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Abstract

Optimal design problems have aroused particular interest in the scientific com-
munity over the past thirty years. In physics, for example, they find application
in the investigation of the minimal energy configurations of a mixture of two
materials in a bounded and connected open set.

The fascination of such problems derives from their variational formula-
tion, which involves not only the state function of a system, but also a shape,
that is a set. If a penalizing contribution of perimeter form, due to a surface
energy, is added to the integral mass energy, dependent on the configuration
state-shape, the problem becomes even more intriguing and inspiring.

It is not straightforward to investigate the regularity of minimizing pairs
because the two energies have different dimensions under commong scalings:
once a homothety of factor r is applied, the first energy “behaves” as a vol-
ume (rescaling with factor 7™), the second as a perimeter (rescaling with factor
r"~1). The coexistence of the two types of energies is managed using techniques
and tools of both the Calculus of Variations and the Geometric Measure The-
ory.

In the first part of this thesis we deal with two optimal design problems,
in which the integral functions that constitute the mass energy have different
growths.

If their growth is at most quadratic, we prove the C* regularity of the
interface of the shape that constitutes the optimal pair, up to a singular set of
Hausdorff dimension less than n — 1. The technique used combines the regu-
larity theories of the A-minimizers of the perimeter and the minimizers of the
Mumford-Shah functional.

If the integrands have at most a polynomial growth of degree p, the anal-
ysis becomes more involved. The C** regularity of the interface remains an
open problem. However, it is proved that the optimal shape of the problem
is equivalent to an open set with a topological boundary that differs from its
reduced boundary for a set of Hausdorff dimension less than or equal to n — 1.

In the second part of the thesis we address to a completely different varia-
tional problem, involving a frustrated spin system on a (one-dimensional and
two-dimensional) lattice confined in two magnetic anisotropy circles.

This topic is of significant scientific interest, as it is useful for understand-
ing the behavior of low-dimensional magnetic structures existing in nature.

The frustration parameter a > 0 of the system averages the ferromagnetic
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and antiferromagnetic interactions that coexist in the energy. The minimal
energy state of the system, for a < 4, consists of a spin that “lives” within
only one of the two magnetic anisotropy circles and has a positive or negative
chirality.

We find the correct rescaling of the functional and prove the energy needed
to detect the two phenomena that break the rigid minimal symmetry described.
These are chirality transitions and magnetic anisotropy transitions of the spin.



Sommario

I problemi di design ottimale hanno suscitato un particolare interesse nella co-
munita scientifica negli ultimi trent’anni. In campo fisico, per esempio, trovano
immediata applicazione nella ricerca della configurazione di minima energia di
una miscela di due materiali in un aperto limitato e connesso.

Il fascino di tali problemi deriva dalla loro formulazione variazionale, la
quale coinvolge non soltanto la funzione di stato di un sistema, ma anche una
forma, un insieme. Se poi alla classica energia di massa di forma integrale,
dipendente dalla configurazione funzione di stato-forma, si aggiunge un con-
tributo penalizzante di forma perimetrale, dovuto ad un’energia di superficie,
il problema diventa ancora piu intrigante e stimolante.

Non e immediato investigare la regolarita delle coppie minimizzanti perché
le due energie hanno dimensioni diverse sotto lo stesso riscalamento: appli-
cata un’omotetia di fattore r, la prima si “comporta” come un volume (risca-
lando come r"), la seconda come un perimetro (riscalando come r"!). La
compresenza dei due tipi di energie viene gestita adoperando tecniche e stru-
menti propri sia del Calcolo delle Variazioni che della Teoria Geometrica della
Misura.

Nella prima parte di questa tesi si trattano due problemi di design ottimale,
in cui le funzioni integrande che compongono ’energia di massa hanno crescite
diverse.

Se la crescita ¢ al pill quadratica, si prova la regolarita C*# dell'interfaccia
della forma che costituisce la coppia ottimale, a meno di un insieme di singo-
larita di dimensione di Hausdorff strettamente inferiore a n — 1. La tecnica
adoperata coniuga la teorie di regolarita dei A-minimi del perimetro e dei
minimi del funzionale di Mumford-Shah.

Qualora 'integranda abbia crescita al pitt polinomiale di grado p, ’analisi
diventa pill complessa. La regolarita C1* dell’interfaccia resta un problema
aperto. Tuttavia, si prova che la forma ottimale del problema e equivalente ad
un aperto con una frontiera topologica che differisce dalla sua frontiera ridotta
per un insieme di dimensione di Hausdorff inferiore o uguale a n — 1.

Nella seconda parte della tesi viene affrontato un problema variazionale
completamente diverso, che coinvolge un sistema di spin frustrato su un reticolo
(unidimensionale e bidimensionale) confinato in due circonferenze di anisotropia
magnetica. L’argomento ¢ di rilevante interesse scientifico, siccome utile a
comprendere il comportamento di strutture magnetiche di basse dimensioni
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esistenti in natura. Il parametro di frustrazione o > 0 del sistema media le
interazioni ferromagnetiche e antiferromagnetiche che si riflettono nell’energia.
Lo stato di minima energia del sistema, per a < 4, ¢ composto da uno spin che
“vive” all’interno di una sola delle due circonferenze di anisotropia magnetica
e ha una chiralita positiva o negativa.

Si prova quali sono il riscalamento corretto del funzionale e l’energia
necessaria per individuare i fenomeni di transizione di chiralita e anisotropia
magnetica degli spin, le quali rompono la rigida simmetria minimale descritta.



Introduction

This thesis is structured in two parts: Part I is devoted to the study of reg-
ularity properties of solutions of optimal design problems with perimeter pe-
nalization, which is the main topic that I studied in my PhD course. Part II
is focused on the study of chirality and magnetic anisotropy transitions of a
frustrated lattice system and originates from my visit, lasted four months, to
Prof. Dr. Marco Cicalese at Technische Universitat Miinchen.

Introduction to Part 1

Free boundary problems involving bulk and interface energy have recently at-
tracted the attention of the scientific community. This interest is justified by
the large applications they find in the description of plethora of fenomena such
as non linear elasticity, material sciences and image segmentation in the com-
puter vision.

Among free boundary problems, optimal design with perimeter penaliza-
tion concerns the study of the minimal energy configurations of a mixture of
two materials in a bounded connected open set, where the energy is penalized
by the area of the interface between the two materials (see for instance [4], [5],
[31], [34], [38], [42], [43], [44], [57]).

An optimal design problem is a variational problem whose set of competi-
tors is a family of shapes, i.e. domains of R™. Its mathematical formulation is
the following:

min F(FE), (0.1)

EeA
where A is the class of all admissible domains and F is the cost function to
be minimized over A (see [12]). A typical example of this kind of problems is
the well-known euclidean isoperimetric problem,

min P(FE), (0.2)
where d € (0, +0) is a fixed number.
It is worth noticing that the class A does not have any linear or convex

structure, so in optimal design problems it is meaningless to speak of convex
functionals and similar notions. Moreover, even if several topologies on families

7
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of domains are available, in general there is not an a priori choice of a topology
in order to apply the direct methods of the calculus of variations, for obtaining
the existence of at least an optimal shape. One would have to exclude that
minimizing sequences of problem (0.2) locally converge to a set of locally finite
perimeter that have a Lebesgue measure strictly less than d, fact that is not
guaranteed by the usual compactness results.

In Part I, we deal with variational cost functions of the type

FE)= min Jﬂ Ho(z, u(z), Vu(@)) dz + P(E:Q),  (0.3)

UEUQ +W01’

where €2 < R" is a bounded open set, Hg: 2 x R x R” — R is a discontinuous
function on the boundary of F and uy € Wy (Q) is a fixed boundary datum.
The competitor £ < ) is a set of finite perimeter in 2. In this case, the
minimization problem (0.1) involving the functional F defined in (0.3), i.e.

in F(E 0.4

Jmin, FE), (0.4)

is called an optimal design problem with perimeter penalization and

we say that the energy F is made up of the bulk energy and the perimetral
energy. In the specific case, if the competitors run over the family

A(Q)={EcQ: P(E;Q) < 4w},
we call problem (0.4) an unconstrained problem. If
A={FEcQ: P(E;Q) < +w, |E| =d},

for some fixed number d € (0, |€2|), we call problem (0.4) a constrained prob-
lem.

We remark that if F has the form (0.3), the starting problem (0.4) can be
written as follows:

min J Halz, u(z), Vu(z)) de + P(E; Q).
(Bayedx (ut WP (@) Jo

For example, the problem of finding the minimal energy configuration of a
mixture of two conducting materials of permittivities «, 8 > 0 in a container
Q2 can be described by the unconstrained problem

e ngin i) L[(OJLE(Q:) + Blap ()| Vul*(z) — 2f (x)u(x)] dx + P(E; ),

where f denotes the source density, u the electrostatic potential of the system
and P(F;Q) stands for the energetic dispersion due to the contact of the
interfaces of the two materials (see [5] for more details).

Optimal design problems are strictly linked to other classes of problems.
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We discuss in Chapter 2 their substantial connection with the Mumford-Shah
functional

J(K,u) = L\K IVl + alu— g)%] de + BH (K ~ Q).

Here g € L*(Q2) n L*(Q) is fixed and «, 8 are positive parameters. The prob-
lem consists in minimizing J among all pairs (K, u), being K < R"™ a closed
set and v € CH(Q\K).

Another problem linked to optimal design that we study is the model de-
scribing the shape of charged liquid droplets under a suitable free energy com-
posed by an attractive term, coming from surface tension forces, and a repulsive
one, due to the electric forces generated by the interaction between charged
particles, i.e., for K > 0,

i 2 1g(2)+ flrn Vul? d+KJ2d+PE
ot Q[ (160 + L@ VaP @) dot i [ o) do |+ P(E)
(see [23], [49], [50], [57]). Here E — R™ represents the droplet, the constant
@ > 0 is the total charge enclosed in E, f > 0 is the permittivity of the
liquid, p and u represent respectively the normalized density of charge and the
electrostatic potential, both belonging to the space

W(E) = {(u, p) € D'(R") x L*(R") : —div((1g + BlrmsVu) = p,

p]lR"\E = 07 f de = 1}7
E

where D'(R™) is the closure of C*(R™) with respect to the gradient norm of
W1,2 (Rn)

In addition to existence issues, regularity properties of the optimal shape
can be analyzed, e.g. the regularity of its boundary and the Hausdorff dimen-
sion of its singular set. This will be our main issue of concern.

One of the first results concerning the unconstrained problem (0.4) was due
by L. Ambrosio and G. Buttazzo in 1993 (see [5]). As mentioned before, they
considered

Hg(w,s,€) = (alp(x) + flap(@))|E]* + 1e(@)g(z, s) + Lop(2)h(z, s), (0.5)
with g and h satisfying
g(w,s) = y(x) — k|s|* and  h(z,s) = v(z) - k[s|, (0.6)

for a.e. € Q and s € R, where v € L'(Q) and k£ < a);, being \; the
first eigenvalue of —A on ). The previous conditions on g and h ensure the
existence of a minimizing couple of problem (0.3). The authors proved the
following result.
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Theorem 0.0.1. Let us assume that g and h satisfy the assumption (0.6),
l9(z,s)| < C(1 +[s]) and |h(z,s)| < C(1 + [s]7),
for a.e. (x,s) € Q xR, where
[p, +0) ifn=2,
q€ .
[p.p*)  ifn>2.

If (E,u) is a solution of the uncostrained problem (0.4) with Hg as in (0.5),
then

1. w is locally Holder continuous;
2. E is equivalent to an open set E, that is

|EAE| =0 and P(F;Q) = P(E;Q)=H""'0F nQ).

In the same volume of the same journal, F.H. Lin proved the regularity of
the interface (see [44]) of minimizers of the uncostrained problem (0.4) with

Hp(z,8) = (1 + 1g(@)|Ef, V(z,€) e Q x R"™ (0.7)

The author proved that, for a minimal configuration (E,u), 0F is regular
outside a relatively closed set of vanishing H" !-measure. To be more precise,
we define the set of regular points of dF as follows:

Reg(E) := {x € )E N Q : OF is a C'" hypersurface in some (x)
and for some v € (0,1)},

where I(z) denotes a neighborhood of z. Accordingly, we define the set of
singular points of 0F

Y(FE) := (0F n Q2)\Reg(E).
The theorem proved in [44] is the following.

Theorem 0.0.2. There exists a solution (E,u) of the uncostrained problem
(0.4) with Hg as in (0.7). Furthermore,

1. ue C2(Q);

2. 0F is (n — 1)-countably rectifiable. More precisely, (0E n Q\X(FE) is a
Cle-hypersurface, for some € (0,1), and H" (3(E)) = 0.

We remark that the Holder exponent % is critical. If one can show that
u€E C’%JFW(Q), for some n € (O, %], then we get

J IVul® dz < C(n, [u];+n)r"_1+2", VB, (zo) cc< Q.
B'r(xO) 2
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If (E,u) is a solution of problem (0.4) with Hg as in (0.7) (Hg can be more
generally a function with quadratic growth in ), then, for any F' < R™ with
EAF cc B,(x), by minimality, we infer

P(E; B.(0)) — P(F; B,(x)) < L;,( )(HE(:E) — 1p(2))|Vul|? dz

< QJ [Vul* dz < C(n, [u]%m)r”_l”",
By (o)

obtaining

W(E; By(xg)) := P(E; By(xg)) — min P(F; B.(x9))

FAEccBy(xo)

< C(n, [u]%m)r”’”z”.

The previous inequality guaranties that E has the same regularity property of
a perimeter minimizer, as proved by I. Tamanini in 1982 (see [56]). For the
sake of completeness we recall this result below.

Theorem 0.0.3. Let E < R"™ be a set of finite perimeter satisfying, for some
ne (O, %) and two positive constants C, 1o, such that

¢(E§ Br(xo)) < C’(n, [u]%+n)7‘nil+2na

for any g € Q and 0 < r < ro. Then the reduced boundary 0*FE of E is a
CY1-hypersurface in Q and

dimy (2 n (OENO*E)) < n — 8,

Summing up, if (£, u) is a solution of the uncostrained problem (0.4) with
Hpg belonging to a large class of functions and u € C’%J”](Q), then the boundary
OF of E contains a regular hypersurface 0* E which differs from it in €2 by a
singular set of Hausdorff dimension less than n — 8. This is the best regularity
one may expect. Indeed, De Giorgi in [18] showed that the non-existence of a
singular minimal cone in R" implies non-existence in R"~! and Simons in [55]
showed the non-existence of singular minimal cones in dimensions 2 < n < 7.
For n = 8, Bombieri, De Giorgi, and Giusti proved in [9] that the Simons’
cone

{reR® : o} + a3 + a5+ ] =22 +af + 27 + 23}

is a singular minimal cone with singular set {0}. Furthermore, if n > 8, there
exists a perimeter minimizer £ < R™ with " ®(0E\0*E) = +0 (see Theorem
2.12.1 and, for further details, [46, Chapter 28]). Federer concluded in [33] by
proving the Hausdorff dimension of the singular set is less than or equal to
n — 8.

The optimal regularity of the interface is hard to obtain in most cases.
This is due to the fact that the two terms in the functional (0.3) have different
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dimension under common scalings. In [29] L. Esposito and N. Fusco studied
the regularity of the costrained problem (0.4) with

Hp(z,€) = (alp(z) + flag(@))|E?,  V(z,§) e Q xR", (0.8)

where 0 < § < « are two fixed constants. Assuming that « is sufficiently close
to B, the authors obtained the full regularity of the free interface by proving
the following result.

Theorem 0.0.4. There exists v, > 1 such that if § < 7, and (E,u) is a
solution of the costrained problem (0.4) with Hg as in (0.8), then u € C2+7(Q),
for some n =n(n,«a, 5) € (0, %) and 0*E is a CY"-hypersurface, with H* (2 N
(OENO*E)) =0, for any s > n — 8.

The problem of handling with the constraint |E| = d is overtaken ensuring
that every minimizer of the constrained problem (0.4) is also a minimizer of a
penalized functional of the type

FA(E,v;Q) = F(E,v;Q) + A||E| — d

9

for some suitable A > 0. In Chapter 2 the same idea will be carried out in a
more general context (see Theorem 2.2.1).

The optimal regularity of the free interface in the general case is still an
open problem. However, partial regularity results are available. In 2015, G. De
Philippis and A. Figalli in [21], N. Fusco and V. Julin in [35], independently
of each other and by different approaches, improved Lin’s result by finding a
sharper estimate of the singular set’s size.

Theorem 0.0.5. Let (E,u) be a solution of the costrained or uncostrained
problem (0.4) with Hg as in (0.8). Then

1. there exists a relatively open set I’ = 0F such that T is a CY* hypersurface
forall0 < p < %;

2. there exists € = s(n, %) > 0, such that

H"1=5(Q A (OE\D)) = 0.

The technique used by G. De Philippis and A. Figalli consists in proving
that, if (F, u) is a solution of the problem, the singular set of 0F is o-porous in
OF, for some ¢ > 0. Using density lower and upper bounds on the perimeter
of E, the estimate follows from a classical result of measure theory. However,
in Chapter 2 we follow the strategy adopted by N. Fusco and V. Julin.

Some aforementioned results were obtained in literature for more general
functions Hg. In 1999, F.H. Lin and R.V. Kohn considered the functions

Hp(r,s,6) = F(x,8,€) + 1g(2)G(x,5,€), Y(z,58)eQxRxR" (0.9)

with F,G € C%"(Q x R x R"), for £ > 2 and 7 € (0, 1), satisfying the following
properties:
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e F and G are uniformly elliptic and uniformly bounded, i.e. there exist
two positive constants v and NN such that

V|§|2 < FEifj (:)3, 375) < N|§|27 V|§|2 < Ggigj(l’,s,f) < N|§|2a (0'10)
for any (z,s,6) € Q x R x R™;

e I and G have a controlled growth, that is there exists a constant
M > 0 such that

Ve F|+ Ve Fl < M(1+[€]), VoL FI+IVLFI+| Ve Fl < M(1+[¢[),
(0.11)
for any & € R™.

They proved the following assertion (see [45]).

Theorem 0.0.6. Assuming that Hg is as in (0.9), and (0.10), (0.11) are
in force, then there exists a solution (E,u) of the costrained problem (0.4).
Furthermore, u € C2(Q) and A is (n — 1)-countably rectifiable.

A particular example of functions of the type (0.9) are integrands of the
type Hg = F + 1gG, with

n

F(z,s,8) = Z (z,5)&¢; —|—Zaz z,s)& + alx, s), (0.12)

G(z,s,§) = Zn: bij(z,5)&&; + Zn: bi(z, )& + b(x, s), (0.13)
ij=1

i=1

for any (x,s,€) € Q x R x R". The same authors proved the result below.

Theorem 0.0.7. Assuming that Hg is as in (0.9), and (0.10)-(0.13) are in
force, then, for any solution (E,u) of the costrained problem (0.4), (OF n
ON\Z(FE) is a CY17-hypersurface, for some o € (0,1) and H" 1 (X(E)) = 0.

Actually, the previous results were proved for a more general problem, an
optimal design problem with anisotropic perimeter penalization, i.e.

min J Ha(z, u(z), Vu(z)) do + U(OE),
(Bawyedx (u WP (@) Jo

with
U(0F) = Lzb(x,vE(x))dluEL

where vg is the exterior unit normal vector to 0F and 1 satisfies some addi-
tional assumptions.

As explained so far, regularity results are based on the study of the inter-
play between the perimeter and the bulk energy. For this reason, in Chapter
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1 we recall some classical notions and well-known results from the geometric
measure theory and the regularity theory of minima of variational functions
and solutions of partial differential equations.

In Chapter 2 we address the issue of improving the dimensional estimate
for the singular part X(F) of optimal configurations for the model quadratic
functionals treated by F.H. Lin and R.V. Kohn. We prove the same kind
of regularity of the interface proved in the model case (0.8) in [21] and [35],
namely dimy(X(F)) < n—1—¢, for some € > 0 depending on the initial data.
We consider the model function

Hp(z,s,€) = F(x,5,6) + 1p(2)G(2,5,€), V(r,s,) e QxR xR"

under the structure conditions (0.12) and (0.13). Concerning the coefficients,
we assume that they are Lipschitz continuous, i.e.

A5, bijaai7bi7a7b € CO,I(Q X R)

Moreover, to ensure the existence of minimizers, we assume the uniform bound-
edness of the coefficients and the uniform ellipticity of the matrices a;; and b;;,
ie.

V[E]? < aii(x, )68 < N|EP, v[E]? < bij(z, 9)68 < N|E%

D laie, )+ 3 i, )] + |, 8)| + bz, $)| < L,

i=1 i=1

for any (x,s,£) € Q@ x R x R" where v, N and L are three positive constants.

We remark that our regularity assumptions are weaker than the ones as-
sumed by F.H. Lin and R.V. Kohn in [45] for the same model quadratic
functional. The aforementioned results con be found in a joint work with
L. Esposito, [30].

The problem discussed so far can be easily generalized. Indeed, one may
ask whether the aforementioned results are still true if the functional has a
p-polynomial growth in place the quadratic one. While in the quadratic case
many regularity results are available in literature, the problem is less studied
in the p-polynomial growth case. Actually, it turns out to be more involved
(see [13], [14], [28]).

As before, the formulation of the problem is

min F(F), (0.14)
with a variational cost functions of the type

FE)= min L Ha(z, u(z), Vu(z)) dz + P(E; Q).

UEUQ +W01’
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In 2014, M. Carozza, 1. Fonseca and A. Passarelli di Napoli dealt with the
costrained problem (0.14) involving a discontinuous class of integrands Hp of
the type

Hp(2,€) = F(€) + Lp(2)G(), ¥(2,6) e @ x R". (0.15)

(see [13]). They assumed that F, G € C'(R") and the existence of some positive
constants [, L, a, 8 and p > 0 such that

e [ and G have p-growth (p > 1):
0< F(€) < Lk + [¢)%, (F1)
0<G(E) < BL(* + [€[*)2, (G1)
for all £ € R™;

e F and G are strongly quasi-convex:

LF@ L V)d > f [F(&) + 102 + |2 + Vo) 2 [Vl] dr, (F2)

| 66+ prde= [ (G0 +allrt + 168 + [96) 5 V] o, (G2
for all £ € R™ and p € C}(Q).

Following the same argument adopted in [29], the authors proved that the
constraint |FE| = d can be overtaken ensuring that every minimizer of the
constrained problem is also a minimizer of a suitable unconstrained energy
functional with a volume penalization, i.e.

Y

FA(E,v;Q) = F(E,v;Q) + A||E| — d

for some A > 0 sufficiently large. Inspired by the same article, they also
obtained the optimal regularity of the interface, under the condition

() () =
a+1 a+1

for some v = 'y(n,p, %) < 1 and d(n,p) > 0. In the general case, the authors
proved the following theorem.

Theorem 0.0.8. Let (E,u) be a solution of the costrained problem (0.14)
with Hg as in (0.15), under the conditions (F1), (F2), (G1), (G2). Then
there exists an open set Qo < Q with full measure such that uw € C*"(Q), for
every n € (0,1). In addition, 0*E n Qg is a CY-hypersuface in S, for every
i€ (0,1, and H*(Q N (OE\OE*)) =0, for all s > n — 8.

The stated regularity is only partial; indeed, the singular set of the optimal
interface could lie in 2\, which could have a positive s-dimensional Hausdorff
measure, for some s € (n — 8, n). In 2019, L. Esposito proved in [28] that this
possibility does not occur for s € (n — 1,n). Indeed, he proved the following
lower bound estimate on the perimeter of the optimal set in €.
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Theorem 0.0.9. Let (E,u) be a solution of the costrained problem (0.14) with
Hpg as in (0.15), under the conditions (F1), (F2), (G1), (G2), and let U cc S.
Then there exists a constant ¢ = C(U, ||Vu||Lp(Q) ) such that, for every xq € OF
and B,(xy) c U,

P(E; B.(w0)) = cr™ 1.

Moreover, H"1(Q n (0E\0*E)) = 0.

In the general case, the C* regularity of the optimal interface is still an
open problem.

In Chapter 3 we extend the partial regularity result obtained by [5] when
the integrand of F is of the type

Hg(x,8,8) = F(&) + 1p(x)G(&) + fe(x,s), V(r,s,§) e QxR xR",

where the function fr = ¢ + Lgh is discontinuous.

Regarding F' and G, we assume that F,G € C'(R") and that (F1), (F2),
(G1), (G2) hold. Furthermore, we impose on F' and G some proximity con-
ditions that are trivially satisfied if F' and G are positively p-homogeneous.
In particular, we assume that there exist two positive constants ty;, a and
0 < m < p such that for every ¢ > t; and £ € R™ with || = 1, it holds

Fp(8) — Fff)‘ < t%
G
‘Gp(f) - EE)‘ < tim’

where F), and G, are the p-recession functions of F' and G (see Definition 3.1.1).

With regard to g and h, we assume that they are Borel measurable, lower
semicontinuous with respect to the real variable and that there exist a function
v € L) and two constants Cy > 0 and k € R, with k < 5L, being A = A(€)

op—1)>
the first eigenvalue of the p-Laplacian on §2 with boundary datum ug, such that

e ¢ and h satisfy the following assumptions:
g(w,s) = ~y(x) —kls[’,  h(z,s) = y(x) - k|s”,
for almost all (z,s) € Q x R;
e ¢ and h satisfy the following growth conditions:
l9(z,s)| < Co(L + [s]7),  [h(z,s)] < Co(1 + [s]%),

for all (z,s) € Q x R, with the exponent

[p, +0) ifn =2,
qe
[p,p*) ifn>2

fixed.
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The first of the previous assumptions on g and h is essential to prove the
existence of a minimal configuration. The same condition turns out to be
crucial in the proof of the regularity result as well. All the results concerning
this optimal design problem in the p-polynomial growth case can be found in
[41].

Introduction to Part I1

Lattice systems are discrete variational models, whose energy depends on a
spin function defined in a lattice. A lattice system is said to be frustrated,
when a competition between ferromagnetic (F) nearest-neighbor (NN) and
antiferromagnetic (AF) next-nearest-neighbor (NNN) interactions occurs (see
[24] for a complete discussion).

For example, three-dimensional frustrated magnets generally exist in the
magnetic diamond and pyrochlore lattices (see [25]) and edge-sharing chains of
cuprates provide a natural example of frustrated lattice systems. Furthermore,
jarosites are the prototype for a spin-frustrated magnetic structure, because
these materials are composed exclusively of kagomé layers (see [51]).

In 2015, M. Cicalese and F. Solombrino in [17] set the problem in the
one-dimensional lattice

ru-zon{[4] -+ )

where Z,(I) = {i € Z : \yie I} and I := (0,1) and {\,}nen is a vanishing
sequence of lattice spacings.

They considered, as spins of the system, functions of the type u: i €
Zn(I) — u' € 8!, satisfying the boundary condition

u[ﬁjfl . u[ﬁj = uo . u1’ (016)

where $! is the unit circle of R? centred in the origin. The energy of the system
is a scalar functional F,, defined as

E,(u) = Z An (—ou’ -t ut?)

1€Z™(I)

where a > 0 is the frustation parameter that rules the NN and NNN interac-
tions. As usual in the analysis of discrete systems, the family of energies may
be embedded on a common functional space, thus extending

Z Ao (o’ - w™h - w ) for we Cp(1; 81,

E,(u) = < iezn(1)

400 for ue L®(I; SY\C,(I; S'),
(0.17)
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where

Co(I;8Y) := {u: Z,(I) — S' : u satisfies (0.16),
u is constant on A, (i + [0, 1)), Vi € Z,,(I)}.

While the first term of the energy E,, is ferromagnetic and favors the align-
ment of neighboring spins, the second one, being antiferromagnetic, frustrates
it as it favors antipodal next-to-nearest neighboring spins. A more refined anal-
ysis is contained in the following result (see [17, Proposition 2.2 and Remark
2.3]).

Proposition 0.0.10. Let E,: L*(I;$') — (—o0, +0] be the functional de-
fined in (0.17). We distinguish two cases.

o if >4, then

min  E,(u) = —(a — 1)#Z"(I).

ueL(I;51)
Furthermore,every minimizer u,, € L°(I;$') of E,, is constant;
o ifae(0,4), then
. o
ueLIE%}l;Sl) E,(u) =— (1 + g) #I"(I).

Furthermore, a minimizer u, € L®(I;3') of E,, satisfies

. «
i+2
- 17

" 8

i il _ i
Uy cu = —  and u, -u

>~ 0

for any i€ I™(I).

In other words, the ground state of the system for a > 4 is ferromagnetic
(the spin is made up of alligned vectors), while for 0 < o < 4 it is helimagnetic
(the spin consists in rotating vectors with a constant angle ¢ = + arccos(a/4)).
If 0 < a < 4, the sign of the angle v represents the sense of the spin’s rotation.
Hence, minimizers can be made up of clockwise or counterclockwise spin. In
the first case we say that the spin chain has a positive chirality, while in the
second case we say that it has a negative chirality.

In [17], the authors address to a system, whose interactions are close to
the ferromagnet/helimagnet transition point as the number of particles di-
verges. Examples of edge-sharing cuprates in the vicinity of the ferromag-
netic/helimagnetic transition point can be found in [26]. From a mathemat-
ical point of view, this means that the parameter o depends on n and tends
to 4 from below, as n — 4+o0. By means of I'-convergence’s techniques, they
provide a careful description of the admissible states and compute their asso-
ciated energy. In particular, they find the correct scalings to detect chirality
transitions, which break the simmetry of minimal configurations.
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Setting a = o, = 4(1 — §,,) for some positive vanishing sequence {J,}en,
the [-limit of the energy FE, (with respect to the weak-star convergence in
L*), as n — +o0, does not provide a detailed description of the fenomenon.
For this reason, M. Cicalese and F. Solombrino need to consider higher order
[-limits, expanding F,, at the first order, that is

E, =min E, + \,u,H,,

for some infinitesimal {{,},eny © RT to be found. The T'-convergence of H,
can be better studied by changing the variable. It turns out that the best
candidate z for the order chirality parameter is linked to the angular velocity
of the spin. Hence, H,,(z) can be redefined in L'(I), since, up to rotation, z is
uniquely associated with a spin w.

For p, = v/24,, they proved the following result.

Theorem 0.0.11. Let H,: L'(I) — [0, +00] be as above. Assume that there
€ [0,+]. Then H := T'-lim, H, with respect to the

. n

exists | ;= lim
n—+oo 4/2571

LY(I)-convergence is given by one of the following formulas:

i) ifl=0

e UDz|(I)  if z€ BV(I;{~1,1}),
z =
+o0 otherwise;

i) if L € (0,400)

1 2 2 / 2 . 1
e 7L(z (z) — 1) dxHL(z @) de  ifze HL (1),

+00 otherwise,
where we set H‘;ed(]) ={ze H'(I) : [2(0)| = |2(1)]};
iii) if | = +oo

H(2) 0 if z = constant,
Z =
+00  otherwise.

Therefore, at scale )\ndi/ ? several regimes are possible. Different values of
the limit number [ € [0, 40| entail different scenarios. If [ = +o0, the rigidity
of the system does not allow the spin to make a chirality transition. If [ > 0,
the spin system may have diffuse and regular macroscopic chirality transitions
whose limit energy is finite on H'(I) (provided some boundary conditions are
taken into account). When [ = 0, chirality transitions on a scale of order
An/v/0, can occur. In this case, the continuum limit energy is finite on BV (I)
and counts the number of jumps of the chirality of the system.

In this case the presence of periodic boundary conditions allowed to turn
E,, into a Modica-Mortola type energy, whose I'-convergence is well known
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in literature (see [47] and [48]). Indeed, expanding the functional at the first
order, under a suitable scaling, the spin system makes a chirality transition
’\gn, when \//\f% approaches to a finite nonnegative value, as

n — +oo (otherwise no chirality transitions emerge).

on a scale of order

In chemical and physical literature, frustrated lattice systems appear also
in bidimensional settings. The frustration mechanisms originates form the
presence of short-range ferromagnetic (F) and antiferromagnetic (AF) inter-
atomic interactions of more complex geometric structures. This type of model
is known as the J;-J3 F-AF classical spin model on the square lattice (see [53]).
Whenever there are no NNN interactions, the energy describes the so-called
XY model, whose variational analysis has been carried out in [2], [8], [16].

In 2019, M. Cicalese, M. Forster and G. Orlando in [15] addressed a .J;-
J3 F-AF classical spin model in a two dimensional setting. We give here its
mathematical formulation.

Let € %Ay, that is an open, bounded, regular domain of R? (see (5.2) for
the precise definition of 24y). The spin functions u are parametrized over the
points of the discrete set Q N \,Z?, and the energy of the system is

Hn(u;Q):zéAi > [

(4,5)eT™(Q)

i+25  %n i41 igl?
U = —u " +u

.. Ay ;s .
+ uz,j+2 _ _uz,]+1 + uz,]

i ] (0.18)

where Z"(2) is the equispaced lattice on 2 defined in (5.3) with spacing A,,.

The authors proved that the two-dimensional problem can be decoupled
in two one-dimensional ones, to which the main result of [17] can be applied.
Similarly to the one-dimensional case, they redefined H,(z,w) in L'(R?), where
the couple (w, z) of chirality parameters is related to the oriented horizontal
and vertical angles between the adjacent vectors of the spin u. Defining the
functional H: L} (R?* R?) x 2y — [0, +oo] by setting

loc

§(|D1w|(Q) L Do2(Q))  if = (w,2) € Dom(H: ),

+o0 otherwise,

H(h;Q) =

where
Dom(H; Q) := {(w,z) e L, (R R?) 1 (w,z) e BV(Q; {—1,1}%),
curl(w, z) = 0 in D'(Q)},

the authors proved the following I'-convergence result.

Theorem 0.0.12. Assume that Q) € Ay. Then the following results hold true:
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i) (Compactness) Let (w,, z,) € L}, (R?; R?) be a sequence satisfying
Hy(wn, 20;2) < C,

for some positive constant C. Then there ezists (w, z) € Dom(H; Q) such
(% R?);

that, up to a subsequence, (wy, z,) — (w, 2) in L,

i) (liminf inequality) Let (wy,z,), (w,z) € L} (R*R?). Assume that
(Wny 2) = (w, 2) in L} (;R?) and

loc

H(w, z; Q) < liminf H,(w,, z,; Q);

n— -+

ii) (limsup inequality) Assume that (w,z) € L} (R*R?). Then there ex-
ists a sequence (wy,,z,) € Li

Lo(R%R?) such that (wp, z,) — (w,2) in
LY (;R?) and

lim sup H,, (w,, z,; Q) < H(w, z; ).

n—-+0o0

In Part II we study a frustrated lattice spin system with values on the
unit sphere of R3. We investigate both the one-dimensional and the two-
dimensional settings proposed in [17] and [15]. We force the spin of the system
u to be confined in the union of two magnetic anisotropy circles, S; and S,
lying on the unit sphere $2, both having the same radius and identified by
two versors, v; and vy (see Figure 4.1). In the one-dimensional case studied in
Chapter 4, we consider the following energy

gn:En"i_Pna

with
Po(-) = Ankn| DA()|(1) (0.19)

and E, defined as in (0.17). Here o € (0, +0) is the frustration parameter
of the system, k, is a divergent sequence of positive numbers and |D.A(u)|(])
counts the magnetic anistropy transitions that the spin u makes “jumping”
from one circle S; to the other one S; (see (4.1)).

In this case, ground states are confined in one of the two magnetic anisotropy
circles and turn out to have a symmetric and rigid structure similar to the one
explained before.

We carry out our variational analysis when the system is close to the fer-
romagnet /helimagnet transition point. We estimate the amount of energy the
system spends to break the symmetry and the rigidity of minimal configura-
tions. One one hand, we compute how much energy is spent to allow spins
to switch their chiralities (chirality transitions); on the other hand, we cal-
culate the quantity of energy needed to let spins “jump” from one magnetic
anisotropy circle to the other one (magnetic anisotropy transitions).



Introduction 22

In the two-dimensional setting analyzed in Chapter 5 we deal with the
functional
Hn = Hn + Pna

where P, is defined as in (0.19) and H,, as in (0.18).

Also in this case, we address to a system close to the ferromagnet /helimagnet
transition point and we find the correct scalings to detect the spin’s chirality
transitions.

The aforementioned results can be found in a joint work with A. Kubin,

27] .



Part 1

Optimal design problems with
perimeter penalization
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Chapter 1

Notions and preliminaries

In this chapter we recall some basic notions and well-known properties that
will be useful in the following. The chapter is divided in two sections: the first
section addresses the topic of sets of finite perimeter and BV functions from
geometric measure theory and is taken from Maggi’s book [46]. In particular,
we focus on the Gauss Green measure associated with a set of locally finite
perimeter and we highlight concepts of reduced boundary and essential bound-
ary. A subsection is entirely devoted to the definition of excess and its basic
properties. The second section illustrates few basic tools of classical regularity
theory, collected in the books [7] and [37]. We emphasize some consequences
of Caccioppoli’s inequality concerning regularity issues, i.e. Holder continu-
ity of minimizers, Morrey and Campanato estimates and existence of second
derivatives.

1.1 Sets of finite perimeter and BV functions

We start by giving the main definition of this section.

Definition 1.1.1. Let E < R"™ be a Lebesgue measurable set. We say the E is
a set of locally finite perimeter (in R") if and only if, for every compact
set K < R", we have

sup {J divTdr : T e CHR"R"), sptT c K, ||T||,, < 1} < +00.
E
If this quantity is bounded independently of K, we say that F is a set of finite
perimeter (in R").

Sets of finite perimeter naturally induce a vector-valued Radon measure,
satisfying a generalized Gauss-Green formula.

Proposition 1.1.2 (Distributional Gauss-Green theorem). If E < R" is a
Lebesgue measurable set, then E is a set of locally finite perimeter if and only
if there exists a R™-valued Radon measure pgp on R™ such that

J divT dx = J T-dug, VT e CHR™RM). (1.1)
E n

24
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The measure pg is unique. Moreover, E is a set of finite perimeter if and only
if |ne|(R") < +o0.

Proof. Let us assume that F is a set of locally finite perimeter . The linear
functional Lg: C}(R";R™) — R defined by

(Lg,T) ::J divTdz, VT e CHR";R),

E

is bounded; indeed, for every compact set K < R" there exists C' = C(K) >0
such that |[(Lg,T)| < C(K)supgn.|T|. Therefore, L can be extended to
a bounded linear functional on C.(R™; R™). The thesis follows by applying
Riesz’s theorem (see Theorem A.1.3) and setting pgp := |Lg|. Clearly, if £
is a set of finite perimeter, then |ugp|(R™) = |Lg|(R™) < +0. The converse
implication is fairly trivial. Indeed, let g be a R™-valued measure on R" such
that (1.1) holds. Then

sup{f divldr : T e CHR™R"), sptT < K, ||T||,, < 1}
B
= sup{f T-dug : TeCHR"R™), sptT c K, ||T]|,, < 1}

< | ldiue] = gl () < e,
K
which implies the thesis. Moreover, if |ug|(R") < +00, then

sup{f divldz : T e CHR™R"), sptT < K, ||T]|,, < 1}
E
< [pel(K) < |uel(R") < +oo,

as we wanted to prove. Finally, we show the unicity of ug. Let v be a R"-valued
measure such that

Jdidexzf T-dv, VT eC'R"R".
E n

Let us fixi € {1,--- ,n}. Taking (1.1) into account and choosing T’ € C! (R™; R")
with all the components null beside the i-th one set as T = ¢, where
¢ € CHR™), we get

pduy = | ¢,
Rn R™

By the same density argument, the previous equality holds also for ¢ € C,(R").
This implies that ,ug) = v and, by the arbitrariety of 7, the assertions follows.
Indeed, if K < R" is compact and A < R"™ is open such that K < A, then we

can find ¢ € C?(R") such that 1x < ¢ < 14. In particular

W00 = [ wedd < | odi = [ s <ua),

R" R?’L
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Since any Borel set F' < R” can be approximated in measure from below by
compact sets and from above by open sets (see Proposition A.1.14), passing
to the supremum for K < F and to the infimum for A > F we have ,ug)(F ) <

v@(F). Since [L%) is Borel regular, we have u%)(F) < VO(F), for every F <
R™. On the other side, with the same argument, v (F) < ,u%)(F ), for every
F < R™. This shows that v = ;%) on P(R"). 0

The measure g that appears in the previous theorem is called the Gauss-
Green measure associated with £ and we define respectively the relative
perimeter of £/ in F' < R" and the perimeter of F (in R") as

P(E:F) = |ugl(F) and  P(E) = || (R").

Remark 1.1.3. The equality (1.1) is equivalent to

JVqﬁda:: pdup, Yoe CHRM). (1.2)
E

]Rn

Indeed, if (1.1) holds true, we can choose T € CHR™;R"™) with all the com-
ponents null beside the i-th one set as T = ¢, where ¢ € C}(R"). On the

other hand, if we assume that (1.2) is true, then we can choose n functions
¢; € CHR™) such that ¢; = T for any i e N, where T € C}(R™;R").

Example 1.1.4. If E < R" is an open set with C*-boundary, then E is a set
of finite perimeter with up = vgH" 'LOE and P(E; F) = H""Y(F n 0E), for
any F < R".

We recall here some useful properties of the Gauss-Green measure.

Lemma 1.1.5 (Complement). If E is a set of locally finite perimeter, then
R™\E is a set of locally finite perimeter with

HRWE = —HE, P(E) = P(R"\E).

Proof. Let ¢ € C}(R™). By Lemma A.3.1 we have

Védr = — L Vode = | ¢ (~dus).

RP\E
Since —u g is a Radon measure, by Proposition 1.1.2, we get the thesis. O

Lemma 1.1.6 (Symmetric difference). If E and F are sets of locally finite
perimeter, then ug = pp on the class B(R™) of the Borel sets of R™ if and only
if [EAF| = 0.

Proof. We start assuming that |[EAF| = 0. By Proposition 1.1.2 we get

J T-uEzfdiVdezjdiVTdm:J- T-up, VT eCHR™R").
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By the unicity of the Gauss-Green measure, we infer that yugp = pp. On the
other hand, if yup = pr, the assertion is trivial when |F| = 0 or |[R"\F| = 0.
We may assume that |F| # 0 and |R™\F'| # 0. In this case, by Remark 1.1.3,
we get

f (Lp— 1:)Vé =0, Voe CLRY),

which implies the existence of a constant ¢ such that 1z — 1p = c € {0,1} for
a.e. x € R". Assume by contradiction that ¢ = 1. Then |E| = |R™\F| and,
using the implication proved before and Lemma 1.1.5, we infer

HF = BHE = URM\F = —HF,

which contradicts that |F| # 0 and |R™\F| # 0. Hence, ¢ = 1 and thus
|EAF| = 0. O

Lemma 1.1.7 (Gauss-Green measure of blow-ups). If E is a set of locally

finite perimeter, x € R" andr > 0, then E,, = % 1s a set of finite perimeter
in R™ with
(Par)stir
ILLEI,’I‘ - ,rn,1 ?

where @, (y) := %, for y e R™ and (®,,); is as in Definition A.1.5.

Proof. If ¢ € CHR") and ¢, = ¢ o D, ., then Vo, =r (Voo d,,) and

sz = ciug = [ oSzl

)

1
| vodr=

by Proposition A.1.6. Since r'="(®,,);up is a Radon measure, E, , is a set of
locally finite perimeter with pip, , = r'="(®,, )s1ip. O

Proposition 1.1.8 (Support of the Gauss-Green measure). If E is a set of
locally finite perimeter, then

sptug ={reR" : 0 < |En B.(2)] <w,r", ¥r > 0} < 0E.
Moreover, there exists a Borel set F' such that
|[EAF| =0, sptup=_0JF.

Proof. Step 1: If z € R" is such that z ¢ {x € R" : 0 < |E n B.(z)] <
w,r™, ¥r > 0}, then two alternatives may occur: |E n B.(z)| = 0 or |E N
B, (z)| = w,r™, for some r > 0. If |E n B,(z)| = 0, then, by Remark 1.1.3,

uel(Brle) = swp | odup= s | Vods=o.
¢eCL(B,(z)) JR™ peCL(B,(z))
[pl<1 |pl<1
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which implies that pug(B,.(x)) = 0 because pp << |ug|. Thus = ¢ spt pg. On
the other hand, if |EF n B,(z)| = w,r", then by Lemma A.3.1 and Remark
1.1.3,

lpe|(B.(x)) =  sup ¢dup =  sup J Vo dx
$eCe (Br(z)) JR™ $€C(Br(2)) VE
|¢]<1 |$l<1
= sup Vodr =0,
$eCL(B,(x)) JR"
o<1

which again implies that pg(B,(z)) = 0. In order to prove the other inclusion,
we assume that x ¢ spt ug. Then |ug|(B,(z)) = 0 for some r > 0 and, with
the same argument, we infer

0= o¢dup= f Vodr = J 1xVodr, Y¢e CHB.(z)).
R~ E n

Consequently, there exists ¢ € R such that 1g = ¢ a.e. on B,.(x). Necessarily
c € {0,1} and, correspondingly, |E n B,.(x)| € {0,w,r"}, which completes the
first part of the proof.

Step 2: Up to modifying E on a set of measure zero, we may assume that F
is a Borel set. We now construct a Borel set F' with |FAE| = 0 and

OF ={xeR" : 0 < |F n B.(x)| < w,r" for every r > 0}.
To this end, let us define two disjoint open sets by setting
Ag = {z € R" : there exists r > 0 s.t. |E n B,.(x)| = 0},

Ay = {x € R" : there exists r > 0 s.t. |[En B.(z)| = w,r"},

and consider a sequence {zp}nren < Ay such that Ay < | J,en Br, (@), 78 > 0
and |E N By, (x,)| = 0. Hence |[En Ag| = 0 and, by Lemma 1.1.5, we also have
|A;\E| = 0. Therefore, setting F' := (A; U E)\ Ay, then F' is a Borel set, with

[F\E| < |A\E| =0 and |E\F| <|E n A =0,

that is [EAF| = 0. By step 1 and Lemma 1.1.6, R"\(A4g U A;) = sptug =
spturp < OF. Finally, at the same time, 0F < R™\(Ag u A;), since, by
construction,

AicF and Fc R™\Ay.
]

We now recall two well-known results, i.e. the relative isoperimetric in-
equality in a ball and an approximation theorem.
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Proposition 1.1.9 (Relative isoperimetric inequality). If n > 2, t € (0,1),
x € R™ and r > 0, then there exists a positive constant ¢ = c(n,t) such that

1

P(B; B,(v)) = ¢|E n B, ()|,

for every set of locally finite perimeter E such that |E n B,(x)| < t|B,(x)|. In
particular, if E < B.(x), then

P(E: B,(2)) > emin{|E 0 B(@)], |B,(2)\EI} 7
for some positive constant ¢ = ¢(n).

Theorem 1.1.10 (Approximation by smooth sets). A Lebesque measurable
set E < R" is locally of finite perimeter if and only if there exist a sequence
{Ep}hen < R™ of open sets with smooth boundary and e, — 07, such that

E,S E,  sup P(Ey; Bg) <+, VR >0,
heN

|1U’Eh| - |:uE|> 0E, < ]Eh(aE)'
In particular, P(Ey; F) — P(E; F), whenever P(E;0F) = 0. Moreover,

i) if |E| < +oo, then B, — E;

ii) if P(E) < +oo, then P(Ej) — P(E).

1.1.1 The reduced boundary and the essential boundary

The key notion to consider in order to understand the geometric structure of
sets of finite perimeter is that of reduced boundary, which provides a general
definition of unitary normal vector.

Definition 1.1.11. The reduced boundary of a set E of locally finite perime-
ter is defined as

B,
O'E = {xespt,uE : 3 lim 15 (By(x))

=:vp(x) € S”l} :

The function vg: 0*E — 3"~ is the restriction of the |ug|-density of ug
on ¢0*F and is a Borel function. We call vg the outer unit normal to FE.
Since pg << |pug|, by the Radon-Nikodym theorem (see Theorem A.1.8), we

have
e = vg|pp|L 0*E, (1.3)

so that the distributional Gauss-Green theorem (Proposition 1.1.2) takes the
form

J Vo dx :J pvpdpg|, Yoe CHR™M.
E o*E
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Remark 1.1.12. By definition and by Proposition 1.1.8, 0*FE < sptug < 0F.
In fact, by (1.3), the Gauss-Green measure pg is concentrated on 0*E, and
hence on 0*E. By definition of support, spt up € 0*E, and therefore spt jig =
0*E. By Proposition 1.1.8, up to modifying E on a set of Lebesque measure
zero, we have that sptug = 0E. Therefore, up to modification on sets of
Lebesgue measure zero, 0*E = 0F.

From the following theorem it turns out that the reduced boundary 0* F of
a set E of locally finite perimeter has the structure of a (n — 1)-dimensional
hypersurface and that vg has a precise geometric meaning as the outer unit
normal to F.

Theorem 1.1.13 (De Giorgi’s structure theorem). If E is a set of locally finite
perimeter, then the Gauss-Green measure pgp of E satisfies

pp =vgH " TLO*E, |up|=H"'LOE,

and the generalized Gauss-Green formula holds true:
J Vodr = prgdH"™, Voe CHR™).
E o*E

Moreover, there exist countably many C*-hypersurfaces M;, = R™, compact sets
Kj, © My, and a Borel set F with H"(F) = 0, such that

O*E=Fu U Ky,
heN

and, for every x € Kj, VE(LI:)l = T, My, the tangent space to M, at x.

The next theorem establishes that the blow-up around a point of the re-
duced boundary tends to a half-space. As a corollary, two density results are
proved.

Theorem 1.1.14. If E is a set of locally finite perimeter and x € 0*FE, then
E,p =5 Hyo={yeR" : y-vp(z) <0},
as r — 0F. Similarly, if 7, := 0H, = vg(x)*, then, as r — 0%,
pg,, = ve(@)H " Ly, g, | = H T L,

Corollary 1.1.15. If E is a set of locally finite perimeter and x € 0*E, then
EnB 1
L EAB@ 1

r—0+ WpT™ 2’
P(E; B

i L& r(iﬁl))

r—0t  Wy_1T"

In particular, 0*E < B/,

= 1.
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Proof. Let x € 0*FE, H, := {y € R" : y-vg(x) < 0} and 7, := JH,. Since
|H, n Bi| = %, by the local convergence of E,, to H, stated in Theorem
1.1.14, we infer

EaB@I|_
lim ——— = lim
r—0t W™ r—0t Wnp, W, 2

|Ex,rmBl| . HxﬂBl . 1

Since 7, "By is an (n—2)-dimensional unit sphere, we have H"~! (7, " 0B;) =
0. Thus, by Lemma 1.1.7, Theorem 1.1.14 and Proposition A.1.14,

; n—1
i DB (@) ke (B H T (e 0 By

r—0+ wn_l’f‘nfl r—0t Wn—1 Wn—1

= 1.

We recall another useful definition in geometric measure theory.

Definition 1.1.16 (Essential boundary). Let E < R" be a Lebesgue measur-
able set. We define the essential boundary 0°FE of E as

0°E ==R"\(BY v EW),

E® . — {xeR” - lim M :t}

r—0+ W™

where

is the sets of points of density t of E.

We prove Federer’s theorem, stating the H" l-equivalence between the
reduced boundary of E, the set E(/?) of its points of density one-half, and
the essential boundary of F.

Theorem 1.1.17 (Federer’s Theorem). If E is a set of locally finite perimeter,
then 0*E < EW2) < 0°F, with H"(0°E\0*E) = 0.

Proof. Of course E(/2) < ¢°E. By the relative isoperimetric inequality (see
Proposition 1.1.9), and since

1

|E A B,(2)| < |B.(2)|"|E A B,(2)|"% < wir|En B (z)]",

we find that
P(E; B, (x))

— > ¢(n) min {
.

50Bw), 1B}

/}nTL Tn
Thus, passing to the upper limit as » — 07 in the last inequality, we infer that if

P(E; B, (x))

- — 0 implies z € E© o EM_ In particular,
rnT

lim sup
r—0t

P(E; B
0°E {xeR” : limsupM > 0},

r—0+t rnt
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so that
P(F; B,
0°E\O*E < {x e RM\0"E : limsup(’—l(x)) > 0}.
r—0+ T
By Proposition A.1.11, this last set is H" !-negligible. O]

We recall a representation formula for Gauss—Green measures of intersec-
tions of two sets of locally finite perimeter, which can be derived by Federer’s
theorem.

Theorem 1.1.18 (Gauss-Green measure of the intersection of sets). If E and
F are subsets of R™ of locally finite perimeter and we let

{vg =vp} i ={xed*End*F : vg(x) = vp(x)},
then E N F is a set of locally finite perimeter, with
HE~AF = UE I_F(l) + ur I_E(l) + VEHnil L {I/E = VF}.

Theorem 1.1.19 (Comparison sets by replacement). If E,G < R" are sets
of locally finite perimeter and A < R™ is an open set of finite perimeter such
that

H" N 0*ANO*E) = H(0*An 0*G) =0,
then F := (G n A) u (E\A) is a set of locally finite perimeter. Moreover, if
Acc A, with A" < R™ open, then

P(F; A") = P(G; A) + P(E; A\NA) + H" Y((EWAGW) A 6% A).

1.1.2 Excess

We introduce the fundamental notion of excess e(E, z, 1), a key concept in the
regularity theory for A-minimizers of the perimeter. It is used to measure the
integral oscillation of the outer unit normal to E over B,(z) n 0*E.

Definition 1.1.20. Let E be a set of locally finite perimeter, x € 0E, r > 0
and v e S, We define:

e the cylindrical excess of E at the point x, at the scale r and with
respect to the direction v, as

1 _ 2
e“(B,x,r,v) = — f Md?—[”_l
T Cr(z,v)nO*E 2

1
= — f (1—vg-v)dH"
r Cr(z,v)no*E

e the spherical excess of E at the point x, at the scale r and with respect

to the direction v, as

1 _ 2
e(E7I7r,y) = Il J Md%nflj
" JoEAB, (2) 2
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e the spherical excess of E at the point x and at the scale r, as

e(E,z,r) ;== min e(E,x, 1, v).
vegn—1
We do not stress the dependence on E when it is clear from the contest. We
will often denote the excess of EI at the point x, at the scale v and with respect
to the direction e, by e,(x,r). Furthermore, if x = 0, we will write e,(r) and,
finally, if also r = 1, we will simply write ey,.

We recall below some properties of the excess.

Proposition 1.1.21 (Scaling of the excess). If E is a set of locally finite
perimeter, v € 0, r > 0, v € "1, then

e“(E,z,rv) =e°(FE,,,0,1,v), e(E xr)=e(E,,,0,1),

E—x

where, as usual, Fy, = =

Proof. Since |v — vg|? = 2(1 — v - vg), using Lemma 1.1.7, we get

|,UE|(Cr(£B, l/)) — - f vy denfl

C _ Cr(z,v)no*E
e"(E,x,r,v) = o

_ pel(Co(z,v)) = v - pp(Cy (2, v))
_ |psl 0 @, (C1(0,v) —v - (up o @, 1)(C1(0,v))

Tn—l

_ ((@ap)slus)) (C1(0,v) v (Por)spir) (C1(0, 7))

rnfl rnfl

= |/’LE1,T|(Cl(O7 V)) - /’LEZ,T(CI(()? V)) = ec(Exﬂ”? 07 17 V),
where (®,,);up is as in Definition A.1.5. Similarly, applying Lemma 1.1.7

again, we have

el (B (2)) — v - pe(B,(z))

Tn—l

e(E,z,r) = Vgéirll

= L (Inl(By () — max, v - (B, (2)))

sl(Buo) [ LB
T (1 - |uE|(Br(x)))
. (B1(0))

e 1B, 0) (1 - ) = elBeno)

e, . [(B1(0))
O

Proposition 1.1.22 (Excess at different scales). If E is a set of locally finite
perimeter, v € OE, 0 < s <r, v € 8™, then

n—1
e“(E,x,s,v) < (C) e“(E,x,rv).

S
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Proof. The proof follows directly from the definition of the cylindrical excess,
since By(x) € B,.(z). O

The next proposition states that the sets of locally finite perimeter with
null cylindrical excess in some point of their boundary are locally a half-space.

Proposition 1.1.23 (Zero excess implies being a half-space). If E is a set of
locally finite perimeter, with spt ug = 0E, x € 0E, r > 0, v € $"° L, then

e“(E,z,r,v) =0
if and only if |E n Cy(z,v)| = {ye Cy(x,v) : (y—x)- v <0}

Proof. Let us assume that |E n C.(z,v)| = {y € C.(z,v) : (y—x) v <0}
Then, by Lemma 1.1.6, ptp={t{yern : (y—z)v<o; o0 subsets of C,(z,v) and thus

(B 1. p.) - 11EL(Cole ) — v (G (1)

Tnfl
Bgyern ()<} [ (Cr (@, V) — V- pigyern - (y—a)w<0y (Cr (7, 1))

Tn—l
—e“({yeR" : (y—x)-v<0},z,7,v)=0.
On the other hand, if e“(E,x,r,v) = 0, then, by definition, vg(y) = v for
H " Lae. ye C.(r,v) n JE, which implies the thesis. O

As stated in the assertion of the following result, the reduced boundary is
made up of points where the excess is very small.

Proposition 1.1.24 (Vanishing of the excess at the reduced boundary). If E
is a set of locally finite perimeter and x € 0*FE, then

lim e(E,z,7) =0.

r—0+
Hence, given & > 0, there exist r > 0 and v € $"~! with e“(E, z,7,v) < €.

Proof. Let us fix © € 0*F. By the definition of reduced boundary and by
Corollary 1.1.15 we have

B, : B,
lim e (Br(x))] = |vg(x)| =1, and lim (B () =1.
r—0+ |up|(B.()) r—0*  Wy_1r"!
Thus, reasoning as in Proposition 1.1.21,
el(Br(2) (1 lue(Br ()] _
1 =0.

el (Br(x))

Finally, since C,(x,v) B s, (x) for every v € 8", we infer that if r > 0 is

such that e(E,z,7) < € for some € > 0, then, by the definition of spherical
excess, there exists v € $"~! such that

lim e(F,z,r) = lim
r—0+ r—0t ’[”n*l

c ln o r > 1 f n-1
e’ (K. x,ryv)<22 e’ | Eix,—,v ] < 1l—vg-v)dH
( ) ( V2 rt 6*EmBr(x)( )

=e(E,x,r) <e,

where the first inequality is due to Proposition 1.1.22. O
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1.1.3 BV functions

The notion of BV functions is a generalization of the notion of sets of finite
perimeter. Indeed, a set is of (locally) finite perimeter if and only if its char-
acteristic function is a (locally) BV function.

Definition 1.1.25 (BV functions). Let u € L'(Q;R™). We say that u is a
function of bounded variation (or BV function) in Q if and only if
the distributional derivative of u is representable by a finite R™-valued Radon
measure Du = (Dju®) jeq1,..np i Q, d.e., for any i € {1,...,n} and a €

ae{l,....,m}
{1,...,m},

J UV 4 ¢ d = —J ddDu®, Ve CHQ).
Q Q

The wvector space of all functions of bounded variation in  is denoted by
BV (Q;R™). Furthermore, we set the space of those BV functions that take
values in S < R™ as BV (Q; 5).

Proposition 1.1.26 (Lower semicontinuity of the total variation of the dis-
tributional gradient). Let u € L'(;R™). The map u — |Dul(R2) is lower
semicontinuous in BV (; R™) with respect to the L}, ($;R™) topology.

loc

Since the gradient of a BV function is a Radon measure, it is possibile to
introduce the notion of weak-star convergence. Actually, we give its charac-
terization as a definition (see Definition A.1.13).

Definition 1.1.27 (Weak-star convergence of BV functions). Let {up}peny <
BV (Q;R™) and uw € BV (;R™). We say that u, weakly-star converges in
BV (;R™) to u if and only if up, — u in L'(Q;R™) and

sup | Duy|(Q) < 4o0.
heN

1.2 Some tools from the regularity theory

In this section we introduce some useful and classical tools from the regularity
theory of minimizers of quadratic functionals or solutions of quadratic partial
differential equations in divergence form.

Actually, the two subjects are closely related to each other; indeed, it is
well-known that minimizers of functionals, under very general assumptions, are
weak solutions of the associated Euler-Lagrange equation. Conversely, under
dual assumptions, solutions of a partial differential equations are quasi-minima
of a suitable functional.

Neverthless, we recall the results in a convenient formulation that will be
suitable for our aims in Part I. Our model functional is

Fu,Q) = L Fla,u(z), Vu(z)) dz, Vue WP(Q),
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where F': Q x R x R” — R is a measurable function. We will often write F(u)
in lieu of F(F,u) if F' is integrated over the whole space €.

For interior and boundary regularity results regarding F, we shall make
use of local and global minimizers.

Definition 1.2.1 (Local and global minimizers). Let ug € W'P(Q). We say
that

e u € I/Vlif(Q) 1s a local minimizer of the functional F if for every ¢ €

WP(Q), with spt ¢ =< Q we have

F(u,spt @) < F(u+ ¢,sptd);

o u € uy + WyP(Q) is a minimizer of the functional F if for every v €
uy + W, P(Q) we have
F(u) < F(v).

We are interested in integrands with quadratic growth of the type
F(z,§) = Z aij(z)§i§j7 V(z,£) e Q x R™.
ij=1

The Euler-Lagrange equation associated with the corrispondent class of func-
tionals is

VJ(GU(I')VZU) = 0, Vx e Q,

where we have adopted the Einstein’s notation for which repeated indices are
implicitly summed over.

The first powerful tool of regularity theory is Caccioppoli’s inequality. We
will see in this section how the it can be employed, following an idea due to L.
Nirenberg, to prove existence of higher-order weak derivatives of minimizers of
quadratic (and also more general) functionals and suitable integrability results
thereof, and how to translate these estimates into actual regularity results by
means of the Sobolev embedding theorems. The latter aim will be pursued
mostly in Part I.

Theorem 1.2.2 (Caccioppoli’s inequality). Let u € H}. (Q) be a local weak
solution of
Vj(aijviu) =0 m Q, (14)

with measurable coefficients a;j: Q2 — R satisfying
V|£|2 < a/lj(x)élfj < N|€|27 V(:L’,f) € Q X Rn?
for some positive constants v and N. Then, for any Bs,(zo) < 2, it holds

N
J |Vul? dr < C(V’—Q)J (U — Uy 9p)* do.
By (o) P Bap(o)
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Proof. Let ¢ := (u—1y, 2,)n* € Hg(Bay(x0)), where n € C}(Ba,(20)) is a cut-off
function such that 0 < n <1, 7 =1in B,(x) and [Vn| < £, for some positive
constant c¢. Then, plugging ¢ as a test function in the weak formulation of
(1.4), we get

J ai; ViuVun® dr = —2 f a;n(u — Uy 2,) ViuVnde.

Bap(o) Bap (o)

Using the uniform ellipticity and the uniform boundedness condition on a;;,
by Young’s inequality, we infer

N
UJ n?|Vul? dr < Naj n?|Vul?* de + — (U — gy 25)%|V|? do,
B2p($0)

Bap(o) & JByy(a0)

for any positive e. Choosing € = (v, N) sufficiently small, it holds

J n?|Vul|? dz < c(v, N) J (U — Usy 2,)?| V|? da.
Bap(z0)

Bap(z0)

Finally, the properties of 7 yield to the thesis. O]

Definition 1.2.3 (Superlevel sets). Let u € H. (), Br(zo) < Q and k € R.

loc
We define the superlevel set of u as
A(k, R) := {x € Bgr(zo) : u(z) > k}.

A variant of Caccioppoli’s inequality on superlevel sets will be the main tool
to prove the Holder continuity of local minimizers of quadratic functionals.

Remark 1.2.4 (Caccioppoli’s inequality on superlevel sets). We point out
that choosing ¢ = (u — k) n?, with k > 0, as a test function in the weak
formulation of (1.5) and following the same proof, we get

c(v, N
A(k,p) P A(k,2p)

A rather surprising feature of Caccioppoli’s inequality on superlevel sets
is that it contain practically all the information deriving from the minimum
properties of the function u, at least for what concerns its Holder continuity.
In the next theorem, according to a brilliant idea by E. De Giorgi, we will show
a strong maximum principle in a quantitative form (more precisely a L? to L®
estimate), that is the first step to prove the Holder continuity of solutions.

We shall need the following iterative lemma.

Lemma 1.2.5. Let o > 0 and let {x;}ien, € R such that

1.1+«
Tip1 S CB xr; o,

1

for some C' >0 and B> 1. If xy < C‘éB*oT?, we have

(3

r; < BT e,

and hence in particular lim x; = 0.
1—+00
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Proof. We prove the assertion by induction. If ¢ = 0, the inequality is trivially
true. We assume that it holds for some 7 € N. Using our assumptions and the
induction hypothesis, we conclude

Tiy1 < OBz ™ < CB’(I_ﬂ):B”O‘ = (C’BaxO)B = 1wy < B~ a.

The following theorem is the main result proved by E. De Giorgi.

Theorem 1.2.6 (De Giorgi’s regularity theorem). Let u € H}

() be a local
weak solution of

with measurable coefficients a;;: Q2 — R satisfying

VIE]? < aij(2)&€ < NIEPP, Y(z,€) e Q x R,

for some positive constants v and N. Then there exists two constants o =
a(n,v,N) € (0,1) and ¢ = c(n,v, N) > 0 such that u € Cp*(Q) and, for any
Bg(x) < Q, the following two estimates hold

N
sup |ul* < c(n,_z:)f lu|? d, (1.6)
Bp(x) P By (x)
n+2a
f U — Uy, ,|* dz < c(n, v, N) (E) J lu — u,|* du, (1.7)
Bp(z) $ s(2)

for any p € (0, %)

Proof. We may assume for simplicity of notation that z = 0. Let £ <o <7 <
p, k= 0and ¢ :=n(u—k)y, Where ne C’°O(Ba+f) is a cut-off function such
that n = 1 on B, and |Vn| < =%, for some posmve constant c. Computing
V(= (u—k),Vn+nVu, by Holder s and Sobolev’s inequalities, Caccioppoli’s
inequality on superlevel sets, we obtain

J (u — k)* dx (1.8)
A(k,0)

< J Ctdr < (J ¢ dx) | Ak, )|
A(k,o) A(k,0)
el [ - [wopds

A(k,o)

< ()| Ak, 7)[2 HA(k’T) IVl dz + ﬁ L(ww (0 — )2 dx]
JA(k, )|

n

L

< ¢(n,v,N)
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For h < k, using that A(k,7) < A(h,T), we easily deduce the following two
inequalities:

J (u—k)gdw<f (u—h)2da:<J (u — h)*dz,
A(k,7) (k,7) A(h,T)

f (u—h)2dx>f (u—h)2dz = (k- h)2|A(k, 7).
A(h,T) A(k,T)
Inserting them in (1.8), we deduce that

2

A( n
J (w—k)*dr < (nVN| k1)l J dx
A(k,o)

7'—0'

n VN 3
(1 —0)%(

Let d > 0 a number to be chosen later, k; := 2d(1 —27") and o; := (1 +27%),
for i € Ng. Weplug 0 = 0,41, 7 = 04, k = ki1, h = k; in the previous
inequality, getting

. 2 2
c(n, v, N)222(1+5) Ha
J - (u— l{:iﬂ)? dr < 2 J | (u— ]{;i)Q dx .
A(szrlyU’hLl) p A(k“T)

If we set ®; :=

d?, we infer

:\»P

= Ak Ui)(u — k;)? dz and we divide the previous inequality by

C(”a v, N) 22i(1+%) @14”%.

7

%
dzc(n,y,N)(J[ uidm) ,
By

so that &g < ¢(n, v, N)p™, we are in position to apply Lemma 1.2.5 and, thus,
we obtain that lim ®; = 0, that is

i——+00

1
supu < 2d = ¢(n,v, N) (J[ u? dx) )
Qp B,

Substituting u with —u, we get (1.6). Furthermore, it can be showed that
there exists & = a(n,v, N) € (0,1) such that

Choosing

osc(u; By(x)) < ¢(n,v, N) (g) osc(u; Bs(x)), (1.9)

for every By(z) < €, with p € (0,3). This estimate yields to u € Cp.2(9).

? 2 loc
Now we prove (1.7). Let x = 0 again for simplicity. Since u —us and us —u
are both weak solutions of (1.5), we apply (1.6) twice,
N
sup(u — ug)® < MJ (u—us)* dr,

By s"
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2 C(“? v, N)
s;%p(u; —u)® < —a

2
j (us —u)”dz.
Combining the previous two inequalities, we infer

osc(u?; Bs)

< ¢(n, v, N)J[ lu —us 2dr < c(n, v, N)[J[ lu — u,|* dz + |u, —us 2]
Bs

s

< c(n,y,N)[J[ |u—us|2dx+J[

|ug — ul? dx] < c(n, v, N)J[ lus — ul? dx.

% s

Using (1.9), we get

2a
J[ lu — u,|*dz < osc(u?; B,) < c(n,v, N) (B> osc(u?; Bs)
B, 5 :

2a0
< ¢(n,v, N) <£> J[ lus — ul|* du,

S

which leads to (1.7). O

Another useful consequence of Caccioppoli’s inequality is the control of
the oscillation of minimizers of a “frozen” functional by the oscillation of the
boundary datum. This result will come in handy in proofs based on comparison
strategies.

We state the next proposition for more general integrands with quadratic
growth of the type

€] =€ < F(x,5,€) < |¢)? +C, (1.10)

for some positive constant ¢. We shall assume that the functional is “freezed”
in the first two variables.

Proposition 1.2.7 (Oscillation). Let Br(zo) < R™, F' be an integrand satis-
fying (1.10) and v € H*(Bg(xo)) be a minimizer of the functional

Folw) — f Flao, uzo), Vo) dz, Y e H'(Ba(xo)),

Br(zo)

under the boundary condition w = u on 0Bgr(xy), for some bounded function
u € HY(Bg(xg)). Then there exists a constant C' = C(n,<) such that

osc(v; Br(xg)) < osc(u; Br(xg)) + CR.

Proof. We define k > ky := sup w and w := min{v, k}. By minimality we
aBR(CC())
have

F(xo,u(xg), Vv)dx < J F(zo, u(xg), Vw) dx.

A(k,R) A(k,R)
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Thanks to the growth conditions on F' we can write

f |Vv|? dz —¢|A(k, R)| < f \Vw|? dz + ¢ A(k, R)| = ¢|A(k, R)|,
A(k,R) A(k,R)

that is
f |Vv|? dz < 2¢|A(k, R)|.
A(k,R)

Considering any h > k, by means of Holder’s and Poincaré’s inequalities and
the previous estimate, we get

(h —k)*|A(h, R)| < J

A(h,R)

< (J (v—k)* daz) |A(k, R)|
A(k,R)
<cowj‘ Vol del Ak, R)? < c(n, D)\ Ak, R)[*3
A(k,R)

(U—k)2dl’<J (v — k)*dx
A(k,R)

Choosing k; := ko + d(1 — 27%) and a; = |A(k;, R)|, with i € Ny, we write the
previous estimate for h = k;;; and h = k;, obtaining
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a1 < c(n,e)d22%a; .

Choosing d = ¢(n,¢)R so that ay < ¢(n,¢)d", we are in position to apply
Lemma 1.2.5. As a result,

0= lim a; = |A(ko +d, R)],

i—+00
that is
sup v < sup u+c¢(n,¢)R.
Bgr(zo) 0BRr(zo)
We obtain the thesis, by applying the same argument to —wv. O]

As mentioned before, some conventional regularity results, i.e. results con-
cerning existence and quantitative bounds for higher derivatives of weak so-
lutions of elliptic equations and systems, can be obtained by Caccioppoli’s
inequality. We will follow the Nirenberg’s method, which gives a uniform
bound on the difference quotient of the gradient of minimizers. This will be
sufficient thanks to Lemma 1.2.9. Actually, the method is more general and it
fits well for problem with non-costant coefficients.

Definition 1.2.8 (Difference quotient function). Let u: @ — R, h € R and
s € {1,...,n}. We call the difference quotient of u with respect to the
direction ey the function

fla +he)) — ()

A57hf($) = h,
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The function Ay, f is well-defined in the set
Agn(Q) :={x e : x+ hes € Q},
and hence in the set
Qp := {x € Q : dist(z, 0Q) > |hl}.
The following properties of difference quotients are immediate:
e if ue H'(Q), then Ayue H'(Q) and

ViAS,hu = A&hviu, Vi e {1, R ,TL},

e if at least one of the functions f and g has its support contained in £/,
then an integration by parts formula holds:

J fAgpgdr = —j 9As _p f dz;
Q Q

e a Leibniz property holds:
Asn(f9) () = F(-+ hes) Ang() + 9()Asnf ().

We also recall a well-known lemma.

Lemma 1.2.9. Let u € L*(Q) and assume that there exists a positive constant
K such that, for every h € R sufficiently small, we have

HAs,hu”m(Q‘h‘) < K,

for some s € {1,...,n}. Then, Vyu e L*(Q) and IVsvll 2y < K. Moreover,
for h — 0, Agpu — Vu in L2 ().

loc

Theorem 1.2.10 (Regularity of the second order derivatives). Let u € H. (Q)
a local weak solution of

Vi(aijViu) =0 in Q, (1.11)
with constant coefficients a;; satisfying
vIE? < a&& < NIEPP, VEeR”,
for some positive constants v and N. Then u e HE (Q).

Proof. Let us assume for simplicity of notation that zy = 0 and fix B, < ). For
some direction s € {1,--- ,n} and |h| < w, we set ¢ := A, _n(n*Agpu),
where 1 € C°(B,) is a cut-off function such that 0 < <1,n=11in Bs and
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V| < /%, for some positive constant ¢. Then, plugging ¢ as a test function in
the weak formulation of (1.11), we get

J a;; ViuV; (Asy,h(HQAs,hu)) dr =0
B/]

Commuting the derivative and the difference quotient and integrating by parts,
we are led to

J aij A n V(P A 1 Vju + 20A, yuV;n) do = 0.
BP
Using the ellipticity of a;; and applying Young’s inequality, we obtain
VJ PRIV Al de < sz 1A an V| [Vl Ay ] de
B, B,
N
< st | A Vul? do + ~ IVn|?| A, pul? d,
B

P By

for any ¢ > 0. Choosing ¢ = (v, N) sufficiently small and exploiting the
properties of 1, we can write

N
VAl de < Al de.
2 ’
Bp p B,

Since the sequence {VA,ulpen is bounded in L?, then, by Lemma 1.2.9,
VAspu — VVuin L2 (Be), which implies that u € H2_(Bz) and, summing
) loc\*='5 loc\"='5
over s,
N
J |A2u? dr < c(u,2 ) j |Vul? dr.

Bp r
2

B,

]

The following theorem can be found in a far more general version in [31].
It proves that local minimizers u are Lipschitz continuous by means of the
Moser’s iteration technique, which provides a L? to L® estimate of Vu.

Theorem 1.2.11. Let u € H} () a local weak solution of
Vi(aijViu) =0 in Q, (1.12)
with constant coefficients a;; satisfying
v[€]? < a €& < NIEP, VEER™,

for some positive constants v and N. Then there exists a positive constant
C = C(n,v,N) such that, for any B,(x) < Q,

sup |Vul? < C'J[ |Vul|? dz.
By(z)

Bg (x)
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Proof. We may assume, up to a rescaling argument, that x = 0 and » = 1. For
se{l,...,n}, weset ¢ := 1>V b, where the function ¢ € C*(By) is arbitrary
and n € C*(By) is a cut-off function such that 0 < n < 1. Then, plugging ¢
as a test function in the weak formulation of (1.12), we get

J a@'jvi’lM?QV?sw dx + QJ aijViuVSz/man dr = 0.
By

B,

Integrating by parts the first integral we get

- J aijV?swijw dx—2 f
By

B,

aijViunVanjw d$+2f aijViuszann dr = O,

By

which holds for any ¢ € H'(B;). We choose v := |Vu|*’V,u, with 8 = 0,
obtaining

J aijV§sun2visu|vu|2ﬁ dx + BJ a;; ViuV qun®V; (|Vul*) [ Vu*' =2 da
B, B,

= —QJ aijviunVSnV§su|Vu|25 dx
B

P

—2p JB ai;ViunV ¥V u|Vul* 72V (| Vul?) dx

+ QJ ai; VuN 2| Vu|**nV in dx
By
+ 8| ay Vil Vul* 2V ([Vul*) VaunVn de

By

< c(n, N)f Vuln| V| (V| V2u] + BV 72| Vul [V (| Vul*)|) dz.
By

Summing over s, using the ellipticity of a;; and applying Young’s inequality,

we get

Vf |V2u|2|Vu|25n2dx+%J (Vu* 2|V (|Vul?) [*n? da
B, B,

1
< c(n, N) [5J 02|Vl |V2u|? do + EJ V|2 Vn|? do
B B,

P

#0e |IVPAV (U)o +
By

B,

|Vu|25+2|V77|2dx].
Choosing € = &(n, v, N) sufficiently small, we get
v 2812, 12,2 B 282 2\12, 2
B |Vul|V=u|"n® de + e |Vul* |V (|Vu|*)|*n dx
B, B,

< c(n, v, NY(1 + 5)J V22| V]2 da. (1.13)

B,
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Since
Vul* 2|V (|Vul®)|?n? dx < e(n Vu|*|V2ul?n? dx,
| U n
B, B,
dividing both sides of (1.13) by 1 + 3, we obtain

J |Vu|25_2|V(|Vu|2)|2n2dx<c(n,1/,N)f |Vul* 2| Vn|? de. (1.14)

B, B,

Let v := 5 g > % Computing
V(|Vul*'n)? Vu|*|Vn?
| (| 72| 77)| <772|vu|4'y—4|v(|vu|2)|2_i_| U|72| 77| 7

the combination of Sobolev-Poincaré’s inequality and (1.14) yield

([ avupmpar) ¥ < ( f |v<|w|2%7>|2da:)é

P
1

<c(nv, N)v( | |Vu|4”|w|2dx) |
By

where x := %5 if n > 2 and any positive number greater than 1. We apply
the previous inequality for p; 1= 3 + 5, 7 = X & (B,,) such that
0<n<l,p=1on B, , and |V77| ¢2', for some positive constant ¢ and for
any ¢ € N, getting

Pi+1

< c(n, v, N)vy2'

pi)

(BPZ'+1)
and so, iterating the previous estimate,

%

L
902 s,y < LT (el N2 902y (115)

j=1

1

We remark that the product H§'=1 (c(n, v, N)%Qj) 7 is convergent, as i — o0,
because

log (E( (n,v, N)7;27)7 ) ZX [log <(+><N)> +jlog(2x)],

and the series in right-hand side is convergent, being y = 1. Thus, letting
i — 400 in (1.15), 7; — 400 and we conclude

Hqui%(B%) < c(n,v,N) ||VUHi2(Bl) :



Chapter 2

The quadratic case

In this chapter we deal with energy functionals of the type

F(E,u;Q) = J | F(2,u, Vu) + 15G(z, u, Vu)| dz + P(E;Q), (2.1)

Q
where 0 « R™ is a bounded connected open set, u € H'(2) and E < R" is a
set of finite perimeter in 2. We assume that the density energies F' and G in
(2.1) satisfy the following structural assumptions:

3

F(z,s,¢) = a;;(z, 8)6& + Z ai(z,s)& + a(z, s), (2.2)
X i—1

7 1

G(z,s,2) = bij(z,5)&&; + Zn: bi(z, 5)& + bz, s), (2.3)
i—1

7 1

& &
I M3 I

for any (z,s,£) € 2 x R x R™. Concerning the coefficients we assume that
Qjj, bija a;, bi, a, be Co’l(Q X ]R)

We denote by Lp the greatest Lipschitz constant of the data a;;, b;;, a;, b;, a, b,
that is
|Vaij| < LD, |Vbz_7| < LD in ) x R, (24)

and the same holds true for a;, b;, a, b.
Moreover, to ensure the existence of minimizers we assume the uniform bound-
edness of the coefficients and the uniform ellipticity of the matrices a;; and b;;,

vIEP < i@, 9)&& < NIEP, vl < byl 9)&& < NP, (2.5)

D laiz, )|+ 3 b, s)| + la(z, s)] + |b(, 5)| < L, (2.6)

=1 i=1

for any (x,s,£) € Q x R x R" where v, N and L are three positive constants.
We are interested in the regularity of minimizers of the following con-
strained problem.

46
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Definition 2.0.1. We shall denote by (P.) the constrained problem

Egli(%) {F(E,v;Q) : |E| =d}, (P.)
veuo+HE ()

where ug € H'(Q) is the boundary datum and 0 < d < |Q| is a fized number.

It is clear that any minimizer u of problem (P,) is a local minimizer of the
functional (2.1) and therefore satisfies the Euler-Lagrange equation
0
&—[FZ (z,u, Vu) + 15(2)G., (z,u, Vu)) | = Fu(z,u, Vu) + 1p(2)Gy(z, u, Vu),
Z;
where, as usual, we have used Einstein’s convention on repeated indices.
The problem of handling with the constraint |E| = d is overtaken using an
argument introduced in [29], ensuring that every minimizer of the constrained
problem (F,) is also a minimizer of a penalized functional of the type

FA(E,v;Q) = F(E,v;Q) + A||E| — d

Y

for some suitable A > 0 (see Theorem 2.2.1 below). Therefore, we give in
addition the following definition.

Definition 2.0.2. We shall denote by (P) the penalized problem

min  Fa(E,v;Q), (P)
EeA(Q)
veuo+HE ()

where ug € H'(Q) is fized and A(QY) is the same class defined in Definition
2.0.1.

From the point of view of regularity, the extra term A||E|— |F|| is a higher
order negligible perturbation.

Our aim is to prove the reduction of the Hausdorff dimension of the singular
set of OF for minimizing couples (E,u) of (2.1). Basically, we adopt the same
strategy of [35]. The main result of the chapter is stated in the following
theorem.

Theorem 2.0.3. Let (E,u) be a minimizer of problem (P), under assumptions
(2.2) — (2.6). Then

a) there exists a relatively open set ' < OF such that T is a CY*-hypersurface
forall0 < p < %;

b) there exists € = e(n,v, N, L) > 0 such that

H S ((OE\D) ~ Q) = 0.
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For reader’s convenience the chapter is structured in sections which reflect
the proof strategy. Section 2.1 collects some prelimary definitions and two
useful and well-known iterative lemmata that will be applied later on. Section
2.2 is devoted to proving that minimizers of the constrained problem (P,.) solve
also problem (P). In Section 2.3 some higher integrability results are proved.

As in the case of minimizers of the Mumford-Shah functional, the proof of
regularity is based on the study of the interplay between the perimeter and the
bulk energy (see [7], [44]). We recall that the Holder exponent 1 is critical for
solutions u of either (P) or (P,), in the sense that, whenever u € C%2, under
appropriate scaling, the bulk term locally has the same dimension n —1 as the
perimeter term. In this regard, our starting point is to prove suitable energy
decay estimates for the bulk energy. These estimates are presented in Section
2.4. The key point of this approach is contained in Lemma 2.4.6, where it is
proved that the bulk energy decays faster than p"~!, that is, for any § > 0,

f \Vul?dx < Cp™~?, (2.7)
BP(wO)

either in the case that
min{|E ~ B,(zo)|, |B,(zo)\E|} < £0|B,(x0)],
or in the case that there exists an half-space H such that
((EAH) 0 By(x0)| < €o| By(o)],

for some £y > 0. The latter case is the hardest one to handle because it relies
on the regularity properties of solutions of a transmission problem. Let us
notice that, for any given F < 2, local minimizers u of the functional

J [F(z,u, Vu) + 1pG(z,u, Vu)| dx (2.8)

are Holder continuous, u € C2%(Q), but the needed bound o > 1 cannot
be expected in the general case without any information on the set E. In
Section 2.4 we prove that minimizers of the functional (2.8) are in C%® for
every a € (0,1), in the case E is an half-space. In this context the linearity
of the equation strongly comes into play ensuring that the derivatives of the
Euler-Lagrange equation are again solutions of the same equation.

For the proof of the regularity results, we readapt a technique depicted in
the book [7] in the context of the Mumford-Shah functional and recently used
in a paper by E. Mukoseeva and G. Vescovo, [49].

Once obtained the estimates of Section 2.4, in Section 2.5 we are in position
to prove that, if in a ball B,(z¢) the perimeter of E is sufficiently small, then

the total energy

J \Vu|?dx + P(E; B,(x0)), 0<r<p,
B (z0)
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decays as r" (see Lemma 2.5.2). Making use of the latter energy density esti-
mate we are in position to deduce in the same section a density lower bound
for the perimeter of F as well. In the subsequent sections the proof strategy
follows the path traced from the regularity theory for perimeter minimizers.

In particular, in Section 2.6 it is proved the compactness for sequences of
minimizers which more or less follows in a standard way from the density lower
bound.

Sections 2.7, 2.8 and 2.9 are devoted to proving some additional conse-
quences of the density lower bound which involve the excess

1 _ 2
e(x,r) = inf e(z,r,v):= inf f Md%”_l(y),
0ENBy(x)

vesSn—1 vesn—1 pn—1 2

(see Definition 1.1.20). Indeed, we prove the height bound lemma, the Lips-
chitz approximation theorem and the reverse Poincaré inequality.

In Section 2.10 we compute the Euler-Lagrange equation for F(E,u) in-
volving the variation of the set E.

Section 2.11 is devoted to proving the excess improvement, which follows
from the fact that, whenever the excess e(x,r) goes to zero, for r — 0, the
Dirichlet integral SB,,(:;:U) |Vu|?* dz decays as in (2.7).

Finally, in Section 2.12 we provide the proof of Theorem 2.0.3, which is a
consequence of the excess improvement proved before.

2.1 Some definitions and two iterative lem-
mata

For any i > 0, we define the Morrey space L**(f) as

z0€, r>0

LPH(Q) = {u e L*(Q) : sup r"f lu? dz < —i—oo} . (2.9)
QN By (o)

We recall a classical result involving Morrey spaces, which can be obtain
by the combination of Poincaré’s inequality and the characterization of Cama-
panato’s spaces.

Lemma 2.1.1. Let p € [0,2), B.(zy) € R™ and u € H'(B,(z0)). If [Vu| €
L2 #(B,(x0)), then u e C*(B,(x)), where o = 1 —&.

The following definition is standard.

Definition 2.1.2. Let v e H}

Lo () and assume that E < Q) is fived. We define
the functional Fg as

Fi(w,Q) = F(B,w;Q), Ywe H ().
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It is worth pointing out that for a quadratic integrand F' of the type given
n (2.2) the following growth conditions can be immediately deduced from
assumptions (2.5) and (2.6):

LZ
P = < F(os2) S (VDR + L(L+1), W(w,s,2) e QxR xR
v
(2.10)
Here we recall the proofs of two useful iterative lemmata.

Lemma 2.1.3. Let Z(t) be a bounded non-negative function in the interval
[p, R] and assume that, for p <t < s < R, we have

Z(t) <0Z B, 2.11
(1) < 02(5) + g + (211)
with A,B >0 and 0 <0 < 1. Then
A
Z(p <c[—+B],
() (R —p)?

for some ¢ = ¢(0) > 0.

Proof. Although the proof of this lemma is standard and can be found in
[37, Lemma 6.1], we show it here for the sake of completeness. Consider the
increasing sequence {t;}ien, < [p, R] such that

to =p and ti+1 — 11 = (1 — )\))\Z(R— p),

where X € (0, 1) will be chosen later on. Iterating (2.11) for t = ¢; and s = t;44
we infer

k-1

Z(p) < 0" Z(ty) + [(1 — A);(lR ) + B] 2(9/\‘2)?

=0

Now we choose A = A\(#) such that O\ 2 < 1. Passing to the limit for & — +oo,

the geometric series in the right-hand side converges and we get the conclusion
: 1

with ¢ = m ]

The next lemma can be found in [7, Lemma 7.54].

Lemma 2.1.4. Let f: (0,a] — [0, +0) be an increasing function such that

flp) < A[(%)p + R

whenever 0 < p < R < a, for some constants A,B =2 0, 0 < ¢ < p, s > 0.
Then there ezist two positive constants Ro(p,q, s, A) and c(p,q, A) such that

f(R) + BRY,

ﬂ@<{%fﬂm+ww

whenever 0 < p < R < min{Ry, a}.
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Proof. Let us fix r = r(p,q,A) € (p,q) and 7 = 7(p,q, A) € (0,1) such that
2ATP < 717, Let Ry = Ry(p, q, s, A) > 0such that R§ < 77 and R < min{ Ry, a}.
By assumption, for any i € N, we easily get

f(T'R) < A(r? + TiSRS)f(T’R) + BTMR? < Trf(TiR) + BTYRY.
The previous inequality can be iterated obtaining

k-1
f(r"R) < ™™ f(R) 4+ B(t"R)%r 1 2 rir=a),

=0

for some k£ € N to be chosen. We now distinguish two cases: if p < TR, we
choose k € N such that 7*+*YR < p < 7FR and we conclude

k-1
f(p) < f(r*R) < T_qT(kH)qf(R) + BT~ (Tk+1R)q Z 7ir=a)
i=0
p q
< c(p,q, A) <§> f(R) +c(p,q, A)Bp”.
If p € (TR, R], choosing ¢ = ¢(p, q, A) such that ¢r? > 1, since f is increasing,
we infer

) < el AR < el ) () TR + e, A)B

2.2 From constrained to penalized problem

The next theorem allows us to overcome the difficulty of handling with the
constraint |E| = d. Indeed, it can be proved that every minimizer of the con-
strained problem (P,) is also a minimizer of a suitable unconstrained problem
with a volume penalization of the type given in (P).

Theorem 2.2.1. There exists Ng > 0 such that if (E,u) is a minimizer of the
functional

Y

(2.12)
for some A = Ny, among all configurations (A, w) such that w = uy on 0€2,
then |E| = d and (E,u) is a minimizer of problem (P.). Conversely, if (E,u)
is a minimizer of problem (P,), then it is a minimizer of (2.12), for all A = Ag.

Fa(A,w) = J [F(z,w, Vw) + 14G(z, w, Vw) dz]| dz + P(A; Q) + A||A| — d
0

Proof. The proof can be carried out as in [29, Theorem 1]. For reader’s conve-
nience we give here its sketch, emphasizing main ideas and minor differences
with respect to the case treated in [29)].
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The first part of the theorem can be proved by contradiction. Assume that
there exist a sequence { A\, }ren such that A\, — +00 as h — +00 and a sequence
of configurations (Ej, u;) minimizing F,, and such that u, = uy on 0Q and
|E| # d for all h e N. Let us choose now an arbitrary fixed Ey  Q with finite
perimeter such that |Ey| = d. Let us point out that

]:)\h (Eh, Uh) < .F(EO,U()) = 0. (213)

Without loss of generality we may assume that |E,| < d. Indeed, the case
|E| > d can be treated in the same way considering the complement of E}, in
Q2. Our aim is to show that for h sufficiently large, there exists a configuration
(Ey, @) such that Fx, (B, @n) < Fa, (Ep, up), thus proving the result by con-
tradiction.

By the condition (2.13), it follows that the sequence {uj}ren is bounded
in H'(Q), the perimeters of the sets FEj, in  are bounded and |E,| — d.
Therefore, possibly extracting a not relabelled subsequence, we may assume
that there exists a configuration (F,u) such that u, — u weakly in H'(Q),
lg, — 1g a.e. in , where the set E is of finite perimeter in 2 and |E| = d.
The couple (E,u) will be used as reference configuration for the definition of

(Eh, ﬂh)

Step 1. Construction of (E, @iy,). Proceeding exactly as in [29], we take a
point z € 0*E n  and observe that the sets E, = (E — z)/r converge locally
in measure to the half-space H = {z - vg(z) < 0}, i.e., 1g, — 1y in LL (R").
Let y € B1(0)\H be the point y = vg(x)/2. Given e (that will be chosen in
the step 4), since 1, — 1y in L'(B;(0)), there exists 0 < 7 < 1 such that
w’n

[Evn Bip)l <e B0 Biy)| = B 0 Bip(0)] > 55

where w,, denotes the measure of the unit ball of R®. Then if we define z, =
x + ry € ), we have that

Wpr"

oan+2 -’

|E A Boolz,)| <er”,  |EnB(z)] >

Let us assume, without loss of generality, that x, = 0. From the convergence
of Ej, to E we have that for all h sufficiently large

wpr™

on+2 °

|Ep By jo| < er”, |Ep N B,| > (2.14)

Let us now define the following bi-Lipschitz function used in [29] which maps
B, into itself:
(1-op(2"=1))z if |z| < g,
O(z) =z + ah(l —~ |;Tn)x if g <z <, (2.15)
x if |z| =7,
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for some 0 < g3, < 1/2™ sufficiently small in such a way that, setting

E, = ®(Ey),  dp=upod !,

we have |E,| < d. We obtain

]:)\h(Eh’Uh) - ,F)\h (Eh,ﬂh) = |:J [F(ZL‘, Up, Vuh) + ]lEhG(ZL‘, Up, Vuh)] dx

T

— J [F(ZE, ah, V@h) + ﬂEhG(x, ﬂh, VINL}Z)] dy] (216)
+ [P(Ew; B,) — P(Ey; B,)| + M (1 En| — | Ewl)
=Iip+ Loy +I3y.

Step 2. Estimate of I;,. First observe that, for |x| < r/2, ® is simply a

homothety and all the estimates that we need are very easy to obtain
Conversely, for r/2 < |z| < r we have

od; opr” Tils o
aa;(l') = (1—1—0;1—#)5”4—710% ||T—&j-2’ V’L,jE{l,...,TL}. (217)
J

Hence, if n € R,

n . 2
(Von) -n = (1 + 0 Ohrn ) In]* + nahfr‘"M

| |27

from which it follows that

(NS
|V<I>77|>(1+0'h C )||

From this inequality we easily deduce an estimate on the norm of V¢!, that
is

1 VIPy
1@ (2.18)

1 opr"” !
= max ——— 1+o —_—
=1 |V@n| ( o le")

<(1—(@2"=1)on)  <1+2%0,, ViebB,.

HV@flq)Hoo = max |V
=1

In|

Moreover, it is clear from (2.17) that, since oy, is small, ® is a small perturba-
tion of the identity in the sense that

|z — 2VP(y)| < Ci(n)oylz], forall y,zeR". (2.19)

Concerning J®, the Jacobian of ®, from (2.17) we deduce

-1 n n\ n—1
Jb(z) = 1+ah+M 1+ 0, — 20 .
|| |z
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Using the fact that r/2 < |z| < r, we can estimate

JO(x) = (1 + oy + M)(l + o) ? <1 +on—(n— 1)ahr">

[ |z["
—1 n —1 n
> (1o B ) (1o - )
x| x|
_ 2 2 or" 2 (V2.2
=1+o0)"—(n—-1) 2] > (1+0p,)"—4"(n—1)%0;,

=1+20,— (4"(n—1)> = 1)o} > 1+ oy,
provided that we choose

1

< .
S 1)~ 1

Summarizing, we gain the following inequalities for the Jacobian of ®:

1+o0

J®(x), forall x € B,\B,, (2.20)
JO(x) <1

<
<14 2"noy, forall x € B,.

~— >

Now we can perform the change of variables y = ®(z) and, observing that
HE,L((I)(Q/’)) = ﬂEh(lU), we get

L= f [ F (2, un, Vup) — J®(2) F(® (), up(z), Vu (2) VO ((2)))] da

T

b GG Tin) - FR)GO(0) (o). Vo) VO ()] d
= Jip + Jop.

The two terms J; , and Js p,, involving F' and G in B, and B, n E}, respectively,
can be treated in the same way. Therefore we just perform the calculation for
J 1,h-

To make the argument more clear, since we shall use the structure conditions
(2.2) and (2.3), we introduce the following notation. As(z,s) denotes the
quadratic form and A;(x, s) denotes the linear form defined as follows:

Ay(z,5)|2] = ai(z,8)zi2,  Ai(z,s)[z] := ai(x, $)2,

for any (z,s,z) € Q@ x R x R™. Analogously we set Ay(z, s) = a(z, s). Accord-
ingly, we can write down

Jin
_ J {Aa(r, () [V ()] (2.21)

T

~ Ay (B(x), uh(x))[Vuh(x)V(I)’l((P(aj))]J@(x)} dz
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+ | {Ai @) Vuna)
— A (P(2), uh(x))[Vuh(x)VCI)*l((I)(ac))]J@(x)} dx
+ f {Ao(a:,uh(x))—Ao(l@(%), uh(ﬂf))Jq’(fU)} dz.

We proceed estimating the first difference in the previous equality, being the
others similar and indeed easier to handle.

J {Az(x, up () [Vup(2)]— A (®(2), up(2)) [Vup (2) VO (®(2))] J@(x)} dx

r

— f { A (®(), up () [Vun ()]

T

— Ag(®(2), up (2)[Vup(z) V™ (Cb(x))]JCD(m)} dx

+ f {Ag(x,uh(x))[Vuh(x)] — Ag(@(x),uh(x))[Vuh(x)]} dx =: Hyp + Ho .

The first term H; j, can be estimated observing that, as a consequence of (2.5),
we have:

| A2[€] — Az[n]| < NI +nll —nl, VEneR"
If we apply the last inequality to the vectors
¢ := Vup(x), n = A/JO(x)[Vu,(z) VO~ H(®(x))],

we are led to estimate | — 7).
We start observing that, being J®(z) = (1 — 04(2" — 1))" for |z| < r/2, by
also using (2.20) we deduce

WV JP(x) — 1| < C(n)oy, for all z € R™.

Therefore we have

VIE — €| < C(n)onlé.

In addition choosing z = EV®~(®(z)) in (2.19) and using also (2.18), we can
deduce

EVETH(@(2) — €| < onCi(n)[EVETH(D(2))]
< op[¢|Ci(n) | VO™ 0 @] < n2"Ci(n)onlé].

Summarizing, we finally get
€ =0l < onC(n)|[Vun(2)], €+ 0l < C(n)[Vun(2)],

for some constant C' = C'(n) > 0. From the previous estimates we deduce that

Hon < onNC2(n) J Vun ()2 dz < opNC2(n)O, (2.92)

T
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where O is defined in (2.13). The second term Hs ), can be estimated using the
Lipschitz assumption of a;; and observing that |x — ®(z)| < 0,,72". Therefore,
we deduce that

Hynl < 002" L J Vun (@) dz < oxC(n, Lp)O. (2.23)
In conclusion, since the other terms in (2.21) can be estimated in the same
way, collecting estimates (2.22) and (2.23), we get

|J17h| < O'hC(TL, N, LD)@
Since the same estimate holds true for J, 5, we conclude that
I, = —0,Co(n, N, Lp)O, (2.24)

for some constant Cy = Cy(n, N, Lp) > 0.

Step 3. Estimate of I;. In order to estimate I, we use the area formula
for maps between rectifiable sets. We fix x € 0*Ej, n (B,\Bz). We denote by
{T1,...,Tn_1} an orthonormal base for T,,0* E},, and by L the n x (n—1) matrix
representing Va*EMI)(x) with respect the previous base and the canonical base
{e1,...,e,} in R (see Definition A.2.3 for the notation). We remark that, for

S BT\B%,
X

o) = é(lal)

where

Hence, we have
¢(Jz]) o))\ zi x -7
Lij =V -7y =——=e; -7+ | ¢(|z]) - T
| [ /) [a] |zl
for any i € {1,...,n} and j € {1,...,n —1}. Thus, for j,l e {1,...,n — 1}, we
obtain

(L), j o (o - Y ol

|96|2 |2

Since V7*Frd(z) is invariant by rotation, in order to evaluate det(L*L), we
may assume, without loss of generality, that 7; = e;, for any j e {1,...,n—1}.
We deduce that

L*], — Mj(nfl) I (¢12(|$|) B ¢2(|x|)) x’@;p’

]2 ]2

where ("~ denotes the identity map on R"! and 2’ = (zy,...,7,_,). With
a calculation similar to the one performed to obtain J®, from the equality
above we easily get that

(11 — (¢2|§:||:§I))”‘1[1 N ¢y(c||;) (¢/2<|I|) ) ¢2|i||‘f|)) ||Z’|Ij],
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and so we can write, for z € 0*Ej, n (B,\Br),

J7E®(z) = 4/det(L*L)

- (@)\/ L e (= )

SeD\" v
< (U)o < el < 14 004 200 D

In order to estimate I5 5, we use the area formula for maps between rectifiable
sets Theorem A.2.4, thus getting

Iy = P(EyB,) — P(BB,) = f

0% Epn B,

dH" — f JEr®(x) dH" !
0% Epn B,

(1= J5®(z)) dH" ' + f (1—J5®(z)) dH"".

L*EhmBr\Br/Q 0% EpnB,)s

Notice that the last integral in the above formula is non-negative since ® is a
contraction in B,s, hence J¥»®(x) < 1 in B,,, while from (??) we have

J (1—JP®(x)) dH"' = —2"nP(Ey; B,)o, = —2"nO0, ,
0* EpnnBr\B, o

thus concluding that
Iy, = —2"nOay, . (2.25)

Step 4. Estimate of I3 . To estimate I3, we recall (2.14), (2.15) and (2.20),
thus getting

I3 = )\hf (JO(z) — 1) do + /\hf (JO(z) —1) dz
ErnBA\B,) B

hmBr/2

= )\h<2(/::32 — €>O'h7’n — )\h[l — (1 — (2” — 1)0h)n]€r”

Wr, "
> Ahahr”[2n+2 —e— (2" — 1)n5] .

Therefore, if we choose 0 < & < €g9(n), we have that
I3, = M Csopr™,

for some positive C5 = C3(n). From this inequality, recalling (2.16), (2.24)
and (2.25), we obtain

.7:>\h (Eh,uh) — .7:>\h (E}“ﬂh) Z ah(/\h(]g,r” — @(Cg(n, N, LD) + 2”71)) > O,

if A\, is sufficiently large. This contradicts the minimality of (FEj,uy), thus

concluding the proof.
O
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The previous theorem motivates the following definition.

Definition 2.2.2 (A-minimizers). The energy pair (E,u) is a A-minimizer
in Q of the functional F, defined in (2.1), if and only if for every B,(xo) < Q
it holds:

F(E,u; B.(x0)) < F(F,v; By(xg)) + A|FAE],

whenever (F,v) is an admissible test pair, namely, F is a set of finite perimeter
with FAE cc B,(x) and v —u € H}(B,(z0)).

2.3 Higher integrability results

In this section we quote higher integrability results both for local minimizers
of functional (2.1) and for comparison functions that we will use later in the
paper. It is worth mentioning that the following lemmata can be applied in
general to minimizers of integral functionals of the type

H(u; Q) = f F(x,u,Vu)dz, (2.26)
Q

assuming that the energy density only satisfies the structure condition (2.2)
and the growth conditions (2.5) and (2.6), without assuming any continuity
on the coefficients. Therefore, functionals of the type (2.1) belong to this class
and in addition the involved estimates only depend on the constants appearing
in (2.5) and (2.6) but do not depend on E accordingly.

Lemma 2.3.1. Let u € H'(Q) be a local minimizer of the functional H de-
fined in (2.26), where F' satisfies the structure condition (2.2) and the growth
conditions (2.5) and (2.6). Then, for every Bog(xo) cc €, it holds

(][ V|2 da:) ft 1], (2.27)
Bar(zo)

where m = 2= and Cy = Cy(n,v, N, L) is a positive constant.

J[ |Vul?dr < Oy
Br(zo)

Proof. Whithout loss of generality we may assume that xo = 0. Let R <t <
s < 2R and choose 1 € Ci°(B;s) such that n = 1 in B; and |Vn| < 2/(s — t).
We choose a test function v = u — ¢, where ¢ = n(u — ug) and u, denotes the
average of u in By, us = SBS udx. Testing the minimality of v with v and using
growth condition (2.10) we deduce that

2
ZJ |VU|2 - % dr < H(u; Bs) < H(v; By)
2 Js, V2

< 2[ |V + DIVt — ) = Vnu— )+ L(L +1)] da

<4(N+1)f |Vu|2dx+4(N+1)f = w2V da
B.\B By
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+2J L(L + 1) dz.

Adding to both sides 4(N + 1) {, [Vu[* dz we deduce

[4(N +1)+ g] Lt Vul? do

<4(N+1)J |Vul? dz + 4(N + 1)] |u—u5|2|V77|2da:+J C(L,v) dx.

s BS BS

Thus we get
C(n,v,N, L)
(s —1)

< 1. Using Sobolev-Poincaré’s inequality

f |Vu|2dx<9f |Vul? dr + J lu — u|*dz + C(n,v, N, L),
Bt Bs BS

H=4(N+1)
where AN+D+%

f |u—us|2dx<0(n)U |Vu|2mdx>m<0(n)(J |Vu|2mdx) |
s Bs Bor

with m =

s

—5, we eventually obtain
C(n,v,N, L o
f Vul?de < ef Vaf? ot S0 N L) (J Va2 dx) L C(n,v, N, L),
By Bs (S - t) Bagr

[terating the previous estimate using Lemma 2.1.3, we deduce that there exists
a constant C' = C(f) = C(v, N) > 0 such that

1

¢,y N, L) f IVl dz )+ Cln, v, N, L) |.
R? Bor

We get the thesis if we divide by R™.

f |Vul*dr < C(v, N)
Br

]

Remark 2.3.2. We observe that the reverse Holder inequality stated in the pre-
vious lemma can be also proved exactly in the same way replacing the balls with
the cubes. The reverse Holder inequality written on cubes is the suitable ver-
sion in order to apply Calderon-Zygmund decomposition and Gehring’s lemma
(see [37, Proposition 6.1]), thus obtaining the higher integrability estimate on
cubes. Finally, the higher integrability estimate on balls stated below, which is
suitable in our setting, can be deduced by a covering argument.

Lemma 2.3.3. Let u € H'(Q) be a local minimizer of the functional H de-
fined in (2.26), where F' satisfies the structure condition (2.2) and the growth
conditions (2.5) and (2.6). There exists s = s(n,v,N,L) > 1 such that, for
every Bog(xg) cc Q, it holds

J[ |vu|2s dr < Cy (J[ (1 + |Vu|2) dl’) )
BR(CEo) BQR(xO)

where Cy = Cy(n,v, N, L) is a positive constant.
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In the next section we will prove some energy density estimates by using a
standard comparison argument. For this purpose we will need a reverse Holder
inequality for the comparison function defined below.

Definition 2.3.4 (Comparison function). Let u € H'(Q) be a local minimizer
of the functional H defined in (2.26) and Byg << 2. We shall denote by v the
solution of the following problem

v:= argmin J F(z, Vw) dz, (2.28)
Br

weu+HJ(BR)

where F(x,z) 1= F(x,u(x),z) satisfies the structure condition (2.2) and the
growth conditions (2.5) and (2.6).

For the comparison function v defined in (2.28) we can state the following
reverse Holder inequality up to the boundary of Bpg.

Lemma 2.3.5. Let u € HY(Q) be a local minimizer of the functional H de-
fined in (2.26), where F satisfies the structure condition (2.2) and the growth
conditions (2.5) and (2.6). Let v be the comparison function defined above and
Bor << Q). Let us consider the following extension of v:

Viz) = {v(a:) for x € Bp,
u(z)  for x € Q\Bg.

Let B,(xo) € Bog with xg € Bg and p < %. Then

1 1
(][ V| dx) + (J[ |vu|2m) + 1],
ng(mo) B2p(550)

(2:29)

Jf YV dz < Cy
BP(IO)

where m = 5 and C3 = C3(n,v, N, L) is a positive constant.

Proof. Let g € B and p < s <t <r < 2p < R, where r = %p; then, the
following alternatives may occur:

{z) B,(z9) =< Bg
it) B, (o) N (Q\Bg) # &.

In the case i) we can proceed exactly as in Lemma 2.3.1 to get the desired
estimate. Let us then consider the case ii) which is slightly different.

Choose 11 € CP(Bi(xg)), such that 0 < n < 1, n = 1 in By(z) and
|IVn| < 2/(t —s). Now we can use the function ¢ := n(V — u) to test the
minimality of v with the aim of estimating the difference §,  \ |V(V —u)[*.
In the following it would be useful to keep in mind that Vo = V(V — u) in
Bs(xg), which is the quantity we are interested to estimate.

In order to simplify the notation, let us denote

a;;(z) = aij(z,u(x)), ai(x):=a(z,u(x)), alz):=a(z,u(z)),
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F(w; A) = JA F(z,Vw)dz.

We start comparing the energy of ¢ and v inside a generic set A ¢ Br. We
have that

.7:"(V90; A) — j}(Vv; A)

= | ai(x)VipVjpdr + J

J A

a;(z)Vvdr — JA a(x)dx

a;(z)Vipdr + J a(z)dx
A A
dij(x)vivvjv dr — f
Ja A
"
= | a;j(x)Vilp —v)V;(p —v)dr + QJ a;;(x)VuV(p —v)dx
Ja A

+ JA a;()Vi(p —v) du.

Using the growth conditions (2.5) and (2.6) and Young’s inequality we deduce
that

1 L?
F(V; A)=F(Vov; A) < (N+N2+§) L |V(v—gp)|2d:z:+L |Vv|2dx+L - do.

(2.30)
Recalling the growth condition (2.10) we estimate

2 - 2172
J Vol dr < —J F(x,Vv) dx+f —-dz.
A va A

2

We can conclude from (2.30) that
~ 2\ = 1
F(Vpid) < (14 2)F(Vu4) + (N + N2+ ) J V(v — p)da
14 2 A

+ L (L—2 + 2—L2) da. (2.31)

2 v?

We compute now the previous integrals on the set B;(z¢) n Bg. We use again
the growth condition (2.10) and the minimality of v with respect to v — ¢ in
order to estimate further on the right hand side of the previous inequality:

.7:—(VU; By(x¢) n Bg)

< F(V(v—¢); Bi(xo) N Br)

<(N+1)J

Bi(xz0)nBgr

|V(v—gp)|2da:+f L(L+1)dx.

B¢(z0)nBgr

Finally we can resume (2.31) to conclude this first part concerning the energy
estimate of ¢, using again (2.10),

212 -
ZJ (|W|2 — —2) dr < f F(z, Vo) da
2 Bt (zo) v Bi(zo)nBr
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< C'(I/,N,L)J (IV(V = @) dx + 1) da.

Bi(wo)
We summarize the previous estimate as follows:
v

—f V| dz < Oy, N, L)J (IV(V =) +1) da. (2.32)
2 JBy(a0) Bu(x0)

Now we observe that |V(V —¢)| < |Vu|+ (1 —n)|V(V — u)| + 72|V — uf; then
by (2.32) we deduce

J |V(V—U)|2 dr < C(%N’ L)J |V(V—u)|2dl’
Bs(z0) Bi(z0)\Bs (o)

N, L
+ O(Va 72) f |V—u|2dI+C(V,N7 L)J (|VU|2+1) d$(233>
(t—s) By (z0) Bt (o)

Now we use the “hole-filling” technique adding C'(v, N, L) SB,~(JZ‘0) |V(V —u)|? dx
to both sides of (2.33) getting

J IV(V —u)Pdz < 0 IV(V — )| dz
B,S(Z'O)

Bi(zo)
1
By (o) Bi(zo)

C(v,N,L)

CONLH Using Lemma 2.1.3 we obtain

where 6 =

C(v,N,L
J IV(V —u)der < @’—’2)] V —ufdz
By (z0) (r—p) Br(x0)

+ C(v, N, L)J (1 + |Vul?) dz.

Br (o)

Therefore, being r = %p and by condition ), we have
| B2 (20)\Br| = C|B,(x0)],

for some universal constant C' = C'(n) > 0. We can now use Sobolev-Poincaré’s
inequality for functions vanishing on a set of positive measure (see Theorem

A.3.3) to deduce
]f IV(V —u)|* do
BP(QCO)

< C(n,v, N, L) [(J[ (|V(V —u)|*™ d:v) "4 J[ (1+ [Vul’) dx]
Bap(0) Bap(wo)

Finally we can apply reverse Holder inequality (2.27) for u in the last estimate
to get (2.29). O
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Reasoning in a similar way as above, the higher integrability for v can be
obtained by means of Gehring’s lemma (see [37, Proposition 6.1]).

Lemma 2.3.6. Let u € H'(Q) be a local minimizer of the functional H de-
fined in (2.26), where F' satisfies the structure condition (2.2) and the growth
conditions (2.5) and (2.6). Let v € H'(Bgr(xo)) be the comparison function
defined in (2.28). Denoting by s = s(n,v, N, L) > 1 the same exponent given
in Lemma 2.3.3, it holds

J[ |VU|28 dr < 04 (J[ (1 + |Vu|2) dl‘) ,
BR(.ZQ) BQR(xO)

where Cy = Cy(n,v, N, L) is a positive constant.

2.4 A decay estimate for elastic minima

In this section we prove a decay estimate for elastic minima that will be crucial
for the proof strategy. Indeed, we show that if (E,u) is a A-minimizer of the
functional F defined in (2.1) and zg is a point in €2, where either the density
of E is close to 0 or 1, or the set E is asymptotically close to a hyperplane,
then for p sufficiently small we have

J \Vug|?dr < Cp?,
By(xo)

for any 0 > 0. A preliminary result, which will be used later, provides an
upper bound for F. It is rather standard and is related to the threshold
Hélder exponent 3 of the function u, when (E,u) is either a solution of the
constrained problem (P.) or a solution of the penalized problem (P) defined
in Section 1. Its proof is contained in [45, Lemma 2.3], [35], and we recall it
here for the sake of completeness.

Theorem 2.4.1. Let (E,u) be a A-minimizer of F in Q. Then for every open
set U cc Q there exists a constant Cy = C3(n, A, U, ||VuHL2(Q)) > 0 such that
for every B,(x¢) < U it holds

F(E,u; By(xg)) < Cyr™1L.

Proof. Fixing B,(x¢) < U cc Q, we compare (E,u) with (E\B,(x¢),u) thus
obtaining

F(B, Q) < F(E\B,(20), 1 Q) + A|EA(E\B, (x0)) 0 |

<
< I(E\Br($o)7ué Q) + A|Br(x0)|

Making F explicit and getting rid of the common terms, we obtain:

J G(z,u, Vu)dx + P(E; B.(z0)) < P(E n 0B,(z0); ) + c(n, A)r"
By (z0)nE
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H" (0B, (x0)) + c(n, A)yr™ !
c(n, A)r" =t (2.34)

NN

Now we want to prove that there exist 7 € (0,1) and & € (0,1) such that for

every M > 0 there exists hy € N such that, for any B,(x¢) < U, we have

J [Vul? < hor™™'  or f |Vul? dr < MT"_‘SJ |Vu|? dx.

B (zo) Brr(z0) Br(z0)

Step 1: Arguing by contradiction, for 7 € (O, %) and 0 € (0,1), we choose
M > 797" and we assume that, for every h € N, there exists a ball B,, (x,) c U
such that

J Va2 de > ! (2.35)
Brh(xh)
and
J |Vul® dz > MT”‘SJ |Vul|? dz. (2.36)
B‘r'rh(xh) BTh, (wh)
Note that estimates (2.34) and (2.35) yield
j \Vul? dz + P(E; By, (z1)) < corj ™! < @ \Vul*dz, (2.37)
Brh(xh)ﬁE h BT;L(xh)
and so
J |Vul* dz < “ |Vul® dz, (2.38)
By, (xp)nE h By, (x1)

for some positive constant cg.
Step 2: We will prove our aim by means of a blow-up argument. We set

G = J[ |Vul? dx
Bry, (1)

and, for y € By, we introduce the sequence of rescaled functions defined as

ulxry +r —a )
(zn + ay) h, with ay := ][ wdz.
ShTh By, (z1)

We have Vu(z, + rpy) = ¢, Vour(y) and a change of variable yields

vp(y) =

1
| 1vu@Pa=f  Ve@Pa -t
By h BTh(xh)

Therefore, there exist a (not relabeled) subsequence of v, and v € H'(By) such
that v, — v in H'(B;) and v, — v in L*(B;). Moreover, the semicontinuity
of the norm implies

JL IVu(y)|? dy < lim ian[ Vun ()P dy = 1. (2.39)
B, h—+o0 B,
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We rewrite the inequalities (2.35), (2.36) and (2.38). They become, respec-
tively,

h
G>—, (2.40)
Th
]f Von(y) 2 dy > Mr—, (2.41)
f Von(y)Pdy < 2| [Von(y)P dy = 22 (2.42)
BinE} h Jp, h

Of course, (2.40) implies that ¢, — +00, as h — +00.
Step 3: We claim that the L?>-norm of v, converges to the L?>-norm of v.

Counsider the sets
FE— Th

Th
Since r;""'P(Ej; By) = P(E; B,, (1)), by (2.37), we have that the sequence
{P(E}; B1)}nen is bounded. Therefore up to a not relabeled subsequence,
lg, — lpx in L'(By), for some set E* < By of locally finite perimeter. By
(2.42) and Fatou’s Lemma,

f Vo) dy = 0.
BinE*

B} = A By, YheN.

By the A-minimality of (E,u) with respect to (E,u + ¢) we get, for ¢ €
H&(Brh(xh))v

J | F(z,u, Vu) + 15G(z, u, Vu)| dx
Brh(mh)

< f | F(z,u+ ¢, Vu+ Vo) + 1pG(z,u+ ¢, Vu + V)| du.
BV‘h(zh)
Using the change of variable = = z;, + r,y, we deduce for every ¢ € H}(By),

J [F(:z:h + rpy, w(xy, + rry), s, Vo)
B1
+ L G(an + mry, u(@n + ThY), s Von)] dy

< J F(zp + rry, u(zn, + mpy) + rph, Vo, + V) dy
By

+ f ]lE:G(xh + rpy, u(xy, + rpy) + i, Vo, + V) dy.
B4
Let n € CP(B;) such that 0 < n < 1. We choose as a test function v, =
spn(v — vy) and exploit Vv, + V4, for reader’s convenience,
Vo, + Vb, = Vo + (1 — n)Vuy, + ¢u(v —v,) V.
For simplicity of notation we denote wy, := u(xp + r2y) + rnspn(v — vp,) so that

the previous inequality can be read as

J [ F(zn + rhy, u(zn + 1Y), . Von) + Lgx G(xn + Thy, w(@n + ThY), s Vup)|dy
B

1
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< J F(zp + rpy, wp, sonVo + g (1 — )V, + su(v — v,)Vn) dy
B1

+ f L G(xn + 1hYs why iV + (1 — 1) Von + 6 (v — va) Vi) dy.
B1

Using the quadratic structure of F'and G, we can pull out the term ¢, (v—2v;,)Vn
in the last argument of F' and G, in order to use the convexity in the next
step.

JB | F(xn + rny, w(zn + ray), s Vop)
1
+ L G(an + rny, u(@n + mhy), snVoy)| dy
< JB F(zp + rpy, wp, sonVo + ¢, (1 — n)Vuy) dy
1
+ JB ILE;';G(% + 7Y, Wy eV + (1 — 1) V) dy
1
+ ¢(N, L) L} (Jsu Vv| + [aVon| + [sn(v — vp))[)snlv — va] dy.
1

Using the convexity of F' and G and rearranging the terms we obtain
JB nE(xy + rpy, wp, sy Vo) < JB nE(xp, + rpy, wp, sy Vo) dy
| 1
+ JB [F(zh + 0y, wh, e Vo) — Fzy, + ray, w(zg + m1y), s Vor) | dy
1
+ JB L |G (wn + rny, wn, sV on) = G(n + ray, ulzn + ray), suVon) | dy
1
+ JB ILE:n[G(xh + TRy, wh, s VU) — Gz + Ty, wh, 5, Voy) | dy
1

+o(N, L) fB (Vo] + [V onl + [on (v — on)))<ulo — val dy.
1

The last term and the second to last term can be treated in a standard way

using (2.39), Hoélder’s inequality, the strong convergence of v, to v and the

weak convergence of Vuy, to Vu. The remaining two terms, which differ only

in the second argument, can be treated as follows.

We remark that, by definition of v, and Holder continuity of uy,, it imme-
diately follows r,s v, — 0. Therefore, being 1,5, — 0 where v # 0, we deduce
also wy, — u(xy, + rpy) = rppn(v — v) — 0 for a.e. y € By. Finally, using the
equi-integrability of |Vuy|?, resulting from the weak convergence of Vuy, and
the uniform boundedness of the coefficients a;;, a;, a, we conclude that

f | F(xh + ray, wn, s Vop) — F(@n + ray, u(zs + ray), s Vor) | dy
By

< gﬁf |laij(zn + oy, wp) — aij(xn + ey, w(x, + 1Y) | Vo] [ Vjos| dy
By
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+ §hj lai(xn + oy, wn) — ailxn + 1ay, w(an + 1Y) |Viop| dy + c(n, L)
By
= §2€h.

Combining the previous inequalities, we get
J nE(zn + ray, wh, uVop) dy < J nF (zh + ry, wn, Vo) dy + e
Bl Bl
Dividing by <7, the linear terms in F tend to 0, thus getting

f na;;(xn + ray, w) Viop Vo, dy < J na;j(xn, + rpy, wy)VioVody + .
Bl Bl

Since By, (zp) < U cc Q for all h € N, we may assume that z;, — T, as
h — +oo. Letting n | 1 in the previous inequality, passing to the lower limit,
as h — 400, by lower semicontinuity, we finally get

lim a;; (T, w(T)) V0, Vo, dy = J a;; (T, u(T)) VoV v dy.

h—-400 B B

Since the matrix a;;(Z, u(T)) is elliptic and bounded, it induces a norm which
is equivalent to the euclidean norm. Thus we get

1 1
lim Vo, |* dy = J[ VolPdy < —1 |[VolPdy < —,
h—+o0 BT _ TTL Bl TTL

which contradicts (2.41), provided we choose M > 79",

Step 4: We conclude that there exists 7 € (0,3) and 6 € (0,1) such that,

setting M = 1, there exists hg € N such that, for any B,.(zq) < €2, we have

f [Vul? < hgr™™'  or f |Vu|? dr < T"_‘sj |Vul? dr.
Br(xo) BTT(xO)

By (zo0)

Hence,
J |Vul?dz < T"_‘SJ |Vul?do + hor™ ™,
BTT(xO)

Br(zo)

and, using Lemma 2.1.4, we obtain that

n—1
J Vul?dz < ¢ <£> J |Vul?dz + hop" '}, YO<p<r<R,
Bp(zo) r Br(z0)

and so we conclude
(Vul?dr < cp™ .
By (o)
O

As a consequence of the previous theorem, thanks to Lemma 2.1.1, we can
infer that u € C%2. We deduce the following remark.
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Remark 2.4.2. Let (E,u) be a A-minimizer of the functional F defined in
(2.1).  For every open set U cc ) there exists a constant C =

C(n, AU, ||Vu||L2(Q)) > 0 such that
u(x) —uly
sup =N < g (243
cyelU |z —yl2

Notation 2.4.3. In the sequel E < ) will denote any given subset of Q0 with
finite perimeter. We denote by ug, or simply by u if no confusion arises, any
local minimizers of the functional Fg(v;<).

o IfreR" wewritex = (2, x,), where 2’ € R"™! and z,, € R. Accordingly,
we denote V' = (O, ..., Ox, ,) the gradient with respect to the first n—1
components.

o We will denote H = {x e R : z, > 0}.

In what follows, we will use the following lemma, whose proof can be found
in [7, Theorem 7.51].

Lemma 2.4.4. Let u € LP(Bsg(xo)) for some p € [1,4+00) and let us assume
that, for some a € (0,1] and v > 0,

P \™
J[ |u(y) - ux,p|p dy < P)/p (E) 9
Bp(z)

for any B,(x) with p < R and x € Bgr(xo). Then (a representative of) u is
Hélder continuous in Br(xg) with Holder exponent o and

o)~ )l < (“T2) . v e Bata)

<
Jnax, lu| < ey + [Uag,r:

for some positive constant ¢ = c(n, «).

In order to prove the main lemma of this section we introduce the following
preliminary result. For reader’s convenience we give here a sketch of the proof,
which can be found in [49]. Actually we state here a weaker version that is
suitable for our aim.

Lemma 2.4.5. Let ve H'(By) be a solution of
—div(AVu) = div G, in D'(By),
where

Gt :=14G e C**(H n By), G = 1yGe C™*(H N By),
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for some a > 0 and A is a uniformly elliptic matriz satisfying
V]2 < Ay(x)ziz; < N2|?
and
AT :=15Ae C**(Hn B), A :=1pAecC’(H nB),
for some v, N > 0. Let us denote

Cy = maX{HAJrHco’a ,

Aleoet: Co=max{{|G*] o Gl o}

Then Vv € L (By) (see (2.9)). Moreover, there exist two positive constants

loc

C =C(n,v,N,Cy4,Cg) andrg = ro(n,v, N, |G| ;» ,Ca, Cq) such that, for any
r <o with B,(z) < By,

f |Vo|? dz < C(B)nf (Vo> dz + Cp", V¥p< .
By (x0) /B, () 4

Proof. Fix xy € By and let r be such that B,(xy) < Bj. Let us denote by
a®™ and a~ the averages of A in H n B,.(x¢) and H® n B,(x() respectively. In
an analogous way we define g% and g~ the averages of G in H n B,(x) and

H¢ n B.(xg). For z € B.(x) we define
A= atly +a Lge, G = g 1y + g Lye.
Notice that by assumption
|A(z) — A(x)| < Car® and |G (7) — G()] < Car®. (2.44)
Let w be the solution of

{—diV(va) =divG  in B,(70),

w=v on 0B, (x).

The last equation can be rewritten as

—div(a*Vw*) =0 in B,(z9) N H,
—div(aVw™) =0 in B,(z) n HE, (2.45)
wh =w~ on B,(x¢) N 0H,

(
atVw* e, —a~Vw™ -e, =g"-e,— g -e,, on B.(xy) nJdH,

where w* := wlg (z0)~m, W 1= Wlp, (5g)aHe- Set

Dow = szviw + G - e,
i=1

where A, is the (i,n)-th entry of the matrix A. We notice that D.w has no
jumps on the boundary thanks to the transmission condition in (2.45). This
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allows us to prove that the distributional gradient of D,w coincides with the
point-wise one.

Step 1: Tangential derivatives of w. Let us denote with 7 the general direction
tangent to the hyperplane 0H. Since A and G are both constant along the
tangential directions, Theorem 1.2.10 gives that V,w € H. (B,(ro)) and

loc
div(AV(V,w)) =0 in B,(x0).
Hence, Caccioppoli’s inequality holds:

c(n,v, N
[ w@ary < LI 90— (T iy 46)
Bp(x) P Bay(2)

for all balls By, () < B, (o) (see Theorem 1.2.2) and, by De Giorgi’s regularity

theorem (see Theorem 1.2.6), V,w is Holder continuous and there exists v =
v(n,v, N) > 0 such that if Bs(z) < B,(x)

n+2y
J |V7.w - (vrw)z7p|2 dy < C(n’ v, N) (B) J |va o (va)m,s|2 dy,
Bp(x) Bs(x)

s
(2.47)
for any p e (O, %) and
N
max |V, w|* < MJ IV w|? dy. (2.48)
Bg (@) P B

Step 2: Regularity of D.w. First of all observe that V,(D.w) = D.(V,w) —
G - e,. This implies by step 1 that the tangential derivatives of D.w belong to

L2 .(B,(1)). Furthermore we can estimate directly by definition of D w:

IV, (Dw)| < c(n, N)|VV,w),
which implies again by step 1
IVD.w| < ¢(n, N)|VV,w|.

We can conclude that D.w € H} (B,(x)). Using Poincaré’s inequality and
(2.46), we have

J |Dw — (Ecw)gw,|2 dy < c(n)p? J |V(D.w)|? dy
Bp(m) Bp(x)

< ¢(n, N)pZJ |V(V7w)|2dy
Bp(x)

< e(n, v, N) f Vw — (Vw)al? dy.

B2p(1’)

for any Bs,(x) < B.(x). By (2.47) we infer

f Dow — (Daw), | dy
Bp(x)
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p n+2vy
< c(n,v,N) <_) J Vrw — (er)x,% |2 dy
B

r 3 ()

r

p n+2y
< C(TL, v, N) <_) JB (0) |v7'w|2dy7
{20

for any x € Br(x0) and p < §. Hence by Lemma 2.4.4, D.w is Holder contin-
uous and, by (2.48), we get

2

max |D.w|* < ¢(n,v, N) J IV w|? dy +
Bz (z0) By (x0)

Jf D.w(y) dy
Br (z0)

I
N
< MJ Vwl?dy + 2||G)%. . (2.49)
Br(zo)

,,an

Step 3: Comparison between v and w. Subtracting the equation for w from
the equation for v we get

By (o)

Br(xo)

Br(l’o)

for any ¢ € W, (B, (x)). Choosing ¢ = v — w in the previous equation and
using assumption (2.44) we have

VJ Vv — Vw|* dz < CATQJ |Vol|? dy + Cor™te.
By (w0) By (

z0)

Finally we can estimate

f |Vv|2dy<2f |Vw|2dy+2f Vv — Vwl|? dy
By (o) Bp(zo

Bp(zo)

< 2wy p" sup |Vw|? +2J Vv — Vuw|?* dy,
Br By (o)

for any p < 7, and observing that

sup |[Vw*> = sup |V,w|*+ sup |V,w|?

B (z0) B (z0) Bz (x0)
<c(n,v,N) sup |V,wl* +c(v) sup [Dawl® + c(v,|Gll,),

Bg(mo) B%(l‘o

by (2.48), (2.49), the minimality of w and Young’s inequality we gain

J [Vol* dy
Bp(l’o)

<c(n,u,N)('§) JB( )|Vw|2dy
r{Z0
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+ ¢(n, y,||G||OO,CA,Cg)[TO‘J |Vv|2dy+r”]
B

(o)

(/—)) +r"“] f |VU|2dy+r”},
r Br(zo)

which leads to our aim if we apply Lemma 2.1.4. O]

< C(nv v, N7 ||G||oo s CA7CG){

The next lemma is inspired by [35, Proposition 2.4] and is the main result
of this section.

Lemma 2.4.6. Let (E,u) be a A-minimizer of the functional F defined in
(2.1). There exists o € (0,1) such that the following statement is true: for all
7€ (0,70) there exists g9 = £o(7) > 0 such that if B, (o) cc Q with rz < 7
and one of the following conditions holds:

(i) [E N By(xo)| < el Br(20)l;
(ii) |B(wo)\E| < eo| Br(w0)l;

(EAH)NBy(x0)|

(iii) there exists a halfspace H such that | ERen) < €9,

then
J |Vul? dz < C’4[T”J |Vul? dx+7"”],
B‘rr(wo) B”“(xo)
for some positive constant Cy = Cy (n, v,N,L,Lp, ||Vu||L2(Q) )

Proof. Let us fix B.(xg) cc Q and 0 < 7 < 1. Without loss of generality, we
may assume that 7 < 1/4 and zq = 0. We start proving the assertion in the
case (i), being the proof in the case (ii) similar. Let us define

A% = az‘j($07ur/2($o))7 B? = a¢($07ur/2($0))7 fO = a(x()vur/Q(xO))?

and
Fo(€) = A% ¢ + B - ¢+ f°, VeeR™

Let us denote by v the solution of the following problem:

min  Fo(w; B,j2),
w6u+Hé(BT/2) 0( /2)

where

Fo(w; Byz) 1= J Fo(Vw) de.

B’V‘/2

Now we use the following identity
A% e =A% - =[A%E—n)]- (E—n)+24 - (E—n), VEneR™,
in order to deduce that

Fo(u) - fo(v)
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= J [AOVu-Vu—AOVU . VU] dx—i—f BY.Vu— Vudx
Br'/2

B7‘/2

_ f [A°(Vu — V)] - (Vu — Vo) da
B, /2

+ QJ AV - (Vu — Vo) dr + J BY - (Vu — Vv)dz. (2.50)
Br/2 B

/2

By the Euler-Lagrange equation for v we deduce that the sum of the last two
integrals in the previous identity is zero, being also u = v on 0B, ;. Therefore,
using the ellipticity assumption of A°, we finally achieve that

”f V= Vo2 de < Fo(u) — Fo(v). (2.51)
B'r/2

Now we prove that u is an w-minimizer of Fy. We start writing

Folu) = F(E,u) + [Fo(u) — F(E,u)]
< F(E,v) + [Fo(u) — F(E,u)]
= Fo(v) + [Fo(u) = F(E,u)] + [F(E,v) — Fo(v)].  (2.52)

Estimate of Fo(u) — F(E,u). We use (2.6) and (2.43) to infer
Fo(u) — F(E,u) = f (asj (0, wrja(z0)) — asj(z, u(x))) ViuV ude
By
+ J (ai(xo,ur/z(xo)) — a;(z, u(x)))vzu dx
B2

+ JB (alzo, ur2(w0)) — alz, u(z))) do — JB G(z,u, Vu)dx

T/QQE

<c¢(n,Lp IVull 20 ) <7"é f |Vu|® dz + r"’“é) (2.53)
/2

—i—C’(N,L)(J |Vu|2da:+7“”>,
B, jpnE

where we denoted with Lp the greatest Lipschitz constant of the data
a;j, bij, ai, b, a,b, defined in (2.4). Now we use Hélder’s inequality and Lemma
2.3.3 to estimate

1/s
J Vuldz < |E A B, B, |/ (Jf |Vu|2$>
B,jsnE B2

(|EnB, 1-1/s
<cy (%) J (1+ [Vul) dz.  (2.54)

Merging the last estimate in (2.53) we deduce

‘FO(U’) - F(E7 u) < (C(nv LD7 HVUHLQ(Q) ) + C(N7 L)Cll/s)
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X (r% + 8(1]_1/8) J |Vul? dx
B
+ (el 4 2L+ e(n, Lo, [ Vull ) ). (2:55)

Estimate of F(E,v) — Fo(v). We have

F(E,v) — Fo(v) = J (aij(z,v(x)) — ai;(zo, rpa(20))) VivVjv da

Br/2
~

+ (“z‘(% v(x)) — a;(zo, Ur/2($o)))Viv dx

JB’I‘/Q
.
+ (afz,v(x)) — a(wo, ura(x0))) da (2.56)
JB’I‘ 2
e
+ G(z,v, Vv)dz.
JBr/QﬂE

If we choose now z € 0B, s, recalling that u(z) = v(z) we deduce

|aij (2, v(x)) = aij(2o, urp2(20))|

= |ag(z,v(2)) — a(z,v(2)) + a;(z, u(z)) — ai;(zo, ura(z0))|
< Lp(Jo(z) — v(2)| + Cr2 | V|| pagqy +7)

< Lp(osc(u; 0B, 2) + C(n,v, N, L)r + Crz IVull o) + r)
C’(n, v,N,L,Lp, ||VuHL2(Q) )r%,

N

where we used the fact that osc(v; B,j2) < osc(u; 0B,j2) + C(n,v, N, L)r (see
Proposition 1.2.7). Analogously we can estimate the other differences in (2.56),
deducing

F(B,v) = Fo(v) < C(n,v, N, L, L, | V| e )7 <J
B

+ C(N, L) (J |VU|2dx+r">,
Byj2nE

Reasoning in a similar way as in (2.54), we can apply the higher integrability
for v given by Lemma 2.3.6 and infer

|Vv|? dz + T”)

r/2

J Vol de < C(n,v, N, L)ey ™ (J |Vul? d$+r">.
B,j2nE

(o

Therefore we obtain
F(E,v) — Fo(v)

< C(n,v,N,L,Lp, [Vull L2 ) l(ré + 5(1)71/3) J |Vul? dr + r”] (2.57)
B,
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Flnally, collecting (2.51), (2 52), (2.55) and (2.57), if we choose gy such that

50 s = 7" recalling that ram < 7, we conclude that
J |Vu — Vo|?dr < C[T"J |Vu|2dx+r"], (2.58)
/2 r

for some constant C' = C’(n, v,N,L,Lp, HVUHLQ(Q) ) On the other hand v is
the solution of a uniformly elliptic equation with constant coefficients, so we
have

J |Vv|2dx<0(n,V,N)T"J |Vo|? dx

BT/2

< C(n,v, N, L)[T”J

B'r/2

|Vul? dr + T"], (2.59)
(see Theorem 1.2.11). Hence we may estimate, using (2.58) and (2.59),

J |Vu|2dx<2f |VU—VU|2dI+2J |Vv|? dx

Tr Tr Tr

< C’[T"J \Vul? de + T"],

for some constant C' = C(n,v, N, L, Lp, IVull g2 ).
We are left with the case (iii). Let H be the half-space from our assumption
and let us denote accordingly

A (@) = ayi(z, u(@)) + Laby(z, u(z)),
B? Bji(z) := ai(z,u(r)) + Lpbi(z, u(z)),

fo( ) = a(z,u(z)) + Lpb(z, u(z)),

Fo(z,2) = A%(2)2 - 2+ B%x) - 2 + fO(x).

Let us denote by vy the solution of the following problem

min Folw; Byro),
weu+Hé(BT/2) 0( /2)

where

Fo(w; Byja) = J Fyo(x, Vw) du.

BT/Q

Let us point out that vy solves the Euler-Lagrange equation
—2div(A°Vuy) = divB°  in D'(B,p). (2.60)

Therefore we are in a position to apply Lemma 2.4.5 to the function vy. In-
deed, from the Holder continuity of u (see Remark 2.4.2) we deduce that the
restrictions of A° and B® onto H n B, and B,\H respectively are Holder con-
tinuous. We can conclude using also (2.43) that there exist two constants
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C = C’(n, v,N,L,Lp, ||VuHL2(Q)) and 79 = To(n, v,N,L,Lp, HVu||L2(Q)) such
that for 7 < 7

f Vug|? de < C’[T”J |Vy|? dx—l—r”]. (2.61)
T Br/2

In addition, using the uniform ellipticity condition of A° we can argue as in
(2.50) to deduce, using also the fact that vy satisfies (2.60),

Vf |V’LL — V?)H|2 dr < .Fo(U) — .F()(’UH). (262)
B'r/2

One more time we can prove that u is an w-minimizer of F,. We start as above
writing

Folu) = F(E,u) + [Fo(u) — F(E,u)]
< F(E,vg) + [Fo(u) — F(E,u)]
= Fo(vn) + [Fo(u) = F(E,u)] + [F(E,vi) — Folvn)]-

We can estimate the differences Fo(u)—F(E, u) and F(E, vy)—Fo(vy) exactly
as before using this time the higher integrability given in Lemma 2.3.6. We
conclude that

f |Vu — Vog|* do < C[T”J |Vul? dr + 7’”],
B7'/2

r

for some constant C' = C(n,v, N, L, Lp, [Vull 2 ). From the last estimate
we can conclude the proof as before using (2.61) and (2.62). O

2.5 Energy density estimates

This section is devoted to proving a lower bound esimate for the functional
F(E,u; B,(xg)). Cases (i) and (ii) of Lemma 2.4.6 are the main tool to achieve
such a result.

Lemma 2.5.1 (Scaling of A-minimizers). Let B,(x¢) < Q and let (E,u) be a
A-minimizer of F in B,(xg). Then (Ey, ., Ugyr) 15 a Ar-minimizer of F, in
By, where

ECCOJ“ = ) umg,r(y) = ’I“_%U(IQ + Ty), fOT' yE B17

fr(Exo,ra U’IEQ,T; Bl) = TJv I:F(‘ro + TyJ TéU{L’Q,T’(iU)) riévuwo,r(y))

B1
1 _1
+ ]]-EZ.O)T» (y)G(xO + ry, TQU:co,r(y)7 r ZVUxo,T(y))] dy + P(Exo,r; Bl)
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Proof. Since Vg, ,(y) = r2Vu(zo + ry), for any y € By, we rescale

F(E,u; B.(x9)) = 1" JB [F(xg + ry, u(zo + 1Y), Vu(ze + 19))

+ 1e(zo + 1y)G(xo + 1y, u(To + 1Y), V(T + ry))] dy + 1" P(E,, . B1)
= rnilfr(Exo,ra Ugg,r, Bl)

Thus, if F < R" is a set of finite perimeter with FAEJCO,T cc By and v €
H'(By) is such that © — u,, » € Hy(B;), then

F(E,u; B.(x9)) _ F(F,v;B.(x)) + A|FAE|

Fr(Exo,rauxo,r; Bl) = yn1 < yn—1
= F.(F,0; By) + Ar|FAE,, .|,
where F := x4 rF and v(z) = r%f}(x_f“), for x € B,(xy). O

We shall prove that the energy F decays “fast” if the perimeter of E' is
“small”.

Lemma 2.5.2. Let (E,u) be a A-minimizer of F in Q. For every T € (0,1

there exists €1 = e1(n,7) > 0 such that, if B.(xo) < Q and P(F; B,(xg)) <
n—1

er™ ™, then

F(E, u; Br(0)) < Cs7" (F(E, w; By (o)) + 1),

for some constant Cs = Cj (n, v,N,L,Lp, A, ||Vu||L2(Q)) independent of T and
r.

Proof. Let 7 € (0,1) and B,.(z9) < Q. Without loss of generality we may

assume that 7 < We may also assume that xg = 0, » = 1 by scaling

1
5.

Epyr = E;’fo, Uz (Y) = r’%u(xo + ry), for y € By, and replacing A with Ar.

Thus, we have that (E,, ., ts,,) is a Ar-minimizer of F, in =% For simplicity

of notation we may still denote E,,, by E, u,,, by u and then we have to

prove that there exists 1 = £1(7) such that, if P(E; By) < €1, then

fr(E; Uu; B-r) < C57'n (.FT(E, Uu; Bl) + 7’) .
Note that, since P(F; By) < €1, by the relative isoperimetric inequality,
min{|B; n E|,|B\, E|} < ¢(n)P(E; By)"1.

Thus Lemma 2.4.6 holds. Choosing the set of density one points of F as a
representative of F/; we get by Fubini’s theorem that

2T
|B\E| > J H" Y (0B,\E) dp.
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Combining the previous inequalities, we can choose p € (7,27) such that

1

n—1

") p(; gyyets < S
T T

H"H(OB,\E) <

B\E
BBl P(E;B). (2.63)
.

Now we set F' = E'u B,,. Using (2.63), we observe that

P(F;By) < P(E; B\B,) + H" ' (0B,\E)

1

n—1

< P(E; B/\B,) + %P(B; By).

If we choose (F,u) to test the Ar-minimality of (E,u) we get

TJB [F(a:o + 1y, r%u(y), r_%Vu(y)) + 1pG(xo + 1y, r%u(y), r_%Vu(y))] dy
+ [;(E, By) = F.(E,u; By) < F.(F,u; By) + Ar|EAF|
<7 JB [F(zo + 1y, r%u(y),r_%Vu(y)) + 1pG(z0 + Ty,r%u(y), r_%Vu(y))] dy
+ P(Fl; By) + Ar|F\E)|
(

< TJ [F To + Ty,r%u(y),r*%Vu(y)) + 1pG(z0 + Ty,r%u(y), T*%Vu(y))] dy
B1

1

n—1

+ P(E; B\B,) + WM pig By + Ar|B,|.

T

Then, getting rid of the common terms we obtain

P(E;B,) < TJ Glwo + ry,r2u(y), 72 Vu(y)) dy
Bin(By\E)
1

%P(E; Bi) + Ar|B,)|.
1
Now if we choose g1 = €1(n, 7) > 0 such that c(n)e;™" < 77" we infer

P(E;B,) < rf G(o + ry,r2u(y),r 2 Vu(y)) dy

Byn(B1\E)
+ 7" P(E; By) + Ar|B,)|.

_n_
n—1

Then, we choose €1 = ¢1(n,7) > 0 satisfying c¢(n)e; ™" < g¢(27)|Bi] to obtain,
using Lemma 2.4.6, growth conditions (2.5) and (2.6),

f G(zo + ry, rhuly), r Vu(y)) dy
B1n(B,\E)

< O(N,L)f (IVul? +r) dy

By

< C(n, v, N, L, Lp, [Vl ooy ) 7" f (Yl + 1) dy.

By
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Finally, we recall that p € (1,27) to get

P(Ea BT) < C(TL, v, N7L7LD7 ||VU“HL2(Q) )Tnf (|VU|2 + T) dy
B1

+ 7"P(E; By) + Ar|B,|
< C(n,v,N, L, Lp, |[Vull 20 ) 7" [ Fr (B, w; By) + 7 + Ar].

From this estimate, applying again Lemma 2.4.6, we deduce that
r JB [ F(zo + 1y, r%u(y), r’%Vu(y)) + 1(y)G(xo + 1y, r%u(y), r’%Vu(y))] dy
1
< C'(n, v,N,L,Lp, ||VUHL2(Q) )T” [7“ L}l [F(mo + ry, r%u(y), r_%Vu(y))
+ 15(y)G(z0 + 1y, r3uly), 12 Vu(y))] dy],
and thus
Fr(E,u; B;) < C(n, v,N,L,Lp, ||Vu||L2(Q) )T"(fr(E,u; By) + T).

[]

Theorem 2.5.3 (Density lower bound). Let (E,u) be a A-minimizer of F
in Q and U cc Q be an open set. Then there exists a constant Cg =
C’@(n, v, N,L,LD,A,HVUHLQ(Q),U) > 0, such that, for every xy € OE and
B, (x9) < U, it holds

P(E, Br(ﬁo)) = C'@-T"*l.

Moreover, H" ' ((0E\0*E) n Q) = 0.

Proof. We start assuming that xy € 0*E. Without loss of generality we may
also assume that xo = 0. Let

1
TE (O, Z) such that 2057'% <1,

2
o € (0,1) such that 2C5C30 < e1(7), 2w,—0 < £1(7),
v

0 <ro<min{l,Cse(7)},

where C5 and £; come from Lemma 2.5.2, C3 comes from Theorem 2.4.1. We
point out that 7,0,ry, (o) depend on n,v, N, L, L, Lp, ||Vu||L2(Q) through
the constants C3 and Cj5 only. Let us suppose by contradiction that there
exists B, < U, with r < rq, such that P(F; B,) < e1(o)r"~*. We shall prove
that

h
2

F(E,u; Byrny) < e1(7)7T (O'ThT)n_l, (2.64)
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for any h € Ny, reaching a contradiction afterward.
For h = 0, using Lemma 2.5.2 with &; = £1(0), Theorem 2.4.1, r < 1y < Cj
and 2C5C30 < €1(7), we get:

F(E,u; Byy) < Cs(0"F(E,u; B,) + (o1)")
< C5Cs0™ "™ + Co™r" '
<

205030'717’”71 <€ (T) (O'T’)nil.

In order to prove the induction step we have to ensure to be in position to
apply Lemma 2.5.2; that is by proving smallness of the perimeter. In such
regard, let us observe that, by the definition of F(E,u; B,) and the growth
condition given in (2.10),

2

L
P(E;B,) < F(E,u; B,) + 2w,—p",
v

for any B, < ). Assuming that the induction hypothesis (2.64) holds true for
some h € N and, being 2w, 20 < &,(1), 7 < } and r < 1, we infer

2

L
P(E; B,n,) < F(E,u; Byon,) + 2wp— (o7"r)"

1%
h

, L2
< (o7"r)" (51(7)7g + 2wn—0Th7’) < (o) e (r)(r2 + ")
14
< (or"r)" ey (r)277 < (or"r)" ey (7).

We are now in position to apply Lemma 2.5.2 with & = £;(7). Using also the
induction hypothesis and, since r < ro < £1(7) and 2057'% < 1, we estimate:

F(E,u; Byrnir,) < Cs5| 7" F(E, u; BJT ne) + 7 (0T"r)"]
h

n

N
2

)
ey ()72 (o)™t + " (orhr)" ]

0>

T

N
\]\

2 (orhr)nt ”20551 T) < (arhr)" e (r)r™

ol

)
oty iz [0551(7') + 0572 r]
)

N
\]

[
[
(orhr)n= 105[7' el(r)+7 07'27“]
(
(

h+1
T

(
1 h+1) ()

(o

We conclude that (2.64) holds for any h € Ny. Thus, we gain

(orhr)" ! + 2w L—2(07'h7“)"
"v

>

P(E BO’T 7‘) = 61(7—)7—

D“

L2
< (oThr)” ] <51( )+ 2wn—arg)
v

< (orhr)" 7%51(7)(1 + T%)

< 2(o7"r)" 17%51(7).
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We finally get
PEB) _ y PEBor) o oy

h
- 3
p—0t  pnl h—to (orhr)n=l h——+a0

which implies that xg ¢ 0* E, that is a contradiction. We recall that we chose
the representative of 0F such that 0F = 0*FE. Thus, if xq € 0F, there exists
{xp}nen < 0*E such that x, — xy as h — 400,

P(E; By (an)) = c¢(n,v, N, L, Lp, A, [Vl 2 ) 7"

and B,(x,) < U, for h large enough. Passing to the limit as h — +o0, we get
the thesis. O

2.6 Compactness for sequences of minimizers

In this section we basically follow the path given in [46, Part III]. We start
proving a standard compactness result.

Lemma 2.6.1 (Compactness). Let (Ep,up) be a sequence of Ap-minimizers
of the functional F in Q such that sup, F(E,up; Q) < 40 and A, — A € RT.
There exist a (not relabelled) subsequence and a A-minimizer of F in 2, (E,u),
such that for every open set U cc €, it holds

u, — u in H'(U), E, — E in L*(U), P(EyU)— P(E;U).

In addition, g, v — te~v, |pe,| = |ue| in U and the following assertions

hold:

if v, € OBy, " U and xp, — x € U, then x € 0E N U, (2.65)
if t € OE n U, there exists xy, € 0E, " U such that x, — x.  (2.66)

Finally, if we assume also that Vu, — 0 weakly in L} (;R™) and A, — 0,

loc
as h — 4o, then E is a local minimizer of the perimeter, that is

P(E; By(z0)) < P(F; By (x0)),
for every set F such that FAE cc B,.(zg) < .

Proof. We start observing that, by the uniform boundedness condition on
F(En, up; ), we may assume that uj, weakly converges to uw in H'(U) and
strongly in L*(U), and 1p, converges to 1z in L'(U), as h — 4o0. By lower
semicontinuity we are going to prove the A-minimality of (E, ).

Let us fix B,.(zg) €< 2 and assume for simplicity of notation that zq = 0.
Let (F,v) be a test pair such that FAE cc B, and spt(u —v) cc B,. We
can handle the perimeter term as in [46], that is, eventually passing to a sub-
sequence and using Fubini’s theorem, we may choose p < r such that, once
again, FAE cc B, and spt(u —v) cc B, and, in addition,

H" ' (0*F n 0B,) = H" ' (0*E), n 0B,) = 0,
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and
lim H" (0B, n (EAE})) = 0. (2.67)

h—0
Now we choose a cut-off function ¢ € C}(B,) such that ¢ = 1 in B, and define
vp = Yu + (1 = P)up, F = (F n B,) u (ER\B,) to test the minimality of
(Ep,up). Thanks to the Aj-minimality of (Ej, uy) we have

J (F(x,uh, Vup) + 1g, G(x, up, Vuh)) dx + P(Ey; B,) <

r

< j (F(z,vn, Vop) + Lp,G(z, 08, Voy)) dx + P(Fy; B,) + Ap| FRLAE)]

T

< J (F(.CE, Up, VUh) + ﬂth(iE, Uh, VUh)) dx + P(F, Bp) + Ah|FhAEh|

+ P(Ey; B\B,) + &b (2.68)

The mismatch term e, = H" (0B, N (F(l)AE}(LI))) appears because F' is not in
general a compact variation of Ej. Nevertheless, we have that ¢, — 0 because
of the assumption (2.67).

Now we use the convexity of F' and G with respect to the last variable to
deduce

J (F(x,vh, V) + 15, G(x, g, V'Uh)) dx

r

< f (F(z,vp, Vo + (1 = ¢)Vu) + 15, Gz, vp, Vv + (1 — ¥)Vuwy,)) da

T

+ f <VZF(5U> Up, vvh), Vw(’l} — Uh)) dx
+ J I]'Fh <sz(x> Up, Vvh)7 V@/)(U — Uh)> dx,

where the last two terms in the previous estimate tend to zero as h — +oo.
Indeed, the term V(v — uy,) strongly converges to zero in L? being u = v in
B,\B, and the first part in the scalar product weakly converges in L?. Then
using again the convexity of F' and GG with respect to the z variable we obtain,
for some infinitesimal oy,

f (F(z,vn, Vop) + Lp,G(x,vh, V) do

< J Y(F(z,vn, Vo) + 15, G(z, vp, V) da

+ J (1 =) (F(z,vn, Vup) + 15,G(z, 05, Vug)) dz + 0y (2.69)

Finally, we combine (2.68) and (2.69) and pass to the limit as h — 400, using
the lower semicontinuity on the left-hand side. For the right-hand side we
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observe that 1, — 1g and 1y, — 1p in L'(B,), as h — +c0, and we use also
the equi-integrability of {Vu},  to conclude,

V(F(z,u, Vu) + 15G(x,u, Vu)) dz + P(E; B,)

By

< J Y(F(z,v,Vv) + 1pG(z,v,Vv)) dz + P(F; B,) + A|[FAE).

T

Letting ¢ | 1p, we finally get
J (F(z,u, Vu) + 15G(x,u, Vu)) dz + P(E; B,)
BP

< f (F(z,v,Vv) + 1pG(z,v, Vv)) dz + P(F; B,) + A|[FAE),
B

P

and this proves the A-minimality of (F, u).

To prove the strong convergence of Vuy, to Vu in L?(B,) we start observing
that by (2.68) and (2.69) applied using (Fj,u) to test the A-minimality of
(Ep,up) we get

J Y(F(z,up, Vug) + 1g, Gz, up, Vuy,)) do

T

< J U(F(z,u, Vu) + 15,G(z,u, Vu)) dz + oy,

Then from the equi-integrability of {Vuy},. in L*(U) and recalling that
Ip, — 1g in LY(U), we obtain

lim supf V(F(z,un, Vup) + 15,G(z, up, Vuy,)) dz

h—+c0 -

< J Y(F(z,u, Vu) + 15G(z,u, Vu)) dz.
By
The opposite inequality can be obtained by semicontinuity. Thus we get

lim ¢(F(x, up, Vup) + 1g, G(z, up, Vuh)) dx

h—+00 B,

— f Y(F(z,u, Vu) + 15G(z,u, Vu)) dz.

r

From the uniform ellipticity condition in (2.5) we infer, for some o, — 0,

v | |Vu, — Vulrdr < f w(F(x, up, Vuy) — F(x, u, Vu)) dx

B T

+ J V1p(G(x, up, Vup) — G(z,u, Vu)) dz + oy,
By
Passing to the limit we obtain

lim j Y|Vuy, — Vul> dz = 0.
B,

h—-+o0
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Finally, testing the minimality of (Fj,uy) with respect to the pair (F,u) we
also get
lim P(E; B,) = P(E;B,).

h—+00

With a usual argument we can deduce u;, — w in H'(U) and P(E,;U) —
P(E;U), for every open set U cc (.

Let us prove that pg, ~v 2 ppay. Let us fix C.(z,v) cc U such that
H" Y (0*E n dC,(z,v)) = 0. Then, we have

1l (Co ) = T s, (C ().

On the other hand, since £, nU — E n U, we easily get, by applying Propo-
sition 1.1.2, that

lim T-dpg,~v = lim divTdr = J divT dx
h—+0 Jgn h=+w© J g, ~U ERU
:J T -dug~u, VYT e CHR™R"). (2.70)

If T e C.(R";R"), then we can find a sequence {T},}ren = CL(R™;R") such
that T;, — T uniformly and | J,yspt T}, U sptT < K, for some compact set
K < R". Fixing € > 0, for h and k sufficiently large, we get

f T-d,uEth—f T -dup~u

<

~

_l’_

J T, - d/lEth - J Ty - dpupau

J (T —Tk) - dpg, ~v

2
+ < ||T - TkHoo |#Eth|(Rn) + 55 <eg,

J T, - d,UEmU - f T- d,UEmU

since |ug, ~v|(R™) = P(Ew; U) + P(U; Ey) < P(Ey; U) + P(U) < +o0. There-
fore, we conclude that (2.70) holds for T' € C.(R™;R"™), i.e. pg, v — Mpav-

In order to prove the other weak-star convergence, thanks to Proposition
A.1.14, we need to show that |y g, | is lower semicontinuous on open sets and up-
per semicontinuous on compact sets. We preliminarily observe that, ift G < U
is a |pg, |-measurable set, by Theorem 1.1.18, we have

e, ~Ul(G) = e, [(G) + |uu|(G ~ Ey) = |1, [(G),

ie. |pg,~u| = |pg,] on U. The same argument can be used to prove that
|te~u| = |pe| on U. Using the lower semicontinuity property of Radon mea-
sures with respect to open sets (see Proposition A.1.14), we infer

lsl(A) = lppavl(A) < liminf g, o|(A) = Uminf |ug, [(4), (2.71)

for every open set A < U.
We are left to prove the upper semicontinuity on compact sets. Let K < U
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be a compact set. Since P(FEy;U) — P(E;U) as h — +oo, then, by the lower
semicontinuity of |ug, | on open sets (see Proposition A.1.14),

] (K) = 1| (U) = |l (U\K) 2 T |, |(U) = lin inf s, U1\ )
= timnsup (|, () — s, [(UVK)) = lin sup s, (). (2.72)

h—+w0 h—+0

Putting (2.71) and (2.72) together we get |ug, | — |ug| in U.

Now we prove (2.65). If s > 0 is such that Bss(x) cc U, then, for h
sufficiently large, we have Bg(x,) < Bas(x). Thus, the upper semicontinuity
property of Radon measures with respect to closed sets (see Proposition A.1.14)
and the density lower bound estimate (see Theorem 2.5.3) give

P(E; Bos(x)) = limsup P(Ey; Bau(s)) > P(En; Ba(n)) = c(n)s"™ > 0.
h—+o0
In particular, z € spt ug = 0F.

Finally, we prove (2.66). We recall that we chose a representative of 0F
such that 0F = spt ug. Let us fix ¢ > 0 such that B.(z) < Ap. Assume by
contradiction that there exists a divergent subsequence {h(k)}ren = N such
that spt ug,,, N B.(r) = &, for any k € N. Since ug, *s uug, by the lower
semicontinuity property of Radon measures with respect to open sets (see
Proposition A.1.14), we finally get

,uE(Bé(x)) < liriligf :uEh(k)(Ba(x)) =0,

which implies that = ¢ spt g, that is a contradiction. O

Proposition 2.6.2 (Lower semicontinuity of the excess). If A, Ay < R" are
open sets with Ay c< A, P(Ao) < 400, and if {Ep}tnen i a sequence of A-
minimizers of F in A such that Agn E, — E, then, for every C.(z,v) cc Ay,
we have

e“(E, z,r,v) < liminf e (B, z,r,v).
h—+o0

In fact, if C.(x,v) is such that H" ' (0*E ~ 0C,(x,v)) = 0, then we have
exactly

e“(E,xz,r,v) = lim e%(Ey, x,rv).
h—+00

Proof. Step 1: Let us fix C,(z,v) cc Ay such that H" 1(0* EndC,(z,v)) =
0. Then, by Lemma 2.6.1, we have

el (Co ) = T g, (C ().

On the other hand, since Ay N E;, — E, we easily get, by applying Proposition
1.1.2, that

lim T - ditag~p, :J T-dug, VT e CHR™R™M). (2.73)

h—+4w Rn
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If T e C.(R";R"), then we can find a sequence {T},}ren = CLH(R™;R") such
that T;, — T uniformly and | J,yspt T}, U sptT < K, for some compact set
K < R". Fixing € > 0, for h and k sufficiently large, we get

J T'dMAOmEh —f T dpg

<

~

_l’_

J (T —Ty) - ditagng, J Ty - dppagng, — J Ty - dpg

J Tk'dﬂE_J T-dug
n Rn

since |payng, |(R™) < +00. Therefore we conclude that (2.73) holds for T' €
C.(R™R"™), i.e. piagnm, — - By Proposition A.1.14 we infer

2
< T = Tellop 1ra0n 5, |(R) + 22 <é,

" 3

pe(Cr(z,v)) = Im paonm, (Crz,v)).

h—+
Since C,(x,v) cc Ay, by Theorem 1.1.18 we have
MAoﬁEh(CT(x> V)) = HKE, (Cr(xv V))

and thus

e _ iy #El(Cr( ) = v i, (G2, v))
hl—l>r-|r-looe (Eh,ZL‘,T, V) B hl—lg-loo rn—1

_ pel(Coz,v)) — v - pu(Co(,v))

rn—l

=eY(By, z,1,v).

Step 2: We observe that the function r — e®(E, z,r,v) is left-continuous on
(0, +00). By the foliation’s property by Borel sets, we can choose a sequence
{7t }reny With 7y — r~ as k — 400 such that H" 1 (0*E n dC(z, ry,v)) = 0 and
C(x,ry,v) cc Ay, for all k € N. By step 1 and Proposition 1.1.22, we find

n—1
. r ..
e“(E,x,r,v) = lim e“(Ey, z,7, 1) < (—) liminf e (Ey, z, 7, v).
h——+0o0 Tk h—+0o0

Finally, we let £ — +o00 and obtain the thesis. O]

2.7 Height bound lemma

Now we introduce a usual quantity involved in regularity theory. We define
the rescaled Dirichlet integral of u as

1
D(z,r) := ! JB ( )|Vu|2dy.

The proof of the height bound is rather standard and it can be found in [46,
Chapter 22]. We first need the following two lemmata.
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Lemma 2.7.1 (Small excess position). For any tg € (0,1) there exists a con-
stant w = w(n,ty) > 0 with the following property. If (E,u) is a A-minimizer
of F in Cy, 0 € 0F and

€,(2) < w(n,ty),

then
lgz| < ty, VreCyniE,

{re CinE : qr>ty}| =0,
{x e C\E : qr < —to}| = 0.

Proof. Let ty € (0,1). Assume by contradiction that there exists a sequence
{(En, up)}neny of A-minimizers of F in Cy with equibounded energies such that
0e 5Eh,

lim e(Fy,0,2,e,) =0,

h—+40o0

and for inifinitely many h € N at least one of the following conditions holds
true:

{re CLnIE, : ty < lgr| <1} # O, (2.74)
Hre Cin Ey, : qr>ty}| >0, (2.75)
H{z e CI\E) : qr < —tp}| > 0. (2.76)

Up to subsequences, there exists a A-minimizer of F in C, such that F, — F in
L (Cs), up, — win H. (Cy), P(Ep;U) — P(E;U), for any open set U cc €,
as h — 4. Furthermore, since 0 € 0E, n Cs for any h € N, by (2.65) we
deduce that 0 € 0F. In particular, F is a A-minimizer of F in Cg and we may
assume that Ej, N Cg — F.

By the semicontinuity of the excess (see Proposition 2.6.2) and the com-

parison between excess at different scales (see Proposition 1.1.22), we deduce

4 - 4 3\
e E,O,g,en < liminfe( E,,0,-,e, | < | = lim e(Ey,0,2,¢e,) =0.

h—+00 3 2 h—+o00

Thus, using Proposition 1.1.23 we infer that
E n C4 is equivalent to Ca N {qr < 0}. (2.77)

If (2.74) were valid for infinitely many values of h € N, then, up to extract
a further subsequence, we may construct {z;}neny with x, € C; N 0E,, ty <
lgzy] < 1 and, by (2.66), 2, — ¢ € C; N 0F, as h — +co. Then, it would be
that

C,nIE n{|qz| = to} Ci n0E n {|qz| = to} # &,

in contradiction with (2.77). Thus there exists hy € N such that

{reCiLNIE, : to<|gx| <1} =&, VYh=hy.
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Since Theorem 1.1.18 guaranties that

ey, | = e, | L C+ e, L B + H L {ve, = vg, }
= |uey |L B + s, | L (C1 U {ve, = g, ),

we find that, for every h = hy,

lucin,|({z € Cy : to < |qz| < 1})
= H"il(E,(ll) NIC n{xeCy : ty <|qx| <1})
+ e, |(fr e Cy : to < |gz| < 1} n{ve, = vg,})
< pg, [({xr e Cy @ tg <|qzx| < 1}) =0.
Decomposing the set {x € C; : ty < |gz| < 1} in the union of the two

connected open sets {x € Cy : tp < qr < 1} and {x € C; : —1 < gz < —tp},
we have that

0= |pci~g,|({r e Cy : to < gz < 1})

- Sup J 1c, g, dive de.
peCF ({zeC 1 to<qz<1}) JR™
lloll, <1

Thus, we infer that Lo~ g, is equivalent to a constant in {z € Cy : ty < gz < 1}.
With the same argument, Lo g, is equivalent to a (possibly different) constant
in{reC;: —1<qgr < —ty}. Since C; n E, > E as h — 4+ and (2.77)
holds true, we deduce

leng, =0 ae. in{reCy: t)<qr<l1},

long, =1 ae inf{reC;: —1<qr < —ty},

that is a contradiction to (2.75) and (2.76). O

Lemma 2.7.2 (Excess measure). If E < R" is a set of locally finite perimeter,
with 0 € OF, and such that, for some ty € (0, 1),

lgz| < ty, VaeCyndE,

Hre CinE : qr>ty}| =0, (2.78)
{x e CI\E : qv < —to}| =0, (2.79)
then, setting M = C; n 0*E, we have
H'HG) < H'TH M np™H(G)), (2.80)
HHG) = J (ve - en) dH" ™, (2.81)
Mnp=HG)

¢ do = J (60 p)(vp - en)dH" ™, (2.82)
D, M
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f odr = J (pop)(ve - en)dH™ 1, (2.83)

EinDy Mn{qz>t}

for every Borel set G < Dy, ¢ € C.(D1) and t € (—1,1). The set function
((G) = P(E;Cnp {(G)) = H"HG) =H" (M np (G) —H"(G),

for G = R*!, defines a Radon measure on R"!, concentrated on D;. The
Radon measure ¢ is called the excess measure of E over Dy since ((Dq) =
e“(E,0,1,¢,).

Proof. We first remark that (2.82) implies (2.81), which in turn implies (2.80)
by observing that |vg-e,| < 1. Indeed, if (2.82) holds true, then approximating
1g, where G < Dj is a Borel set, with a sequence of functions {¢p}ren <
C.(Dy), we get (2.81). We are led to prove (2.82) and (2.83). By a density
argument we may assume that ¢ € C!(D;). Using the foliation’s property by
Borel sets, we have

H"(0*FE n (6D, x R)) = 0, (2.84)
for a.e. r € (0,1). By hypothesis (2.78), thanks to Fubini’s theorem, we get

1
0= J dr = f H" Y E n (D x {s}))ds.
CinEn{qz>to} t

0

This implies that
H'"HE n (Dy x {s})) =0, forae. se(ty1). (2.85)
By assumption (2.79), with the same argument we infer
H* Y E n (Dy x {t})) =H" (D), forae. te(—1,—t). (2.86)

We let r € (0,1) and s € (g, 1) satisfy respectively (2.84) and (2.85). Given
t € (—1,s), we define a set of finite perimeter F' as F := E'n (D, x (t,s)). By
(2.84) we have {vg = vp, x@,s)} = &, thus obtaining by Theorem 1.1.18

pr = ppl (D, x (t,8)) + iD, (1) - .

Now we make the Gaus-Green measure pp, x(;,s) explicit. If we set v(z) = %

for every x € R™ such that pr # 0 (so that v(z) is the outer normal to the
cylinder D, x R at x € dD,. x R), then

1D, x(t,s) = enH" 'L (D) x {s}) + vH" 'L (0D, x (t,5)) — e, H" "1 (D, x {t}),

(2.87)
that is the sum of the Gauss-Green measures of the bottom, the lateral surface
and the top of the cylinder. Since v-e, = 0 and, by (2.85), H" 'L (£ n (D, x
{s})) = 0, multiplying by e, the equality (2.87), we get

en i = (en - vp)H" 'L (0*E n (D, x (t,5))) —H" 'L (E n (D, x {t})).
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Hence, given ¢ € C}(D;) we may define a vector field T € C*(R";R") by
setting T'(z) = ¢(px)e,, for x € R". We apply the distributional Gauss-Green
theorem to obtain

Ozf didexzf T -dup
F o*F

(¢op)(en vp)dH"" - J (pop)dH"™".

En(Dyx{t})

L*Em(Drx(t,s))
We first let 7 — 17 and then s — 1~ to prove (2.83), that is

f b d = j (op)dH™" = f (60 p)(en - vi) dH™™
E,~D; En(D1x{t}) o* E~(Dx(t,1))

_ J (60 ) (Vi - en)dH .
Mn{qz>t}

Finally, by letting ¢ — 1~ and by (2.86), we prove (2.82). O

Remark 2.7.3. We observe that (2.80) ensures that C; n 0*E  “leaves no
holes” over Dy. Furthermore the measure ¢ defined in the previous lemma
measures the flatness of subsets of C1 n 0*E. The name “excess measure” is
Justified by the fact that, by (2.81),

(D) =H"(CynI*E) — J (Ve - e )dH" ' = e“(F,0,1,¢,).
C1no*FE
Thus, if e (E,0,1,e,) is small, by the monotonicity property of measures, then
every subset of G is almost flat, that can be explicited as
H Y G) <SH" (CLnd*Enp 1(G) <H" YG) +e%(E,0,1,¢,),
for every Borel set G < Dy.

The following height bound lemma is a standard step in the proof of regu-
larity.

Lemma 2.7.4 (Height bound). Let (F,u) be a A-minimizer of F in Cy,.(xq, V)
and v € 3L There exist two positive constants C; =
C7(n,v, N, L, Lp, A, ||Vu||L2(Q)) and ey = e9(n) such that if xo € OF and

e(x,4r,v) < ey,
then

Sup M < C,?e(x’ 47"7 1/) 2(77.1—1) .

yedENC,(x0) r

Proof. Step 1: Up to replacing (E, u) with (Eg—fo, (QT)’%u(xo + 7‘)) and ro-
tating in a way such that v = e,, by Lemma 2.5.1, we have that (E,u) is a
Ar-minimizer of F, in Cy, 0 € dF and, by Proposition 1.1.21,

e(E,0,2,e,) < .
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Assuming that es(n) < w (n, }1), with w (n, i) as in Lemma 2.7.1, and defining

M = Cy n JF, by Lemma 2.7.1, Remark 2.7.3 and Proposition 1.1.22 we
deduce that

lqz| < l, Vr e M,
4
0<H" (M) —H" (D) <e,(l) <2 e, (2), (2.88)
0<SH" *(Mn{qgr>t}) —H" (B, nD)) <e,(l) <2"'e,(2). (2.89)

Step 2: Let f: (—1,1) — [0, H"}(M)] be the left-continuous nonincreasing
function defined as
f@) :=H"Y(M ~{qz > t}).

By Lemma 2.7.1 we get that

f(t) =H"Y (M), Vte <—1,—i),

f6) =0, Ve (}11) |

Since f is non-increasing, there exists ¢ty € (—1,1) such that

n—1

f(t)gHT(M), i1 > to, (2.90)
n—1

f(t)>HT(M), if ¢ < fo,

forte (—1,1). AsO¢€ C% N 0F and, so,
lqz| < |gz — to| + [to — 40],
it is enough to prove that
qr —to < C(n)en(2)2(n71*1), Vze CynIE.

Indeed, applying the same argument with R"\F in place of F, we shall then
deduce that ty) — gz < C(n)en(Q)ﬁ, for any x € C1 N OE.

Step 3: Let t; € (fo, 3) be such that f(t) < /e, (2) for any ¢ > t;. Then it
holds true that

qy —t; < C’(n)en(2)2<nl—1), Vye CinoE.

Indeed if qy < t1, the assertion is trivial. If gy > t1, then B(y, qy —t;) c< Ca,
with qy —t1 < % Since E is a Ar-minimizer of F, in Cs, then, using Theorem
2.5.3 and observing that B(t,qy — t;) € Cy n {qx > t1}, we get

Cs(qy—t1)"' < P(E; By, qy—t1)) = H" ' (M n{qz > t1}) = f(t) < /en(2),
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obtaining the assertion.
Step 4: By step 3, we are left to prove that

t —to < C(n)en(2)7 0.
We shall prove the following chain of inequalities:

n—2

c(n)rven(2) = ft 1 H" (B Dl)% dt = c(n)(t; — to)ven(2)"™,  (2.91)

where F; is the horizontal section of E at level t. Let us prove }1he first
inequality in (2.91). Since, by (2.90), (2.88) and choosing e5(n) < HTLQ—n(Dl),

n—1 M
M D) < WO A g > 1) = £(1) < (M)
n—1 n—1
< H (Dl) ;_ 2 en(2) < ZHnl(Dl)’

we can apply the relative isoperimetric inequality in dimension n — 1 (see
Proposition 1.1.9) to obtain that

H"2(0*E, n Dy) = P(E,; Dy) > c(n)H""Y(E, n Dy)n1. (2.92)
Since £2(n) < w(n, }), we estimate
HH M) < H"HDy) + 2" e, (2) < c(n). (2.93)
Furthermore, since H"2(0* E;A(0*E);) = 0 for almost every ¢ € R, we infer

H* (D1 0 0" Ey) = H" H(Dy 0 (0°E)) = H" *((Cy 0 0"E)) = H" *(M)).

(2.94)
Therefore, applying (2.92), (2.94) by Fubini’s Theorem, Coarea formula (see
Theorem A.2.6) and (2.93), we get:

t1 s rl
J %nil(Et M Dl)Z—l dt < C(n) HniQ(Dl M E*Et) dt
t

0 I-1
=c(n) | H"2(M,)d J dtJ ledH"?
JR 0% E}
f‘
= c(n) Lea/1— (vg - en)2dH™ !
JorE

:
=c(n) | A/1—(vg-en)2dH" !
M
-
<cn) | V1—vg-e,dH™ !
M

< c(n) %n—l(z%)( fMu —ug-en) dH”_l)

< c(n)ven(2)
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We now prove the second inequality in (2.91). By (2.89), the choice of 1, using
that f is decreasing, we deduce that

t1 ) 1 -
f H" Y (E, o D)t dt > J [H" Y(M ~ {qz > t}) — 2" e, (2)]= 1 dt
t

0 to

B f [£(t) = 2" en(2)] 1 dt

0

> L Ty/en(@) — 27 e, (2)]55 at

> c(n)n/en(2)" (t — to),

for e9(n) sufficiently small. O

2.8 Lipschitz approximation theorem

Proceeding as in [46], we give the proof of the following Lipschitz approxima-
tion lemma, which is a consequence of the height bound lemma.

Theorem 2.8.1 (Lipschitz approximation). There exist three positive con-
stants Cs = Cs(n,v,N,L, Lp, A, ||Vu||L2(Q)), g3 = e3(n) and dp(n), with the
following property. If (E,u) is a A-minimizer of F in Co,.(zo), with xq € OF
and

e, (9, 9r) < &3,

and if we set

M :=C,(z0) n OF, My := {y eM : sup e,(y,s) < 50(n)},

O<s<8r

then there ewists a Lipschitz function f: R"™' — R with

|/ ()]

1
sup ——= < Cge, (o, 9r) 201 IV fll o <1
2/'eRn—1 T

such that a suitable translation I' of the graph of f over D, contains My,
Myc M nT, with I' = zo + {(z, f(2)) : z€ D,}
and covers a large portion of M in terms of e,(xo,9r), that is
1 .
rn_—IH Y(MAT) < Cge, (w0, 97).

Moreover,

1

Tnfl

J V' f|* dv’ < Cge(zg, 7).
D,
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Proof. Step 1: Up to replacing (E, u) with (E_xo ,u(zo + r)) and f with @,

r

we shall prove that if (E,u) is a Ar-minimizer for F in Cy, with 0 € 0F and
€,(9) < e3, and

M =C,nJFE, My = {y €M : sup e,(y,s) < 50(n)},

0<s<8

then there exists a Lipschitz function f: R" ! — R, with [|[Vf]|,, < 1 such
that

sup | f] < Csen(9) 77, (2.95)
]Rn—l

Myc M nT, with ' = {(z, f(2)) : z € Dy}
H* 1 (MAT) < Cge,(9) (2.96)

J V' F2 da’ < Cyen(9). (2.97)
Dy

Let g9 and C'; the constants from Lemma 2.7.4. Assuming that

1
€3 < min {eg,w (n, Z) },

by Lemma 2.7.4, Lemma 2.7.1 and Proposition 1.1.22 it holds

sup gz < sup |gu| < Cre, (9)70
2e€ConoFE IEC% nOFE

0<H"™H M p H(G) —H"H(G) < ey(1) < 9" e (9),
{xng : qx<—}l}cCQmEc{xng : qx<i},

for any Borel set G < D;.
Step 2: We now prove that f is invertible on Mgy, by showing that

lqy — qz| < Llpy — pz|, Vye My, Vr e M, (2.98)

for some positive constant L < 1. Let y € My and x € M. Scaling

1
v v() =y =2l 2 uleo + 1),

where |[|z|| := max{|pz|, |¢z|} for z € R™ (and consequently C,(y) = {z € R" :
|z — y|| < s}), we have that F'is a (Ar ||y — x|)-minimizer of ) in C o

y—x
Since —2— > 4 and 0 € 0F, by Proposition 1.1.21, we infer

ly—=|

en(F>074) = en(E7ya4 Hy - LL'H) < sup en(y7 S) < 60'
s€(0,8)

Assuming dy(n) < e2(n), by Lemma 2.7.4 we get

a1
sup  |qw| < G765
weC1MoF
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1
and, choosing w = =% € C; n JF, we obtain (2.98) with L = C75;" ",

llz—y|]
depending on n,v, N, L, Lp, ||Vul| 12()- Furthermore, if do is sufficiently small,

we have that L < 1. We define f: p(My) — R as

f(pr) = qu,

for x € My. We can rewrite (2.98) as

\f(py) — f(px)| < Llpy — pz|, Va,ye M.

Thus |V’ f|l,, <1 and, since My c M, we get

1
SUp |f(px)| < C'7en(9) 2(n—1)
x€ Mo
By McShane’s lemma (see Lemma A.3.2), we can extend f to the whole R"™!

without changing its Lipschitz constant. Up to truncating f, we may also
assume that (2.95) holds. Furthermore, we have that

My = {(pz, f(x)) : € Mo} <« M nT.
Let us prove (2.96). Since M\I' = M\ M, it suffices to show that
H H(M\My) < Cge,(9). (2.99)
By definition of My, for any y € M\ M, there exists s € (0,4) such that

|VE - en|2

Sos" Tt < J AN
Cs(y)noFE 2

By [46, Corollary 5.2] there exists a family of disjoint ball contained in C,
{B(yn, V251) }nen, with centers y;, € M\ M, satisfying the above estimate, such
that

HH(M\Mo) < c(n) D) H" M (M\My) 0 B(yn, V2s1))
< ¢(n) hiNHM(M A B(yn, V2s1))
< e(n) hﬁ P(E; B(yn, V251))
< c(n) }2:521
Ve — ey

2
< ¢(n) dH"

heN JCSh(yh)ﬂaE 2
2
Ve — en|

< c(n) J T dHnil
CyonoFE

< c¢(n)e,(9).
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Therefore, we finally obtain (2.99). Now we prove that
H'HT\M) < Cgen(9).

By the area formula (see Theorem A.2.5) and (2.99), we deduce that

AN = | IR <L 9 )

p(I\M
< V2H'H M p~H(p(D\M))) < V2H"H (M)
< c¢(n)e,(9).

Step 3: We finaly prove (2.97). We split the integral in two addends:

j |v'f|2dm’=f |v’f|2dx’+f V' fI? da’
Dy p(MAT) p(MnT)

The first integral is easily estimated by (2.96); indeed,
J V' fPda’ < H" 1 (p(MAT)) < H" {(MAT) < ¢(n)e,(9).
p(MAT)

We are left to estimate the second integral. We observe that, since f is
Lipschitz continuous, the normal to its graph is v(z) = (=V’'f(2),1) and
Tio.p:pl = v(2)*, for almost every z € R"'. On the other side, by Theo-
rem 1.1.13, T,.(0*F) = vg(x)*, for any x € M. Thus, since 0*E and T' are
locally H" ‘-rectifiable, we infer that

T,(0*E) = T,T,

for H"'-a.e. z € M n T, and, consequently, there exists A\(z) € {—1,1} such

that ,
(—V f(px)v 1)
VIH IV o)
for H" l-a.e. z € M nT. By Proposition 1.1.22 and Theorem A.2.5, we get

vi(r) = Ma)v(pr) = Az)

n—1 o Ve — 6n|2 ne1 1 2 19/m—1
9" e, (9)=e,(1)=| ——dH" == lpve|” dH
MnT

M 2 2
= VIR 1 [ V()P
2 Jusor T+ 17 fpar)P 2 Jyrsery VI VP
1

> —— V' f(2)|? dz,
2\& p(MmF)| ( )|

where we used the fact that

v — enl
2

1—(vg-en)* _ |pvel +lovsl’ — (ve-eq)® _ |pvel’
2 2 2

O

=1l-vge, =
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2.9 Reverse Poincaré inequality

In this section we shall prove a reverse Poincaré inequality following the path
traced in [46, Chapter 24]. We will use the following theorem, which is useful
to construct “good” comparison sets. The proof is purely geometric and can
be found in [46, Lemma 24.8].

Lemma 2.9.1 (Cone-like comparison sets). If s > 0 and E is an open set with
smooth boundary such that

1
lqz| < 7 Vre K, noE,

1 1
{xeKs : qm<—Z}CKSmEC{xeK5 : qa:<:l},

1

then, for every \ € (O, Z) and |c| < %L, there exist r € (%, %) and an open set F

of locally finite perimeter satisfying the “boundary conditions”

FniK,, = FEndK,, (2.100)
K% N oF = D% X {C}, (2.101)
and the “excess-flatness estimate”
P(F§ Krs) - Hn_l(DTS) (2'102)
1 2
<C {/\(P(E; K,) - H"'(D,)) + ~ J u dH"—l(x)} :
A JK.noE s

with C = C(n) > 0. In fact, given s, E, X\ and ¢ as above, there exists [ < (%, %)

with |I| = 5; such that for every r € I there exists an open set F of locally

finite perimeter satisfying (2.100), (2.101) and (2.102).
We will need a weak form of the reverse Poincaré inequality.

Lemma 2.9.2 (Weak reverse Poincaré inequality). If (E,u) is a A-minimizer

of F in Cy4 such that
1
lgz| < 3’ Vr e Cyn OF,

1
{xe Co\E : qx < —g}‘ =

and if z € R"™ and s > 0 are such that

1
{xECQmE:qx>§H=0,

K,(2) c Cy, H"HOE n 0K, (2)) =0, (2.103)

then, for every || < 1,

P(E;K:(2)) —H" (D

[Nl

(2)) < ¢(n, N, L){ [ (P(E:Ky(2)) = H"H(Ds(2)))

)2 3
XJ Md%“ll +A5+J Vul?da b
Ks(z)no*E S s
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Proof. The proof of this lemma is fairly standard and it is inspired by [46,
Lemma 24.9]. We start assuming that z = 0.
Step 1: The set function

((G) = P(E;Cy np H@)) — H" @), for G < Dy,

defines a Radon measure on R” !, concentrated on D,.

Step 2: Since F is a set of locally finite perimeter, by Theorem 1.1.10 there
exist a sequence {E}p}pen of open subsets of R™ with smooth boundary and a
vanishing sequence {ep,}reny € RT such that

E,'SE, H''LoE, »H"'LOE, 0E,c I,(7E),

where 1., (OF) is a tubolar neighborhood of 0E with half-lenght ¢,,. By Coarea
formula we get

2
H" (0K, n (EWAE),)) — 0, forae. re <§, 2) :

Moreover, provided h is large enough, by 0E), c I, (OF),

1
lgz| < 7 Vo e Cyn OE,

1 1
{xng:qx<—Z}cC2r\Ehc{a¢eC2:qx<1}.

1) and |¢| < i, we are in position to apply Lernma

Therefore, given A € ( V7 e

2.9.1 to every E} to deduce that there exists Ij, (3, Z) with [I,| = o 24, and,
for any r € Iy, there exists an open subset F}, of R" of locally finite perimeter
such that

Fh M aKrs = Eh M 6KTS, (2104)
K% M th = D% X {C},

P(FxiK.,.) — H\(D, ><c<n>{A<P<Eh, ) —H(D)

1 ]2
+ o f u d’l—["l}. (2.105)
A K.NoE}, S

Clearly ﬂ U |Ir] = — > 0 and thus there exist a divergent subsequence

heN k>h
{hi}ren and 7 € (%, %) such that

re ﬂ I, and lim H" (0K, n (E(I)AE;L )) =0.

k——+0o0
keN -
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We write Fj, in lieu of F},,. Now we test the A-minimality of (F,u) in C4 with
(Gg,u), where Gy = (Fy n K,s) u (E\K,s), as EAG, cc K, cc B;. By
Theorem 1.1.19 we infer:

P(E:K,) < P(Gi; K,s) + A|[(EAF,) n K| + J G(z,u, Vu)|lg, — 1g| dx

s

< P(Fy; Kys) + o + A|(EAF,) n K,

e, N, L)J (Vuf? + 1) da,

T8

with o), = H" (0K, n (EWAF,)) = H"H0K,s n (EWAE, ) — 0, thanks
to (2.104), as k — 4o0. Thus, since ( is increasing and r > %, by (2.105), we
deduce that

P(E;K;) = H"H(Dy) = ((D3) < ((Dys) = P(E; K,5) = H" (D)

< P(Fk7 Krs) - Hnil(Drs)

t o + A[(BAF) A Kool + ¢(n, N, L) J (Vul? + 1) de

TS

2
< )N (P(Bn: K — H™' (DY) + f laz = s
A K.n0E, 52

+ ¢(n, N, L) <As”_1 + J |Vu|2d:p) .

s

Letting k — +00, (2.103) implies that P(Epx); Ks) — P(E;K;) and therefore
. n—1
P(E;K:) —H"'(Ds)

1 2
< c(n){)\ (P(B:K,) —H'™' (D)) + 5 JK . % d’l—[”‘l}

+¢(n, N, L) (As"_l + f |Vul? daz) , (2.106)

s

for any \ € (0,}1). IfA> }1,
P(E;Ks) —H""(D3) = ¢((Ds) < ¢(Drs)
<ANP(E; K,) — H" 1 (Dys) < c(n)X (P(E;K,) — H"(Dy))

and thus (2.106) holds true for A > 0, provided we choose ¢(n) = 4. Minimizing
over A, we get the thesis. O

Theorem 2.9.3 (Reverse Poincaré Inequality). There exists a positive con-
stant Cy = Cy(n, N, L) such that if (E,u) be a A-minimizer of F in Cy.(zo, V)
with To € 0F and

1
e(xg,4r,v) <w (n, g) ,

then

1
efeor) <G i | (v = o) — !
T O0ENCap(z0,v)
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1
- J |Vul? dx) :
rni Koy

E—xg
r

+ Ar +

for every c € R.

7 2u(zo 4+ 1y) ) (see Lemma 2.5.1)

Proof. Up to replacing (F,u) with (

we may assume that (£, u) is a Ar-minimizer of F, in C,, 0 € JF and, by

Proposition 1.1.21,
1
n(4) < = .
e,(4) <w (n 8)

Applying Lemma 2.7.1 and Lemma 2.7.2, we get that

1
lqz| < T Vr e Cyn OF,

)

1
{xe CQ\E qr < —g}‘ =

1
{xGCerE:qq:>§}

H'HG) = f vg - en dH™, VG < Ds.
C2nd*Enp=1(G)

en(1) = f (1= vp-en)dH"" = P(E; Cy) — f (Vi - e) dH" !
Ci1no*E Ci1no*E

= P(E;C,) — H" (D)),
then our aim is to show

gz — c|* dH" " + Ar + f

Ko

P(E, Cl) . anl(Dl) < CQ(J |Vu|2d$),
C

2MOE

for any ¢ € R. Actually it suffices to prove it only for |¢| < 1; indeed, for

lc| = 1, we have:

P(E;Cy) > P(E;Cy)
64 064

f lgr—c? dH" = f (lc|—|qz)? dH™t =
CondFE ConoFE

Step 2: the set function ((G) = P(F;Cy n p~H{(G)) — H"(G), for G < Ds,
defines a Radon measure on R"~!, concentrated on D,. We apply Lemma 2.9.2
to F in every cylinder K (z) with z € R"! and s > 0 such that

Doy(2) € Do, H" 1 (OF n 0Kae(2)) = 0, (2.107)

to get that

N

((D4(2)) < C(n,N, L) {(C(Dzs(z))h) 1 Apstl +J

Kos(z)

|Vul? dq:} :

where

h:= inf f gz — > dH™ .
CondE

lel<3
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Multiplying by s? and using an approximation argument to remove the second
assumption in (2.107), we obtain:

s*C(Ds(2)) < ¢(n, N, L) ( $2C(Das(2))h + Ar + JK

for Dos(z) < Do, where we used that s < 1. In order to prove the thesis, we

|Vu|2da;> , (2.108)
25(2)

use a covering argument by setting

Q= sup s°¢(Dy(2)) < +oo.
DQS(Z)CDQ

-----

Dy(z). Of course, this can be done with N < N(n), for some N(n) € N.

Hence, by the sub-additivity of ¢ and (2.108) for {, since D,(2z;) < Ds, we

have:

<c¢(n,N, L) i <\/(§)2C (Dg(zk)) h+ Ar + szs(z) |Vul? dm)
< ¢(n, N, L) (\/@—i—/\r—i—f

Kos(z)

|Vul? dq:) :
Passing to the supremum for Doy(z) < Dy we infer that

Q <c¢(n,N, L) (VQh—i—Ar—i—J

K>

|Vul? dx) :
If VQh < Ar + {i, [Vl dz, then @ < c(n, N, L) (AT+SK2 |Vu|2dx). If
VO > Ar+§ |Vul* dz, then Q < c(n, N, L)4/Qh and thus Q < c(n, N, L)h.

In both cases we obtain:

Q < c(n,N,L) (h—i—Ar —i—f |Vu|2d3:) :
Ko

which leads to the thesis. O

2.10 Weak Euler-Lagrange equation

The last ingredient to prove the excess improvement is the following Euler-
Lagrange equation that we state for Ar-minimizers of the rescaled functional
F,. For the sake of simplicity we will denote with A; the matrix whose entries
are api, As the vector of components ay,, A3 = a and similarly for B;, i = 1,2, 3.
Accordingly, we can write

F(w; D) = J | E (2, w, Vw) + 1pG, (2, w, Vw)| dz

By
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N f [(Ah" + ILDBlr)vw -Vuw + \/;(AZT + ]lDBQT) -Vw
B
+ ’I"(Agr + :H-DB3T‘):| dl’,

where r > 0, zg € Q, A := Aj(xo + 1y, +/Tw), By 1= Bi(xg + 1y, /TW), for
1 = 1,2,3. The argument used to prove the next result is similar to the one in
[7, Theorem 7.35]. We recall a useful result that can be found in [39, Theorem
3.2].

Theorem 2.10.1. Let A < R" be an open set, E < R™ be a set of locally finite
perimeter and ®(z) 1= x + tX (), for some fivred X € C1(A;R™), be a local
variation in A, i.e. {x # @ (x)} < K < A, for some compact set K < A and
for |t| < eo. Then
o (EAE]
t—0+

‘X : VE'| d?‘[nil.
oE

Theorem 2.10.2 (Weak Euler-Lagrange equation). Let (E,u) be a
Ar-minimizer of F, in By. For every vector field X € C}(By;R™) and for
some constant Cyg = C1o(N, Lp,sup | X|,sup [VX|) > 0 it holds

J diVTX d%n_l < Clof
oF

By

(IVul* +r) dz + ATJ | X|dH™!, (2.109)
)

where div, denotes the tangential divergence on OF, i.e.
div,X =divX —vg - VXvg.

Proof. Let us fix X € C}(By,R"). We set ®,(z) := x + tX(z), E; := ®,(E)
and u, := uwo ®; ', for any ¢ > 0. From the Ar-minimality it follows that

[P(E:; By) — P(E; B1)] + Ar|E,AE)|
+ JB | F(y, ug, Vug) + 1, (y)Gr(y, ue, Vug)| dy
1
— JB [Fr(z,u, Vu) + 1g(z)G,(z,u, Vu)] dx = 0. (2.110)
1
In order to obtain (2.109) we will divide by ¢ and pass to the upper limit as

t — 07. Let us study these terms separately. The first variation of the area
gives

1
lim —[P(Ey; Bi) — P(E: B)] = f div, X dH" . (2.111)
t—0 oFE
In regard to the second term, we apply Theorem 2.10.1, obtaining
E.AFE
lim IEAE < | X -vpldH" (2.112)
t—0+ oF

In the first bulk term we make the change of variables y = ®,(z) with z € By
and ¢t > 0, taking into account that

VO (®y(2)) =T —tVX(2) +o(t), JO,(z)=1+tdivX(x) + oft).
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Thus we gain
Ll | (ys e, Vue) + 1, ()G (y, ue, V) | dy
= JBI [Fo(®i(), u, Vi) + 1g(2)Gr(Py(2), u, Vi) | (1 + tdivX) da
—t Lﬁ [2(C1VuVX) - Vu+ /rCy - (VuVX)]| dz + o(t),

where we set
Ci = Air + ]]-EBZT’ = Air(cl)t(fb), U) + I]_E(l')BW((I)t(ZL‘), U),

for ¢ = 1,2,3. By simple calculations we obtain
J [FT(y7 U, vut) + ILEt (y)Gr(y7 Ut, Vut)] dy
By
— f [F (2, u, Vu) + 15(2)G,(z, u, Vu) | do
By

= {Fr(tbt(m),u, Vu) + 1g(z) G (P(x), u, Vu)

B1

— [Fr(z,u, Vu) + 1p(z) G, (z,u, Vu)] } dz

+ t[JB | F(®(2), u, Vu) + 1p(2) G, (P4(2), u, Vu) |divX do
— f [2(C1VuVX) - Vu + /rCs - (VuVX)] dx] + o(t).

Let us estimate the first of the three terms. By Lipschitz continuity and
Young’s inequality we get

JB {Fr(@t(x), u, Vu) + 1g(x)G(P(x), u, Vu)
— [Fr(z,u, Vu) + 1g(2)G, (2, u, Vu)]} dx

< C(LD)tJ

By

X|[[Vul2 + /r[Vu| + ] de < c(LD)tJ X[ Vul? + 7] da.

By
Finally, dividing by ¢ and passing to the upper limit as t — 0% we infer

) 1
s | [ [0 V00 + L0)G 0. V] dy 2.113)
B1

t—0+

_ Ll [F(x,u, Vu) + 15G, (2, u, Vu)] dx]

< ¢(Lp) f

By

| X|[|Vul]? + 7] dz + f [F.(z,u, Vu) + 15G,(z, u, Vu)]divX dz

By

_ f [2((Ayy + 15B1,)VuVX) - Vi + Vi(Agy + 1pBy) - (VaV X)) da.
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Passing to the upper limit as ¢ — 0% in (2.110) and putting (2.111), (2.112),
(2.113) together we get

J div, X dH" !
oF
c(Lp) | 1X|[|Vul* +r]dx +

B1

+ J 2((A1y + 1By, )VuVX) - Vu + v/1(As + LgBs,) - (VuVX)| da
B1

f [F.(z,u, Vu) + 1gG,(z, u, Vu)]|divX dz
B1

—i—Arf (X|dH" ' < C | (|Vu]* +7r)ds + ATJ | X|dH
oF oFE

B1

where C' = C(N, Lp,sup | X]|,sup |[VX]). O

2.11 Excess improvement

The last ingredient we need to prove the main theorem of the chapter is the
excess improvement theorem. Its proof is inspired by [35, Proposition 4.10].

Theorem 2.11.1 (Excess improvement). For every 7 € (0,3) and M > 0
there exists a constant €4 = e4f(t,M) € (0,1) such that if (E,u) is a A-

minimizer of F in B,(xg) with xo € OF and
e(xg,r) <ey4, D(xo,7)+71 < Me(zg,7),

then there exists a positive constant C; = C’H(n, v,N,L,Lp, A, HVUHLQ(Q))
such that
e(zo, 7r) < C11(T%e(xg, ) + D(zo, 277) + T7).

Proof. Without loss of generality we may assume that 7 < %. Let us rescale
and assume by contradiction that there exist an infinitesimal sequence {€}, } ey <
R*, a sequence {r,}neny € RT and a sequence {(E}, up)}neny of Arp-minimizers
of F,, in By, with equibounded energies, such that, denoting by e;, the excess

of Ej, and by Dy, the rescaled Dirichlet integral of uj, we have
eh(O, 1) = &y, Dh(O, 1) +r, < Mgy, (2114)
and
en(0,7) > C11(7%e(0,1) + D(0,27) + 713,),

with some positive constant C'; to be chosen. Up to rotating each £} we may
also assume that, for all h € N,

1

en(0,1) = B LE N v, — en|? dH 1.
hMD1
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Step 1. Thanks to the Lipschitz approximation theorem, for h sufficiently
large, there exists a 1-Lipschitz function f;: R® ! — R such that

1
sup|fh\ < ngi(n_l), H”il((ﬁEhAth)ﬂB%) < Cgé?h, |Vlfh‘2 d&?l < Cg€h.
Rn—1 Dl
(2.115)
We define )
gn(x') := m where aj, = frda',

VEhR ’ Dy
2

and we assume, up to a subsequence, that {gp}ren converges weakly in H*(D

)

N

and strongly in LZ(D%) to a function g.
We prove that g is harmonic in D 1. It is enough to show that

lim — Vi V¢ da' =0, (2.116)

v B o, T+ VP
2

); indeed, if ¢ € C’Cl(D%), by weak convergence we have

for all ¢ € C1(D

1
2

1
Vig-Vdr = lim —— V' fi - V'oda'
), 7o b, ¥

2 2

_ 1 V' -V [ ) , V'fw-V'¢ ] }

= lim J dx’ + Vf, V- ———|dz' .
i we‘h{ AT P RSN e

Using the Lipschitz continuity of f;, and the third inequality in (2.115), we
infer that the second term in the previous equality is infinitesimal:

’ I V/fh'vl¢ ] ’
Vif, V- ——————1|d
[ Jn- Vo TV T
<timsup—— [ [Vl vgl YL
= ! 2
h—s+too A/Eh D, 1+ V' fn]

V'OIIV ful* da’ < lim Cs[|V'6l|o, v/ = 0.

lim sup ——

< lim sup

«/1 J
h—+o A/€h JD,
2

Therefore, we should prove (2.116). We fix § > 0 so that spt ¢ x [—20, 2] < B,
choose a cut-off function ¢: R — [0, 1], with spt ¢ < (=206, 20), ¢ = 1in (=6, 0)
and apply to Ej the weak Euler-Lagrange equation with X = ¢vye,. By the
height bound, for A sufficiently large it holds that 0FE, n B% c D% x (=6,0).

Plugging X in the weak Euler-Lagrange equation and using the assumption
n (2.114), we have

S| e a
6EhmBl

¥, Los ) |

By
2

(|Vuh|2 + Th) dx + Ath |pep| dH™ T

0E,nB1
2
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C(na N7 A7 LD7 M7 ¢7 2/})gh

Therefore, if we replace ¢ by —¢, we infer

1
lim —— ve, - en) (Vo - v YdH™ = 0. 2.117

Decomposing 0E;, n B1 = ([I'y, U (0E\y, ) NI, \OER)) N By, we deduce

1
2

| med (Ve ane
6EhmBl

\/T
- = e, ) (V6 )

l thf'\Bl

- (B, - ) (V') A

(0BW\Ip, )" By

v () (V6 1o |
(Ty, \OEW)NB 1
Since by the second inequality in (2.115) we have

1 _
— (B, - €n)(V'¢ - vy, ) dH" 1| < Cs\/e), sup [V'g),
VER (6Eh\th)mB% Rn-1

1
VEn (th\(?Eh)mB%

then by (2.117) and the area formula, we infer

Ve, - ea)(V'6 - v, ) dH"™! < Cs\ /2 sup V¢,
o

—1

= _ . P n—1
0 h—li{loo \/7 thmB% (VEh en)(V(b VEh)dH
! i !
= lim ! Vi Ve dz'.

h—+w y/en Jp, 4/1 + |V'fh]2
2

This proves that g is harmonic.

Step 2. The proof of this step now follows exactly as in [35] using the height
bound lemma and the reverse Poincaré inequality. We give it here to be thor-
ough. By the mean value property of harmonic functions (see for example [46,
Lemma 25.1], Jensen’s inequality, semicontinuity and the third inequality in
(2.115) we deduce that

h—-+00 £y,

_ L 19() — (9)ar — (V'g)ar - 2’

lim — f n(@) = (Fior — (V' fu)ar - 2/ da’
Doy
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— | 1ota) = 510) = V'g(0) - P

< ()77 sup g(2") — g(0) — V'g(0) - 2’

x’€Dor

< (n)7n+3f Vg da’ < c(n)7"** lim inf J IV gul? da’
D Dy

o

1 h—+4o0
2

< C’(n, Cg)Tn+3.

On one hand, using the area formula, the mean value property, the previous
inequality and setting

. (fn)2r . (=(V'fn)2r, 1)
VIV fi)or VIV fa)or P
we have
1
lim sup — lvp - — cp|PdH
h—+w0 Eh JOE,ATy, NBa,
. 1 |_(v/fh)27' - + fh(l‘l) - (fh)27'|2
:hmsup—J 1+ |V fo(z")]? dx’
h—+0w Eh 6EhmehmBg.,— I+ |(v/fh)27’2 \/ ‘ fh( )|
1 -
< lim © f (@) = (F)or — (V' fi)ar - ' da’ < Cln, G+,
h—+o &y, Do,

On the other hand, arguing as in step 1, we immediately get from the height
bound lemma and the first two inequalities in (2.115) that

f v -1 —cpPdH" T = 0.
h—+00 £y, (0Bx\T'y, ) Bar
Hence, we conclude that
1 .
lim sup — lup -z — ep)* dH"™ < C(n, Cg)T" ™. (2.118)
h—4w €h JIE,NBar

We claim that the sequence {e; (0,27, 1)} nen is infinitesimal; indeed, by the
definition of excess, Jensen’s inequality and the third inequality in (2.115) we
have

lim sup J lvg, — vp|> dH™ !
h—+00 0En,NBar

< lim sup 2J- lvg, — en> dH™ 1 + 2|e, — vu*H" 1 (OE), N BQT)]
6EhmBQT

' (V" F)oes /T [V Far ] — 1>|2]

< limsup |4e, + 2H™ Y(Ba,)

hosoo | L+ [(V' fa)2r?
< limsup [4€h + 47‘[”_1(327—)|(Vlfh)27’2]
h—+c0

< lim sup 46h+4j |V'fh|2dx'] <
D

h—+w |

1 hETooMgh + 4085/1] = 0.
3
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Therefore, applying the reverse Poincaré inequality and (2.118), we have, for
h large, that

en(0,7) < ey (0,7, 1) < Cy(C72%e,(0,1) + D(0,27) + 2777,),

which is a contradiction if we choose Cy; > Cymax{C',2}. O

2.12 Proof of the optimal theorem

Before proving Theorem 2.0.3, for reader’s convenience we recall a well-known
result, which can be found in [46, Theorem 26.5 and Theorem 28.1]

Theorem 2.12.1. If A < R” is an open set and E is a perimeter minimizer
in A, then An0*E is a CY7-hypersurface for every y € (O, %) that is relatively
open in AN 0E. Moreover, defining

Y(E;A) = An (OE\0"E),
the following statements are true:
i) if 2<n <7, then 3(E;A) = &;
it) if n =8, then X(F; A) has no accumulation points in A;
i) if n =9, then H*(X(E; A)) =0, for every s > n — 8.

There exists a perimeter minimizer E < R® with HO(X(E;R®)) =1. Ifn > 9,
then there exists a perimeter minimizer E < R™ with H" 8 (X(F;R®)) = +co.

Proof of Theorem 2.0.3. The proof works exactly as in [35]. We give here some
details to emphasize the dependence of the constant € appearing in the state-
ment of Theorem 2.0.3 from the structural data of the functional. The proof
is divided into four steps.

Step 1. We show that for every 7 € (0, 1) there exists €5 = e5(7) > 0 such
that if e(z,r) < &5, then

D(x,1r) < Cy7D(z, 1),

where C} is from Lemma 2.4.6. Assume by contradiction that for some 7 €
(0,1) there exist two positive sequences {ep,}nen and {rp}ren and a sequence
(En,up) of Arp-minimizers of F,, in B; with equibounded energies such that,
denoting by e; the excess of E;, and by D, the rescaled Dirichlet integral of
up, we have that 0 € 0Fj,

eh(O, 1) =&cp — 0 and Dh(O, T) > C4TDh(0, 1) (2119)

Thanks to the energy upper bound (Theorem 2.4.1) and the compactness
lemma (Lemma 2.6.1), we may assume that £, — E in L'(B;) and 0 € JF.
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Since, by lower semicontinuity, the excess of E at 0 is null, it follows that F is
a half-space in By, say H (see Proposition 1.1.23). In particular, for h large,
it holds

|(ERAH) N By| < eo(7)| By,

where ¢ is from Lemma 2.4.6, which gives a contradiction with the inequality
(2.119).

Step 2. Let U cc € be an open set. Prove that for every 7 € (0, 1) there exist
two positive constants e = £¢(7,U) and Ci9 such that if xg € 0F, B,(xg) c U
and e(xg,r) + D(xg,7) + 1 < €6, then

e(xg, 1) + D(xo, 1) + T < Cra7(€(20, 7) + D(2T0,7) + 7). (2.120)

Fix 7 € (0,1) and assume without loss of generality that 7 < We can
distinguish two cases.
Case 1: D(xg,7) +1r < 7 "e(xg,7). If e(xo,r) < min{es(r,77"),e5(27)} it

follows from Theorem 2.11.1 and step 1 that

1
3

< 011(7'29(%, r) + D(xg, 277) + TT)
< CllT(e($0, 7’) + 204,D(I0, T) + 7’)

Case 2: e(xo,r) < 7"(D(x0,7) + 7). By the property of the excess at different
scales, we infer

e(xo, 7r) < 7 "e(x0,7) < T(D(20,7) + 7).

We conclude that choosing e = min{e,(7,77"),5(27), 5(7)}, inequality (2.120)
is verified.

Step 3. Fix o € (0,3) and choose 1 € (0,1) such that Cio7o < 73°. Let

U cc Q be an open set. We define
I'nU:={xe€dEnU:e(x,r)+D(,r)+r <es(r,U),
for some r > 0 such that B,(xy) c U}.
Note that I' n U is relatively open in 0E. We show that I' n U is a C1-
hypersurface. Indeed, inequality (2.120) implies via standard iteration argu-

ment that if xo € I' n U there exist ro > 0 and a neighborhood V' of zy such
that for every x € 0E n V' it holds:

e(z, 75r0) + D(x, 74m0) + 740 < T37F,  for k € Ny,

In particular e(z, 7879) < 72°F and, arguing as in [35], we obtain that for every

r€dE NV and 0 < s <t <rgit holds
((vE)s(x) — (vp)i(@)] < ct,

for some constant ¢ = ¢(n, 19, 79), where

(p)i(x) = Jf v d M
6Eth(x)
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The previous estimate first implies that I' n U is C'. By a standard argument
we then deduce again from the same estimate that I nU is a C1-hypersurface.
Finally we define I' := [ J,(I' n U;), where {U,};en is an increasing sequence of
open sets such that U; cc 2 and Q = |, U;.

Step 4. The proof of this final step basically follows as in [35] (see also [6],
[20] and [22]). Finally we prove that there exists € > 0 such that

H"1=(OE\D) = 0.

Setting
Y ={xedE\l : lim D(z,r) = 0},

r—0

by Lemma 2.3.3, Vu € L (Q2) for some s > 1, depending only on v, N, L, n.

loc
Since Holder’s inequality implies that

s

D(x,r) =r"" J \Vu|? dz < c(n) (rsnf |V dw) :
By (z0) B, (z0)

the following inclusion is true:

El = {x € Q : limsupD(x,r) > O}

r—0+

r—0t

- {a: e : hmsuprs”f |Vul* do > 0} :
By (z0)

Applying Proposition A.1.10 with (B, (x¢)) := f |Vu|* dx , we have that
By (o)

dimy, (E”_l) <n-—s.
As (OE\I)\E™™! = X, it is clear that
dimy (0E\D') < max{dimy(X), dimy(E"™")} < max{dimy(X),n — s}

If we show that ¥ = ¢ when n < 7 and dimy(X) < n — 8 for n > 7, we will
have that

Oa - f < 7,
dimgy (OP\T) < {20 =) PRS D s

max{n — 8,n — s} ifn>7
which is the thesis of the theorem.
Case 1: n < 7. Suppose by contradiction that > # ¢ and, up to translations,
that 0 € X. If {r}}pen is infinitesimal, denoting by Ej, := % and by up(z) :=
r, 2u(rpx), by scaling we get that (Ej,up) is a Arp-minimizer of F in %
Furthermore Vu;, — 0 in L?(B;) as h — +o0; indeed, since 0 € 3,

1
lim |Vuh|2 dy = lim — J |VU|2 dy = lim D(O,Th) = 0.
h—+0 B h—+00 T, By, h—+0
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By Lemma 2.6.1 there exists a local minimizer of the perimeter E,, < R" such
that 0 € 0F,
E,—> E, and P(E,;U)— P(Ey;U),

for every open set U < Bj. In dimension n < 7, 0E4 is a smooth manifold,
since, by Theorem 2.12.1, 0*F is smooth and dF, = 0*E4. By Proposition
1.1.24, for any € > 0 there exists r > 0 such that e(E,0,r) < . Applying
Proposition 2.6.2, there exists hg € N such that

e(Eh, 0, Th) <ég, Vh > ho,

which implies the contradiction 0 ¢ X.
Case 2: n > 7. Assume by contradiction that H*(X) > 0 for some s > n — 8.
Then, H: (X) > 0 and furthermore, by Proposition A.1.12, we have that

>27° for H’-a.e x €.

(XN B
lim sup HoE 0 p(:zc))
p—0t wsps

*(EXnB
We choose x € ¥ such that lim sup Heo (X0 By(x))

p—0+t wsp®
find an infinitestimal sequence {pp}ren © RT such that

> 27° Let X, := p%. We

— s (% E
limsup H5, (3, N By) = limsup Mool ms ()
p—0t p—0+ o,

> 275y, (2.121)

Reasoning as in the previous case, there exists a local minimizer of the perime-
ter Fo, © R™ such that 0 € 0F,

En, — Ey and P(Ey;U) — P(Ey;U),
for every open set U < Bj. If we show that
H((OEL\0*Ey) N By) = HE (Sh N By), (2.122)
for any h sufficiently large, using (2.121), we get:
H*((0EL\0*Ew) N B1) = M ((0Ex\0*E)
=

N
limsup H: (X, n B

h—+0o0

B))
) =275, > 0,

which implies that dimy((0E.\0* Ex) N B1) = s > n—8, which is a contradic-
tion (see Theorem 2.12.1). In order to prove (2.122), it suffices to show that
if A < R"is an open set such that (0E,\0*E.) n By < A, then there exists
ho € N such that

Zh(WElCA, Vh>h0

Since B; is compact and A is open, we may assume by contradiction that
there exists {zp, }jen © (Xp, N B1)\A such that x;, — 29 € B1\A. Furthermore
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o € 0Fy thanks to Lemma 2.6.1. By our assumption on A, we deduce that
xg € 0" Fy. Using Proposition 1.1.24, there exists p > 0 such that

e(Luw, o, p) < €6
Applying Proposition 2.6.2, there exists jp € N such that
e(Eh]-;l’Oa Thj) < &g, vj > jU‘

Since ¥ < 0E,, \I'y,, where Iy, is the singular set of 0E},,, we have the contra-
diction xy, ¢ Yp, . O



Chapter 3

The p-polynomial growth case

In this chapter we deal with the following energy functional:

F:E) = f [F(Vo) + 1sG(V0) + folz,v)] dx + P(E: Q).
Q
with (v, E) € (uo + Wol’p(Q)) x A(Q), for p > 1, where uy € W?(Q) and
A(Q) is the set of all subsets of Q with finite perimeter. Here we consider
F,.Ge CYR") and fg = g+ 1gh, for E < R", where g, h: Q x R — R are two
Borel measurable and lower semicontinuous functions with respect to the real
variable.
With regard to the hypotheses on the integrands, we assume that there
exist some positive constants [, L, «, 5 and p > 0 such that

e [" and GG have p-growth:

0< F(&) < L(u*+ [¢P)E, (F1)

p
2

0 < G(€) < BL(p + €)%,

for all £ € R™.

e F and G are strongly quasi-convex:

LF@ L V) dr > L[F@ FUGE 4 €+ (Vo) [Vl da,

LG(& L Vg)d > L[G(f) Fal( + €7 + Vo) 2 [V gl?] do.

for all £ € R™ and p € C}(Q).

e there exist two positive constants t3, a and 0 < m < p such that for
every t >ty and £ € R" with |£] = 1, it holds

(€ - @\ <4 (F3)

| g

113
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a

‘ <— (G3)

tm’

G(t€)
tp

Gite) -

where F), and G,, are the p-recession functions of F' and G (see Definition
3.1.1).

We remark that the proximity conditions (F3) and (G3) are trivially satisfied
if /" and G are positively p-homogeneous.

The first of the following assumptions on g and h is essential to prove the
existence of a minimal configuration. The same condition turns out to be
crucial in the proof of the regularity result as well. We assume that there exist
a function v € L'()) and two constants Cy > 0 and k € R, with k <

being A = A(Q) the first eigenvalue of the p-Laplacian on €2 with bourﬁ3;
datum wug, such that
e ¢ and h satisfy the following assumptions:
g9(x,s) = ~(x) —kls[’,  h(z,s) = y(x) - k|s”, (3.1)
for almost all (z,s) € Q x R.

e ¢ and h satisfy the following growth conditions:
|g(z, s)| < Co(1 + s]?),  |h(z,s)] < Co(1 +[s|"), (3.2)

for all (z,s) € Q x R, with the exponent

[p, +00) ifn =2,
qc
[p,p*) ifn>2

fixed.

We study the following problem:

min F(v, E). (P)
(w.B)e (wo+WHP()) x A©Q)

The main result of this chapter is the following theorem about the regularity
of solutions of problem (P).

Theorem 3.0.1. Let (A, u) be a solution of (P). Then
1. w s locally Holder continuous;

2. A is equivalent to an open set A, that is

|JAAA| =0 and P(A;Q) = P(A;Q) = H" YA N Q).
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The idea of its proof is similar to that of [5, Theorem 2.2], which in turns
relies on the ideas introduced in [19]. The regularity of u is proved in Theorem
3.3.1 and the regularity of A follows from Proposition 3.4.1. The proof will be
discussed in the final section.

The same arguments can be used to treat also the volume-costrained prob-
lem

min F(v, E), (Q)
(w.B)e (w0 +WHP()) xA©Q)
|E|=d
for some 0 < d < |€2|. The following theorem holds true.

Theorem 3.0.2. There exists Ao > 0 such that if (A, u) is a minimizer of the
functional

Fa(0, E) = L[F(Vv) F15G(VY) + fulz,v)] de + P(E;Q) + N|E| — dl.

for some A\ = X\ and among all configurations (v, E) such that v € ug+W, ()
and E € A(Q), then |A| = d and (A,u) is a minimizer of problem (Q) .
Conversely, if (A, u) is a minimizer of the problem (Q), then it is a minimizer

of Fx, for all A = Ag.

The proof of the previous theorem is a a straightforward adaptation of the
proof of [13, Theorem 1.4], that is a generalization of the proof of Theorem
2.2.1. The term concerning the function fg can be treated as a constant,
thanks to the boundedness stated in Theorem 3.3.1. We finally remark that
the term A||E| — d| in the functional F, can be inglobed in fg, since it is
bounded. For this reason, Theorem 3.0.1 is still valid also for minimal config-
urations of F) and, consequently, for solutions of problem (Q).

We give here an outline of this chapter. In Section 3.1, we recall some well-
known lemmata concerning general functionals with p-polynomial growth.

Section 3.2 is entirely devoted to the proof of the existence of solutions of
problem (P) by means of a standard argument.

In the subsequent two sections we address to regularity properties of min-
imizing couples (A, u) of problem (P). In particular, in Section 3.3, we quote
the classical regularity result proved by De Giorgi and, in addition, the usual
higher integrability property of Vu. Section 3.4 is devoted to proving regu-
larity properties of E. The main ingredient is Proposition 3.4.1, which states
that if in a ball of radius p the energy associated with a minimal configuration
is controlled by p"~!, then it decays faster than p"~1!.

Finally, in Section 3.5 we give the proof of the main theorem of the chapter.

3.1 Some auxiliary results

Throughout this section we denote with H a function belonging to C'*(R™) and
satisfying for some positive constants [ and L the same kind of assumptions
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imposed on F and G:

0< H(E) <L+ ¢k,

| 1+ Torde > [ 1 + 02 +16P +10P)F (V6] dr

for all £ € R™ and ¢ € C}(Q). We collect some definitions and well-known
results that will be used later. We start giving the definition of p-recession
function of H.

Definition 3.1.1. The p-recession function of H is defined by

H,(§) := limsup %,

t—+00
for all £ € R™.

Remark 3.1.2. It is clear that H), is positively p-homogeneous, which means
that

Hy(s€) = s"Hp(S),

for all £ e R™ and s > 0. It is also true that the growth condition of H implies
the following growth condition of H,:

0 < Hy(¢) < LIEP,
for any £ € R™.

The next lemma esthabilishes strong quasi-convexity of H,, provided H
verifies an appropriate growth condition. Although its proof can be found in
[31, Lemma 2.8], we illustrate it here for the sake of completeness.

Lemma 3.1.3. Let H be as above. If there exist two positive constants 1y, d
and 0 < m < p such that for every t >ty and & € R™ with || = 1, it holds

d
<

‘ h

H(tg)
tp

tm’

\Hp@) -
then
L H (€ + Vi) do L[Hp@) FIER + Vo) 2|Vl da,

for all £ e R™ and p € CH(Q).

Proof. Fix A > 1. It holds true that, for t > t{y\ and z € R" such that

A7l < |z| < A, we have

F(tz)
p

AP
<& (3.3)

Fp(Z’)— tm
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Indeed,
Pt 1
Fy(2) - 202 ol ( )— F(t|z|i)\
tp 2| (t]z])r |2|
2P o _ colzP~™ B CoANP™™
S () tmo g

Fix z € R", ¢ € C}(Q2) and take an increasing divergent sequence {t, }ren such
that

F,(z) = lim F(thz).

h—+o0 tiz
Fix A > max{1, |z| + ||V¢||,}. We recall that, by Remark 3.1.2, F, is nonneg-
ative. Thus, if ¢, > to, from (3.3) and by virtue of the strong quasiconvexity
of F we have

f F,(z+ V¢)dx
Q

>

=

j F,(z+V¢)dx
Qn{A-1<z+Vo|}

1 AP
> = Ftaz + t,Ve) dz — 22— |Q)
by Janp-1<z4ve)) th
1 1 AP
_ _pf Flthz + tnV) dr — = Fltnz + V) do — 2 |q)f
th Ja th Janpr-12[24ve)} A
1 L ,
> — | Fthe +t,Vo)de — — (1 + |thz + taVo|P) dx
th Jo th Janpr 1524 vel)
CO)\p_m
- g
h
p—2 ~
F(t s z L
> [ (o wor) T v |- 2 (1 Yo
Co/\p7m| |
tr ‘
The result follows by letting h — +0c0 and then A — +oo0. ]

Let us recall some other useful lemmata. The proof of Lemma 3.1.4 can be
found in [37, Lemma 5.2], while Lemma 3.1.5 is proved in [13, Lemma 2.3].

Lemma 3.1.4. Let H be as above. It holds that
IVH(E)| < 2°L(u* + €)=,
for all £ e R™.

Lemma 3.1.5. Let H be as above. There exists a positive constant ¢ =
é(p,l, L, ) such that

H(E) = -(1* + €)% -

l\DINz

for all £ e R™.



3.1. Some auxiliary results 118

Proof. The strong quasi-convexity of H is equivalent to the convexity of the
function

[N]4S)

K(&) = H() —1(1*+1¢*)?, VEeR",

which, in turn, implies
K() > K(0)+V,K(0)-¢& VEeR™
Let us fix £ € R™. The previous inequality can be written in terms of H as
H() = [(® + [€)* + H(0) — Iu" + V. H(0) -

Since H(0) = 0 and, by Schwartz’s and Young’s inequality we infer

VH(O) €] = [(FV.H) - ()] < o, DIV-HO[ + el

J

< c(p, I, )P + E(“2 +1¢P) 2,

then we conclude

P v ~
2 2

H(E) = 1(p* +[€1%)? —c(p, I, Lyp? — = (u® +[€]*)? —lu?

DN | =

M|

- C(p7 l~7z7lu’)

(1* +1¢?)

N | =~

We define the auxiliary function
p—2
V() = (u* + g T ¢,

for all £ € R"™.

In order to prove Lemma 3.1.7, we need the following auxiliary result proved
in [36, Lemma 2.1] in the case § > 0 and in [1, Lemma 2.1] in the case
de (—1,0).

Lemma 3.1.6. For any 6 > —%, the following estimate holds:

1 s
2

J (12 +te+ (1 —t)n*)2 dt g
4=(149) < 2O < max {22 },

5 )
(MQ + e+ |77|2)2 20 +1

for any &, me R™.

Proof. We need to distinguish the cases 6 > 0 and ¢ € (%, 0).
Case 1: § = 0. The estimate from above is straightforward; indeed, since, for

te (0,1),

12+t + (1=t < p® + 2(8C[E)7 + (1 —1)%[n*) < 2(p® + €7 + n]?),
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then

N[>

é
2

f@+w+a4M) ﬂ[m+m%wm

5 = 5
(12 + €12+ |n)?)? (12 + 1€12 + |n]?) 2

N[

Il
)

For the estimate from below, it is not restrictive to assume || = |n|. For
te (%, 1), we estimate

16+ (1— )l = tle] — (1= Dl = t(l€] + Inl) — Inl = (] + [y — 12— 7]

2 2
— L0e1+ )
- 4 77 )
in order to obtain
1 s 1 9 $
J (12 + [t + (1 —t)n|*)? at L 1 +—(|€|+|77|)
0 - Z 4 g
(12 + (€2 + [n?)® (12 + 1€ + [n]?)®
1 5
[ (41 ey a
> 1 _ 4—(6+1)‘

[
2

163 (12 + €2 + [n]?)

Case 2: ¢ € ( — 3,0). By the convexity of the map ¢ — |n + t({ — n)|?, we
infer

w\oq

1
f (v* + [t + (1 =t)nf*)* d
0 i Z 1> 4-(+0).
(12 + [ + Inf?)*
Regarding the upper bound, it is not restrictive to assume || < |n| and & # 7.
Let & € R™ be the point on the line connecting & and 7 with the lowest norm,
ie.

= mi tH(E —n)|-
[So] = min, |+ £(£ = n)|

We define
[ 77|

1
T
Oa(t) := (1 + [n+ (A =n))°, Vte (0,1).
If ¢ty = 1, by the minimality of &, ¢¢ < ¢¢, and thus

[ eettyin< [ ouorar

If to € [3,1), we obtain a similar estimate:

tol

1 to 1 1
f¢awﬁ<2 @Uﬁﬁ=%{[QF+M+K®—meﬁ=2f¢%®dt
0 0 0 0
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Thus, we can write, for a general tq > %,

Llcbs(t)dt<2£¢so(t)dt<2£¢o(t)dt< zfol (M . (|§|2+ ol ))5

<215 Ll 12+ (P + nf?)] dt

<25 [ t(eP + )T

< 4[: [+ t(I€] + [nf?) ] de. (3.4)
where we used ¢¢, < ¢9. We remark that, for 0 < b < a, we have

1
J (a +th)® dt < a® < 2°(a* +b%).
0

A similar estimate can be obtained for 0 < a < b, that is

1 + b)25+1 ) 2
)% dr < < b — 2 (a®+ ).
L(CH ) @ Swa1@T < gpp@ 1)

Applying to (3.4) the previous inequalities for a = p and b = (|£|2 + |77|2) 2 we
finally get

[ oettyin < 3550 w1+
which concludes the proof. O

The next lemma has been proved in [36, Lemma 2.2] for p > 2 and in [,
Lemma 2.2] for 1 <p < 2.

Lemma 3.1.7. There exists a constant ¢ = ¢(n,p) such that

V() = VP
& —nl?

Loz 4162 + 1) < <o + € + [n?)
C

for all £,m e R™.

Proof. Let us distinguish the cases p > 2 and 1 < p < 2.

Case 1: p > 2. We start proving the esitmate from above. For reader’s

convenience, we compute
d D —

a _ 2, 2\ 5012 2 2\ 55
V() = L2 (24 ) T 4 (2 4 2P <

wl%

(0 +12P) T

Applying Lemma 3.1.6 for § = ’%2, we easily get

1

—V({tE+ (1 —t)n)| dt

Ve -vml< | |4

0




3.1. Some auxiliary results 121

p ! 2 2\ 252
<P |Gt - 0T atle -
0
Pye=2 2
<27 (W 6P+ ) Tl -l

It is not restrictive to assume [£]| = |n|. If [£] = 2|n|, then
3
€ =l < [+ [nl < 5l¢l,

(2 L2+ 02T < (i + 2i2) T < 2% (2 + Je2) T

—2
Since |V (2)| = (1 + |z|2)pT|z| is increasing in |z|, then

|V@y—va>naaw—h(§N/JV§”/(“*Wﬂéﬂmg4|5—m

p2
=575 (P |EP + [n?) Tl — ).

If |n| < |€] < 2|n], then, for 7 > 1, |76 —n| = |€ — n| and so

Ve — Vi) = (1 + o) T (5{%%) s—ﬂ

> 5755 (2 + |6 + [n2) 7 le — ).

Case 2: 1 < p < 2. For z € R", we define

2 p+2

F(z):= m(;ﬁ +]2[%)

so that

VF(2) =V(z), V*F(z)= (0 + |z|2)p4‘;2 (I + ﬁz@z),

for any z € R™. It holds:
(VRN A2 p(? + |2P) T N2 IVPF()] < Vit 1+ [22) T
for any z, A € R". Applying Lemma 3.1.6, we infer

V() ~ Ve - nl = (VE(E) — VEM) - (€ )
(Ov%w+t£7mw@ no-@—m

1 p—2
p(e’ + I+t —n)f) * & —nldt

h

> p(u2 + P + [n2) " J€ = nl?.
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and

V(&) =Vl =IVF(E) - VF(n)| < L [V2F (0 + ¢(& — )] ds|€ — ]

8v/n +1 p—2
< T(u2 +1EP + n?) * € —nl.

We need also the following result.

Lemma 3.1.8. Let {upjpen = WUP(By) and u € WHYP(By) such that
up, — u in WHP(By). Assume that {NVuy}hen s bounded in LP(By). If

lim V|V (Vuy) — V(Vu)|* dy = 0, Vipe CF(B;) st 0<w<1

h—+o0 B ’

then uy, — u in WEP(B)).

Proof. We proceed as in [13]. By Lemma 3.1.7, the convergence in our as-
sumption yields to

p—2
lim n(K* + [Vup + [Vul’) 2 |V, — VulP dy =0

h—+00 B

We distinguish two cases. If p > 2, then

f nVuy — Vul’ dy < f (i + [Vun] + Va2V, — Yl dy
B1

B1

< ¢(p) J (1 + [Vun|* + IVul?)’2 [Vu, — V| dy — 0,
B
as h — +oo. If 1 < p < 2, by Holder’s inequality, we infer

J n|Vu, — VulP dy
By

p(p p(2—p)

—2)
— J (@ + |Vur” + [Vu]?) [V, — Vul(i® + [Vus|* + [Vul]?) 7 dy
By

IS}

< (J n(e* + [Vun|® + |Vu|2)p%|Vuh — Vul? dy)
B

2—p

x (J n(uQ + [V |* + |Vu|2)5 dy)
By

< c(n, p, ,u)(f n(W’ + [Vun|* + |Vu|2)p%|Vuh — Vul? dy) — 0,
B1

7

as h — +o0. =

Starting from Theorem 1.2.10, by means of an approximation argument,
the following theorem has been proved in [31, Theorem 2.2]. The subsequent
corollary is immediate.
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Theorem 3.1.9. Let H be as above and let v e WHP(Q) be a local miniminizer
of the functional

H(w; Q) = f H(Vw)dx,

where w € v+ Wy P(Q). Then v is locally Lipschitz-continuous in Q and there
exists a constant ¢ = c(n, p, l, L) > 0 such that

ess sup(i? + [Vo?) < Jf (2 + [VoP)S dy,
BR(ffo) Br(zo)

for all Bg(zo) < €.

Corollary 3.1.10. Let H and v € Wl’p Q) be as in Theorem 3.1.9. Then
there exists a constant cy = cy(n,p,l, L) > 0 such that

[ wsmaedR) [ e wopta
By (xo) RJ JBpeo)

for all Bgr(zg) € Q2 and 0 < r < R.

3.2 Existence of minimizing couples

In order to prove the existence of a solution of problem (P), we recall here a
semicontinuity result by Ioffe, which can be found in [7, Theorem 5.8] and [40].

Theorem 3.2.1 (Ioffe’s semicontinuity result). Let f: Q x R™ x R* — R
be L x B(R™*)-measurable and lower semicontinuous in R™** a.e. in Q.
Assume that f(z,s,-) conver in R¥ for any (x,s) € Q x R™. Then

hminfffxuh,zh Jfa:uz

h—+w

if {upthen < (LI(Q))m and {zp}hen < (LI(Q))k are such that up, — u in
(LYQ2)™ and vy — v in (Ll(Q))k, as k — +oo.

Theorem 3.2.2. The minimum problem (P) admits at least a solution.

Proof. We initially remark that problem (P) can be written as follows:

EI&IH {E(E) + P(E;Q)}, (3.5)
where
£E)= min L[F(Vv) GV + fu(mo)]de (3.6)

Since F', G are strongly quasi-convex and g, h are lower semicontinuous in
the real variable s, the functional F is lower semicontinuous with respect to



3.2. Existence of minimizing couples 124

the weak convergence of Vv, in L” and the strong convergence of vy, in LP.
Moreover, the coerciveness of

f [F(V0) + 15G(Vo)] da

is granted by Lemma 3.1.5. Therefore the minimum problem (3.6) admits a
solution. Let {Ap}reny < A(2) be a minimizing sequence for problem (3.5). Tt
follows that the sequence {P(Ap;Q)}nen is bounded and so, by compactness,
there exists A € A(Q) such that 14, — 14 in L} (Q). Let uy € ug + W, ()

loc
a solution of problem (3.6) associated with Ay, for all h € N. The sequence

{up }ren is bounded in WHP(Q); indeed, by (3.1) and Poincaré’s inequality we
obtain

min  F(v,Q)

veug+Wy P ()

> F(Ap,up) = ZJ |Vuy|? dx —i—f vdx — kf |up|P dx
Q Q 0
> ZJ |Vup|P dx + J vdx — QP_IkJ |up, — uo|? do — 2”‘%] |uo|? dz
Q Q Q Q
> (I — 2p_1k)\)f |Vug|P do + J ydr — 2p_1sz |uo|? de.
Q 0 Q

Hence, we can extract a subsequence (not relabelled) such that u, — u in
WhP(Q). By definition of minimum we infer

E(A) < jQ[F(Vu) + 14G(Vu) + fa(z,u)] dx.

Applying Ioffe lower semicontinuity result, Theorem 3.2.1, to the integrand

(I)(.]f, 3175275) = F(f) + SlG(f) + g(x752) + Slh(x752)7

where z € Q, 51 € [0,1], s2 € R and £ € R", we obtain

E(A) < f [F(Vu) + 14G(Vu) + fa(z,u)]de = J O(x, 14, u, Vu)dx

< lim ian O (x, L4, ,un, Vup) dv = liminf E(Ay).
Q

h—+w h—+w0

Therefore, by the lower semicontinuity of perimeter we finally gain

E(A) + P(A; Q) < liminf[E(AR) + P(Ap; Q)],

h—+4o0

which proves that A is a minimizer of problem (3.5) and so (A, u) is a mini-
mizing couple of problem (P). O
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3.3 Higher integrability and Holder continuity
of minimizers

The following theorem shows that local minimizers of the functional F(-, E),
with £ € A(Q) fixed, are Holder continuous and a higher integrability property
for the gradient holds true. The proof of this result is standard and can be
carried out adopting the obvious adaptation in the proof of Lemma 2.27 and
applying Gehring’s Lemma (see Lemma 2.3.3). The local boundedness and the
Holder continuity of solutions of problem (P) is easily obtained if one follows
the same argument of De Giorgi’s regularity theorem (Theorem 1.2.6).

Theorem 3.3.1. Let (A,u) be a solution of (P). Then the following facts
hold:

e u s locally bounded n €2 by a constant depending only on
n,p,q,c, 8,1, L, i, Co, ||u||L,,(Q) and is locally Hélder continuous in §2;

o Let Qg € Q, 7 = dist(€2,09Q) and K = {x € Q : dist(z,) < F}.
Then there exist two constants v > 0 and r > p depending only on
n,p,q, 5,1, L, u, Co, ||u||L@(K) such that

J |Vul" dz <~ [Rn(lg) (J |Vul? dx) "L R
QrW) Qr(y)

for all y € Qy and Qr(y) < K.

I

3.4 Regularity of the set

The following proposition is the main result of this section and also the main
ingredient to prove Theorem 3.0.1.

Proposition 3.4.1. Let (A, u) be a solution of (P). Then for every compact
set K < Q there exists a constant £ € (0,dist(K, 002)) such that if y € K and
for some p < £ it holds

| 150+ 16 (Fu)lde + P B ) <
Bp(y)
then

1111(1) nt" [J [Fp(Vu) + 14G,(Vu)]dx + P(A; B,(y)) | = 0.
= By (y)

The proof of the previous proposition relies on Proposition 3.4.5, which is an
iteration of the decay estimate in Theorem 3.4.4. The following definition
is crucial in the rescaling argument used in the proof of Theorem 3.4.4 (see

(3.17)).
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Definition 3.4.2 (Asymptotically minimizing sequence). Let {(Ap, up)}nhen <
WhP(By) x A(By) and {\p}heny € RY. We say that the sequence {(An, upn)}nen
1s Ap-asymptotically minimaizing if and only if for any compact set K < By
and any couple {(u}, A})} € WHP(By) x A(By) formed by a bounded sequence
{u} }nen in WHP(By) with spt(up — uh) < K and a sequence of sets {A} }nen
with ApbAA), < K, we have

f [, (Van) + Ta, Gy (V)] dy + M P(Ap: B)

By

< J | Fp(Vuy,) + ﬂA;lG’p(Vu;l)] dy + M\ P(A%; B) + m, (3.7)
By

where {Np ey < R is an infinitesimal sequence.

In the proof of Theorem 3.4.4 we will show that the sequence of appropriately
rescaled miniminal configurations of problem (P) is asymptotically minimiz-
ing. The following theorem is concerned with the behaviour of asimptotically
minimizing sequences.

Theorem 3.4.3. Let {\y}new © RT and {(Ap, up) ey © WHP(By) x A(By).

Assume that (Ap,up) is A\p-asymptotically miminimizing and that

i) {f [F,(Vug) + L4, Gp(Vug)] dy + A P(Ap; Bl)} is bounded;
By heN

i) up, — u in WHP(By);
i) 14, — 14 in LY(By) and A, — +o0;
i) G,(Vuy) is locally equi-integrable in Bj.
Then
a) wy — uin Wl (B1);
b) MP(Ay; B,) — 0, for all pe (0,1);

c) A= or A= By and u minimizes the functional
f [F,(V0) + LG, (V)] dy,
By
among all v € u + Wy (By).
Proof. Let us prove a). The hypothesis iv) implies that

lim ¢[1AGP(VUJ}L) — lAhGp(Vuh)] dy = 0, V’Lp € Cgo(Bl) (38)

h—+o B
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Let ap = (1 — Y)up + Yu, v € CP(By), with 0 < ¢ < 1. Then
Vi, = (u—up)V + (1 —¢)Vuy, + ¢pVu. Testing (Ap, 0y), we have

| (R(T0) £ 14,6 (T ) dy < | [F(T0) + 14,6, (Tan)] dy+ . (39)

B

where {1 }rey © R is the infinitesimal sequence in (3.7). By the convexity of
F, and G, and Lemma 3.1.4, it follows that

—

Fp Vuh + ILA’ G (Vﬂh)] dy
B

<

mc =

|[F,((1 — ¢)Vup + 9Vu) + 14, G,((1 —¢)Vuy, + 9 Vu)| dy

1

[VE,((u —up)V + (1 — ) Vuy, +pVu)| - [(w — up) Vo] dy

1

[VG,((u — up)VY + (1 —¢)Vuy, + YVu)| - [(u — up) Vo] dy

1

[(1 =) Ep(Vun) + 95 (V) + 1a, [(1 = 9)Gp(Vun) + Gy (Vu) [ dy

By

L.5) Lw (= un) Ve (1= )V + OVf2) 5 (1 — ) V| dy.

_l’_

_l’_

s} * W ?

N

+c

T~

Using the previous one in (3.9), we obtain
VI (Vun) + 14, Gp(Vun)] dy
B1

< | Y[F,(Vu) + 14, Gp(Vu)] dy + np,

Bi
+c(p, L, B) JB(MQ [ — ) Ve + (1= ) Vg, + $Vul?) T | (u — ) Vo] dy.
(3.10)

The second term in the right hand side is infinitesimal; indeed, using Holder’s
inequality, we have

f (1 + |(u — up) VY + (1 — )V, + qu|2)%](u — up) V)| dy
B

< lu = unll gy <JB(MP + [(u —up) VYIP + [(1 — ) Vup P + [ VulP) dy) ’ ,

which tends to 0 as h approaches +o0. So we can inglobe the second term in
the right hand side of (3.10) in n,. Add J Y1a4G,(Vuy) dy to both sides in

B
(3.10) in order to obtain 1

zﬂ[ »(Vug) + 14Gp(Vuy)] dy < w[ »(Vu) + 14, G,(Vu)| dy
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+ w[]lAGp(VUh) — ]lAhGp(vuh)] dy + ﬁhv

B
where {7, }ren < R is infinitesimal. Thanks to (3.8), we can pass to the upper

limit and obtain

limsup | ¢[F,(Vup) + 14G,(Vup) | dy < | ¢[Fp(Vu) + 1aGp(Vu)] dy.
By

h—+o0 By

Finally, by lower semicontinuity, we gain

lim JB VIR (Vi) + LiGy(Tun] dy = | UIF(T0) + 146G, (V)] dy.

h—+00
(3.11)
By the strong quasi-convexity of F}, and G, and Lemma 3.1.7, we have
V|V (Vuy) = V(Vu)* dy (3.12)
B
< c(n,p) J (1 + [Vun|? + |Vu2) = |[Vuy — Vul* dy
B

< c(n,p, 1) [ JB [(V(Fp(Vun) = Fp(Vu)) = VE,(Vu) - [¢(Vup — V)] dy
+ JB [V14(Gp(Vup) — Gp(Vu)) — 14VG,(Vu) - [(Vu, — Vu)l] dy].
Let h — +o0 in (3.12). By the i) and (3.11), we infer

lim V|V (Vug) — V(Vu)|* dy = 0.
h—+o0 B,
Thanks to Lemma 3.1.8 and the arbitrariety of ¢, we conclude that u, — u in
Wiok (Br).

Let us prove b). Since \;, — +oo and the energies are bounded by an
appropriate constant ¢, it holds that

P (Ah; Bl) < i
An
Let h — 400 in the previous inequality. By semicontinuity we infer that
P(A; By) = 0. Thanks to isoperimetric inequality it follows that A = ¢J or
A = B. We'll discuss the case A = &, being the other one similar. For h large
enough, by the isoperimetric inequality we have

n

: ¢\
0] = minf| ] [BAA < () ()

Denoting 14(p) = 1a,~s8,, for all h € N and p € (0,1), the Coarea formula
provides that

1 n—1
|Ah|=f dp f nh<p>dw-1<c<n>(i) |
0 2B, An
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which means that the sequence of functions {)\hf Ly (p) d’;’-[”_l} con-
2

Bp heN
verges to 0 in L'(0,1). Thus, it converges to 0 for almost every p € (0,1).

Then, for every p € (0, 1) fixed, we can find a sequence {pp}pen < (p, ”Tp) such
that

)\h J ]lh(ph) dHn_l - 0, (313)
0By,

as h approaches +c0. Comparing {(Ap, us) ey and {(Ap, up\B,, ) }nen ; using
(3.13) and the equality

P(A\B,,; B1) = P(Ay; BI\B,,) + J 1n(pp) dH™ 1,
9By,
there exists an infinitesimal sequence {n;}reny < R such that

)\hP(Ah; Bph) < /\hP(Ah; Bl) < AhP(Ah\Eph; Bl) +

= M\ P(Ap; BI\B,,) + )\hf 1 (pn) dH" ™ + 1y,

By,

= Ahf 1 (pn) dH™ '+,
0By,

provided A is so large that A, < B,:1. Thus, thanks to (3.13) the sequence
{AMP(Ap; B,,) }ren is infinitesimal and we can conclude that

)\hP(Ahv Bp) i O,

as h approaches +co, since p, > p.
Let us prove ¢). Comparing (Ap, up) with (Ap, @p) = (Ap, un + @), where
¢ € C*(By) and spt(p)c B, we have

f [, (Vun) + 1a, G (Vun)] dy < f [F,(Viin) + 1a, G (Viin)] dy + 1,
B, B,

with {np}ren © R infinitesimal and p € (0,1) arbitrary. Thanks to a), we
can use the dominated convergence theorem in order to pass to the limit as h
approaches +co, obtaining

jB [F,(Vu) + L4G,(Vu)] dy < f [F(V(u+ ) + LaG, (V(u + )] dy.

By
By the arbitrariety of p and ¢ we can conclude the proof. O
The following theorem is the main tool for proving Proposition 3.4.1.

Theorem 3.4.4 (Energy decay estimate). Let K < € be a compact set,
§ = dist(K,09Q) > 0 and € € (0,1). Let ¢ = é(p,l,L,a, B, 1) and ¢y =
en(n,p,l, L, o, B) the constants of Lemma 3.1.5 and Corollary 3.1.10 for

H(w) = JB [F,(Vw) + Gp(Vw)] dx.
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Moreover, let T € (0,1) be such that ¢ < m Then there exist two positive

constants vy and 0 such that for any solution (A, u) of the problem (P) and for
any ball B,(y) with y € K and p € (0,%) the two estimates

| RV + 14Gy(Tu) de + (A B,) < 0
BP

Pt < H[JB [F,(Vu) + 14G,(Vu)] dx + P(A; Bp)],

imply that

JB (V) + 1aGy (V)] + P(4: B, (1)

< enll+B)L ;r AL e l J [Fp(Vu) + 14Gp(Vu)] dz + P(A; Bp)]-

Proof. Let us suppose by contradiction that there exist two sequences {7y, }nen
and {6}, }ren which tend to 0, a sequence of minimizing couples {(Dy, wp) }hen
of (P) and a sequence of balls {B,, (z4)}nen, With z;, € K and pj € (0, %), for
all h € N, such that these estimates hold:

f (F,(Van) + 1, Gp(Veon)l e + P(Dyi By (1)) = ™y (3.14)
Bph(xh)

Ph < Qh[L ( )[F,,(th) + ILDhGp(th)] dx + P(Dp; B, (ﬁh))], (3.15)

f [, (Van) + L, Gy (V)] dz + P(Dps Bry, (1)) (3.16)
Brpp, (zn)

1 L
>C7-l( +B> Fne

i UB%(%)[Fp(th) + 1p,Gy(Vwy)] dx + P(Dy; B,, (xh))],

In what follows it will be important that the sequence {wp,}nen is locally equi-
bounded in . It descends from Theorem 3.3.1 once we have proved that
{wp}ren is bounded in W1P(Q), which holds true; indeed, by the minimality
of (Dy,wy), (F1), (3.1) and Poincaré’s inequality it follows that

min ~ F(v,Q)
veug+Whr(Q)
> F(wp, Dp) = ZJ |Vwy|P de + J vdx — kf |wp,|P dx
Q Q 0
> ZJ |Vwp|P do + J vdr — QP_IkJ |wp, — up|P do — 2p_1k-[ |uo|? dx
Q Q Q Q

> (I — 2p_1k‘)\)f \Vwp,|P dx + J vdr — 2”_1k‘f lug|? dx,
Q 0 0
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l

since k < Rescale the functions wy,; define

T
wp(xy + —w Dy, —x 1
unly) i= LD Z T ) g e T =
o (3.17)
3.17

where W), = J[ wp (z, + pry) dy, for all h € N. By the usual change of variables
By

x 1= x5, + ppy, we have:

f [, (Van) + Lo, Go(Van)] dz + P(Dps By, (20)
By, (zr)

= fyhpzfl lf [Fp(Vuh) + ILAhGp(Vuh)] dy + )\hP(Ah; Bl) .
By
Rescale the estimates (3.14), (3.15) and (3.16), obtaining

JB [, (Van) + La, Gy (V)] dy + MP(Ap: By) = 1, (3.18)

Pr < Oy, (3.19)

1 L
>C7'l( ;_ﬁ) s

We want to apply Theorem 3.4.3 to the sequence {(Ap, up)}nen-

Firstly, let us prove that {(Ap, up)}nen is Ap-asymptotically minimizing. Let
K' < By be a compact set and {(A},, u},)}reny such that {u}}nen is a bounded
sequence in W'P(By) with spt(u) —up)c K’ and A} < By with A} AA;, < K'.
Rescale the functions u,:

f [, (V) + La, Gy (Vun)] dy + M P(An; By) (3.20)

P

11 r—x
wy, () = p,” %f%( o h> +wy, € WY (B, (z1)), Dy = zp + pud}.

Compare the two sequences {(Dp, wp) }ren and {(D},, w},)}ren: by the minimal-
ity of {(Dp,wp)}ren and by (3.2) we have

L [E,(Vul) + 1ay Gy(Vut)] dy + P (A B)
B 1
Ynpy

1
> n—1
ThPp,

H| o e = oyl de
BP;L(Ih

UB% o B (Vuh) + Lo Gol(Vui)) do + P(D): By, <xh>>]

lJB ( )[F(th) + ]thG(th)] dxr + P(Dh; Bph(xh))

c [ BT~ ()] + 10, [G(Tuh) = GO |

1

R

[JB ( )[F(th) + 1p, G(Vwy)| dx + P(Dy; B, (x1))



3.4. Regularity of the set 132

_ cof (2 [un]? + [w)|7] da
B

Ph (zn

v {[F,(Vuh) = F(Vul)] + 1oy [Gy(Vch) — GV} d
By, (zp)n{[Vw), |Zto}

+ f {[F(Vwy) = F(Vwy)] + 1y [Gp(Vwy,) — G(Vuwy)]} d:c]
By, (1) {[Vw) | <to}

In the sixth line of the previous inequality we need F, and G, in place of F'
and G, so that by (F3) and (G3) we infer

j [F(Vwn) + Lp, G(Vaon)] da
Bph(wh

f [F(Vun) + 1p, G(Vop)] da
By, (xp)n{|Vws|=to}

| Fp(Vwy) + 1p, Gp(Vwy)] dx — ZaJ |Vwp,[P~™ dx

By, (zn)

L;ph (@n)n{|[Vwn|=to}
> [ RV + 10,G(Vun)ldo — el LBt

BPh zp)
a

—2 j |Vw,|P~™ dz.
Bph(xh)

Thus by homogeneity, (F3) and (G3), we get
| RV + 1y GuTu dy + 0P B
By

> f [F,(Vug) + 1p, Gp(Vuy)| dx + X\, P(Ap; B)
B

C
S [l o= L) 2
ThPh — IBy, (xn) Th
2a P .
— T [[Vwi P~ + [Vwp[P™] dx.
YnPp, By, (zn)

In order to prove that {(Ap, up)}nen is Ap-asymptotically minimizing, we need
to show that

C
hm[ [ gl d o+ clnp L8, t0)
Bﬁhxh)

h=+oo | Yppp Yh
2
- f [V} [P~ + [V =] dm] = 0.
YhPh, By, (z,
By (3.19) it is clear that lim Ph 0. Since {wp }nen 1s locally equibounded
h=+0 Yp

in €2, also
1

lim — J |wp|? dz = 0.
h=+0 Yhpy, = JIB,, (x1)
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It remains to prove that

1
lim — J |wy,|?dz = 0, (3.21)
h—+w0 ’yhlgh Bph (z1)
1
m —— f [V, [P~ + [Vwn [P~ ] dz = 0. (3.22)
h—+o0 'yhph Bph (z1)

Let us prove (3.21). Since {wy, }ren is locally equibounded by a constant M > 0,
substituting the expression of wy, from (3.17) it follows that

(p=1) 1

f wpltdz =2 | |p, 7 i+l dy
Bph(a:h ,yh Bl

1
'Vhph

(p—1)q l)q Oh
< c(q) [ en’ o J luj, — up|?dy + = | |wp(xn + Phy)|qdy]
Th JB;

ph (p— 1)‘1_;'_1 qa_1 ph
clmp ) oy (o + lonllyragsy ) +clma, 42

where we used the Sobolev embedding theorem. Since ¢ > p, {u}}reny and
{up}nen are bounded in W'P?(B;) and lim Ph 0, we conclude that (3.21)

h—+o0 Yh

holds true. We are left to prove (3.22). By Hélder’s inequality we get

1
ThPy

-z -
c(n,p,m P PR
< (LM)[(J |ng|pdx) + (J Vwp|? dx) o
ThPp, By, (1) By, (zn)

S v v
Bﬁh(xh)

1_m 1_m
c\n,p,m n—1y1—2 p P nm
= (—nfl)(’}/hph o [( |Vu'h|pdy) +( |VUh|pdy> ]Ph”
YhPh B1 By
Pn\ " m
< e () (2 + ol s, )
Since hhm Ph_ 0 and {u), }ren, {un}nen are bounded in W?(B;), we obtain
—+00 Yp,
(3.22).

Thanks to (3.18) there exist a function u € W?(Bj) and a set of finite perime-
ter A < B; such that

up, —win W'2(By) and 1,4, — 14 in L'(By).

We are finally in position to apply Theorem 3.4.3 to {(Ap, upn)}ren. It remains
only to prove that G,(Vuy,,) is locally equi-integrable, which we will prove later.
As a consequence of Theorem 3.4.3 we have that A = ¢ or A = B;. We'll
discuss the case A = ¢, being the other one similar. Thanks to Corollary
3.1.10 and Lemma 3.1.5, by lower semicontinuity we infer

J |VulP dy < f (12 + |Vul?)? dy < cHT”J (12 + |Vul?)? dy (3.23)
B, B, B
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QCH n

< —7 <J F,(Vu) dy + wn6>
l B,
2cy . ~
< TT" liminf | F,(Vup) dy + w,€ ).
By

h—+w

Using inequality (3.18), (3.20) and the b) of Theorem 3.4.3, we gain

2
%7’" <1im inff F,(Vuy) dy + wné)
By

h—+w0

2
_ L% n (1 — limsup A\, P(Ay; By) + wné)

[ h— -+
207.[
[

1

< 7"(1 4+ w,¢) < O e < —f F,(Vu)dy < J |Vul? dy.
)L ), B,

l (145

Comparing the previous estimate with (3.23) we reach a contradiction.
We are only left to prove the equi-integrability of G,,(Vuy) in B;. It is enough
to prove that for all ¢ € (0,1) there exists r > p such that

sup | |Vus|"dy < +o0. (3.24)
heN JB;

Indeed, fix ¢ > 0, a compact set K’ < By and A < K’. Then by the growth
condition of G, and Hoélder’s inequality, it follows that

P

supf Gp(Vup) dy < 6LJ |Vup|P dy < BL|A|1_g (supf |Vup|" dy> "
A A By

neN heN

In order to prove (3.24), we can apply Theorem 3.3.1: there exist two constants
v > 0 and r > p depending only on n,p,q, 5,1, L, u, Cy, ||wh||Lﬁ(K) such that
for all he N and y € K, with dist(Qs,, (y), K)<  we have the following local
higher summability:

J V| dz < ,y[pz(l—;) (J |vwh\f’dx) T pZ].
Qph (v) QQph (v)

It can be also shown that the dependence of v and 7 on [|wh || ;- (g is uniform
with respect to h, since {wy, }ren is locally equibounded in €.
Fix ¢t € (0,1). By a covering argument it follows that

r

[ wwrar<en t)v[pz(l_”) ( [ v dx)” +pz].
Bipy, (zh) By, (xn)

Rescale and write the estimate in terms of uy:

b B Th
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<cln,t,r, M’)7[1 + (@> ]

Yh

where M’ > 0 is an upper bound for {||us ||y q)tren. Using (3.19) we prove
our assertion. O

The last proposition that we need to prove Proposition 3.4.1 follows from the
previous result and is based on an iteration argument.

Proposition 3.4.5. Let K,~,0,0 be given by Theorem 3.4.4 and let (A, u) be
a solution of (P). Let y € K and denote

wp) = | IR0+ 1G,(Vu))ds + PAB). Vo< (0 .

Moreover, let € € (0,1) and 0 € (n — 1,n — €) such that there exists T € (0,1)

1 L
—CH( +5) T < 1% and ¢ < Set

satisfying l m

¢ = min{dist(y, 092), v, 77v0}.

If U(p) < &t for some p e (0,€), then
o (M)
W(n) <7 %p 1(;) , Ve (0,p]
In particular,
lim n' "W (n) = 0.

n—0

Proof. Let us assume that ¥(p) < &p" ! for some p € (0,€). Since ¥ is non-
decreasing, it suffices to show by induction on j € Ny that

wor (M)
W(n;) <vp 1<gj> :

where 7; = 7/p. Since we chose < 7, the inequality holds true if j = 0. Let
us assume that it holds true for j > 0. By induction we state

\II(T]) ;i o—n+1
—r <”Y(—] <7
i P

that is U(n;) < 777?_1. If 0W(n;) > 17, thanks to the choice § < dist(y, 09),
we can apply Theorem 3.4.4 and the inductive hypothesis in order to obtain

o ot (M _ e Mirn )’
V() < 77U(n;) < 77p 1<gj) =p 1<’TH>.

If 0W(n;) < nj, then we can state

%<rypn1(n‘7+l) ‘
p
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Indeed

n O —n o-—n+l, n—o nj—oj—o
NP _ TP Mj+1 _ T P < T(nfcr)j <1
)

V0" "0 "0

since £ < 77v6. Finally, using that ¥ is non-decreasing, we have
n; n—1 [ Mj+1 7
W(njin) < Wny) < 5 < 1(%) ,
which concludes the proof. O

Finally, we can prove Proposition 3.4.1 choosing
¢ = min{dist(K, 0Q),~y, 776},

where v, 7, 0,6 are given by Proposition 3.4.5.

3.5 Proof of the main theorem

In this section we give the proof of Theorem 3.0.1, which makes use of the
results we obtained in the previous sections.

Proof of Theorem 3.0.1. The assertion 1. follows from Theorem 3.3.1. Let us
prove the statement 2.
Define

Qq {y eQ : lim pl_n[JBp(y) [, (Vi) + 1aG, (Va)] di + P(A; Bp(y))] _ o}.

p—0

Thanks to Proposition 3.4.1 we infer that )y is an open set. Setting

0A = {:1: e : limsupw > O},

-1
p—0+ p"

by De Giorgi’s structure theorem (Theorem 1.1.13) it holds that P(A;-) =
H" 1L OA. Tt is clear that Qg < Q\0A.

Let = € €. Since € is an open set, choose p > 0 such that B,(z) < . By
the isoperimetric inequality, we infer

min{|A 0 By(2)], |B,(x)\Al} < e(n)P(A; By(2)) 7T =0,

which implies that 14 = 1 a.e. in B,(x) or 14 = 0 a.e. in B,(x). Define the
open set 3
A={reQy: 14=1a.e. in a neighborhood of x}.

Let us prove that H”_l((Q\QO)AéA) — 0. Since 04 Q\Qy, it is clear that
HH(OA\(2\Q)) = 0. Tt remains to prove that H" ! ((Q2\Q)\dA) = 0. Define

5 = {y <0 s mswpp ™ [ [V + 1,Gy(Va)] do > }
Bp(y)

p—0F
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for € > 0. It is clear that

(\QN\A < | S.. (3.25)

e>0

Using a density argument, thanks to Lemma A.1.9 we can estimate

SH(S.) < c(n)f [F,(Va) + L4y (V)] d, Ve > 0.
We deduce that H"1(S.) < +oo. It implies that |S.| = 0 and so, from the
previous inequality, we finally infer that H"~!(S.) = 0, for all € > 0. Thanks
to (3.25) we prove our claim.
Let us prove that A and A are equivalent. One one hand, by the definition of
A we have

Al :andx: A Al
A

which implies that |A\A| = 0; on the other hand, since H" '(Q\)
= H" 1 (0A) < +o0, we deduce that |[Q\Qy| = 0 and hence

|A\A| = |(A\A) ~ Q| = j lydx = 0.
Qo\A
Since |[AAA| = 0, we infer that P(A; Q) = P(A; Q). Moreover, since Q ndA ¢
MN\Qo and H" 1 ((Q\Q0)APA) = 0, we have

HHQ n 8A) < HHQ\Q) = H"1(0A) = P(4;Q) = P(4;Q).

The converse inequality can be obtained from the following one that holds
true for any Borel set C' = R™ and can be obtained by De Giorgi’s structure
theorem:

P(C; Q) <H" 7 QnoC).
Choosing C' = A, we conclude the proof. O
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Chapter 4

The one-dimensional case

In this chapter we study a one-dimensional and two-dimensional frustrated
lattice system, whose spins take values in the unit sphere in R3. In the one-
dimensional case, we set the problem in the lattice

r-zon{[] -+ )

where Z, = {i € Z : M\yi € I} and I := (0,1) and {\,}nen is a vanishing
sequence of lattice spacings. The set Z™(I) is the domain of the spins.
Fixing vy,v9 € S? and R € (0,1), we define the two circles centred in

Ui\/l—RQI
S; = {w €% [T (W) = R, w-v; > O}, for i € {1, 2}.

We assume that for 0 < R < Rpjar 1= 4/ 1’”2—“’2 so that the sets S; and Ss are

disjoint. The set S; U Sy is the codomain of the spins.

We introduce the class of functions valued in S; U S5 which are piecewise
constant on the edges of the lattice Z, (I) and satisfy a joint boundary condi-
tion:

PC,, = {v: I — 8108y v(t) =v(\i) for t € A\, [i + [0,1)],
'UO . Ul = U[ﬁjfl . Ulﬁj}

We identify a piecewise function v: I — S; U Sy with the function defined on
the points of the lattice given by i € Z,(I) — v® := v()\,i). Conversely, given
values v' € S} U Sy for any i € Z,(I), we define v: I — S; U Sy by v(t) := v
for t € \,[i + [0, 1)].

We deal with an energy &,: L®(I;R?) — (—o0, +o0] defined as

gn = En + Pna
with

Z Ao (=0 - it 0 _ui+2) for u € PCy, ,
E,(u) = < iezn(1)
Too for ue L®(I;R3\PC,,,,
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Figure 4.1: S; and S5 circles of anisotropic transitions.

and
Py < { MDA foruePC,
i for u & (L R)\PC,

where a € (0, +0), {k,} < R* is such that k, — +00, as n — +oo. The map
A: PC,, — {v1,ve} projects the spin on the circles and is defined as follows:

Uy if u(t) € S,

. (4.1)
Vg otherwise.

We explain here the structure of the chapter and how we carry out our
analysis. In Section 4.1 we characterize the minimizers of the energy &,. We
point out that they are confined in only one circle of magnetic anisotropy S;
and two different situations may occur:

e for o > 4, minimizers are constant;

e for a € (0,4), minimizers are made up of rotating vectors with a constant
angle ¢ = + arccos(a/4).

In the latter case, a symmetric and rigid structure for minimizers arise:
they rotate with a signed constant angle, which determines their chirality. If
minimizers rotate clockwise they are said to have a positive chirality; if they
rotate counterclockwise they are said to have a negative chirality.

In the next sections, we are mainly interested in computing the amount of
energy the system pays to allow general spins to break the simmetry of mini-
mizers. Hence, we concentrate our analysis in two directions. One one hand,
we compute how much energy is spent to allow spins to switch their chirali-
ties (chirality transitions). On the other hand, we calculate the quantity
of energy needed to let spins “jump” from one magnetic anisotropy circle to
the other one (magnetic anisotropy transitions). We achieve our pur-
pose in the next sections by means of a techinque based on the notion of
['-convergence.

Section 4.2 is devoted to the computation of the I'-limit of the energy
&n. The convergence theorem can be obtained by means of an abstract I'-
convergence result proved in [3] (see Theorem 4.2.1). As a result of Theorem
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Figure 4.2: Magnetic anisotropic transitions.

4.2.8, the I'-limit of &,, does not provide a detailed description of the two fenom-
ena. This suggests that, in order to get more information, we need to consider
higher order I'-limits (see [10] and [11]). This is done in Section 4.3, where
we address to the same system, when it is close the helimagnet/ferromagnet
transition point as the number of particles diverges. This means that the pa-
rameter o depends on n and it converges to the threshold 4 from below, as
n — +oo. In this case, we call the energy E, as E". We expand

B = min BV + 3 (Ry); + V2A02 My,

J

where the functionals (R,); and H,, are defined in (4.21) and (4.22) respec-
tively. The two fenomena can be detected at different orders and scales. In
Subsection 4.3.1, we study the first order I'-limit, that is the asymptotic be-
havior of a (rescaling of the) new functional H"/ defined as

H" = EM — min EM .

Rescaling H" by \,, magnetic anisotropy transitions can be made by the spin
on a scale of order A\, k,, for n large enough (see Theorem 4.3.2).

In Subsection 4.3.2, in order to continue the analysis at the next order, we
restrict every spin w on some intervals /; that partition / such that on Z,(I;) it
takes values only in one S;. We need to modify such restrictions u;; in a way
that they are well-connected on the boundary of the interval I;, denotating
them as iy, .

The functional H" can be split in two terms:

HJY () = 33 MM, (i) + Y (Ra) ()

As long as we consider a remainder (R,,); for each modification of the spin, the
analysis of the global process can be localized in each S; with the associated
energy MM, (tz;). The two sums need to be rescaled in different ways, being
the first sum a higher order term. Thus, at the second order we deal with the
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rescaled energy

1
Ho(u) = ——= | Hy(u) — R,);(u
(@ ﬁwl -3 | = ma

We transpose the problem valued in the 3d-sphere into a finite number of
problems valued in 2d-circles with functionals M M,, of Modica-Mortola type,
thus generalizing the result contained in [17]. In each S; several regimes are
possible (see Theorem 4.3.5). For n large enough, the spin system makes a
chirality transition on a scale of order \,/+/d,. As a result, depending on the
value of lim,, \,,/v/9,, := [ € [0, +o0] different scenarios may occur. If [ = +o0,
chirality transitions are forbidden. If [ > 0, the spin system may have diffuse
and regular macroscopic (on an order one scale) chirality transitions in each S;
whose limit energy is finite on H'(I;) (provided some boundary conditions are
taken into account). When [ = 0, transitions on a mesoscopic scale are allowed.
In this case, the continuum limit energy is finite on BV (I;) and counts the
number of jumps of the chirality of the system.

ZMM (@iy,).

4.1 Minimizers of the energy

In order to characterize the minimizers of our energy &,, we define the auxiliary
functional H,: PC,, — [0, +0) as

_/\Z

H,(u) := iezn(I)
+00 for ue L(L;R3\PC,, .

2
l+1—|—u for u € PC,,,

If u e PCy,, since |u'| = 1 for all i € Z,(I), thanks to the boundary condition
contained in the definition of PC,, , we may rewrite the energy &, in terms of
H,, as

En=H,+PFP,—\, (1 + —) #I™(I). (4.2)
Thanks to this decomposition, we characterize the ground states of E,,.

Proposition 4.1.1. Let 0 < a < 4. Then there exists ky = ko(n,a) > 0 such
that, for k, = ko, we have that

2

min & (u) = ~AHL(I) [RQ <1 + %) + (o —1)(1 - RQ)].

ueL®(I;R3)

Furthermore, a minimizer u, of E, over L®(I;R3) takes values only in one
circle Sq, with d € {1,2}, and satisfies
i+l i+2

, a , a
7 _ i _ . n
MUy " Tyt = - and Tty - T = 5 1, VieZI"(I).
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Proof. We start observing that there exists ko = ko(n, a) > 0 such that
E,(u) < M\kolvy —va|, VYue PC,,.

Assuming that k, > ko, we get that E, < P, on PC,,. Thus

min  &,(u) = min E,(u).
ueL® (I;R3) n( ) u€PCy,, n( )
u(I)cSy oru(I)cSo

We prove that

2
min E,(u) = =X\ #ZI"(I) [R2 (1 + a_) + (a—1)(1— RQ)].
uE'PC,\n 8

u(I)cSyoru(l)cS2

Fix d € {1,2} and consider u,, € PC,, such that u,(I) < S;. By geometrical
and trigonometric identities we deduce that

i ikl _ 2 2 i itl
u, - u,  =1—R"+ R°mu,, - 7u,",

i i
where 7u,, := m,Lu;,. Thus

E,(u,) = Z Mo[—amul, - mult + wul, - wul ] — (o — 1)(1 — RHNHZ(])

n n

~

=: B, (u,) — (a — 1)(1 = RN #Z"(I). (4.3)

Now we minimize E,, following the same argument in [17]. We remark that

~

1 : ) .12
En(u,) = 5)\71 Z ‘ﬂu;” — %Wu”l + mul | —
()

n

R? (1 — %2) AT (D)

iE€L"
= H,(u,) — R? (1 — g) M Z(T). (4.4)
Fix ¢ € [— o g] so that cos ¢ = §. We may assume for simplicity of notation

that vy = e,,. Let
ul, = (cos(¢i),sin(¢i), V1 — R2), Vie Z,(I),
so that wu!, = (cos(¢i),sin(¢i),0). By trigonometric identities, we have that

. . o . )
mul, 4+ mult? = 2cos ¢ = Ewujjl, VieI"(I).

Remarking that ﬁn(un) = 0, we combine the previous identity with (4.4) to

get that
2

. -~ _ P2 N Oé_
ey E,(u) =—R <1 3 >)\n#I”(I).
u(I)c Sy oru(l)cSs
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The computation of the minimum follows from (4.3).
Consider now a minimizer u,, € L®(I;R?) of &,. For k, > kg, it must hold
that u,, € PC,,, u,(I) = Sy, for some d € {1,2}, and

n
2

E,(u,) = R (1 - %) A# (D),

thus implying that H,(u,) = 0. It follows that

U "

. 2 . .

o= Z(wul + Tt Vie IM(I).
a

Squaring both sides of the previous equality, we infer

a2

i it2 _
U, * T, ~ = 3 1.
Hence
. . . . . 2 . . Q
7 i+1 _ 7 7 +2 7 +2\
TU, * TU, = —TU, - TU, + TU, = = —(1+7run-7run ) = —,
o o 4
which concludes the proof. O

Remark 4.1.2. The case o > 4 1s trivial. Indeed, the ground states are all
ferromagnetic, i.e. u' = u € Sy U Sy for all i € Z,(I). Denoting with gle=v
the energy of formula (4.2) for o = 4, we have that, for all u € PC)

n’

En(u) = E"V(u) — Ny (o — 4) Z u' - utth

n
€™ (I)

By the above proposition, the energy &Y is minimized on ferromagnetic
states, which trivially also holds true for the second term in the above sum.
The minimal value of £ is

min &, (u) = =\, (a — 1)#Z"(I).

ueL” (I;R3)

4.2 Zero order ['-convergence of the energy &,

4.2.1 An auxiliary abstract theorem

Here we cite an abstract I'-convergence result proved in [3] that will be ap-
plied later on in this subsection. For this purpose, we introduce the following
notation. Let K < RY be a compact set and for all £ € Z let f¢: R?Y — R be
a function such that

(H1) f&(z,y) = f~*(y,x), for any (z,y) € R*Y;

(H2) for all £ € Z, fé(x,y) = +oo if (z,y) ¢ K?;
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(H3) for all £ € Z there exists C* > 0 such that

sup |f¢(z,y)] < C¢ and ZC’E < +00.

(zy)eK? ¢ez

For any n € N we define the functional space
D,(L;RY): ={u: R—R"Y: uis constant in A, (i + [0,1)) for all i € Z,(I)}

and the sequence of functions Fj,: L®(I,RY) — (—o0, +o0] as follows:

Z Z A fE(ul, u' ™) for u e D,(I;RY),
F,(u) := < €€ZierS (1)
+00 for u e L®(I;RN\D, (I;RY),

where RS(I) := {i € Z,(I): i + & € Z,(I)}. For any open and bounded set
A < R and for every v: Z — R, we define the discrete average of v in A as

(V)14 1= Z vl
zeZmA

Theorem 4.2.1. Let {f*}cez a family of functions that satisfies H1, H2, H3.
Then the sequence F, converges, as n — +0o with respect to the weak-star
topology of L®(I;RY), in the sense of the T'-convergence to

Lj%mmﬁndt forue L2(I: co(K)),
for uwe L®(I; RN )\L®(I; co(K)),

where from: RY — R is given by the following homogenization formula:

Fron(2) = lim tim inf 4 ST S F(8), 0(5 +6) 2 @haon € Bz )

—0 k—+o0
’ ¢€Z e RE((0,k))

4.2.2 The zero-order ['-limit

Before stating the main result of this subsection, we need to introduce some
notation. We call a collection C of subsets of an open set S an open partition
of S if and only if C does not contain empty sets and

?:Ua CynCy=¢, YC,CyeC.

CeC

We observe that if u € PC,, the interval I can be partitioned in regions where
the function u takes values only in one of the two circles. In other words, there
exist M(u) € N and a collection of open intervals, {If}eq1,... n(u)y, Such that

-----

{I }jef1,...M(w)} is an open partition of I, (4.5)
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u(t) e Sq, VeIl Vje{l,...,M(u)}. (4.6)
These two properties imply that this partition is unique. We observe that
D I
M) = LA
|v1 — vy

The following definition will be useful throughout the section.

Definition 4.2.2. Let uw € PC,, . We say that
Colu) = {I|j € {1,..., M(u)}}

is the open partition associated with u if M(u) = w + 1 and the

|v1 —v2

-----

In view of the study of the I'-convergence of the energy &, defined in (4.2)
at the zero order, we consider the space

D= {u e L®(I; co(S1) U co(Ss)) -

3C,,(u) finite open partition associated with u} (4.7)

We observe that A(D) = BV (I; {v1,v2}), where A is the function defined in
(4.1). The following convergence law will be used.

Definition 4.2.3 (Convergence law). Let {fp}nen € © and f € ©. We say

that f, L-converges to [ (we write f, L ofe D) as n — +oo if and only
if fo = f in the weak-star topology of L*(I;R3) and A(f,) — A(f) in the
weak-star topology of BV (I;{vi,v2}), as n — +o0.

Remark 4.2.4. We observe that the convergence law introduced in the defi-
nition above is induced by the topology on ® defined as the smaller topology
containing the set

{A: A is open set of weak-star topology of L*
or of the BV (I;{vy,v2}) topology}.
Firstly, we study the I'-convergence of the energy F,,. The following theo-

rem relies on a straightforward application of Theorem 4.2.1.

Theorem 4.2.5. The sequence E,, converges in the sense of the I'-convergence
to the functional

B(u) := J;fhom(u(t)) dt if ue L*(I;co(S1 U S7)),
+00

otherwise,
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with respect to the weak-star topology of L°(I;R3), where from: co(Sy U Ss) —
R s defined as

p—0 k—+00

1 = o o
Jrom(2) = lim lim z inf {Z [—ow’ - uh +ut - ut?] s (w)r o € B(z, P)} .

i=1
(4.8)
Proof. The result immediately follows applying Theorem 4.2.1 to
—Su-v if €] =1,
fou,v) =1 Ju-v if [¢] = 2,
0 otherwise,
extended to +oo outside K, where u,ve K := 57 U Ss. O

Remark 4.2.6. The function from defined in (4.8) does not depend on the
parameter \,. Therefore, in the theorem above the I'-limit does not depend on
the choice of \,.

Remark 4.2.7. An analogous statement of Theorem 4.2.5 can be obtained
if the functional E, is defined only in L*(I;S;) for some i € {1,2} (see [17,
Theorem 3.4]). The I'-limit has the same form and it is finite on L*(I;co(S;)).

The following theorem is the main result of this section.

Theorem 4.2.8. Assume that there exists lim M\,k, =: n € (0,+00|. Then

n—-+4awo
the following I'-convergence and compactness results hold true:

(1) if n € (0,+00), then &, converges in the sense of I'-convergence to the
functional

L From(u(®) dt + g DA@)|(I)  ifueD,

+00 otherwise,

E(u) =

with respect to the L-convergence of Definition 4.2.3, where from 1s de-
fined in (4.8) and ® is the set defined in (4.7). Moreover, if {u,}nen ©
L*(I;R?) satisfies

sup &, (uy,) < 400,
neN

L
then, up to a subsequence, u, — u € ®;

(i1) if n = +oo, then E, converges in the sense of I'-convergence to the func-
tional

L From(®)) dt ifue L2(I;co(S1)) or ue L2(I; co(Sy),

+00 otherwise,

E(u) =
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with respect to the weak-star topology of L®(I;R3), where from is defined
n (4.8). Moreover, for all {u,}nen © L®(I;R3) such that

sup &, (uy,) < 400,
neN

then, up to a subsequence, u, — u for some u € L®(I;co(S))) or u €
L*®(I; co(Ss)).

Proof. (i) We start to prove the compactness result. Let {u,},en © L%(I;R3)
such that
sup &, (u,) < H, (4.9)

neN
for some H > 0. Thus we have that {u,},en = PC,,. Moreover, by the
definition of the space PC,,, we have that, for all u, € PC,, , there exists
a finite open partition Cp(un) = {(I{)n|j € {1,..., M(u,)}} associated with
Up, where M(u,) = 2AwII) | 1 ¢ N By (4.2) and by the definition of the

[v1—v2|
function A, we compute

Enlttn) = Ho(un) + Pro(tin) — A (1 + —) #T7(I) (4.10)
> P, (uy) — M (1 + —2> 4T7(])

2

= kpn | DA(u)| (I) = A (1+ —) #I"(I)

> —C(a) + kA (M (u,) — 1)|vg — U2|7

for some constant C' = C(«) > 0, where the last inequality is obtained by
observing that \,#Z"(I) = A\, {ﬁJ — A, — 1 as n — +oo and thus it is
bounded. Therefore, by (4.9) and (4.10), we obtain that

sugM(un) < C(n, H,a, vy — vg)).

ne
Hence the sequence {u,},en satisfies the hypotheses of the Proposition C.0.3,
and so we deduce the existence of u € ® such that, up to a subsequence,
U 5 .

Now we prove the liminf inequality. Let {u,}nen such that u, LueD as

n — 4o, i.e. u, — uin L® and A(u,) — A(u) in BV(I; {v;,v2}). By the
liminf inequality of Theorem 4.2.5 we have

liminf £, (u,) > thom(u(t)) dt. (4.11)

n—+00

On the other hand, by the lower semicontinuity of the total variation with
respect to the convergence in BV (I; {vy, va}) (see Proposition 1.1.26) we have

liminf P, (u,,) = hm mfk M| DA(un) (1) = n|DA(w)|(1). (4.12)

n—-+0o
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Hence, by (4.11) and (4.12), we obtain

1
n—+oo n—+o n——+0o0

lim inf &, (1,) > liminf Ep(w,) + liminf Py (uy) > j From(u(t)) dt + 5| DA)|.
I

We finally prove the limsup inequality. Let u e L*(1;co(S1) v co(Ss)). We
may assume that v € © and furthermore, by a standard density argument and
the locality of the construction, we may assume that

u(t) = {al it t e [0,1],

ay  ifte(3,1],

where a; € co(S1) and ay € co(Sy). For j € {1,2}, let {vi},en = L*(I;S))
be the recovery sequence for the constant function a; obtained by the I'-
convergence result in Remark 4.2.7 with 2}, as the spacing of the lattice (see
Remark 4.2.6), i.e.

a(up)" - (u)™ 4 ()" (o) 7]

|25, ]2
from(a;) = lim E,(v}) = lim 2), > [-

n—+0o0 n—+00 P
(4.13)
We define
w(t) = vl(2t) ifte [0, %],
vi2t—1)  ifte(3,1],
and compute
el ‘ , ‘ ,
En(un) = 3 D 20 [—ale) - (o) (0) - (03) ]
i=1
NENE | |
+5 2 [—a(v)" (o)™ + ()" ()]
i=1
Sang o
+ Z Ao [—aul, - ultt 4+l - ul (4.14)
. 1

Z A [—ody - w7 4wl - ul7? ]| < Cla)A, > 0, asn— +oo. (4.15)
1

n
i:lan_l

By (4.13), (4.14), (4.15), we obtain

By (u,) — fhom(“l)‘;fhom(@) _ L From(u() dt, asn — +oo.  (4.16)
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Observing that for all n e N
(%1 ifte [0, ],
A(uy,)(t) = A(u)(t) =
(12)(0) = A1) { e
then |DA(u,)|(I) = |DA(u)|(I) = |v1 — ve| and
lim P,(u,) = liIE Ankn|vr — vo| = n|vy — val. (4.17)

n—-+00

N[

Combining (4.16) and (4.17), we deduce the limsup inequality.
(ii) Let us prove first the compactness result. Let {u,}n,en < PC,, such that

sup &, (uy,) < H,

neN
for some constant H > 0. With the same compactness argument used in the
previous case, we deduce the existence of u € © such that u, L wasn — +o.
By the lower semicontinuity of the map

u— |DA(u)|(I)

with respect to the L-convergence (see Definition 4.2.3), we get

0= min S E > i g UBnln) + dka DA ()
. Cla)
> hm}rg)f " + |DA(u,) (1) | = |DA(u)|(1),

hence u € L*(I;co(S1)) v L*(I;co(Ss)).

Let us prove the liminf inequality. Let u,, — u and suppose that

liminf &, (u,) < +o0.

n—+0o
Up to the extraction of a subsequence, we may assume that the previous lower

limit is actually limit. By compactness, we infer that wu,, Louer® (I;co(Sh)) v
L*®(I;co(Ss)). Hence, by Theorem 4.2.5, we obtain

liminf &, (u,) = liminf E, (u,) = J from(u(t)) dt.
I

n—-40o0 n—-40oo

We finally prove the limsup inequality. Let w € L*([;co(S1)), being the case
u € L®(I;co(Sy)) fully analogous. The recovery sequence obtained from Re-
mark 4.2.7, {u,}nen © L®(I; S1), satisfies the limsup inequality. ]

4.3 First and second order ['-convergence of
the energy &,

In this section we study the system when it is close to the
helimagnet /ferromagnet transition point as the number of particles diverges.
In what follows we denote «,, := 4(1 — §,), where 6, > 0 and §,, — 0 as
n — +00.

Regarding the notation, in this section we denote with d a number that
can be 1 or 2. This number stands for the index of the two circles S; and S,.
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4.3.1 First order I'-convergence of the energy &,

We define the renormalized energy and introduce a new functional whose
asymptotic behavior will better describe the spin’s magnetic anisotropy tran-
sitions. More precisely we define

EM . LP(I;R?) — (—oo,+o0] and HM: L®(I;R?) — [0, +oo]

as
An Z [—au’ - u™h - ut? if ue PC,,,
Eﬁf(u) = ieZn (1)
+o0 otherwise,
L a 2
—)\ Z TS if ue PC,,,,
hf ._
Hn (U’) T i€ (1
+o0 otherwise.

By (4.2) we observe that

2
HM (u) = EM(u) + A\, (1 + %) #17(I).
The functional we are interested in is
GM (u) = E" (u) — min B

At this point we need to introduce a modified spin chain in order to under-
stand better the asymptotic behaviour of the renormalized energy G"/. Let
u € PCy, and Cp(u) = {If|j € {1,...,M(u)}} the open partition associated
with u, with Tj.l = [(t9)1, (t9)2]. For simplicity of notation, henceforth we omit
to write the superscript d in the next formulas. We define the auxiliary func-
tion a[j . Tj = [(tj)la (tj)g] i Sd as

AL () = {W[(tj)l,(tm)(f) it te [t (E)2), (4.18)

w; ift = (ts)g,

where w; € Sy is a vector such that the following joint boundary condition is
satisfied:

(t5)2 ()1 i
ukn_l-wjzukn cu T T
We split the energy G/ as follows:
M(u) M(u)—l
GM (u) = EM (u)—min E" (u Z M M, (i, ) Z (R,)j(u), YuePCy,,
j=1 j=1

(4.19)
where

2
MM, (ur;) = Mo [—anﬂz z+1 + uI z+2] + A\n ( gn) #7"(I;)
1€L

"(15)



4.3. First and second order I'-convergence of the energy &, 152

is the local energy associated with the modified spin chain z;, and

— apU An U M+ U A U M F U U An

()2 ()2 ()2 ()2 (tj)2 1 (tj)2
. - +1

(AT A (tjw(“))g_z (fM(m)Q (iMm))z_Q
+u >n W —i—mu An U An —Uu A “ WM (u)

2
«

+ \#HI'()(1 — R?) <an —2— §">
is the remainder for each modification. Note that (R,); consists of three ad-
dends: the first sum is related to the interactions between spins with values
in two neighboring intervals I; and I;.4, for j € {1,..., M(u) — 1}, the second
sum refers to the last interval Iy;(,) and third one is a corrective constant.

Remark 4.3.1. For all u € PC,, we have that MM, (i) = 0 for all j €
{1,..., M(u)}, since it is simple to verify that

~ 1 ~j Oy o ~ |2
MM, (T,) = =\, U — Sy

Theorem 4.3.2. Assume that there exists lim M\, k, =:n € (0,+00) and let

n—-+wo

R :=inf {lgili&f+ s Auy,) — vl 1y +valyn e

Then the following compactness and I'-convergence results hold true:

(i) (Compactness) if for {u,}nen = L*(I;R3) there exists C > 0 independent
of n such that
GM (1) < M Po(up) < \C (4.20)

then, up to subsequence, A(u,) — v € BV (I;{vi,v2}) as n — +o in the
weak-star topology of BV (I;{vy,v2});

(11) (liminf inequality) For allv € BV (I;{vy,v2}) and for all {u,}nen < PCy,
such that

A(u,) = v, asn — 400 in the weak-star topology of BV (I;{vy,v2}),

and
GM (1) < My Po(up) < M\C,  for some C > 0,
then s n
lim inf — (ttn) > R| ol (1),

n—+00 /\n - |U1 - ’U2| ’
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(111) (limsup inequality) For all v € BV (I;{vi,vs}) there exists {u,}nen <
PC., such that

A(u,) = v, asn — 400 in the weak-star topology of BV (I;{v1,v2}),

and
GM (1) < MpPo(up) < M\C,  for some C > 0,
satisfying
hf
iy O (un) _ 1DV ()
n——+0w An |1)1 — ’U2|

Proof. We start proving (i). Since n € (0,400), by the second inequality
of (4.20), we deduce that the sequence {|DA(uy,)|(I)}nen is bounded. Ac-
cordingly the sequence {A(uy,)}nen is bounded in the space BV (I;{vy,vs})
(see Proposition C.0.3). Thus, up to subsequence, it converges to a function
v e BV (I;{v1,v2}) in the weak-star topology of BV (I;{vy,vs}).

Let us prove (ii). By assumption, { DA(u,)(I) }nen is bounded. Let C,(u,,) =
{(IH)nlje{l,...,M(u,)}} be the open partition associated with u,. By Re-
mark 4.3.1 and by the definition of R we have

hf M (un) MMn(?NLn d ) M (un)—1
lim inf M > liminf Sl + liminf R (un)
n—-+0o0 n n—4oo . n n—+00 < )\n
J=1 7=1
M(un)—1
.. R, (uy)
=1 f
mint 2, 7,
D I D I
> Yim inf R DA o pDAWIT)
n—+00 |U1 — U2| |U1 _ U2|
where in the last step we have used that M (u,)—1 = PAwID 414 the lower

semicontinuity of total variation (see Proposition 1.1.26)“.)1 "

We finally prove (iii). By a standard density argument we can choose u such
that A(u) = v1lg1y + v2lj1 ). By the definition of R and by [17, Theorem
4.2] we gain the existence of {u,},en such that

(), (un)

S — R asn — 400, Aun) 2% A(u) asn — +o0,

U”I]‘(O,%) € Sl, Unﬂ_[%’l) € SQ, < C

3 ’ 3
A 072 Anlr
Therefore nr
oG IDAWI)
noto A, U1 — Vo
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4.3.2 Second order ['-convergence of the energy &, as
n — +0o0
At the second order we split the global functional on the 2-dimensional sphere
in a finite number of functionals localized in circles, where we repeat the anal-
ysis lead in [17].
We need the following theorem proved in [17, Theorem 2.2], which states

that the discrete functional F,, has the same I'-limit of the Modica-Mortola
functional.

Theorem 4.3.3. Let F,,: L*(I) — [0, +0) defined as

ut — ot L 212 : L@l
F,(u) = gnzil)\n . +%Zi:)\n[1—(u)] if ue C,(I;3'),

+o0 otherwise,

. o . €n
where &, and 2= are infinitesimal, lim —~ =1 and
&n n—+w 1,

Co(I;8Y) = {u: Z,(I) —» $' : u satisfies (0.16),
u is constant on A\, (i + [0,1)), Vi € Z,(I)}.

Then, with respect to the L'(I)-convergence,

2 Du|(I fue BV(I;{-1,1
F—han(u): 3| u|( )’ qu ‘ ( 7{ ) })’
n +o0 otherwise.
Let w = (w*,w?,0), w = (w*,w?,0) two vectors of R3, we define the func-
tion
x[w, W] := sign(w'w? — w?w).
For each S; we define a convenient order parameter.

Let u € PC,,. We associate each pair @', ﬂ’;{l (see (4.18)) with the cor-
F

responding oriented angle 0% € [—m, 7) with vertex the center of the circle S;
given by

i [ ~i\ il ~itl
91j =) [Uff — ”Ud(ul;l%u[jl — Wvd(uljl )]

1 . o v v
X arccos (E(u}]d — ﬂvd(u}f)) . (uzgl — ﬂvd(ugl)))

Furthermore, we set

and
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d d
ifteAfi+[0,1)),ic {%ji...,“ﬂ’z —1} and j e {1,...,M(u) — 1}. Note

An
that we may define a map

T,: ue PCy, — (w,Alu))

and denote PCy, := T,(PC,,). We observe that if b = T, (u) = T,(v) then

u and v take values in the same S; and differ by a constant rotation so that

H (u) = H} (v) and the same holds for the functionals (R,)?, M M,, P,.
Therefore, with a slight abuse of notation, we now regard H, (R,,);, M M,,, P,

as functionals defined on h € L'(I; R x {vy, vp}):

HM(u) if hePCy,
+o0 otherwise,
R, (u) if he PCy,,

+00 otherwise,

HM (h) = {
(Ry)j(h) := { (4.21)

MMn(a[d) if he 73(/2)\71,
MMy (hyp) = )

+o0 otherwise,
Pu(h) = Pu(u) if he PCy,,
! +00 otherwise,

for je{l,...,M(h)}, where h = T(u) and M (h) := M (u).
We want to study the convergence of the functional

B 1
NI

for h € L'(I;R x {vy,v2}). In order to establish the related result, we need a
notion of convergence.

Ha(h)

M(h)—1
[Hn<h>— S (Rash) . (422

Definition 4.3.4. Let {hy}nen < PCa, and h € L'(I;R x {vi,v5}). We say

that h, Lg-converges to h (we write hy, Lo, h) if and only if the following
conditions are satisfied:

e there exist {u,}nen < PCy, and a positive constant C' such that if C,(u,) =
{(IDnlje {1, ..., M(uy)}} is the open partition associated with uy, the
following two conditions are satisfied:

— hy, =T, (uy,) and P,(h,) < C;
— M(u,) > M eN asn — +oo;

- (I]‘-l)n — I;.l in the Hausdorff sense, as n — 400, for any j €
{1,..., M} (see Definition A.1.15);

o hnlgay, — hlgein LYILR x {vg}), an — +oo, for all j € {1,..., M}.
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Theorem 4.3.5. Assume that there exist lirf Akn = n € (0,+0) and
n——+0ao
An
[:= lim

n—to (26,)2

€ |0, +00]. Then the following statements are true:

(i) (Compactness) if for {hp}nen © LY(I; R x {v1,v5}) there exists a constant
C > 0 such that
Ha(hn) < Fu(hy) < C, (4.23)
then, up to a subsequence, h, Lo b asn — +00, where
—ifl =0, he BV(I;{—1,1} x {vy,v2});
— ifl€ (0,+00), hypa € Hi . (I5 R {vr, v9}) forallj e {1,..., M(h)};

— if l = +oo, h is piecewise-constant with values in R x {vy, va}.

The space H: ((a,b); R x {v1,vs}) is equal to

Iper|

{he H ((a,b); R x {v1,v2}) : |w(a)| = [w(b)| where h = (w, A(u))};

(i1) (liminf inequality)

= Ifl =0, for all h = (w, A(u)) € BV(I;{—=1,1} x {v1,v2}) and for
all {hy}nen © PCy, such that

h 22 he BV(I;{—1,1} x {v,v2}), asn — +oo0,

and
Ho(hy) < Po(hy) < C, (4.24)

for some C' > 0, then

, M )
N = 52 :
I}Lrﬂi&fH"(h”) > 3R ]; | Dw] (I5).

— Ifl € (0,+), for all h = (w, A(u)) € L"(I; R x {vy,v2}) such that
hjja € H‘lper‘(_f;-l,]R X {vy, vo}) for all j € {1,...,M(h)}, and for all

{hn}nen © PC. such that

L
hy, =% h, asn — +oo0,

and satisfies formula (4.24), then

M) T
lim inf H,(h,) = B> ) [7L

n—+0o “ .
7j=1 J

(w?(z) — 1) dz + zf

I;

(w'(z))? da:] :
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— If Il = 400, for all h piecewise-constant function with values in
R x {vy,ve} and for all {h,}nen € PCy, such that

L
hy, =% h, asn — 400,

and satisfies formula (4.24), then

liminf H,,(h,) = 0;

n—+00
(11i) (limsup inequality)

—If 1l =0, for all h = (w, A(u)) € BV (I;{—1,1} x {v1,v2}) there
exists {hptnen < PCy, such that

L
hy, =% h, asn — +oo0,

satisfies formula (4.24) and

4 M
lim H,(h,) = gR2 > 1Dw| (I).
j=1

n—+a0

— Ifl € (0,+00), for all h = (w, A(u)) € L'(I; R x {vy,v2}) such that
by, € HY (IR x {wy, o)) for all j € {1,..., M(h)}, there exists

per|

{hp}nen © PCy, such that

Lo
h, — h, asn — 400,

satisfies formula (4.24) and

lim 2, (hy) = B2 f [%J} (w2(z) — 1)2dz + zf

n—+0o00
j=1 j I;

(w'(x))? d:v] :

— If | = 400, for all h piecewise-constant function with values in
R x {vy,ve} there exists {h,}nen < PCy, such that

hy 25, asn — +oo,
satisfies formula (4.24) and

lim inf H,,(h,) = 0.

n—+00

Proof. We prove the statement only in case [ = 0, being the other cases fully
analogous. We start proving (i). By formulas (4.23), (4.19) we infer

MM, (hojrs) < M6iC, forall j € {L,..., M(h,)} and n e N.
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It is easy to see that, up to subsequences, M(h,) is independent of n € N
and that the intervals (If), — I; = (t;_1, t;) in the Hausdorff sense (it may
happen that some limit intervals are empty). In the following computations
we drop for simplicity the dependence on n writing I¢ in place of (I),. If
M =1, the proof can be led exactly as in [17, Theorem 4.2]. Let us assume

that M > 2. By the definition of @’ nid (see formula (4.18)), observing that

01‘
~ ~ I
1— -0 =9oR?*sin? | =2
nij 2 )’

Id

1—al -2 = R?[1 — cos (6, + QZH)],

d d —
nlj I

M
DRI = #IM(I) - M — 1,
j=1

we gain

a'?z n < n( 7d
+A< g)#z +A1—anZHJ (19
RQ < )\ 2 2 611] 91 01+1
— Z " @, sin <7> [1 — cos(0. + )]
=1 iezn(1¢
2
+)\n<1+% LT(T) + (1 — ) (FZ"(I) — M — 1)

where we used that M > 1. Repeating the same computations shown in [17,
Theorem 4.2], we eventually obtain

D MM,(@, ) (4.25)
2#?% Z}&{%H@HJ—JT+O—WMM@E—w%f}

If £ > 0 is sufficiently small we have that I¢ := (t;_1 + ¢, t; — &) < (I{),, for
all n € N, then we obtain that

MM, (1) < M6 C
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and the formula (4.25) holds with I5 in place of I{. Therefore, by Theorem
4.3.3, {wnl]_];? }nen, up to subsequence, converge in L' to w € BV(I;). Thus
we deduce the existence of h € BV(I;{—1,1} x {vy,vs}) such that h, :=
(wn, A(un)) L0 has n — +oo.

Now we prove (ii). Let h = (w, A(u)) € BV (I;{-1,1} x {v1,ve}) By
Definition 4.3.4 we have that, up to a subsequence, M(h,) is independent
of n and for e > 0 sufficiently small If := (t; + ¢, t; ;1 —e) < (I), for all
jef{l,...,M(h,)} and n € N, where (¢;, t;11) = I;. By (4.19), we have

IVIATN

lim inf H,, (hy) = lim inf 2= .
n—+0 n—+aw \@)\n&%

4 M
2 5
= —3R jzgl |Dw| (Ij),

where in the last step we have used the I'-liminf inequality of Theorem 0.0.11.
Letting e — 07, we obtain the liminf inequality.

We finally prove (iii). Let h € BV(I;{—1,1} x {v1, v2}). We can find
M > 0 and an open partition of I made by the intervals C = {I;};eq1,.. 1
such that h;, = (2;,7;) for some U; € {v1, v} and z; € BV (I;;{~1,1}). For
all j € {1,..., M} there exists a sequence {(2;)n}nen © L*(I;;R) (see Theorem
0.0.11), such that

MM, (hyr) 4
lim (z)n =2 in L'([;;R) and  lim —(lf) — “R*|D2|(I)),
n—-+00 n—+w ﬂ)\n(gg 3
(4.26)
where hyj1, = ((2)n,7;). By (4.19) and (4.26) we gain
M
Z MM"(h”"j) 4 M
lim H,(hy) = lim 2 = —R2N|D2| (1),
n—+00 n—+00 \/5)\’”57% 3 le

that is the thesis. O



Chapter 5

The two-dimensional case

In this chapter we analyze the two-dimensional version of the frustrated lattice
system investigated in Chapter 4. Therefore we need to introduce proper
notation and new definitions.

Let {\.}nen © R be an infinitesimal sequence of lattice spacings. The
energy of a given spin of the system u: i € Q n A\, Z? — S; U Sy is

i+25  Yn 41 igl?
u T = —u " +u

|

P, (u; Q) := A\kn | DA(u)[(2)

1
H,(u; Q) : = 5)\2 Z [
@)

(i,4)eI"

.. Ay ;s .
+ uz,j+2 _ _uz7]+1 + uz,]

under the assumption that the functional

is bounded. In the previous formulas, the frustation parameter «, of the
system is close to the helimagnet /ferromagnet transition point as the number
of particles diverges, i.e. «, < 4 for any n € N and «,, — 4, as n — +o0.
Furthermore, {k,} < RT is a divergent sequence and A: PC, (S; v S3) —
{v1,v2} is defined as

(O if U(t) € Sl,

Vg otherwise,

where PC,, (S; U S3) is the space of piecewise constants functions defined in
(5.1).

Also in the two-dimensional setting we can repeat the previous construc-
tion and restrict every spin u to some open connected sets Cs that partition
) in such a way that u takes values only in one magnetic anisotropy circle
S;. In order to avoid more complicated notation, we do not impose boundary
conditions on 0€2 and we will state the result by means of a local convergence.

While in the one-dimensional setting the partition associated with a spin
was made by intervals, which guaranty the compactness results stated, in this

160



5.1. Discrete functions 161

case the sets Cy could be very wild, as the spacing of the lattice shrinks. There-
fore, we require an additional regularity conditions for the components Cy, that
is the BV G regularity (see Definition 5.2.1). Such conditions are satisfied by
minimizing sequences, almost minimizing sequences and minimizing sequences
under volume preserving hypotheses for the domain with the same anisotropy
magnetization.

If the number of magnetic anisotropy transitions is finite, we may apply
the I'-convergence result proved in [15] in each component C; for the rescaled
functional

Hlus) = —— | 1,0, 0) ~ S R ()| = ——| Bt
V2,67 s V2,02 LS
as it is shown in Theorem 5.3.2.

This chapter is divided in three sections. In Section 5.1 we introduce dis-
crete functions on the equi-spaced lattice on R™ and the notion of discrete
derivatives. In Section 5.2 we introduce new notation and formulate the as-
sumptions of our problem. Finally, Section 5.3 is devoted to the proof of the
main result of this chapter (Theorem 5.3.2), where we compute the energy
that the system spends for any chirality transition that the spin chain of the
system makes.

5.1 Discrete functions

In this section we denote with d a number that can be 1 or 2. This number is
the index of the two circles S; and Ss.

Given i, j € Z, we denote with Qy, (,7) := (Aui, A\uj)+[0, A\n)? the half-open
square with left-bottom corner in (A,i, A,j). For a given set S, we introduce
the class of functions with values in S which are piecewise constant on the
squares of the lattice \,Z?%:

PCy, (S) :={v:R* = S : v(z) = v(\ui, \nj) for z € Qy, (3, 7)}. (5.1)

We identify a function v € PC,, (S) with the function defined on the points of

the lattice \,Z? given by (i, j) — v := v(A\,i, \,j) for 4,7 € Z. Conversely,

given values v/ € S for i,j € Z, we define v € PCy, (S) by v(z) := v* for

T e Q)\n (Za j)

Given a function v € PC,,(R), we define the discrete partial derivatives

odv, 0dv € PC,, (R) by

i1 i il i
])\n v and v = W}\—n?)],

and we denote the discrete gradient of v by V%, defined as usual. Note that
the two derivatives commute. Thus we may define the second order discrete
partial derivatives 0¢,v, df,v = 0% v, 0% by iterative application of these
operators in arbitrary order. Similarly, we define higher order discrete partial
derivatives.

v

. Vi,j e Z,
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5.2 Assumptions on the model

Our model involves an energy on discrete spin fields defined on square lattices
inside a given sufficiently regular domain Q < R2. The following definition is
given in [15, Section 3] and [52].

Definition 5.2.1 (BVG domains). A set Q < R? is called a BVG domain
if and only if for any x € 0N) there exist a neighborhood U, < R?, a function
VY, € WH(Q), with Vi, € BV(Q;R?), and a rigid motion R,: R? — R?
satisfying

R.(QnUs) ={y = (y1,92) € R? : y1 > e (y2)} 0 Re(Uy).
We assume that the domain Q = R? belongs to the following class:

2y := {Q = R? : Qis an open, bounded, simply connected, BV G domain}.
(5.2)
To define the energies in our model, we introduce the set of indices

In(Q) = {(Z7j) € Z2 : @)\n(%])a@)\n(z + 17.7.)76)\"(2.7(7. + 1) - Q}7 (53>

for Q € Ay. Let a, := 4(1 —6,,), where {,,} € R* is an infinitesimal sequence,
and {k, }neny < R* a divergent sequence. In the following we shall assume that
Ep = \’/\gfn—>0and Ankn — n € (0,400) as n — +o0.

We consider the functionals H,, P,: L®(R?;S; U Sy) x Ay — [0, +o0] defined

by

1
H,(u; Q) : = 5)\2 Z [
()

(i.j)eT™

.. an .. ..
+ ul’.]+2 — _u7'7.7+1 + uzzj

Bo(u; ) := Ankin| DA()[(9),

for u € PC,,(S1 v S2), and extended to +o0 elsewhere, where A(u) is the
function defined in (4.1).

Similarly to the one-dimensional case, we observe that if u € PC,,(S; U S),
the set €2 can be uniquely partitioned in regions where the function u takes

values only in one of the two magnetic anisotropy circles. We now make the
notation clear. There exist M (u) € N and a collection of open connected sets,

7777

{CH seq1,.. My 18 an open partition of €, (5.4)

.....

u(z) e Sg, VreC4 Vse{l,...,M(u)}. (5.5)

For the notation of open partition, we address the reader to Subsection 4.2.2.
The following definition will be useful throughout the following section.
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Definition 5.2.2. Let u € PC,,(S; U Sy). We say that C,(u) = {C%]s €
{1,...,M(u)}} is the open partition associated with u if M(u) € N and
call C,(u) the open BV G partition associated with u if C¢ is also BVG,
forall se{l,...,M(u)}.

5.3 The ['-convergence result

In this section we prove the main result of the chapter. Following the same
idea adopted in the one-dimensional case, we split the functional H,, in two
addends:

M (u)
Ho(w;9) = 3 | Halus C2) + Roca(w) .
s=1
where
1o iveg vy, il
R, ca(u) :25)\" Z u'"t — — " 4+t
(1.1)e(CENIM( QNI (CF)

. (6 7 ..
+ uz,j+2 o _uz,]Jrl + uz,]

|
is the remainder associated with the partition C,(u) of u, which consists of the
interactions between the vectors of the spin field in different elements of C,, (u).

We now introduce the chirality order parameter associated with a spin
field. Let u € PCy, (S; U Sy) and C,,(u) = {C?|s € {1,...,M(u)}} be the open

partition associated with u. For (i, ) € Z%(C?), we define the horizontal and
vertical oriented angles between two adjacent spins by

~ . o 1. L o o
HZCJd .= sign(u™’ x u""7) arccos (E (ul’j — Wvd(uz[jj))) . (u”ld — Wvd(ugld))),

chjg = sign(u™ x u™*1)arccos <E (um _ Wvd(azf;_]z))) _ (UWJr1 B Wvd(ﬂlf’;lﬂ))),

both belonging to [—7, 7). Denoting with D(€; {v1, v2}) the space of functions
defined in 2 with values in {v;, v2}, we define the order parameter (w, z, A(u)) €
PCy, (R?) x D(; {v1,v2}) as

givi

= sin of if (i,7) € Z%(CY) for some s € {1,..., M(u)},

0 otherwise,

o
%sinig if (i,7) € I"(CY) for some s € {1,..., M(u)},
0 otherwise.

It is convenient to introduce the transformation

T,: PCy,(S1 U Sy) — PCy, (R?) x D(Q; {vy,v})
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given by

To(u) == (w, z, A(w)).
With a slight abuse of notation we define the functional H,: L},.(R?* R? x
{v1,v2}) x Ay — [0, +00) by

H,, (u; ) if T,,(u) = h for some u € PC,, (S; U Ss),

400 otherwise.

H,(h;Q) = {

Notice that H, does not depend on the particular choice of wu, since it is
rotation-invariant. The same notation can be adopted for P, and R,, ca.
We study the convergence of the rescaled functional

M(h) M(h)

1 1
h,Q R, ca(h H,(h;C?
\FMJ ()= Zi et | = fAéﬁ; )

where h = T,,(u) and M (h) := M(u), for some u € PCy, (S1 U Sy). Hence, we
introduce the functional H: L} (R%* R? x {v,v5}) x 2y — [0, +00) by setting

H,(h; Q) =

loc

M(h
4
M) =13 Z (|D1w|(C) + |Daz|(CH)  if h = (w, 2, @) € Dom(H; Q),

+oo otherwise,

where
Dom(H; ) := {(w,z,a) € Llloc(]Rz;R2 x {vy,v9}) :

,,,,,

(wicd, 2jca, ca) € BV (C {=1,1}x{vg}), curl(wica, 2/ca) = 0 in D’(Cg;RQ)},

We have denoted by D’(C% R?) the space of distributions on C? and for all
T € D'(C%R?) we have

{eurl(T)p g, &) := —(T*, 0,&) +{T", 81&) for every &€ e CL(C?).

Definition 5.3.1 (Convergence law). Let {hy}nen © L}, (R%R? x {v1,v5}).

We say that h, Lg-converges to h € L _(R%R? x {vy,05}) (we write hy, 23 h)
if the following conditions are satisfied:

o there exist {uy,}neny < PCy, (S1 U S2), a positive constant C' and, for any
n € N, an open BV G partition associated with u,, C,(u,) = {(C%),|s €
{1,...,M(h,)}}, such that

— hy =T (uy,) and Py(u,; Q) < C;
— M(up,) > MeN asn — +ow;
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— (C9),, — €4 in the Hausdorff sense, as n — ~+oo, for any s €
{1,..., M} (see Definition A.1.15);

o hplcay, = hleca in Lj, (R*R? x {vg}), as n — +o0, Vs e {1,..., M}.

Now we state the main theorem of this section. Therein the hypotheses as-
sumed are satisfied by minimizing sequences, almost minimizing sequences and
minimizing sequences under volume preserving hypotheses. Thus by a stan-
dard argument of the I'-convergence, we obtain that a minimizing sequences
converge to a minimizer of the I'-lim functional and that the minimal values
of the functionals H,, converge to the minimal values of the functional H.

Theorem 5.3.2. Assume that Q2 € 2y. Then the following statements hold
true:

i) (Compactness) Let {h, = T, (un)}nen < Tn(PCy, x D(v1,v2)) be a se-
quence such that

Hp(hp; Q) < Py(hy; Q) < C, (5.6)

for some constant C' > 0. Assume that the BV G partition associated
with y,, Cp(uy) = {(CH,| s € {l,..., M(u,)}}, is such that

M(u,) > M eN asn— 4w,

(Ch,, — C? in the Hausdorff sense, as n — +o, Vs € {1,..., M}.

Then there exists h € Dom(H, Q) such that, up to a subsequence, h, Lg h,
asn — +0;

i) (Liminf inequality) Let {hp}nen < Li (R%R? x {vy,v0}) and
he L} (R*R?x {vy,v2}). Assume that P,(h,;Q) < C for some constant

loc

C>0 andhnﬁh, as n — +o0. Then

H(h; Q) < liminf H,,(h,; Q);
n—-+a0
iii) (Limsup inequality) Let h € L} (R* R? x {vy,ve}). Then there exists a
sequence {hy ey © LL (R R? x {1, v5}) such that hy, 25 h and
lim sup H,,(hn; Q) < H(h; Q).

n—-+0o

Proof. We start proving i). Let {h, = (wn, 2, A(un))}nen © L}, (R*R? x
{v1,v2}) be a sequence satisfiying (5.6). Fixing ¢ > 0 sufficiently small, we
have that for all n € N, up to a subsequence, (C9), := {x € C? : dist(z,0C?) >
e} < (CH™ and Un, . takes values only in one circle. We infer that

Hy(h; (C9).) < Ho(hn; Q) < C.
ow P
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which of course implies that H,(h,; (C%).) < C\/i)\nén%, forall se {1,..., M}.
We are in position to apply [15, Theorem 2.1 i)] to deduce the existence of
(wcay., Z(cay.) € BV ((C?).; {—1,1}?) such that, up to subsequences, (wy, 2,) —
(wicay., (cay.) I L, ((CH;R?) and curl(wicay,, zcay.) = 0 in D'((CF).;R?).
The couples (w(ca). , Z(ca).) can be extended to 0 in CA\(CY).. We preliminary
observe that

(wicay.,» Zcay.,) = (Wieay,,» Zcay.,)  ae. on (CF).,, (5.7)
for any 0 < €; < €. Indeed, since (C?)., = (C9).,, we have that

(wn, 20) = (W), s 2e),) D Lige((CF)e; R?).

1

The uniqueness of the limit in the L; .

the couples (wed, zca): CF — R? as

-topology implies (5.7). We now define

(wed, zoa) == lim (wcay., 2(c9).)-
e—0t

The definition is well-posed; indeed, since by (5.7),

Jim (wiey,» 2ce).) = (W, - #en, ) e in (G,

3=

for all n € N, then

{x e O+ 3 Tim (wies, (@), %o, (as))}\

e’ -0t

+co

U

n=1

foe(chy 1 i (v, )20, <ar>>}‘ ~

g’ —0t
Furthermore we set (w, 2): @ — R?

(w, z)(x) = (wC;i’ZCg)(x)u

for a.e. € Q with x € C?, for some s € {1,..., M}. Of course (wcq, zj0a) =
(wea, z2ca) € BV(C%{—1,1}?), as it is the limit of BV functions. In order to
show the L} -convergence, we fix A cc C?. Since dist(A, dC%) > 0, there
exists € > 0 such that A c< (C?).. We obtain:

Cwn, 20) = (wog, 209)| g agzy = (@wns 20) = (wicr.s 2o | gagey

which vanishes as n — 400, up to subsequences. This leads to the convergence
(wn? Zn) - (wC;h ZC;i) in Llloc(cgv Rz)
Finally, we prove that curl(wed,zca) = 0 in D/(CY). If £ € CP(CY), then

spté = (C9). for some £ > 0 and so

<curl(wcgz, zcgz),§> = —f

8 w(cgl)562€ dxr + f z(cg)eélf dx
Cd)e

(C9)e
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= <curl W), s Z(Cd). §> =0.

Now we prove ii). Let {h,}nen © L, .(R* R? x {v1,v9}) and h € L}, (R?* R? x
{vi,v2}) such that P,(h,;Q) < C and h, % h,as n — +o0. Up to sub-
sequences we may assume that the lower limit in the right hand side of the
liminf inequality is actually a limit. Furthermore we may assume that it is

finite, the inequality being otherwise trivial. In particular, we have
Ho(hn; Q) < C,

with a possibly larger C. By the definition of Lg-convergence,
hn = (Wy, 2, A(uy)) = Tn(u,) for some u, € PC,,(S1 U Sz). We may assume,
up to subsequences, that M (h,) is independent of n and, by the Hausdorff con-
vergence, for ¢ > 0 sufficiently small, (C%). < (C%)™ and Un,ca). takes values
only on one circle, for all n € N. By the positivity of H,,, we infer that

Hy(ha; Q) = ZH n; (C9),)

\fAd

Since h, — h in L'((C?).;R? x {v4}), as n — 400, we are in position to apply
[15, Theorem 2.1 ii)] so that, passing to the lower limit, we get

M
lim mf?-[ (hn; Q) = Y liminf H,(hy,; (C).)

n—-+0o0 n——+00
s=1

Z [D1w]((C5)e) + [D22]((C5):)]:

where h = (w, z, ). Letting € — 07 we get the thesis.
Let us prove iii). Let h € L} (R*R? x {v1,v9}). We may assume that h €
Dom(H;2). This means that h = (w, z,«) € L, (R*R? x {vy,v,}) and the

existence of an open partition of Q, C = {C'§l| se{l,...,M}}, such that
(wicd, 204, ca) € BV (CE {=1,1} x {va}), curl{wjcd, 2jc4) = 0 in D'(CLR?).

Applying [15, Theorem 2.1 iii)] to any (w|cd, 2/ca), We get the existence of a
sequence (Wycd, zpcd) € Lj,.(R* R?) such that (w,cd, zuca) = (Wica, 2/ce) in

loc
LY(C% R?) and
limsup H,,(wyeg, Zncd, Va) < (|D1’w|( $) + [Daz|(CY)).
n—+00

Defining (wy,, 2,, @, ): R? = R? x {vy, va} by

(wm Zn an) ('T) = (wan‘ (.1’), “nCd (l’), vd)a

if x € Q such that z € C? for some s € {1,..., M}, and arbitrarily extended
outside €2, and summing on s € {1,..., M} the previous inequality we get the
thesis. O



Appendix A

Some tools from measure theory

In this appendix we recall some classical results that we need in our manuscript,
which can be found in the books of [7], [32], [46] and [54].

A.1 Radon measures

In this section we recall the definition of Radon measures and some of their
properties.

Definition A.1.1 (Radon measure). An outer measure y on R" is a Radon
measure if it is

e locally finite, i.e., for every compact set K < R", pu(K) < +o0;

e Borel regular, i.e. p is a Borel measure and reqular, that is, for every
set F' < R", there exists a Borel set E < R"™ such that FF < E and

p(E) = p(F).

Radon measures are linked with bounded linear functionals via total vari-
ation measures. Indeed, as stated in Riesz’s theorem, every bounded linear
functional L defined on C.(R";R™) has an integral representation with re-
spect to the total variation measure associated with L. We start giving the
following definition.

Definition A.1.2 (Total variation of a linear functional). Let L be a linear
Junctional on C.(R";R™). We define the total variation |L| of L as the set
function |L|: P(R") — [0, +00] such that, for A < R"™ open,

ILI(A) = sup{(L, ¢) : ¢ € Ce(A;R™), |o] < 1},
and, for E < R™ arbitrary,
|LI(E) = inf{|L|(A) : Ec A and A is open}.

Next, we state Riesz’s theorem.
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Theorem A.1.3 (Riesz’s theorem). If L: C.(R™;R™) — R is a bounded linear
functional, then its total variation |L| is a Radon measure on R™ and there
erists a |L|-measurable function g: R™ — R™, with |g| = 1 |L|-a.e. on R",
such that

Loo)= | @-gdLl. voeCR R,

that is L = g|L|. Moreover, for every open set A < R™,

() = swd [ @ g)alL] s oe AR, o) <1}

Remark A.1.4 (Total variation of a Radon measure). Radon measures can be
unambiguously identified with monotone linear functionals on C.(R™). Hence,
the total variation |u| of a Radon measure p in R™ can be defined as

)= sup{ [ owdu: s Cuamn), ol <1},

Here we introduce the operation of push-forward of a measure through a
function and we recall a useful property.

Definition A.1.5 (Push-forward of a measure). Given a function f: R" —
R™ and a measure p on R", the push-forward of i through f is the outer
measure fyp on R™ defined by the formula

fys(E) o= p(f(B)), VEC R

Proposition A.1.6 (Push-forward of a Radon measure). If p is a Radon
measure on R", and f: R" — R™ is continuous and proper, then fiyu is a
Radon measure on R™, spt(fyu) = f(sptp), and for every Borel measurable
function u: R™ — [0, +o0] we have

| wdth = | wendn

We recall the Radon-Nikodym theorem, a well-known result related to the
differentiation of Radon measures. It states that every Radon measure v have
an integral representation with respect to any Radon measure p such that v
is absolutely continuous with respect to p.

Definition A.1.7. Let p and v be two Borel measures on R". We say that v
i1s absolutely continuous with respect to p, written v << p, if and only if

p(A) =0 implies v(A) =0,

for any A < R™.
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Theorem A.1.8 (Radon-Nikodym theorem). Let v and p be two Radon mea-
sures on R™, with v << u. Then

v(A) = J D,vdp,
A

for all p-measurable sets A < R", where, for any v € R",

. v(B.(x)) _
Do) = B By B = 0,9 = 0,
o if u(By(x)) =0, for some r > 0,

is the derivative (or the density) of v with respect to .
The derivative function enjoys of the following properties.

Lemma A.1.9. Let p and v be two Radon measures on R", A < R" and fix
a € (0,400). Then

) cxe"‘iminM « p implies v « :
i) A { R .1r4>0+f,u(Br(£C))< } pl (A) < ap(A);

3 _— v(B,(z)) o
ii) Ac {:c eR" : hrri?jp 2B (2) > a} implies v(A) = au(A)

Proposition A.1.10. Let A < R" be an open set, and let p be a positive
Radon measure in A, with p(A) < +o0. For 0 < a <n let

B
E* . ={zxeA: limsupM >0.
p—0+ pa
Then dimy (E®) < .
We quote below some density results for the Hausdorff measures.

Proposition A.1.11. If s € (0,n) and M < R™ is a Borel set with H*(M n
K) < 4+ for every compact set K < R"™, then for H*-a.e. v € R™\M,

lim H* (M ~ B.(x))

r—0+ W

= 0.

Proposition A.1.12. Let E < R". IfH: (F) < 40, then, for H*-a.e. x € E,

lim sup Heo(E 0 Br(2))

r—0+ wsr?®

> 27",

We conclude this section by giving the definition of weak-star convergence
of Radon measures and its characterization.
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Definition A.1.13 (Weak-star convergence of Radon measures). Let {1, }nen
and p be R™-valued Radon measures on R™. We say that ju, weak-star con-
verges to [, and we write p, — p1, if and only if

| oedu=tim [ odm voec.mRY).
n h—+o0 Rn

Proposition A.1.14. If {un}neny and p are Radon measures on R™, then the
following three statements are equivalent.

(i) pn = pu.
(1) If K < R™ is compact and A < R™ is open, then

p(K) = limsup pp(K), and p(A) < l}ilm inf pp,(A).
—+a

h—+00
(i11) If K < R™ is a bounded Borel set with u(0E) = 0, then

p(E) = lim p,(E).

h—+40o0

Definition A.1.15 (Hausdorff convergence). Let C' < R™ and a the sequence
{Chlnen of sets in R™. We say that Hausdorff converges to C' if and only
if there exists 9 > 0 such that C' < (C),). and C, < C., for every e < gy. We
have denoted

D.:={xe D : dist(z,dD) > &},

for some set D c R™.

A.2 Area and Coarea formulas

In this section we recall the Area formula for surfaces, for which we need the
notion of tangential differentiability, and its application to graph of Lipschitz
functions of codimension one. We also give the Coarea formula on locally
H"L-rectifiable sets.

We start giving the definition of H*-rectifiable sets.

Definition A.2.1. Given a H*-measurable set M < R", we say that M
is countably H*-rectifiable if there exist countably many Lipschitz maps
frn: R¥ — R™ such that

w(an U neh) o

heN

we say that M is locally H*-rectifiable provided H*(M n K) < +oo, for
every compact set K < R"; finally, if H*(M) < +o0, then M is simply called
HF-rectifiable.
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For locally H*-rectifiable sets an approximate tangent space can be defined.

Theorem A.2.2 (Approximate tangent space). If M = R" is a locally H*-
rectifiable set, then, for HF-a.e. x € M, there exists a unique k-dimensional
space TyM such that, asr — 07,

(ur)s(HELM) e (M—:c

rk r

) AHELT,M,

where @, ,.(y) := =, for y e R". The space T, M is called the approzimate
tangent space to M at x.

Definition A.2.3. Let M < R" be a countably H*-rectifiable set and f: R" —
R™ a Lipschitz function. We say that f is tangentially differentiable at
x € M if the restriction of f to the affine space x + T, M is differentiable at x.
In this case, there exists a linear function VM f(x): T,M — R™ such that

o T ) — f(@)
h—0 h

= VM f(z)v.

The tangential Jacobian of f with respect to M at x is defined by

T (@) = V/det(VM f(2)" VM f (),
where *V M f(x) is the adjoint of the map VM f(x).

We are now in position to recall the Area and Coarea formulas.

Theorem A.2.4 (Area formula for injective maps). If f: R — R™ is an
injective Lipschitz function and M < R™ is a countably H*-rectifiable set (m <

k), then
HE (M) = f JM f(x) dx.

E

Theorem A.2.5 (Area formula of a graph of codimension one). If u: R"™! —
R is a Lipschitz function, then for every Lebesque measurable set G < R 1,

H N[, (G)) = J V14 |Vu(2)]?dz.
a
In fact, H* ' LT, is a Radon measure on R™ and, for every ¢ € C.(R"),
pdH" " = J o(z,u(2))V/ 1+ |[V'u(z)]? dz.
I, Rr-1

Theorem A.2.6 (Coarea formula on locally H" '-rectifiable sets). If M < R”"
is a locally H™ -rectifiable set and f: R® — R is a Lipschitz function, then

f H 2(M A {f =t})dt = J (VM | dH™ .
R M

In particular, if g: M — [—o0, +o0] is a Borel function and either g = 0 or
ge LY R", H"" L M), then

f dtj gdH" ? = J gl VM f| dH™ .
R JM~{f=t} M
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A.3 Other useful results

We present here three well-known useful results. The first one is an obvious
consequence of Fubini’s theorem and the fundamental theorem of Calculus.
The second and the third results are well-known.

Lemma A.3.1. If $ € C1(R"), then

Vodr = 0.
R’VL
Lemma A.3.2 (McShane’s Lemma). If E < R" and f: E — R is a Lipschitz
function, then there exists an extension g: R™ — R of f in R™ with the same
Lipschitz constant.

Theorem A.3.3 (Sobolev-Poincaré’s inequality for functions vanishing on a
set of positive measure). Let Q < R™ be a bounded connected set with Lipschitz
continuous boundary. For every u € WYP(Q), p < n, taking the value zero in
a set A of positive measure, we have

20\~

p*

loll oy < (1) IVl

for some constant positive ¢ = ¢(n,p, Q).



Appendix B

The notion of I'-convergence

The T'-convergence is a convegence law introduced by De Giorgi in the 1970s.
It is well-suited for the description of the asymptotic behaviour of variational
problems, which depend on some parameters. The latter ones could have a
geometric nature or derive from an approximation procedure or a discretization
argument.

No a priori assumptions on the form of minimizers are needed, so that I'-
convergence can be applied to diversified contexts: from the study of problems
with discontinuities in computer vision as well as to the description of the
overall properties of nonlinear composites, to the formalization of the passage
from discrete systems to continuum theories, homogenization theory, phase
transitions and boundary value problems in wildly perturbed domains.

We now recall the mathematical definition of I'-convergence.

Definition B.0.1. Let X be a metric space. We say that a sequence f;: X —
R I'-converges in X to fu: X — R if, for all x € X, we have

i) (iminf inequality) for every sequence {x;}jen < X converging to x

foo() < lim inf f;(2;);

]4}

ii) (imsup inequality) there exists a sequence {x;}jen € X (called “recov-
ery” sequence) converging to x such that

foo(z) = limsup f;(x;).

Jj—o+©

The function fy is called the I'-limit of {f;}jen, and we write fy, = I'-lim; f;.

As it is evident in the previous definition and in Part II, the choice of the
metric on X is clearly a crucial step in problems involving ['-limits.

[-convergence is designed so that it implies the convergence of “compact”
minimum problems, as stated in the following theorem.
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Theorem B.0.2. Let X be a metric space and let {f;}jen be a sequence of
equi-mildly coercive functions on X, i.e. there exists a non-empty compact set
K < X such that infx f; = infg f;, for all j € N. Let fo := I'-lim; f;; then
foo admits minimum and

min = lim inf f;.
X Joo joto X fi

Moreover, if {z;}jen < X is a precompact sequence such that _lirf filz;) =
J—+00

jgrfoo i%f fj, then every limit of a subsequence of {x;}jen is a minimum point

of foo.

In Part IT we employ the notion of I'-convergence (with respect different
topologies) in the study of the asymptotic behaviour of a functional deriving
from a discrete system.



Appendix C

Some properties of L* functions
with values in a compact set

In this appendix we recall some classical properties of the Lebesgue space
L*®(I; K), where K < RY is a compact set.

Proposition C.0.1. Let K = RY be a compact set and let { f,,}nen < L®(I; K).
Then, up to subsequences, f, — f € L®(I;co(K)) as n — +o in the weak-
star topology of L®(I;RN). Moreover, for all u € L*(I;co(K)), there exists
a sequence {u,}neny < L*(I; K) of piecewise functions such that u, 2w oas
n — +0oo.

Proof. Since the set K is bounded then, up to a subsequence, there exists
f e L*(I;RY) such that f, = f asn — +00. We now prove that f(t) € co(K)
for almost every t € (0,1). For every & ¢ co(K) there exist an affine function
he : RY — R and a < 0 such that

he(§) > 0> a > he(x), Ve co(K).

By the weak-star convergence of { f,,},en we have that for any measurable set
Ac(0,1)

n—-+oo0

J he(f(t))dt = lim he(fn(t))dt < |Ala < 0.
A A
Hence by the arbitrariness of A we obtain
he(f(t)) <0, for a.e. te(0,1). (C.1)

Recalling that

co(K) = [ {y e BY : he,(y) <0, & € Q¥\co(K)},

JeN
by formula (C.1) we obtain

f(t) e co(K), forae. te(0,1).
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Now we can prove the second statement of the proposition. By a standard
density argument, it is enough to prove the claim for u = al;, where J is an
open interval and a € co(K). We define the following function:

h(t) _ aq lftE(O,)\),
as lftE[)\,l),

where a = Aaj + (1 — N)ag with aq, ay € K and for some A € [0,1]. Then the
sequence u,(t) := h(nt) converges to u in the weak-star topology of L* by
Riemann-Lebesgue’s lemma. O]

Corollary C.0.2. Let K < RY be a compact set. The closure of the set
L*®(I; K) with respect to the weak-star topology of L®(I;RY) is the set
L*®(I; co(K)).

Proof. Since the space L'(I;RY) is separable, every bounded subset of
L®(I;RYN) is metrizable with respect to the weak-star topology of L*(I;RY).
Hence the set L*(I; K) is metrizable. Therefore, by the above proposition, we
have that the set L*([; co(K)) is the weak-star closure of the set L*(I; K). [

Proposition C.0.3. Let K1, Ky < RY be two compact sets and let { f,}nen <
L*(I; K1 u Ky) be such that for alln € N exist M(n) e N and 0 = tg") < <

tg\z)(n) = 1 for which

fn(t) € K;, for some j € {1,2} and a.e. t € (t(n),tl(-i)l),

)

forallie{l,...,M(n)—1}. Finally we suppose that

sup M (n) < +o0. (C.2)

neN

Then, up to subsequences, f, — f in the weak-star topology of L*(I;RN) and
f e L*(I;co(Ky) U co(K2)). Moreover if co(Ky) n co(Ky) = &, there exist
MeNand 0=t <--- <ty =1 such that

f(t) € co(K;), for some j e {1,2} and a.e. te (t;,ti11),
forallie{l,... M},

Proof. By Proposition C.0.1, we have, up to a subsequence, that f, - f €
L*(I;co(K; u Ky)). Accordingly, by assumption (C.2), we can find M € N,
independent of n € N, such that for every n € N there exist 0 = # <<
£ = 1 for which f,(t) € K; for some j € {1,2} and a.c. t € (tz("),tii)l), for all
ie{l,...,M —1}. Up to subsequence, we can calculate

lim £ =t;, Vie{l,--- M},

n—+o0
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sothat 0 =¢; < -~ <ty =1. Letusfixie{l,---,M —1}. Foralle >0
there exists ng € N such that we have

(tz + &, ti+1 — 5) C (t(n)7tgj_)1) Vn = no.

7

We define the following two sets:

no : fo(t) € Ky for ae. te (t; +e,tiu1—e)},
no : fo(t) € Ky for ae. te(t; +¢e,t;1—€)}.

A%

A ={n

Ay ={n

One of the following three alternatives may occur:
1. #A; = 00, # A5 < o0;
2. #A; < oo, #Ay = 0
3. #A; = o0, #A5 = 0.

In the first case we have that f, € L*((t; + ¢,t;,1 — €); Ky) for all n = ny,
up to a finite number of indices of the sequence. Thus, by Proposition C.0.1
fn = f e L®((t; +¢,tis1 —€); co(K1)) and hence, by the arbitrariness of £ > 0,
we obtain f € L®((t;,ti11); co(K1)).

The second case is fully analogous to the first case. In the third case we can
find two subsequences {ng)}keN and {nf)}keN such that f o) € L®((t;i+e,ti1—
g); K1) and f ) € L™((t; +¢&,ti11—¢); Ky) for all k e N. Bky Proposition C.0.1,
there exist f; e L*((ti+e,tiy1—e);co(Kq)) and fo € L®((t;+e,t;1—¢€); co(K3))
such that fng) X f; and fnf) 2 fo. One the other hand, we recall that

fo = f e L®(I;co(K,UK>)). Thus, by the uniqueness of the limit in the weak-
star topology, we have fi(t) = fo(t) = f(t) for almost every t € (t;+¢,t;11 —¢)
and so f € L*((t; +&,t;41 —€); co(K1) N co(K32)). Hence, by the arbitrariness
of € > 0, we have f € L®((t;,t;i1); co(K1) n co(K3)).

If we repeat the above argument for all i € {1, --- | M} we obtain the thesis.
If co(K4) nco(Ky) = O, the case #A; = # Ay = 0 cannot occur and therefore
we obtain the last claim of the statement. O
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Sn—l
||
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Ex,r

I.(E)
Acc B

E()
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set of all positive natural numbers

set of all integer numbers

set of all real numbers

euclidean n-dimensional space

power set of the set

convex hull of the set £ < R"

unit sphere of R"

integer part of x € R

the tensor product between x,y € R"

inner euclidean product between the vectors z,y € R”
euclidean norm of z € R™;

blow-up % of the set £ < R"™ of centre z € R and
radius r > 0

tubular neighborhood of £ < R"™ of half-lenght € > 0
the closure of the set A < R™ is contained in the set
B cR"

open ball of R" with centre x € R™ and radius » > 0
open ball of R™ with centre 0 and radius r > 0

open cylinder of R™ with centre x € R", radius and half-
height > 0 and oriented in the direction v € $"~!
open cylinder of R" with centre z € R", radius and
half-height r» > 0, oriented in the direction e,

open cylinder of R" with centre 0, radius and half-
height r > 0, oriented in the direction e,

open cylinder of R™ with centre z € R", radius r > 0,
half-height 2 and oriented in the direction e,

open cylinder of R™ with radius » > 0, half-height 2
and oriented in the direction e,

Lebesgue measure of the set £ < R"

Lebesgue measure of B

set of points of density ¢ € [0,1] of £ < R”
s-dimensional Hausdorff measure of the set £ < R"
Hausdorftf dimension of the set £ < R"
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#E

iz
sptu
uwl E
B <<v

*
Mo — I
Pyw

quw
PyLW

pw

Ut

sptf
Ig

cardinality of the set F

total variation measure associated with g

support of the measure pu

restriction of the measure u to the set £ < R"

the measure p is absolutely continuous with respect the
measure v

the sequence of measures {p,}ren Weak-star converges
to the measure p

the projection of the vector w € R™ on the vector v € R"
the projection of the vector w € R™ on the vector e,
the rojection of the vector w € R™ the orthogonal com-
plement of the vector v € R”

the projection of the vector w € R™ on the orthogonal
complement of the vector e,

the positive part of the function u

the support of the function f

the characteristic function of the set £ < R”

the mean value of u in the ball B,(z), i.e. SBT(x) u(z)dz
the mean value of u in the ball B,

the space of Lebesgue measurable functions f in the
open set Q < R", with p € [1, +0]

the space of Sobolev functions in the open set 2 < R"
the space of Sobolev functions W'*(Q2) with zero trace
on €2

the space of Sobolev functions W12(£2)

the space of Sobolev functions W, (Q)

the space of continuous functions in the open set €2 c
RTL

the space of continuously k-differentiable functions in
the open set {2 < R"

the space of Holder continuous functions with Holder
exponent « € [0,1) in the open set 2 = R”

oscillation of the function f in the open set €2

the space of Lipschitz functions in the open set {2 < R",
with £ € N

the space of BV functions in (2

the space of distributions on the open set 2 < R”

the approximate tangent space to M at the point = €
Rn

the L? norm of the function f € LP(Q)

the Holder continuous seminorm of f e C*(Q2)

dual scalar product between the functional L and the
element f
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L]

Eh—>E

Jn—f

total variation measure of the linear functional
L: C.(R";R"™)

strong convergence of functions or points

the sequence of functions {1g, }reny of R™ conveges to
lg

the sequence of functions {f;}ren weakly converges to
the function f

the sequence of functions { f; } neny weakly-star converges
to the function f

the graph of the function f: 2 — R lying on G < (2
the set I'¢(Q2)
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