer S3, fixed to the motorcycle frame; 
•a triaxial accelerometer S4, fixed to the rear wheel; 
•a MDLog. 

 
For a detailed description of the set of sensors used refer to Chapter II. 
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Figure IV.1 Sensors used for the front stroke velocity soft sensor  

Data collection was carried out by completing different test lap of 300 
seconds, which encompasses different operational conditions, including:  
 

• a cobblestone for a length of about 50 m, which excites the suspension 
response to the pitch;  

 
• a stretch of rough urban road, negotiated at average speed equal to 50 

km/h, that introduce a mixed pitch-heavy movement of the motorcycle 
on a broad spectrum;  

 
• a stretch of extra-urban road, negotiated at average speed equal to 90 

km/h, that typically introduces a pure heavy movement;  
 
• a region with 4 speed bumps (30 m equidistant from each other), 

which allows the suspension behavior to be verified against sudden 
load transfer.  

 
Both the approaches introduced have been adopted for estimating the velocity 
of the front suspension on the basis of the analytical redundancy among the 
measured acceleration signals. As a reference for the velocity signal, the 
derivative of the front suspension stroke measured by the linear potentiometer 
has been considered. 
 
 
IV.2 Front stroke velocity soft sensor based on digital filtering  

 
The approach is based on the digital filtering and integration of the frame (S1) 
and front (S2) wheel acceleration signals according to the scheme depicted in 
Figure IV.2. 
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.  

Figure IV. 2 Front stroke velocity soft sensor scheme based on digital filters 

It includes a second order low pass filter (LPF) to remove high frequency 
noise, a hysteresis block, a filter like integrator (FLI), a first order high pass 
filter (HPF) in order to solve the acceleration integration drift typically caused 
by offset and noise at lower and high frequencies (Gavin, Morales, & Reilly, 
1998). The model estimation of the soft sensor leads to the choice of the cut-
off filter frequencies, which should consider both the signal frequency range 
and the delay introduced in the original signals by the filters. 
In detail, the cut-off frequency fLP for the LPF should be designed with the 
aim of preserving the frequency band of the physical phenomena of interest 
but limiting the phase delay. The frequency range of the vibration 
experimented by the motorcycle dampers is typically 1-10 Hz 
(see  Figure  IV.3), thus, fLP should be investigated in the range [20÷60] Hz so 
that: 

 the noise at high frequencies may be reduced. 

 a slight phase delay is added in the band of interest.  

 

Figure IV.3 Spectrum of the suspension acceleration during a ride 

 
The hysteresis block (characterized by the threshold th) is introduced to reduce 
the broad band noise which should be emphasized by the next FLI 
(implementing the trapezoid approximation).  
The HPF (characterized by the cut-off frequency fHP) is finally adopted in 
order to both remove the offset emphasized by the integrator and limit the drift 
caused by the unknown initial condition of accelerometers. 
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IV.3 Tuning of the digital filters parameters 

A sensitivity analysis has been performed in order to give an indication for the 
selectable parameters of the filtering chain. In details, the examined cost 
function is represented by the relative (percentage) error Er,% between the 
predicted and expected suspension velocity, averaged on the whole dataset 
according to the following equation:  

E୰,% ൌ 100 ∗ mean୧ሺ
ห౦౨ౚ,ି౨,ห

ห౨,ห
ሻ						∀หV୰ୣ,୧ห  400	mm/s	 (IV.1 ) 

A threshold of 400 mm/s was imposed  in the evaluation of the Er,% since a 
worst prediction of the velocity suspension stroke under that threshold, does 
not influence a control strategy scheme for a semi-active suspensions system 
(Acocella, Anchini, Paciello, Pietrosanto, & Sommella, 2010).  
The reference suspension velocity as previously reported, has been measured 
by the linear potentiometer mounted on the motorcycle. Table IV.1 reports the 
analyzed range of the parameters introduced in each block of the 
corresponding scheme. 
 

Table IV.1 Main parameters of the stroke velocity soft sensor based on 
digital filtering approach 

Symbol  Description 
Analyzed Range 

min  MAX 

fLP  (First order) Low Pass Filter 
cut‐off frequency 

20 Hz  60 Hz 

th  Hysteresis threshold  0.1 m/s2 0.5 m/s2

fHP 
(First order) High Pass Filter 
cut‐off frequency 

0.5Hz  1.0 Hz 

 
 
As results of the performed sensitivity analysis, the cut-off frequencies for the 
Low and High Pass Filters appears as the most significant parameters to be 
tuned in order to achieve the lowest Er,%. In detail, the three-dimensional 
surface depicted in Fig. IV.4, report the estimated dependence of the 
prediction error on both the parameters: the best combination represented by 
fLP = 45 Hz and fHP = 0.7 Hz allows (in conjunction with the threshold th = 1 
m/s2) to maintain Er,% lower than 25%. 
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Figure IV.4 Sensitivity analysis for the front stroke velocity soft sensor 
based on digital filtering 

 
IV.4 Performance of the front stroke soft sensor based on digital 
filtering 

About the model validation of the soft sensors developed, Figure IV.5 shows 
the predicted (front) suspension velocity (red line) when the Testing dataset is 
considered for the model input (blue line).  
 

 

Figure IV.5 Prediction of the front suspension stroke using the digital filter 
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More in details, the soft sensor is able to satisfyingly predict the velocity when 
the suspension experiments significant compressions and rebounds strictly 
correlated to the motorcycle riding over bumps and/or holes (Figure IV.6) 
whereas, the prediction error increases when lower suspension velocities are 
observed (Figure IV.7).  
 

 

Figure IV.6 Magnification of Figure IV.5 with respect to high suspension 
velocities; 

 

 

Figure IV.7 Magnification of Figure IV.5 with respect to low suspension 
velocities 

The front stroke velocity soft sensor based on the digital filtering is able to 
predict the suspension velocity greater than ±400 mm/s with a relative error 
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percentage lower than 20% that could be enough for a pitch control strategy 
presented in Chapter II. 
 
 
IV.5 Front stroke soft sensor based on NARX network  

An alterative method to develop a front stroke velocity soft sensor using 
accelerometers, is to use a black-box approach with an Artificial Neural 
Network (ANN) as reported in Chapter III for the rear stroke soft sensor. In 
the analysis and design of nonlinear systems, artificial neural networks have 
become standard tools due to the good performance obtained for a large 
number of real-world application. 
The Figure IV.8 shows the developed soft sensor based on a particular type of 
neural network named Nonlinear AutoRegressive network with eXogenous 
inputs (NARX). 
 

 

Figure IV.8 Front stroke velocity soft sensor scheme based on NARX 

 
 
IV.6 Tuning of the NARX network  

The model estimation of NARX network was carried out with reference to the 
following parameters:  

 input topology (combination of triaxial front and rear acceleration 
signals);  

 number N of neurons in the hidden layer (ranging from 5 to 25). 
  the tapped delay din and dout for inputs and output signal (range 

from 1 ms to 20 ms).  

More in details, the training of the soft sensor was performed by adopting the 
Neural Network Toolbox included in MathWorks MATLAB considering the 
Levenberg-Marquardt algorithm and a maximum of 1000 epochs for each 
parameters configuration. 
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The procedures used to carry out all the parameter of the training process are 
the same of Chapter III. 
As a result, the NARX network, which takes into account the six front 
acceleration signals, and is characterized by N = 16 neurons in the hidden 
layer, din = 7 ms,  showed the best performance in terms of minimum 
prediction error about the training dataset. Figure IV.9 depicts the predicted 
suspension velocity (red line) from the best NARX model (when the closed 
loop is considered) together with the reference values (blue line) derived by 
the linear potentiometer signal. 
 

 

Figure IV.9 Predicted front stroke velocity vs real front stroke velocity 

 
 
IV.7 Performance of the front stroke velocity soft sensor based on 
NARX network 

 
According to the Eq. IV.1. the Er% achieved is typically lower than 20%, 
which could be an inetersting result for the use of the soft sensor in the loop 
control of a motorcycle suspension systems. 
The behavior showed by the soft sensor based on the NARX Network, allows 
to best predict the low suspension velocity during a motorcycle riding (see 
Figure  IV.10), whereas, it typically underestimates the velocity peaks 
observed in correspondence of the bumps and/or holes (see Figure IV.11). 
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Figure IV.10 Magnification of Fig. IV.9 with respect to high suspension 
velocities 

 

 

Figure IV.11 Magnification of Fig. IV.9 with respect to low suspension 
velocities. 

 
 
IV.8 Comparison of the proposed front stroke velocity soft sensors 
 
Considering the soft sensor based on the digital filtering, a complementary 
behavior is exhibited by the sensor based on the NARX Network, which is 
able to predict the low suspension velocity during the motorcycle riding, 
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whereas, it typically underestimates the velocity peaks observed in 
correspondence of the bumps and/or holes. 
As a summary of the experimental comparison between the analyzed software 
sensors, the relative prediction error per velocity class Er,Vclass according to 
eq. IV.2 

E୰,ౙౢ౩౩ ൌ
ห౦౨ౚ,ି౨,ห

ห౨,ห
									∀หV୰ୣ,୧ห ∈ 	Vୡ୪ୟୱୱ						 (IV.2) 

is showed in Figure IV.12 for different suspension velocity classes together 
with the corresponding occurrences when the distribution of the testing dataset 
is considered. 
The software sensor based on the digital filtering of the front suspension 
acceleration is able to predict the suspension velocity greater than 400 mm/s 
with a relative error percentage lower than 20% (as well as an error 
distribution characterized by low variance, see Figure IV.13 and the 
corresponding boxplots) whereas, the prediction error percentage exhibited by 
the NARX Network may be preferred in the range [0÷400] mm/s, which 
includes the most frequently observed classes for the (reference) suspension 
velocity. 
 

 

Figure IV.12 Relative prediction error per velocity class 
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Figure IV.13 Distribution of relative error percentage with respect to the 
suspension velocity classes 

 

 

Figure IV.14 Histogram of suspension velocity for the Testing dataset 
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On the basis of the previous model validation, the soft sensor based on digital 
filtering of the frame and front wheel acceleration is expected to be suitable  
in cost-effective applications such as the semi-active suspension control 
systems because it may allow replacing the linear potentiometer. As an 
example, Figure IV.15 shows the controlled electric current typical for 
adjustable magneto-rheological fork as function of the suspension velocity 
corresponding to the motorcycle riding over a bump. As you may note, the 
control algorithm is more sensitive to the high range of the suspension velocity 
(in correspondence of which the greater demanded damper stiffness is assured 
by the modulated intensity of the electrical current). 
On the other hand, the adoption of the soft sensor based on the NARX model 
should be preferred in order to develop effective IFD (Instrument Fault 
Diagnosis) schemes, which are necessary to improve the fault-tolerance 
property of the adjustable suspension system. Indeed, it can be paralleled with 
the linear potentiometer (hardware sensor), and faults can be detected by the 
comparison between the outputs of the hard and soft sensors. Moreover, the 
soft sensor can be exploited to provide an estimate of the hardware sensor 
output in case of sensor fault. Therefore, it can be used as a back-up device 
until the hardware sensor is not replaced during the service. 

 

Figure IV. 15 Example of semi-active suspension control: stroke  velocity 
and controlled current 

 



 

 

Chapter V 
IFD scheme for the rear stroke 

sensor 
 
 
 
 

Improvements in safety, comfort, and performance of the current 
transportation applications, have been also allowed by the increasing adoption 
of new sensors and electronic devices inside automobile and motorcycle 
contexts. As expected, the reliability and effective operating of such important 
systems strongly depend on the reliability and the accuracy of data coming 
from sensors involved in the measurement and control chain (Poussot-Vassal, 
Spelta, Sename, Savaresi, & Dugard, 2012). Thus, fault tolerant systems 
should be employed considering that a fault tolerant control may be achieved 
only if very sensitive and fast Instrument Fault Detection (IFD) schemes are 
included in the control loops (Betta & Pietrosanto, 2000) . These schemes 
should be able to identify in real time the faults that could occur also on the 
sensors, in order to readily trigger suitable recovery strategies for managing 
(or accommodating if possible) an occurred fault, and avoiding that wrong 
data coming from faulty sensors could affect the correct working of the 
monitored system (Capriglione, Liguori, & Pietrosanto, 2007). 
In the motorcycle framework, a challenging topic is represented by the 
development of semi active suspension systems electronically controlled as 
reported in Chapter I and mainly devoted to guarantee an effective contact 
between tires and road with the aims of improving the passenger’s safety and 
comfort. As said in Chapter II, all the strategies proposed in literature for 
controlling the damping coefficient of the suspension are based on the 
measurement information about the vehicle dynamics outputted from a set of 
different sensors among which linear potentiometers, accelerometers, stroke 
sensors, gyroscope, and magnetic encoders. Among these sensors, the one 
used to measure the vertical extensions and vertical compressions of the rear 
suspension plays a fundamental role in the control strategy. Due to their 
simplicity, low costs, and good performance in terms of linearity, the most 
used sensors are linear potentiometers. Nevertheless, they could be unreliable 
in the long run. 
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As a consequence, the fault detection of such sensor is strongly recommended 
to avoid wrong, and in some cases, dangerous motorcycle behaviors. Thus, 
the employment of IFD scheme for sensors monitoring such a quantity is 
crucial (Capriglione D. , Carratù, Pietrosanto, & Sommella, 2018) . 
The strong constraints of space existing in the motorcycle context, address to 
avoid duplication or triplication of sensors and related cabling, thus preferring 
the development of IFD scheme based on analytical redundancy. To this aim, 
due to the correlations existing among the quantities measured by the sensors 
involved in the control loop, an analytical redundancy-based IFD scheme will 
be presented during this Chapter.  
More in details, the rear stroke soft sensor presented in Chapter III has been 
adopted to generate the residuals for the rear suspension stroke sensor. In 
particular, the proposed solution employs a Nonlinear Auto-Regressive with 
eXogenous inputs (NARX) network because its attractive feature in 
effectively consider for the nonlinearities of the system under test. The main 
goal is the experimental verification of both diagnostic performance and 
promptness against typical kind of faults that could be experienced, including 
also “small faults”, “hold” and “losing calibration” (e.g. due to slight 
variations of the input/output sensor curve). Then, a first challenge is in 
verifying the feasibility of real-time implementation of such IFD scheme on a 
general-purpose microcontroller typically employed in motorcycle context as 
STM32F4. That is not a trivial result since in many applications involving 
ANNs, special purpose DSP based, or FPGA based systems are required for 
assuring a real-time operating. Furthermore, several challenges in terms of 
hardware/software platform to be used with particular reference to costs, 
compactness and weights, current consumption, and electromagnetic 
interference issues have to be faced as well. 
The validation tests and analysis have shown that the proposed IFD scheme 
can be successfully developed on this kind of architectures by assuring the 
real-time operating. The last section is dedicated to the experimental results 
related to the on-line validation of the realized IFD system on the test bed 
presented in Chapter II and showing diagnostic and dynamic performance 
achieved. 
 
 
V.1 The IFD scheme 

The simplified block diagram of the IFD scheme is reported in Figure V.1. It 
is based on the following main blocks:  
 

 Data acquisition: this stage samples and stores the output of 4 sensors: 
the rear suspension stroke Srear, the front suspension stroke Sfront, the 
velocity of the motorcycle Vbike and the pitch Gyro. 
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 Soft sensor: this stage, based on the suitably designed and tuned 
neural network presented in Chapter III, provides the predicted value 
of Srear at a given time instant as a function of the Srear values measured 
at previous instants and of Sfront, Vbike, Gyro; 

 
 Residual generator: it computes the difference between the measured 

and the predicted values of Srear in order to highlight the symptom of 
the faults;  

 
 Decision maker: it implements the rules needed to correctly detect 

different types of faults. 
 
In the following the Soft sensor, the Residual generator and the Decision 
maker are described in detail. 
 

 

Figure V.1 Block-diagram of the proposed IFD scheme 

 
 
V.1.1 Soft sensor used 

The soft sensor for prediction of the rear stroke suspension has been developed 
by adopting a Nonlinear Auto-Regressive with eXogenous inputs (NARX) 
Neural Network, which considers the front suspension position, the pitch rate 
of the motorcycle body and the longitudinal speed of the vehicle. These 
quantities are strictly correlated to the rear suspension behavior as highlighted 
by the half car model proposed to predict the steady state conditions for the 
in-plane motorcycle dynamics. However, the simplified model does not allow 
the steering and the linkage nonlinear effects to be correctly estimated in terms 
of the corresponding varying wheelbase and transfer load. Following the trend 
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in the literature (Capriglione, Carratù, Liguori, Paciello, & Sommella, 2017) 
about the prediction of non-linear dynamic systems, the choice of the NARX 
neural networks seem to be the most promising solution thanks to the good 
capability of noise filtering typically exhibited. Different NARX Networks 
have been analyzed by adopting the Matlab Neural Toolbox. The development 
of the rear stroke soft sensor has described in Chapter III. 
 
 
V.1.2 Residual generator 

The second block of the proposed IFD scheme compares the prediction of the 
rear stroke soft sensor based on NARX neural network with the output of the 
rear stroke sensor. 
As previously reported, the instantaneous prediction of the soft sensor is 
satisfying for most of the experimental dataset (see Figure V.2). However, 
some conditions remain, where the percentage difference between the ground-
truth and the predicted position are significant (see the highest peaks in 
Figure  V.3). 
Thus, a strategy based on moving average is employed for computing a more 
accurate residual. 
 

 

Figure V.2 Prediction of the rear suspension stroke by the NARX Network for 
dataset 

 
As an example, Figure V.4  report the comparison between the output of the 
soft and hard stroke sensors, with reference to a poor local prediction of the 
rear suspension position (percentage error greater than 40%). Figure V.5 
shows the residual Emean,L computed by the proposed block according to: 
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where yp and ym are the predicted and measured stroke, Ls is the number of 
samples included in the moving window length L. 
 

 

Figure V.3 Magnification of figure V.2 with reference to the highest peaks 

 
 

 

Figure V.4 Measured and predicted normalized rear stroke. 

 
 

 

Figure V.5 Moving averaged residual versus LS 

As expected, greater values for L allow limiting the height of the local peaks 
introduced in the residual signal by the poor prediction. On the other hand, 
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exceeding in the moving average leads to obtain a not accurate prediction of 
the error when long observation periods are considered. Indeed, the local 
accuracy of the NARX Network with reference to the experimental dataset 
may be revealed by the graphical tool described in Chapter III. The Sliding 
Occurrence Error (SOE) curve plots the mean relative deviation Emean,L on the 
x-axis and the corresponding relative occurrences in the moving window of 
the regression error on the y-axis. Thus, the SOE curve may be interpreted as 
the survivor function of the error tolerance. As depicted in Figure V.6 and 
Figure V.7, about the worst predicted cases by the NARX Network (ten 
percent of the experimental dataset), the minimum value for the relative 
deviation Emean,L is less than 5%, when L equal to 500 ms is considered. Thus, 
a compromise value for L should be selected according to the method 
described in the following. 

 

Figure V.6 SOE curves for NN as function of the window length L 

 

 

Figure V.7 Magnification of Figure V.6 
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V.1.3 Decision Maker 

The proposed IFD scheme for the rear stroke sensor aims to reveal firstly the 
small faults, also known as “losing calibration faults”, mainly due to the 
device wear,tear and aging, or to other influence factors as the variation of the 
sensor power supply and which results as changing of the input/output curve 
of the sensor.  
Such a kind of fault generally appears as slight amplitude deviation from the 
expected behavior and could be detected through the plausibility checks 
typically implemented in automotive ECUs only after hours or days from the 
occurrence, when the performance degradation implies unacceptable risk 
levels.  
Moreover, the proposed scheme is devoted to also detect the open, short-
circuit and hold faults. According to the proposed strategy schemed in Figure 
V.8, a fault is detected when the residual computed by the corresponding block 
exceeds a fixed threshold T% longer than an integer multiple n of the sliding 
window L. 
 
 

 

Figure V.8 The proposed detection rules 

V.2 Validation of the IFD scheme 

As far as the generation of faults, open circuit, short circuit, hold and losing 
calibration have been emulated starting by fault free signal. A short 
description of each fault condition is reported in the following. 

 

V.2.1 Short and open circuit faults 

Open circuit: from the time instant in which the fault occurs, the sensor output 
is driven to the maximum possible value (full scale). 
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Figure V.9 Open circuit fault 

Short circuit: from the time instant in which the fault occurs, the sensor output 
is driven to minimum possible value; 
 

 

Figure V.10 Short circuit fault 

 
V.2.2 Hold fault 

From the time instant in which the fault occurs, the sensor output is kept 
constant to the last fault-free value;   
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Figure V.11 Hold fault 

 
V.2.3 Losing calibration fault 

From the time instant in which the fault occurs, the sensor output is multiplied 
by a constant for changing the slope of its Input/Output curve; 
 

 

Figure V.12 Uncalibration fault (10%) 

V.3 Experimental Results 

Focus has been devoted to analyzing the best value for the window length L 
and the integer n when the most accurate NARX model and the level of the 
losing calibration T% are fixed. For each class of interest (losing calibration 
faults not lower than T%=10%, as well as the open, short-circuit and hold 
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faults), the instrument fault detection scheme has been verified against 
Nfaults=1000 faults randomly introduced in the (measured) rear stroke samples 
of dataset, by considering the following performance indexes: 
 

• the percentage FA% of false alarms, when threshold is exceeded for 
predicted samples corresponding to faulty-free sensor output; 
 

• the percentage MD% of missed detections, when either threshold is not 
exceeded for predicted samples corresponding to faulty sensor output 
or threshold is exceeded after a maximum delay td,max with respect to 
the fault insertion time; 
 

• the percentage CD% of correct fault detections, when threshold is 
exceeded for predicted samples corresponding to unhealthy sensor 
output by the maximum observation time td,max. 

 
The test results are summarized in Tables V.1-V.12 for L and n varying in the 
ranges [10÷200] ms and [1÷5] respectively, when tmax = 120 s is considered.  
Considering that the sum of the proposed indexes is equal to 100% for each 
combination of the L and n parameter, a satisfying performance may be 
obtained for all the fault types: 
 

 very low values for the FA%, and MD% indexes (not greater than 
1.0% and 2.0% respectively) are achieved when the proposed fault 
detection scheme is adopted by considering the moving 
observation window Lobs (n*LS consecutive samples) in the range 
[40÷200] ms (see the gray regions highlighted in the corresponding 
Tables); 
 

 the adoption of shorter sliding windows for residual generation (L 
< 50 ms) typically leads to poor performance in terms of FA% (see 
the values in the top-left corner of the False Alarm fault Tables) 
because of the prediction limits exhibited by the NARX model 
about the signal tracking for 10% of the Test set samples (as 
previously observed in Figure V.7);  
 

 a larger sliding window (L > 150 ms) leads to poor performance in 
terms of MD% (see the values in the bottom-right corner of the 
Missed detection fault table) because the threshold exceeding is 
not completely satisfied for all the output samples within the 
observation time window (as depicted in the corresponding 
examples of Figure V.7); 
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 the open and short faults represent the easiest conditions to be 
detected (as shown by the large gray areas highlighted in the 
corresponding Tables) because of the significant residual achieved 
in correspondence of the fault insertion due to the extreme values 
for the measured signal; 
 

 reasonably satisfying values of CD% and MD% may be achieved 
for the hold faults through shorter observation windows (see the 
small gray area highlighted in the corresponding Tables). Indeed, 
the measured suspension stroke is near the balance position for the 
greatest part of the dataset. Thus, further research could be 
addressed to include other detection rules based on the analysis of 
the derivative signal for the measured rear suspension stroke. 
 

Moreover, a very good promptness of the decision maker has been achieved: 
for all types of the faults, the corrected detection is obtained after a mean time 
delay td,mean lower than (Lobs + 2 seconds). 
 

Table V.1 Detection of losing calibration faults: False Alarm percentage 

 
L [ms]

10  20  50  100  150  200 

n 

1  97.7  97.6  54.0  0.2  0.0  0.0 

2  97.6  0.6  0.7  0.0  0.0  0.0 

3  97.6  0.4  0.0  0.0  0.0  0.0 

4  0.5  0.4  0.0  0.0  0.0  0.0 

5  0.3 0.0 0.0 0.0  0.0  0.0

 

Table V.2 Detection of losing calibration faults: Correct Detection percentage

 
L [ms] 

10  20  50  100  150  200 

n 

1  2.3 2.4 46.0 99.7  99.1  99.1

2  2.4  99.3  98.9  98.1  89.7  97.2 

3  2.4  98.8  98.2  50.6  0.0  0.0 

4  99.4  98.7  98.1  0.0  0.0  0.0 

5  99.2  98.6  0.0  0.0  0.0  0.0 
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Table V.3 Detection of losing calibration faults: Missed Detection percentage 

 
L [ms] 

10  20  50  100  150  200 

n 

1  0.0  0.0  0.0  0.1  0.9  0.9 

2  0.0  0.1  0.4  1.9  10.3  2.8 

3  0.0  0.8  1.8  49.4  100.0 100.0 

4  0.1  0.9 1.9 100.0 100.0 100.0 

5  0.5  1.4  100.0 100.0 100.0 100.0 

 

Table V.4 Detection of Open Circuit faults: False Alarm percentage 

 
L [ms] 

10  20  50  100  150  200 

n 

1  99.0  98.9  53.1  0.5  0.0  0.0 

2  99.0  0.9  0.6  0.1  0.0  0.0 

3  99.0  0.9 0.6 0.1 0.0 0.0 

4  1.1  0.9  0.2  0.1  0.0  0.0 

5  1.1  0.9  0.2  0.1  0.0  0.0 

 

Table V.5 Detection of Open Circuit faults: Correct Detection percentage 

 
L [ms] 

10  20  50  100  150  200 

n 

1  1.0  1.1  46.9  99.4  99.5  99.2 

2  1.0  99.0  99.2  99.1  98.8  98.7 

3  1.0  98.9  99.2  98.7  98.5  97.9 

4  98.8  98.9  99.0  98.6  97.9  96.9 

5  98.8  98.8 98.9 98.4 97.0 96.5 
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Table V.6 Detection of Open Circuit faults: Missed Detection percentage 

 
L [ms]

10  20  50  100  150  200 

n 

1  0.0  0.0  0.0  0.1  0.5  0.8 

2  0.0  0.1  0.2  0.8  1.2  1.3 

3  0.0  0.2  0.2  1.2  1.5  2.1 

4  0.1  0.2  0.8  1.3  2.1  3.1 

5  0.1 0.3 0.9 1.5  3.0  3.5

 

Table V.7 Detection of Short Circuit faults: False Alarm percentage 

 
L [ms] 

10  20  50  100  150  200 

n 

1  98.6  98.6  53.9  0.4  0.0  0.0 

2  98.6  0.7  0.7  0.2  0.0  0.0 

3  98.6  0.7  0.7  0.2  0.0  0.0 

4  0.9 0.7 0.7 0.2  0.0  0.0

5  0.9  0.7  0.7  0.2  0.0  0.0 

 

Table V.8 Detection of Short Circuit faults: Correct Detection percentage 

 
L [ms] 

10  20  50  100  150  200 

n 

1  1.4  1.4  46.1  99.6  99.7  99.5 

2  1.4  99.3  99.2  99.3  99.2  98.6 

3  1.4  99.3  99.2  99.0  98.6  98.6 

4  99.1  99.2  98.8  98.4  98.6  98.2 

5  99.1  99.1  98.7  98.4  98.4  98.0 
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Table V.9 Detection of Short Circuit faults: Missed Detection percentage 

 
L [ms] 

10  20  50  100  150  200 

n 

1  0.0  0.0  0.0  0.0  0.3  0.5 

2  0.0  0.0  0.1  0.5  0.8  1.4 

3  0.0  0.0  0.1  0.8  1.4  1.4 

4  0.0  0.1 0.5 1.4 1.4 1.8 

5  0.0  0.2  0.6  1.4  1.6  2.0 

 

Table V.10 Detection of Hold faults: False Alarm percentage 

 
L [ms] 

10  20  50  100  150  200 

n 

1  98.2  97.9  51.3  0.0  0.0  0.0 

2  98.0  0.2  0.0  0.0  0.0  0.0 

3  98.0  0.2 0.0 0.0 0.0 0.0 

4  0.2  0.2  0.0  0.0  0.0  0.0 

5  0.1   0.2  0.0  0.0  0.0  0.0 

 

Table V.11 Detection of Hold faults: Correct Detection percentage 

 
L [ms] 

10  20  50  100  150  200 

n 

1  1.8  2.1  48.7  92.2  88.2  84.4 

2  2.0  99.4  90.8  76.6  67.0  42.1 

3  2.0  97.8  86.6  65.2  28.6  13.7 

4  99.2  96.8  74.9  38.1  12.5  7.9 

5  98.1  89.4 58.1 22.1 7.6 7.1 
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Table V.12 Detection of Hold faults: Missed Detection percentage 

 
L [ms] 

10  20  50  100  150  200 

n 

1  0.0  0.0  0.0  7.8  11.8  15.6 

2  0.0  0.4  9.2  23.4  33.0  57.9 

3  0.0  2.0  13.4  34.8  71.4  86.3 

4  0.6 3.0 25.1 61.9  87.5  92.1

5  1.8  10.4  41.9  77.9  92.4  92.9 
 
 
V.4 On-line fault detection scheme 

Will be now described the on-line implementation and operation, on a 
general- purpose microcontroller typically employed in motorcycle context, 
of the Instrument Fault Detection scheme for the rear stroke sensor.  
The main goal is the experimental verification of both diagnostic performance 
and promptness against typical kind of faults presented in section V.2 A brief 
description of the realized Electronic Control Unit (ECU) based on the 
microcontroller unit (MCU) ARM-M4 STM32F4 (ST, 2018) is detailed in 
Section V.7. Most efforts are directed to firmware optimization in order to 
assure real-time operating through an architecture characterized by costs, 
clock frequencies, memory resources, arithmetic logic units less powerful than 
one achievable with DSP based and FPGA based systems (Samragh, 
Ghasemzadeh, & Koushanfar, 2017).  
The experimental results related the on-line validation of the realized IFD 
system by highlighting diagnostic and dynamic performance achieved on the 
field will be shown. 

 
 

V.5 The realized prototype 

In order to on-line implement the proposed IFD scheme for the rear suspension 
stroke of a motorcycle, the system under test used is the SUZUKI GSX-1000 
motorcycle equipped with several kind of sensors and Electronic Control 
Units (ECUs) devoted to accomplishing different tasks as engine management 
and automatically adapt the semi active suspension system of assuring safety 
and comfort in all motorcycle driving and running conditions described in 
Chapter II. Furthermore, to test the described IFD scheme, another ECU 
descripted in the following, specifically devoted to accomplishing such a task 
has been designed and realized.  
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V.5.1 Hardware 

The realized IFD ECU is principally composed by three main functional 
blocks:  

 
 Power converter; 
 Transceiver CAN; 
 Microcontroller STM32F405RGT6. 

 
The first block contains the power converter and it is used to adapting the input 
voltage in the range of 10-16 V (typically provided by the motorcycle battery) 
to the 3.3 V necessary for the Microcontroller.  
The second block is composed by a CAN transceiver and it is used for 
connecting the IFD ECU with the CAN bus network, thus allowing the 
acquisition of the data coming from the sensors of interest through the 
datalogger.  
The third block is composed by the Microcontroller (MCU) STM32F4 and it 
is responsible of the execution of the IFD scheme. The selected MCU belongs 
to a family based on the general-purpose ARM®Cortex®-M4 which covers a 
wide range of applications in the fields of automotive, medical equipment, 
industrial, motor drive, home audio, alarm systems.  
It is based on a 32-bit RISC-based core architecture and it can work up to a 
168 MHz clock frequency.  

 
 

         

Figure V.13 The realized IFD ECU 

 
The Cortex M4 core has a built-in Floating-point unit (FPU) single precision, 
which supports all ARM single-precision data-processing instructions and 
data types and implements a full set of DSP instructions. The architecture 



IFD scheme for the rear stroke sensor 

81 

incorporates high-speed embedded memories (Flash memory RAM up to 1 
Mbyte, SRAM up to 192 Kbytes, backup SRAM up to 4 Kbytes. The device 
is equipped with three 12-bit ADCs, two DACs, a low-power Real-Time-
Clock (RTC), twelve general-purpose 16-bit timers including and two general 
purpose 32-bit timers. Figure V.13 reports the realized prototype board 
hosting the above described blocks. 
 
 
V.5.2 Firmware 

This section describes the application of the Five STEP procedure (see 
Figure  V.14) proposed in (Capriglione D. , Carratù, Pietrosanto, & Sommella, 
2018) for generating and validating the implemented firmware. Starting from 
the MatlabTM script (m file) which implements the IFD scheme, the procedure 
allows achieving a code suitably arranged and optimized for fulfill the MCU 
and real time requirements. 
 

 

Figure V.14 Flow-chart of the proposed five-step procedure for the MCU-
implementation of the IFD scheme 

 
To develop the firmware on the MCU, the MDK Keil µVison (IDE) (KEIL, 
2018) has been used. In the following, each step of the procedure and the most 
important phases and code optimizations are described. 
 
STEP 1: Generation of the ANSI-C code 
 
Starting from the MatlabTM script (m file), the corresponding ANSI-C code 
was achieved by means of the Matlab Compiler R2018a. This code version 
makes use of mathematical libraries data representation, I/O interfaces that 
cannot be directly employable on an MCU, so the ANSI-C code has to be 
suitably revised before to be developed on the MCU adopted (i.e. next STEP 
2).  
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STEP 2: Generation of the INITIAL code 
 
As for the generation of the INITIAL Code, several operations are made, 
among which the most important are: 
 

 Allocating data structures coherently to the memory organizations 
and data representations available on the MCU used. In particular, 32 
kB and 40 kB of FlashRAM and SRAM, respectively, were used. 
 

 Selecting the most suitable clock sources and frequencies for each 
peripheral. Such a value has to be selected on the basis of a suitable 
trade-off among execution time, power consumption, frequency clock 
values (available on the MCU used) and for minimizing the 
probability of electromagnetic interference with nearby electronic 
devices and cables. As matter of fact, in motorcycle context the 
restricted spaces available bring to have high density of cables and 
electronic devices in small areas, so electromagnetic interference and 
heat dissipation problems cannot be neglected. From these points of 
view lower clock frequencies are preferable but such choice bring to 
a general increasing of the execution time.  
In particular, it has been verified that the minimum possible clock 
frequency able to satisfy real-time constraints (i.e. 1 ms for this 
application) was equal to 22 MHz if all the optimizations described in 
the following steps C-D are adopted. 
 

 Configuring and enabling line and events of interrupts as well as the 
use of Direct Memory Access (DMA) for each peripheral adopted. In 
particular, CAN BUS and a Timer were employed and configured for 
driving interrupt lines and regulate the flow of the main program. 

 
STEP 3: Generation of the COMPILER OPTIMIZED code 
 
The MDK Keil µVison (IDE) ARM Compilation Tools offers a range of 
options that can be combined to optimize the output code for best 
performance, for smallest code size, or for any performance point in the 
middle of these two requirements. 
More in details the available compiler options are: 
 

 Cross-Module Optimization: 
This function is able to remove the not used functions to achieve a 
reduced code size. 
 

 MicroLIB library: 
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It is a subgroup of the ISO standard C runtime library and offers a 
tradeoff between functionality and code size. 
 

 Link-Time Code Generation: 
A utility that trains the compiler to create objects in an intermediate 
format so that the linker can execute further code optimizations. Link-
time code generation can reduce code size and allow the application 
to run faster. 
 

 Three optimization levels: 
The different levels of optimization let the programmer to achieve a 
trade-off between the level of debug information available in the 
compiled code and the performance of the code in term of time 
execution. In the following the possible optimization levels are briefly 
described. 
 
- “O0-level”: most of the optimizations are switched off and the 

code generated has the best debug view.  
 

- “O1-level”: a set of restricted optimizations is applied. More in 
details, the compiler applies automatic optimizations like 
removing redundant code and re-ordering instructions to avoid 
an interlock situation. The code generated is reasonably 
optimized, with a good debug view.  
 

- “O2-level”: optimizations applied at this level get advantage of 
ARM’s in-depth knowledge of the processor architecture in order 
to exploit processor-specific behavior of the given target. It 
generates well optimized code, but with limited debug view.  
 

- “O3-level”: applies the most powerful optimization. The 
optimization is in accordance with the user intention in order to 
obtain a space-optimized or time-optimized code. The code 
generated in this level is not useful for debug view.  

 
 Optimize for time: 

Teaches the compiler to optimize the code for the fastest execution 
time, at the risk of an increase of code size.  
 

As a consequence, several optimization options could be selected and the 
combination of options to apply will depend on the optimization goals, for 
example in favoring either the smallest code size, or the best performance in 
terms of execution times (these are contrasting needs, therefore a suitable 
trade-off should be considered).  
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Since the memory required (32 kB and 40 kB of FlashRAM and SRAM, 
respectively) for the firmware implementation was very limited with respect 
to the one available for the MCU used, the options O1 level and Optimizing 
for time were enabled with the aim of reducing the execution time. By this 
way, for the selected clock frequency (i.e. 22 MHz) we have achieved an 
execution time equal to 1.6 ms. Therefore, in order to constraint the execution 
time to be less than 1 ms further optimizations are needed. 
 
STEP 4: Generation of the FINAL OPTIMIZED code 
 
The compiler optimizations allowed to improve the performance with respect 
to the INITIAL code, but further straightforward techniques have been 
employed to significantly increase the code efficiency in terms of both 
execution time and memory usage.  
In particular, at first, all data structures were converted in 32-bit data type with 
aim of intensively exploiting the native MCU architecture.  
Secondly, as suggested in literature (Srivastava & Wall, 1999), (Ullman, 
1986) and (Calder, Grunwald, & Zorn, 1994), the following main practices 
have been adopted: 
 
 

 Loop Jamming: to exploit the redundancy operations and to eliminate 
the overhead in one loop; 
 

 Inversion of loops direction: the use of a decrement counting and of 
an unconditional jump from zero flag allows reducing the use of 
general compare instructions; 

 
 Loops unrolling: the replication of the body loop in order to exploit 

the pipeline architecture; 
 

 Invariant code motion: statements or expressions are moved outside 
the body of a loop without affecting the semantics of the program; 

 
 Strength reduction: Expensive operations are replaced with equivalent 

but less expensive operations; 
 

 Exploiting floating-point unit: the floating-point unit available on the 
considered MCU has been enabled for improving the efficiency and 
speed on floating point operations. 
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Figure V.15 Some of the main practices adopted for final code optimization 
(STEP 4 of the procedure): Loop Jamming. 

 
 

 

Figure V.16 Some of the main practices adopted for final code optimization 
(STEP 4 of the procedure): Loop Unrolling. 

 
 

 

Figure V.17 Some of the main practices adopted for final code optimization 
(STEP 4 of the procedure): Use of FPU. 

 
 
To better show the application of such rules, Figure V.15 to Figure V.17 shows 
some examples of the practices above described and Table V.13 highlights the 
effects of steps 3 and 4 on the execution times and memory needed for the 
implementation of the IFD scheme. To measure the execution times, the 
transition of a digital line at the start and the stop of the main function was 
included. Then, 1000 repetitions of the developed firmware were run and each 
time the time interval between the start and stop of the main function through 
a digital scope LECROY 104Xs (10 ppm Time interval accuracy) was 
estimated. 
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Table V.13 Execution times measured with experimental tests (A frequency 
clock of 22 MHz is involved) and memory required for the implementation of 
the IFD scheme. 

Execution times [µs] 
Initial code  
(STEP 2) 

Compiler 
optimized code 
(STEP 3) 

Final optimized 
code (STEP 4) 

Mean 
value 

Standard 
deviation 

Mean 
value 

Standard 
deviation 

Mean 
value 

Standard 
deviation 

1851.6 7.0 1628.0 6.0 686.6 0.3
502.3 2.1 448.4 1.8 181.3 0.1
314.4 1.3 282.7 0.9 111.8 0.1
 
Memory occupation [kB] 
Initial code  
(STEP 2) 

Compiler 
optimized code 
(STEP 3)

Final optimized 
code (STEP 4) 

Flash 
RAM 

SRAM Flash 
RAM 

SRAM Flash 
RAM

SRAM 

33 40 25 40 24 40
 
As for the execution times the following main considerations can be drawn: 
 

 the use of the compiler optimizations (STEP 3) alone generally does 
not guarantee significant improvements in the code efficiency of the 
proposed IFD scheme. Indeed, it allows reducing the mean execution 
time of about 10 % (compare performance of Initial optimized code 
and Compiler optimized code); 
 

 thanks to the adoption of the proposed guidelines and intensive use of 
MCU architecture (STEP 4), it has been possible to significantly 
reduce the mean execution time of about 60 % (compare performance 
of Compiler optimized 

 
 thanks to the adopted code optimizations the time constraint for the 

real-time operating (1ms) is satisfied. 
 
As for the memory, as expected SRAM occupancy is not affected by the code 
optimizations whereas the Flash RAM occupancy is reduced when the code 
optimizations are adopted. 
The achieved values are in any case fully compatible with the memory 
resources available on the considered MCU (compare values of Table V.13 
with MCU features). 
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STEP 5: Firmware validation 
 
A firmware verification and validation are required for confirming that the 
implemented code really provides the expected outputs. This kind of analysis 
allows: 
 

 verifying general correctness of the firmware implementation; 
 
 evaluating the effects of data approximations introduced by finite 

arithmetic representation of the adopted MCU.  
 
This phase was made by comparing the outputs of the Final optimized code 
(provided by STEP 4) with ones achieved by the Matlab m-file (used as 
reference).  
Since the most complex operations involve the NARX, such a validation is 
made by comparing the corresponding outputs provided by MCU versus ones 
provided by Matlab. Figure V.18, reports the percentage deviation between 
the MCU outputs and Matlab ones for a data subset considered. The absolute 
maximum percentage error was always less than 2*10-5 and similar results 
were achieved for other data subsets.  
As a consequence, the firmware implementation is validated. Moreover, these 
values suggest that the errors due to the MCU data approximation can be 
considered negligible with respect to the typical measurement uncertainties 
involved (1 % 5 % of the reading), also considering a different data 
representation among MCU (32-bit) and Matlab (64-bit). 
 

 

Figure V.18 Percentage error between the reference outputs (provided by 
Matlab code) and the firmware ones (provided by the Final optimized code). 
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 V.6 Experimental results on the road 

In this section the experimental results for testing the performance of the 
realized IFD system on the motorcycle are reported. In particular, a suitable 
experimental campaign has been carried out for analyzing the diagnostic and 
dynamic performance during real tests. 

 
V.6.1 Faults introduced in the control loop 

As far as the generation of faults, open circuit, short circuit, hold and losing 
calibration have been emulated starting by fault free signals.  
In a more detail, the emulation of the faults was achieved thanks to capability 
of the CAN-BUS data logger to be programmed for putting on the CAN-BUS 
network suitably altered (in a controlled way) versions, of the sensor real 
outputs. In particular, for each of the considered faults to be emulated, the 
CAN-BUS data logger was programmed in order to introduce the desired fault 
after a suitable time instant. By this way, it will be possible to estimate the 
above defined figures of merit in a systematic way.  
 
V.6.2 Diagnostic and dynamic performance 

To evaluate the diagnostic performance of the realized IFD system, 
experimental campaigns were conducted for evaluating the previously 
described figures of merit. In particular, the motorcycle run along a mixed 
route about 5 km-length with the following scheme: 
 
 

 20 laps for the evaluation of FA % when the sensor is fault free; 
 

 20 laps (for each one of the considered faults) for the evaluation of 
CD % and TD when one of the above described faults is present. 

 
As for FA %, it was less equal to 0 %. As for CD % it was approaching 100  % 
for each considered fault with except for the Losing calibration fault (see 
Table  V.14).  
 

Table V.14 Diagnostic performance of the IFD scheme 

Type of Fault  Open circuit 
Short 
circuit 

Hold 
Losing 
calibration 

CD %  100 %  100 %  100 %  95 % 
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Regarding TD, Table V.15 reports the achieved experimental results in terms 
of mean value and standard deviation.  
 

Table V.15 Dynamic performance of the IFD scheme (µ is the mean value, σ 
is the standard deviation). 

Type of Fault  Open circuit 
Short  
circuit 

Hold 
Losing 
calibration 

TD 
µ [s] σ [s] µ [s] σ [s] µ [s] σ [s]  µ[s]  σ [s]

0.4 0.1 0.5 0.2 1.4 0.2  26.4  3.8

 
From the analyses of such results some considerations can be drawn: 
 

 Open and short circuit faults are easily (CD % equal to 100 %) and 
quickly detected (TD mean value < 1 s) and also the observed value 
of σ confirms very stable and robustness features of the realized IFD 
scheme with respect to this kind of faults. Similar considerations can 
be made for hold faults which are detected in the 100 % of cases and 
with TD mean value < 2 s. 
 

 Losing calibration faults, as expected, they require more time to be 
detected and in one case (i.e. one of the 20 lap) we had a missed 
detection.  

 
 





 

 

Chapter VI 
Conclusions 

 
 
 
 

In this work, design and validation techniques of a soft sensors for the 
motorcycle vertical dynamics have been presented. Also, their application in 
an IFD scheme with a validation on a real motorcycle has been carried out. 
More in details, the attention has been devoted to the front and rear stroke 
suspension sensors since the quantities measured from them are very 
important for the control strategy of a semi-active or active suspension system. 
The most used stroke sensors are the linear potentiometers and represents a 
weak point of the control loop in a semi-active or active suspension system 
due to the high cost and premature aging. For this reason, two different soft 
sensors regarding a semi-active suspension system have been presented: a 
front stroke velocity soft sensor and a rear stroke soft sensor. 
The first soft sensor presented face to the problem to measure the suspension 
velocity from the acceleration signals output from two low-cost 
accelerometers connected respectively to the sprung mass and the front wheel 
of a motorcycle using two different techniques. 
The former technique based on the digital filtering of accelerations intends to 
improve the numerical integration through the adoption of the cascade of 
suitable low and high pass filters. Experimental results confirm the 
corresponding soft sensor is suitable for the needs of a semi-active or active 
suspensions control system in order to both reduce the negative effects of low 
frequencies and to follow with precision the widest oscillations of the 
suspension velocity signal.  
The latter technique, based on the adoption of recurrent Artificial Neural 
Network, lead to develop a soft sensor able to correctly predict the suspension 
velocity in lower ranges. 
The second soft sensor is mainly focused on the prediction of the rear stroke 
sensor using a NARX Neural Networks. The measurement campaign and 
post-processing analysis concerning with the suspension stroke sensor have 
highlighted the validity of the proposed solution in terms of both static and 
dynamical behavior (represented respectively by the mean error and the 
sliding mean deviation in the output prediction).  
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Experimental results lead to the adoption of the NARX model as a useful 
benchmark for the implementation of IFD strategies for motorcycle rear stroke 
sensors.  
The deep analysis performed in terms of REC and SOE curves has proved that 
the prediction error can be limited to 5-6%, which allows to identify also very 
small losing calibration faults, thus enabling the capability of quickly 
triggering recovery or predictive maintenance procedures with the aims of 
improving the driver safety and holding high the real effectiveness of the 
suspension systems.  
Thanks to the adoption of suitable programming rules and code optimization 
the whole IFD procedure has been developed on a commercial low-cost 
general purpose STM32F4 MCU belonging to the class of ARM-M4 
architecture. Experimental results show that the implemented scheme is able 
to identify several types of faults that could occur on linear potentiometers 
which are the most used sensors employed in such context. In particular, short 
circuit, open circuit and hold faults are always detected (CD = 100 %) and 
very quickly (time needed for the detection is less than 2 s) whereas losing 
calibration fault requires larger time interval (about 30 s) to provide reliable 
diagnostic results. However, since the effects of this last fault is not so critic 
for passenger safety and motorcycle handling, the time required for their 
diagnosis is suitable for the purpose. 
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Appendix I 
NARX network 

 
 
 
 

The Non-linear Auto Regressive network with eXogenous inputs (NARX) is 
a recurrent dynamic network, with feedback connections enclosed between 
different layers of the network. The NARX model is based on the ARX linear 
model, which is commonly used in time series modeling. In such situations, 
the construction of an ARX-type model should only be based on observing the 
system's behavior by using the input and output variables (external).  
 
The equation that defines a NARX model is: 

y(t)= f (y(t-1), ..., y(t-ny), u(t-1), ..., u(t-nu)) (Appendix.1) 

Where the next value of the output signal function y (t) is regressed to earlier 
values of the output signal and to earlier values of an independent (exogenous) 
input signal.  
It is possible to implement the NARX model by using an open-loop neural 
network to approximate a specific function f. A resulting network diagram is 
shown in Figure Appendix.1, where a two-layer open-loop network is used.  
 

 

Appendix I.1 Structure of a NARX network 

 
This implementation allows to reach an ARX model in which the input and 
output can be multidimensional. Non-linear self-regressive models with 
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nonlinear auto regressive exogenous inputs (NARX) are obtained by 
considering only regressors: Y (t-K) and U (t-K). 
As can be seen from the Eq.Appendix.1of the NARX model, the output is 
given by a nonlinear function that refers to the value of the output considered 
in the earlier moments and the value of the exogenous variable also observed 
in the past moments.  
The output of a NARX network can be described as an estimation of the output 
variable of a nonlinear dynamic system that will be attempt to model. The 
latter is reintroduced as input for the open loop neural network as shown in 
the figure below. 
 

 

Appendix I.2 NARX Parallel Architecture 

 
Since the true output is available during the training of the network, it is 
possible to use a series-parallel architecture, in which the true output is used 
instead of the estimated output, as shown in the figure below on the right. 

 

 

Appendix I.3 NARX Series-Parallel Architecture 

This operation has two advantages: the first one is that the inputs of the open 
loop network is more accurate, the second one is that the resulting network 
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has a purely open-loop architecture which allows the use of the static 
backpropagation algorithm for the learning phase. 


