

Università degli Studi di Salerno

Dipartimento di Ingegneria dell’Informazione

ed Elettrica e Matematica Applicata

Dottorato di Ricerca in Ingegneria dell’Informazione
Ciclo 35

TESI DI DOTTORATO / PH.D. THESIS

Provable Security:
the Good, the Bad, and the Ugly

GENNARO AVITABILE

SUPERVISOR: PROF. IVAN VISCONTI

PHD PROGRAM DIRECTOR: PROF. PASQUALE CHIACCHIO

Anno 2023

Abstract

Since modern cryptography was born around the late 1970s, a myriad
of cryptographic constructions and protocols have been proposed. The
field quickly developed into a science whose results have had great im-
pact on people’s lives. Some examples are secure communication over
the internet, distributed digital currencies, electronic elections, and
more. Such a progress was boosted by the diffusion of a methodology
called the provable security paradigm. It provides a precise framework
to formalize and prove the security of a cryptographic construction.
Provable security is based on three pillars: (i) definitions, (ii) assump-
tions, and (iii) proofs. The definition states when the system can be
considered secure and what are the capabilities of an adversary attack-
ing the construction. The proof demonstrates that the construction
satisfies the definition, assuming that all the assumptions hold. Prov-
able security provides objective ways to compare different construc-
tions, as well as more reassurances on their security. However, it is
not devoid of pitfalls. For example, a definition might not model the
real world correctly, and thus any proof that a construction satisfies
such definition would be worthless in practice. Furthermore, it might
happen that security proofs containing errors will not get detected
because of the complexity (or oversimplification) of the proof itself.

This thesis explores such multifaceted nature of provable security
through two parts. In the first part, we focus on the recent devel-
opment of automatic contact tracing systems (ACTs). When the
COVID-19 pandemic hit, automatic contact tracing was proposed as
an effective way to slow the spread of the virus down by detecting
likely infected people earlier with the help of technology. Citizens
would use a smartphone app, and users at risk of being infected - as

2

they were in proximity of an infected individual - would be notified by
the smartphone. Due to the widespread adoption that was expected
for ACTs, privacy and integrity were both key concerns.

The DP3T team proposed an ACT [114] which was shortly after
implemented and deployed over smartphones by Apple and Google
with the name of GAEN. Informal security assessments were per-
formed by the DP3T team, including wrong or misleading claims about
the privacy and integrity guarantees that ACTs could provide. Sev-
eral attacks to DP3T pointed out by other researchers were deemed as
inherent by analyses that considered very powerful adversaries. How-
ever, the concrete attacks could have been carried out by much weaker
adversaries to which other ACTs could have possibly resisted. We
model these and novel integrity and privacy attacks with a focus on
mass surveillance and analyze the security of DP3T w.r.t. them. We
propose two new ACTs named Pronto-C2 and Pronto-B2, which encom-
pass DP3T/GAEN both in terms of privacy and integrity guarantees.
Our ACTs also demonstrate that such attacks are not inherent. Fi-
nally, we consider the terrorist attack conjectured by Vaudenay [116].
It involves a malicious party (i.e., the terrorist) bribing infected users
to inject false alerts in the ACT. We show how to concretely implement
automated terrorist attacks to jeopardize the integrity of GAEN.

In the second part of this thesis, we provide novel contributions in
the area of threshold cryptography. In particular, we focus on proofs
over threshold relations, threshold ring signatures, and extendable
threshold ring signatures. We point out several fallacies in the usage
of the provable security paradigm in prior works published at major
cryptography conferences [5, 64]. Such issues include errors in the se-
curity proofs as well as inadequate definitions where the real-world
system’s requirements and adversary’s capabilities are not matched
by the definition. We overcome such issues proposing stronger defini-
tions, new constructions, and revisited security proofs. Additionally,
our new constructions improve the previous ones in terms of efficiency,
security, and/or features.

3

Contents

1 Introduction 7
1.1 Provable Security: the Good, the Bad, and the Ugly . . 10
1.2 Our Contributions . 12
1.3 First Contribution: Automatic Contact Tracing 13

1.3.1 The Response of the Scientific Community . . . 15
1.3.2 The Move of Apple and Google 17
1.3.3 Security Issues of DP3T/GAEN 18
1.3.4 Provable Security and Automatic Contact Tracing 19
1.3.5 Security Assessments by the DP3T Team 20
1.3.6 Our Contributions in ACTs 22

1.4 Second Contribution: Threshold Cryptography 23
1.4.1 Threshold Ring Signatures 24
1.4.2 Proofs over Threshold Relations 24
1.4.3 The Chase for Compact and Practical PTRs . . 26
1.4.4 Extendable Threshold Ring Signatures 27
1.4.5 ETRS and Count-Me-In Applications 27
1.4.6 Our Contributions in Threshold Cryptography . 28

2 Preliminaries 32
2.1 Notation . 32
2.2 Number-theoretic Assumptions 34
2.3 Cryptographic Tools 34

2.3.1 Proof Systems 39

3 Automatic Contact Tracing 47
3.1 Brief Description of DP3T 48
3.2 Related Work . 50

4

3.3 Towards Secure ACTs: Pronto-C2 and Pronto-B2 54

3.3.1 High-Level Overview of Pronto-B2 and Pronto-C2 55

3.3.2 Threat Model 60

3.3.3 Privacy Attacks for Mass Surveillance 63

3.3.4 Other Attacks 67

3.3.5 Pronto-B2 and Pronto-C2: Design and Analysis . 74

3.3.6 Analysis of Pronto-C2 84

3.3.7 Suggestions for a Practical Realization of our
ACTs . 90

3.3.8 Disproving some DP3T’s Claims 92

3.3.9 Provable Security of our ACTs 95

3.4 False Alerts Injection: the Terrorist Attack 96

3.4.1 Terrosist Attack: Our Contribution 98

3.4.2 Trading TEKs in GAEN Systems 100

3.4.3 Connecting Smart Contracts to TLS Sessions . 111

3.4.4 Other Subtleties: Details 119

4 Threshold Cryptography 122

4.1 Proofs over Threshold Relations 123

4.1.1 Related work 124

4.1.2 Proofs over Threshold Relations: Our Contribu-
tion . 126

4.1.3 Technical Overview of [62] 129

4.1.4 Our Techniques 133

4.1.5 Threshold Ring Signatures 157

4.1.6 On the Security Proofs of [62] 160

4.2 Extendable Threshold Ring Signatures 167

4.2.1 Related Work 167

4.2.2 Our Contributions 169

4.2.3 A Closer Look to the Results of [5] 175

4.2.4 Preliminaries 177

4.2.5 Groth-Sahai Proofs 179

4.2.6 Extendable Threshold Ring Signature 182

4.2.7 Extendable Non-interactive Witness Indistinguish-
able Proof of Knowledge 188

4.2.8 Our Extendable Threshold Ring Signature . . . 195

5

4.2.9 Security of Our Extendable Threshold Ring Sig-
nature . 199

4.2.10 Our Extendable Non-Interactive Witness Indis-
tinguishable Proof of Knowledge 206

4.2.11 GS Proofs of Partial Satisfiability 206
4.2.12 High-level Overview of our ENIWI. 208
4.2.13 Our ENIWI . 209

Conclusion 218

6

Chapter 1

Introduction

Historically, cryptography was seen as the art of conceiving or solving
intricate codes. Either military or dissidents used these codes to com-
municate in a way that prevented their enemies to understand what
was being said, even if they intercepted the messages. In those times,
cryptography heavily relied upon creativity, with little to no under-
lying theory, and there was no objective definition of what a “good”
code was supposed to be.

During the late 1970s, there was a revolution in the world of cryp-
tography, known as the birth of modern cryptography. Theory started
to be developed, transforming cryptography to a science based on
strong and rigorous mathematical foundations. Nowadays, cryptogra-
phy is ubiquitous. It is at the hearth of methods to ensure integrity,
to perform secure distributed computation, to run electronic elections,
to build digital currencies, and much more.

This huge progress was made possible by the introduction of a rig-
orous method of building and evaluating cryptographic constructions
known as the provable security paradigm.

Originally, cryptographic constructions used to be evaluated for
their apparent complexity. The analysis of the schemes consisted of
evaluations of possible attacks and if no attack was found, then the
construction was considered secure. On the other hand, if an attack
was found the scheme was fixed to thwart that attack, and such process
could be repeated multiple times.

The provable security paradigm strongly refutes this approach: in-

7

stead of a process to agree that a construction is broken, as may be
highlighted by successful attacks, its purpose is to formally define what
is secure and to be able to prove its security. Provable security achieves
this by the means of three principles:

• Definitions: A formal definition should clearly state what does
it mean for that particular cryptographic construction to be se-
cure.

• Assumptions: The vast majority of cryptographic construc-
tions is not proven secure unconditionally. Instead, the proofs
usually rely on unproven assumptions, typically involving some
mathematical problem that is conjectured to be hard to solve. It
is crucial to explicitly state and clarify what are the assumptions
being used.

• Proofs: It is a rigorous mathematical proof that a cryptographic
construction satisfies the definition, provided that the used as-
sumptions hold.

In the following, a more detailed overview on the role of these three
principles of the provable security paradigm is given.

Definitions. The formulation of a proper security definition consists
in carefully addressing two objectives:

• Fixing a security goal: it can be expressed from the point of
view of the users as a desired security guarantee or, conversely,
from the point of view of the adversary, as what constitutes a
successful attack. It should use a mathematical formalism in
order to eliminate any form of ambiguity.

• Fixing a threath model: the threath model specifies what is
the power of the adversary. In particular, it should specify all the
capabilities the adversary has (e.g., access to the private state
of a subset of corrupted parties, its computational power, etc.),
without specifying any attack strategy. Indeed, security defini-
tions should be quantified on all the adversaries having a certain
set of capabilities since it is impossible to predict how certain

8

capabilities will be compiled into a real-life attack strategy. The
most commonly considered adversary is the probabilistic polyno-
mial time (PPT) algorithm. Namely, an algorithm which has ac-
cess to a random tape and runs in polynomial time1. Additional
capabilities are usually modeled as oracles in the security defi-
nition. For example, to model corruption, the adversary could
be given access to a corruption oracle that gives him the private
state of a certain number of users (e.g., up to half of them).

Stating a precise definition gives at least other two significant advan-
tages. First, it reveals the essential aspects of the problem under ex-
amination while highlighting the subtleties that may not be so evident
at a first sight. Second, it gives a more objective tool to compare dif-
ferent constructions: for example a less efficient (e.g., in terms of size
or time complexity) construction may be preferred to a more efficient
one because it satisfies a stronger definition.

Assumptions. Cryptographic constructions cannot usually be proven
secure unconditionally, instead they rely on mathematical assump-
tions. Such assumptions are only conjectured to be true, and have
to be stated precisely so that they are easy to (eventually) confute.
During the last decades, several assumptions have been proposed and
some of them are still believed to hold (e.g., the DDH assumption
or the RSA factoring assumption). One key factor when comparing
two constructions that provide the same guarantees is to look at their
assumptions. In this case, a construction is generally preferred to an-
other if it uses a better-studied assumption, or if it uses a strictly
weaker assumption than the other one (i.e., its assumption is implied
by the other one).

Proofs. A proof that a cryptographic construction satisfies a certain
definition under certain assumptions is usually given via a reduction:

1Other examples are quantum polynomial time adversaries, which are adver-
saries that run in polynomial time but have access to a quantum model of compu-
tation, or even unbounded time adversaries. In the latter case, security is proven
using information-theoretic arguments.

9

one first assumes that there exists an adversary breaking the construc-
tion, and then uses such adversary to build an algorithm that breaks
the assumption. Since the assumption is considered to be true, the
contradiction that has been reached guarantees the security of the
construction itself.

Idealized models. Whenever a construction can be proved secure
only using standard assumptions that reduce to a mathematical prob-
lem, it is said that such construction can be proved secure in the plain
model. There are other interesting alternative models that introduce
new heuristic assumptions but that enable to prove security of en-
hanced primitives. Prominent examples are the random oracle model
(ROM), and the common reference string (CRS) model.

Random Oracle Model. The random oracle model is an idealized
model in which the existence of a random oracle which returns a uni-
formly random value whenever it is queried on a new input is assumed.
When a primitive proven secure in the ROM is concretely instantiated,
the random oracle is heuristically replaced by a cryptographic hash
function. Although there are theoretical examples showing the ran-
dom oracle heuristic to fail [32], no weaknesses are known for “natural
usages” of the random oracle.

CRS model. The common reference string (CRS) model assumes
that all the parties involved are given access to the same string that
is generated from a fixed distribution. Such string is considered to be
honestly generated via a so-called trusted setup. Therefore, schemes
proven secure in the CRS model are only secure given that the setup
was correctly performed.

1.1 Provable Security: the Good, the Bad,

and the Ugly

Although it is undoubted that the introduction of provable security
has been extremely beneficial to the development of cryptography as

10

we know it today, it is not devoid of pitfalls and dangers. In this
section, we describe the multifaceted nature of provable security with
the help of three adjectives: the Good, the Bad, and the Ugly.

The Good. The vast literature in the area of modern cryptogra-
phy demonstrates the great impact provable security has had. Since
the birth of modern cryptography, researchers have designed a wide
range of cryptographic primitives offering many different functionali-
ties. Among those, encryption, digital signatures, cryptographic hash-
ing, secure multi-party computation, zero-knowledge proofs, and much
more.

The Bad. Single cryptographic primitives in isolation are often not
enough to solve the challenges particular application scenarios involve.
To tackle these challenging problems, more complex systems are usu-
ally built combining many cryptographic building blocks together in
order to provide a complex functionality having both integrity and
privacy constraints. This means that, aside providing its intended
functionality under normal circumstances, the system is expected to
have a certain level of resilience in presence of users or external en-
tities with adversarial behaviour. Additionally, it should simultane-
ously protect the information which is deemed confidential, resulting
in what is commonly referred to as a secure system. By using the
world secure, one means that the system provides the intended in-
tegrity and privacy guarantees. However, in many cases the meaning
of this word is rather vague. Either the requirements themselves are
ambiguously formulated only by the means of natural language, or
some requirements are declared as fulfilled just because some cryp-
tographic primitive is employed, perhaps incorrectly. This approach
avoids the usage of a rigorous methodology like the provable security
paradigm. As a result, one might be tempted to justify the security
of the system making informal claims that can be either misleading or
incorrect since they are not formulated within a rigorous framework.

The Ugly. It is important to notice that provable security still does
not put an end to attacks. Excluding implementation errors that can

11

afflict any software system, cryptographic constructions could be suc-
cessfully attacked even if they have a security proof for several reasons,
among those:

• Inadequate definitions: The security guarantee of the def-
inition does not match the requirement of the system, or the
threat model underestimates the capabilities of the real-world
adversary. This means that when formulating a definition one
has to check whether it is close enough to the real world or not.

• Problematic proofs: As the complexity of a system/primitive
increases, usually proofs become more involved and difficult to
check. This posits the risk that constructions believed to be se-
cure and even used in practice can be discovered to be broken at
a much later point. While experience is often a great tool when
evaluating the quality of a security proof, it could also be deceiv-
ing. Whenever a scheme seems sound and the arguments given
in the proofs resemble others from past experience, a reviewer
could be tempted to skim on the security reductions without
carefully checking all the details.

• Assumptions break: An assumption on which the proof was
based on turns out to be false. In this case, the proof becomes
worthless. A very recent example is the Supersingular Isogeny
Diffie Hellman (SIDH) problem. In summer 2022, it was found
to be solvable on a laptop for parameters choice that were aiming
at security level 1 of the Post-Quantum Cryptography standard-
ization process currently ran by NIST [36,87].

A way more comprehensive discussion on the ugly side of provable
security can be found in [81]. In this position paper, Koblitz and
Menezes deeply discuss these and other concerns, including the usage
of idealized models and tightness issues.

1.2 Our Contributions

This thesis explores such multifaceted nature of provable security. The
contributions of this thesis are related to two different areas, namely

12

automatic contact tracing and threshold cryptography. In the first
part of the thesis (cfr., Chap. 3), we use the recent development of
automatic contact tracing systems (ACTs) to showcase the bad conse-
quences that neglecting provable security can bring when constructing
complex systems with privacy and integrity constraints.

We show concrete attacks to the most adopted ACT (i.e., DP3T/GAEN)
regarding both integrity and privacy. On the positive side, we propose
new ACTs which disprove some DP3T’s claims about the inherent
nature of some integrity and privacy issues in ACTs.

In the second part of the thesis (cfr., Chap. 4), we provide new
contributions in the area of threshold cryptography. In particular, we
propose new compact zero-knowledge proofs for threshold relations,
new threshold ring signatures, and new extendable threshold ring sig-
natures (ETRS) with enhanced anonymity properties.

While confronting ourselves with previous works we improve on in
the area of threshold cryptography, we analyse some concrete examples
of the ugly side of provable security such as inadequate definitions or
fallacies in the security reductions.

Co-authored works related to this thesis. Parts of the results of
this thesis are also contained in co-authored articles [10,11,13,14,16].
All the co-authors gave their consent to include such results in this
thesis. The thesis includes parts of text that are verbatim reported
from such co-authored works. For the seek of readability, we will omit
quotation marks when reporting such text.

1.3 First Contribution: Automatic Con-

tact Tracing

Part of the results in the area of ACTs included in this thesis were
published in peer reviewed conferences and journals such as Workshop
on Secure IT Technologies against COVID-19 (CoronaDef, co-located
with NDSS 2021) [13], IEEE Internet Computing [14], and ACNS
2021 [16]. In particular, parts of the results published in [13, 14] are

13

also present in the PhD thesis2 of Vincenzo Botta who was a co-author
of such publications. The results of [13, 14] are part of a full version
that was published on ePrint [12]. The results of [16] are part of a full
version that was published on ePrint [15].

Contact tracing. At the beginning of 2020, a new virus named
Sars-Cov-2 was already spreading in Wuhan, China. Soon it became
very clear that a new pandemic had begun.

Governments around the world put in place strong measures trying
to contain the virus. Lockdowns were established, basically forcing
people to stay home at all times. Nevertheless, the virus had already
started to quickly spread, hospitals were saturated and many people
were dying every day. In this climate of terror and fear, everyone was
looking for solutions that could alleviate the situation. People wanted
their freedom back again as soon as possible, furthermore the economic
impact of this virus was considerable, with many lost jobs. One key
strategy used by health authorities to limit the spread of the virus is
contact tracing. When a person is tested positive, she is interviewed
by a contact tracer to determine all her recent close contacts in the
contagious time window (e.g., 10 days before the beginning of the
symptoms). Then, all the people recently met by the infected citizen
are informed, tested, and proper restrictive actions are taken.

Automatic contact tracing. A major problem with COVID-19
is that the virus spreads very quickly while the procedures to detect
infected people and to find and inform potentially infected people are
slow. When a new infected person is detected, too much time is spent
to inform her recent contacts and to take proper restrictive actions.
Commonly, when a new infected person is discovered, by the time
her recent contacts are informed they have already had a significant
chance to infect others.

In order to improve on this situation, many researchers proposed
automatic systems for contact tracing (ACTs, for short) [59]. The
hope was that such systems could dramatically increase chances that

2The thesis will be made available at http://elea.unisa.it/handle/10556
/50.

14

http://elea.unisa.it/handle/10556/50
http://elea.unisa.it/handle/10556/50

recent contacts of an infected person were informed before infecting
others. Ideally, whenever a person is tested positive, all her recent
contacts (i.e., persons that have been in close proximity to the infected
one) should be immediately notified. This would allow to promptly
take appropriate countermeasures.

Privacy threats of automatic contact tracing. In 2013, Edward
Snowden disclosed global surveillance programs [46] opening a world-
wide discussion about the trade-off between individual privacy and
collective security. Motivated by such risks, several researchers and
institutions have proposed and advertised to citizens the possibility of
realizing automatic contact tracing systems that also preserve privacy
to some extent.

Integrity threats of automatic contact tracing. Given the large-
scale deployment that is expected for ACTs to effectively mitigate the
spread of the virus [59], the integrity of such systems is another key
concern. In a nutshell, one would want from ACTs a certain resilience
to adversarial attacks. For example, users should only receive a notifi-
cation if they actually met an infected person, and not because a ma-
licious party targeted them. Notice that a notification from the ACT
has concrete consequences in the physical world, potentially putting
notified users in quarantine, or making the health system perform use-
less tests.

1.3.1 The Response of the Scientific Community

Motivated by the perceived need of designing and developing privacy-
preserving ACTs as soon as possible, several projects involving re-
searchers and experts from various countries born with the aim of
proposing new systems.

In Europe, the Pan-European Privacy-Preserving Proximity Trac-
ing (PEPP-PT) project [6] was launched as a Swiss-based organization
with “more than 130 members across eight European countries”. It
incubated various candidate systems among which a European ACT
should have been selected to be developed. Similar initiatives also

15

born in the United States such as Private Automated Contact Trac-
ing (MIT-PACT, for short) [94], or a similar project from the Univer-
sity of Washington UW-PACT [37]. Given their widespread adoption,
smartphones were immediately considered as devices for the users of
ACTs. Bluetooth Low Energy (BLE) was preferred as communication
channel as it is not directly correlated to location information and can
work without relying on any base station.

The BLE-based approach. BLE-based ACTs commonly rely on
the use of pseudonyms that smartphones announce through BLE iden-
tifier beacons. To prevent easy tracking attacks, after a short period
of time called time slot or epoch (e.g., 15 minutes), each smartphone
replaces the already announced pseudonym with a (seemingly inde-
pendent) new one. Each smartphone receives pseudonyms sent by
others and stores them locally. Therefore, a smartphone will have a
database of the announced pseudonyms and a database of the received
pseudonyms. The main idea is that whenever a person tests positive,
smartphones that have been physically close to the smartphone of the
infected person should be notified.

In order to realize this, the smartphone of the infected person
should use the above two databases to somehow reach out the smart-
phones that have recently been physically close to it. This commu-
nication is achieved through a backend server as follows. First, the
smartphone of the infected person will use the above two databases to
communicate data to the backend server. The server could then run
some computations on data received from smartphones of infected cit-
izens. The server will also use collected/computed data to answer
queries of smartphones that desire to check if there is any notification
for them.

Centralized vs decentralized ACTs. An important point of the
design of a BLE-based ACTs is the generation of pseudonyms used
by smartphones. Two major approaches were proposed. In the cen-
tralized approach, pseudonyms are generated by the server. Each
smartphone, during the setup of the ACT smartphone application,
connects to the server and receives its pseudonyms. Therefore, the
server knows all the pseudonyms honestly used in the system. This

16

is a clear open door to mass surveillance. Such dangers are discussed
in [114]. The centralized approach is part of the protocols named NTK
and ROBERT that were developed inside the PEPP-PT initiative [6].

The decentralized approach instead breaks the obvious link among
pseudonyms belonging to the same smartphone by letting the smart-
phone itself generate such pseudonyms. However, it also introduces
privacy and integrity threats that are not an issue in centralized sys-
tems. The different views on the paradigm to be adopted caused a split
in PEPP-PT and led to the birth of another project called Decentral-
ized Privacy-Preserving Proximity Tracing (DP3T, for short)3 [114].

1.3.2 The Move of Apple and Google

The unlinkability of pseudonyms advertised in BLE identifier beacons
is useless if the BLE MAC address associated to a smartphone does
not change in a synchronized way with the pseudonyms. Indeed, if the
MAC address remains fixed while the advertised pseudonym changes,
it is straightforward to deduce that two different pseudonyms associ-
ated to the same MAC address come from the same device [20]. The
vast majority of smartphones has either iOS or Android as operating
system. Both iOS and Android have strict restrictions on updating
the BLE MAC address. In contrast, the contact tracing application
should be able to work in background and should have full control over
the BLE MAC address.

As a result, it is problematic to realize BLE-based privacy-preserving
contact tracing applications without help from Apple and Google. In-
terestingly, Apple and Google have released updates of iOS and An-
droid called Google Apple Exposure Notification (GAEN, for short)
[68]. GAEN provides the part concerning the generation, rotation,
exposure, and storage of pseudonyms, thus solving the MAC address
linkability problem. Access to GAEN is given exclusively to applica-
tions endorsed by governments and approved by Apple and Google.

However, instead of providing a general API, GAEN forces a spe-
cific contact tracing protocol, which is almost identical to DP3T. If one
wants to implement a smartphone application that needs to rotate the

3Documents and code of this project can be found at https://github.com/D
P-3T.

17

https://github.com/DP-3T
https://github.com/DP-3T

BLE MAC address synchronously with the content of the BLE identi-
fier beacon4, then he must use GAEN and therefore he is stuck with its
approach for pseudonyms generation and exposition (i.e., the one of
DP3T). This lack of flexibility makes the centralized approach not im-
plementable, since it relies on pseudonyms generated by the server and
then advertised in the BLE identifier beacon by the smartphone. On
the other hand, the generation of pseudonyms can only happen inside
the smartphone when using GAEN. This decision made by Apple and
Google basically forced countries to switch to the decentralized model,
even if they initially preferred the centralized one5. Many countries
realized ACTs based on GAEN. They developed smartphone applica-
tions that are essentially wrappers of GAEN. Their main function is
to set the parameters in GAEN function calls and to provide a user
interface. Additionally, they provide an upload authorization mecha-
nism and a server to gather and spread infected users’ pseudonyms for
which Google also provides a reference implementation [66]. GAEN-
based contact tracing systems are still widely used in Europe (e.g.,
Austria, Belgium, Germany, Ireland, Italy, Poland, Spain, Switzer-
land, and more). Moreover, in the US, several states have adopted
GAEN-based systems.

1.3.3 Security Issues of DP3T/GAEN

Since the first proposals of ACTs came out, researchers started to
investigate their security. Many of these works focused on the analysis
of DP3T [114]. Due to its great similarity with GAEN, practically all
the results about it also apply to GAEN-based ACTs. Researchers
elucidated both privacy and integrity issues in DP3T/GAEN. For a
more detailed overview, see Sec. 3.2.

Privacy threats. Regarding privacy attacks, the most concerning
one is the paparazzi attack by Vaudenay [115]. In his work, Vaudenay

4Notice that operating systems also restrict BLE usage in background. There-
fore, even ignoring the MAC address problem, applications not using GAEN would
drain the smartphone’s battery much faster.

5See the case of UK that tried to develop a system without GAEN but had to
give up https://www.bbc.com/news/technology-53095336.

18

https://www.bbc.com/news/technology-53095336

presented the paparazzi attack as a de-anonymization attack, however
it can also be seen as a tracking attack. Basically, in DP3T it is
very easy for an attacker to track the locations visited by the infected
users during the contagious time window. The attacker just needs
to collect users’ pseudonyms using an undetectable passive antenna
(i.e., working only in reception mode). Then, when a user becomes
infected, the attacker is able to link all the pseudonyms she used during
the contagious time window (and thus to infer the locations the user
visited during that time).

Integrity threats. In the context of ACTs, preserving the integrity
of the system means preventing false alerts. A concerning attack al-
lowing to direct false positive alerts to specific targets has been pointed
out in [96, 115]. Indeed, GAEN-based contact tracing systems can be
abused through replay attacks. In this case, the pseudonyms sent by
an individual considered at risk (e.g., a person who is taking a test)
are transmitted by an adversary to a different location in order to
create fake proximity contacts. Another class of attacks leading to
false alerts involves bribing. Vaudenay conjectured that decentralized
ACTs like DP3T/GAEN could have been vulnerable to what he called
the terrorist attack [116]. The terrorist attack involves users reporting
pseudonyms that differ from the ones used during the previous days.
Then, in principle, there could be smart contracts automatically re-
warding such users. This black market could lead to a massive amount
of fake notifications without relying on replay attacks.

1.3.4 Provable Security and Automatic Contact
Tracing

Given all the attacks to GAEN/DP3T that have been demonstrated
in the literature, a natural question that follows is whether the princi-
ples of provable security were applied in designing DP3T: the answer
is no. One might wonder why provable security was not taken into
consideration. Although it is impossible to give a definitive answer to
this question, some of the reasons may include the following:

• There was basically no literature on the topic. There was no

19

clear understanding of what where the requirements for privacy-
preserving contact tracing systems.

• There was a climate of fear and urgency. People wanted solutions
as soon as possible. Stating that many months of work would
be needed only to figure out precise security goals and threat
models could have been unpopular.

• Scientific discussion became polarized. Even though there were
forum boards to discuss the projects, it was believed that ev-
eryone pointing out problems wanted to get in the way of the
project for personal reasons.

Later on, independent works made the effort to formulate rigorous
security models and to analyse ACTs in the provable security paradigm
[34,50] confirming vulnerabilities of DP3T or more clearly elucidating
its security guarantees.

1.3.5 Security Assessments by the DP3T Team

Although outside the rigorous approach of provable security, the DP3T
team performed a security assessment comparing the ACTs approaches
that were known at the time [110]. The document explores both pri-
vacy and integrity risks.

Privacy risks. The document [110] first explores what they call in-
herent risks (IR) of ACTs. In particular, in IR1 it is said that “any
proximity tracing system that notifies users that they are at risk en-
ables a motivated attacker to identify the infected people that he or she
has been physically near. This risk is a consequence of the basic prox-
imity tracing functionality.”. Then, they provide some examples such
as the fact that whenever a notified user only met one person in the
contagious time window, then the user is able to de-anonymize such
infected user. Although such attack vectors are inherent, when facing
these situations one should factor out inherent leaks by requiring that
the system leaks nothing more than what it is inherently leaked by
its functionality. However, these examples were used to argue that
all sort of de-anonymization attacks are inherent. Indeed, the DP3T

20

team answered to Vaudenay’s paparazzi attack [115] in [111] claiming
that “This is a known attack vector inherent to all contact tracing sys-
tems, whether centralized or decentralized (SRE, Inherent Risk 1)”.
Nevertheless, we disprove such claim by proposing new ACTs that are
not vulnerable to the paparazzi attack. In a nutshell, the catch is
that Vaudenay’s adversary uses passive undetectable antennas. While
infected users in DP3T can be de-anonymized even by such a weak ad-
versary, that does not hold in general. It follows that DP3T leaks more
than what is strictly required by the proximity tracing functionality.

The document [110] goes on providing a taxonomy of ACTs that
were proposed up to that time. The systems are categorised w.r.t.
two features: (i) whether the pseudonyms are locally generated or
assigned by a central server (i.e., the ACT is centralized or decentral-
ized), (ii) whether the infected users share their own pseudonyms or
the pseudonyms that they recorded. Then, after having evaluated all
the possible attacks and risks they could think of, the document pro-
ceeds in conveying the idea that the best trade-offs are offered by de-
centralized systems which share the pseudonyms used by the infected
users. For example, they make the following consideration w.r.t. sys-
tems where “an infected person uploads all identifiers observed during
the contagious window to the server”. They argue that “for epochs in
which groups of at least three people were in close proximity to each
other, this will reveal temporal colocation information about infected
individuals to the server.” Although this is true for systems which sub-
mit recorded pseudonyms without any further transformation, this is
in general not true. There are modifications of such approach, as we
demonstrate in this thesis (cfr., Sec. 3.3.1), that avoid such leaks.

Although useful for having a general understanding of the matter,
such high-level evaluations can induce in making general claims that
do not have any strong foundation.

Integrity risks. Regarding false-alerts injection, the document [110]
conveys the idea that all the attacks are just tied to limitations in
preventing, without using location information, range extension or
signal relay at the bluetooth level. However, this point of view only
considers the most powerful adversary. It neglects that there could
be different levels of protection w.r.t. different adversaries. In fact, a

21

lower-level characterization could allow to better evaluate the trade-
offs of different solutions.

For example, the document discusses false alarms through BLE
range extensions (GR1), and false alarms through active relays (GR2).
In GR1, the attacker uses her device as in the protocol specification
but extends its range. Therefore, the attacker needs to find a way to
be marked as infected. In GR2, the attacker simply relays (possibly
back and forth) interactions with devices that are likely to be marked
as infected later on. GR1 is deemed inherent because anybody could
pay an infected user to upload different data. However, the risk of
(much more dangerous) automated versions of this bribing attack (i.e.,
Vaudenay’s terrorist attack) is not discussed. In Sec. 3.4, we show that
such attacks are possible and can be run against practically deployed
GAEN ACTs.

Mitigations to GR2 are deemed possible only via distance bounding
protocols or by binding transmissions to locations. Nevertheless, there
could be systems with different kinds of resilience which do not use any
of these technique and just address the problem at the protocol level.
For example, in Sec. 3.3, we propose ACTs that are not vulnerable to
replay attacks (i.e., relay attacks in which the signal is relayed only in
one direction) as opposed to DP3T/GAEN.

1.3.6 Our Contributions in ACTs

In Sec. 3.3, we investigate both known and novel privacy and integrity
attacks to ACTs. In particular, since one of the main reasons advo-
cated to prefer the decentralized approach over the centralized one
was to protect citizen from mass surveillance, we take into consider-
ation also adversaries that are able to corrupt the server and/or the
health authorities. We first evaluate DP3T/GAEN w.r.t. such attacks
revealing that they are vulnerable to most of them. Then, on the pos-
itive side, we propose a novel alternative ACT named Pronto-C2, as
well as a lightweight version named Pronto-B2, tackling both privacy
and integrity attacks. Pronto-C2 and Pronto-B2 act also as concrete
examples disproving some DP3T’s claims about the inherent nature
of certain integrity and privacy issues in ACTs. Parts of such findings
were published in [13, 14]. The prevalent contributions I gave in such

22

co-authored publications are the formalization of attacks, threats, and
security guarantees of ACTs, as well as the security analyses of DP3T,
Pronto-B2, and Pronto-C2.

In Sec. 3.4, we investigate the issue of false alert injections through
bribing attacks. We point out that their importance was either down-
played or ignored by major security assessments. However, we are the
firsts to concretely demonstrate the viability of the terrorist attack
conjectured by Vaudenay. In particular, we show how to overcome
serious obstacles that seemed to hinder the applicability of the terror-
ist attack. Namely, smart contracts cannot query the contact tracing
server to verify that an upload was performed, and cannot store any se-
cret value. We propose a suite of smart contracts that implements the
terrorist attack w.r.t. concretely deployed GAEN-based ACTs. We
thus demonstrate that such attacks are possible and practical. There-
fore, they should be taken into consideration when building ACTs.
Parts of such findings were published in [16]. My prevalent contribu-
tions in such co-authored publication are the design of the attacks, as
well as all the considerations on their practicality and all the involved
subtleties.

1.4 Second Contribution: Threshold Cryp-

tography

Parts of our results in the area of threshold cryptography included in
this thesis were published in ESORICS 2022 [11]. In particular, such
publication deals with zero-knowledge proofs over threshold relations
and threshold ring signatures. The results related to ETRS will appear
in the proceedings of PKC 2023. In the meanwhile, we published these
results on ePrint [10].

Threshold cryptography. Threshold cryptography deals with de-
signing cryptosystems that can be used only when an authorized group
of users cooperate. A typical example is requiring the cooperation of
at least a threshold of t users within a larger group of n users. Thresh-
old primitives are crucial in applications involving multiple senders or
receivers. Some examples are threshold decryption (i.e., a secret can

23

only be unveiled by at least t receivers) [33], threshold signatures (i.e.,
a message can only be signed if at least t parties agree) [104], and
threshold ring signatures (i.e., t parties having independent keys can
sign a message while hiding their identity in a larger set of n users) [30].
With the increasing adoption of distributed systems like blockchains,
these primitives are becoming even more relevant. In such scenarios,
some key challenges include reducing the computational load, the size
of published data, and the interaction among the parties, as well as
proposing new threshold primitives with enhanced functionalities.

1.4.1 Threshold Ring Signatures

A central cryptographic primitive that can be used to provide anonymity
in applications is ring signatures [98]. Ring signatures [98] are digital
signatures which allow one user to sign a message while hiding her
identity in a larger group called ring R. In practice, the signing al-
gorithm, aside the message, takes as input a set of public keys (i.e.,
the ring) and one of the corresponding secret keys. The produced sig-
nature guarantees that one of the public keys in the ring signed the
message, while hiding which one of the secret keys was used to create
the signature. Clearly, the larger is R the greater is the anonymity
provided to the signer. A practical application of ring signature is
whistleblowing. By signing a message, a member of a company can
report a wrong practice of the company itself while hiding his identity
among all the other employees. Constructions for ring signatures are
known from a variety of cryptographic tools such as RSA [53], pairing
groups [27, 44, 127], non-interactive zero-knowledge proofs [7, 28, 64],
and lattices [24,55,85,86].

Threshold ring signatures [30] enrich ring signatures by allowing t
signers to hide their identity within the ring. The signature guarantees
that t members of R signed the message without revealing which ones.
Ring signatures can be seen as threshold ring signatures with t = 1.

1.4.2 Proofs over Threshold Relations

An enabler for threshold primitives are cryptographic primitives that
can be exploited by a sender iff she holds at least t out of n secrets.

24

Then, to get a corresponding threshold primitive, one has to find a
way to distribute the computation among different users, each one
holding a different secret. A significant example are zero-knowledge
(ZK) proofs over threshold relations.

Roughly speaking, ZK proofs are proofs that allow a prover P to
convince a verifier V about the veracity of a claim without revealing
nothing more. In this setting, we have an NP language L with cor-
responding poly-time relation RL. P and V have as common input
the statement x, moreover P gets a witness w such that (x,w) ∈ RL.
The goal of P is to convince V that x ∈ L, without revealing anything
else. ZK proofs must also be sound, meaning that a dishonest prover
cannot convince a verifier if x /∈ L. Additionally, a proof is said to be
a proof of knowledge (PoK) if the prover is forced to know a witness
w such that (x,w) ∈ RL to make the verifier accept.

In proofs over threshold relations (PTRs), a statement consists of
ℓ instances and the prover wants to prove knowledge of witnesses for
at least k of them. For simplicity, we will refer to such a proof as
a (k, ℓ)-PTR. This primitive is very useful in a number of privacy-
centered applications. One example is e-voting [49], where the voter
has to demonstrate that he voted for at most k out of n choices without
revealing his choices. Interestingly, in certain cases a (k, ℓ)-PTR can
also be used as building block for a multiple-senders primitive such
as threshold ring signature. At a high level, starting from a (k, ℓ)-
PTR one can get a corresponding threshold ring signature by solving
two technical challenges: (i) find a way to distribute the computation
of a single prover holding k witnesses to k different provers each one
holding a single witness, (ii) find a way to tie a message m to the
produced proof.

1.4.2.1 Σ-Protocols

In the space of interactive zero-knowledge proofs, there is a sub-class
of protocols known as Σ-protocols. Σ-protocols are very popular be-
cause of their appealing features. Although there are Σ-protocols that
cover all NP [25], there exists many Σ-protocols which are tied to a
particular language. Such protocols trade generality for efficiency and
are therefore suitable for practical applications. In the literature, there

25

are several Σ-protocols for languages of practical relevance [47,73,89].
One of the most known is the Schnorr’s protocol [101] for proving the
knowledge of a discrete logarithm. Σ-protocols are 3-round public coin
protocols (i.e., the verifier only sends random messages sampled from
a fixed distribution). The proof of knowledge property is formulated
through the notion of special soundness. It requires the existence of a
poly-time extractor algorithm which, on input two protocol runs with
the same first-round messages and different second-round messages,
outputs a witness w s.t. (x,w) ∈ RL. As we will see next, Σ-protocols
are very versatile since, due to their structure, they can be combined
together to get efficient PTRs.

1.4.3 The Chase for Compact and Practical PTRs

There has been an effort in the past to obtain PTRs for practical
languages. In [48], Cramer et al. showed an efficient composition
of Σ-protocols to obtain a (k, ℓ)-PTR. Their technique has several
advantages. Indeed, it applies to all Σ-protocols, even for different
languages, and gives again a Σ-protocol in output. However, the
computation and communication costs are linear in the number of
the composed protocols. Subsequently, other composition techniques
have been proposed, with the aim of adding features or reducing the
communication complexity. Ciampi et al. [45] added the delayed input
feature, meaning that is it possible for the prover to learn the instances
only just before computing the third round. Unfortunately, the result-
ing protocol is only computational honest verifier zero knowledge, re-
gardless of the flavour of the composed protocols. The communication
complexity is the same as [48].

Very recently, Attema et al. [7] obtained a very compact (k, ℓ)-PTR
with logarithmic communication complexity. However, their result is
not general since it applies only to discrete logarithms. Even more
recently, Goel et al. [64] achieved a similar result in terms of com-
munication complexity which applies to a large class of Σ-protocols
(which they call stackable Σ-protocols). Nevertheless, the techniques
of [64] are communication-efficient only when k = 1. In the full version
of their paper [62], they proposed an approach for generic values of k

26

that does not improve the communication complexity of [48]6.

1.4.4 Extendable Threshold Ring Signatures

Some threshold ring signatures also enjoy a property called flexibility
[90, 93]. They allow new signers to join already produced signatures:
a signature on a message m that was already created with threshold
t for a ring R can be transformed into a new signature on message m
with threshold t+1 w.r.t. the same ring R. The interesting aspect of
flexible threshold ring signatures is that the update does not require
the participation of any previous signer. Nevertheless, until recently,
all known threshold ring signatures did not offer an analogous property
that would allow extending the ring. In other words, all previous
constructions required to fix the ring from the beginning and did not
allow to modify it further.

This problem has been addressed for the first time in the recent
work of Aranha et al. [5] which has put forth the notion of extendable
threshold ring signatures (ETRS). ETRS, aside the join operation,
also provide an extend operation: any signature with ring R can be
transformed by anybody into a signature with ring R′ s.t. R ⊂ R′.
After the extend operation, all signers in R′ can join the signature.

1.4.5 ETRS and Count-Me-In Applications

The new functionality offered by ETRS could in principle be exploited
in anonymous count-me-in applications. In practice, a public bulletin
board would be used as a synchronization medium to run an anony-
mous petition. An ETRS on the bulletin board - with threshold t on a
message m that contains a proposition - would certify that t authen-
tic different people out n possible people agreed with the proposition.
Unlike usual petitions where the identity of the signers is known (or
protected by a trusted authority), the identity of the actual t signers
would be hidden among all the possible signers. This system would
allow people to express their opinion on sensitive/controversial topics

6After our work was published in ESORICS 2022 [11], Goel et al. updated
their paper [63] with a construction inspired by our work which achieves the same
communication complexity.

27

while protecting themselves from the consequences. Furthermore, the
number of supporters of a proposal would be public at all times.

The extend and join operations would then be used to update the
ETRS on the bulletin board. With an extend operation anybody could
augment the set of possible supporters, while with a join operation a
user could anonymously support the proposition.

However, even if such applications are implicitly suggested in [5],
their ETRS has a very limited notion of anonymity that does not sup-
port such applications. In their anonymity definition, the adversary is
constrained in seeing only one signature that is the result of an arbi-
trary number of (hidden) join/extend operations. Additionally, their
definitions do not guarantee anonymity w.r.t. other signers. This
implies that the only secure way of using such ETRS is by requir-
ing that all the possible supporters privately communicate together
to produce a unique final ETRS which can be made public only at
the very end. Furthermore, all the signers have to trust each other.
All these restrictions seriously hinder the usage of ETRS in real-world
count-me-in applications.

1.4.6 Our Contributions in Threshold Cryptogra-
phy

In this thesis, we give several new contributions in the area of threshold
cryptography. In Sec. 4.1, we focus on how to obtain compact PTRs for
a large class of useful languages. We do so by devising a composition
that supports a large class of Σ-protocols, namely the stackable Σ-
protocols defined by Goel et al. [62]. Additionally, we show how to
construct a threshold ring signature from our PTR.

In Sec. 4.2, we propose a novel ETRS with enhanced anonymity
properties that are suited for real-world count-me-in applications. In
the following paragraphs, we give a more detailed overview of our
contributions.

Compact PTRs and Threshold Ring Signatures. In light of
the state of affairs discussed in Sec. 1.4.3, we have the following open
question:

28

Is it possible to obtain a practical (i.e., round, communication and
computation-efficient) (k, ℓ)-PTR for a large class of Σ-protocols (and
thus for several useful languages) with communication complexity sub-
linear in ℓ preserving statistical/perfect zero knowledge?
We solve the above open problem when k = o(ℓ

log ℓ
) by showing how

to efficiently combine the same large class of Σ-protocols considered
in [62] obtaining a (k, ℓ)-PTR with communication complexity that is
roughly k log ℓ. In scenarios where k is way smaller than ℓ (e.g., k is
constant or even

√
ℓ) this is a significant improvement. Moreover, our

construction, similarly to [62], can also be used for (k, ℓ)-PTR involv-
ing Σ-protocols for different languages. The protocol obtained through
our techniques is still a Σ-protocol and thus, it can be combined again
with our techniques or other techniques (e.g., [48]) for composing Σ-
protocols. Finally, our construction preserves the flavour of the zero-
knowledge property of the composed protocols. Indeed, our (k, ℓ)-
PTR called Πk,ℓ is still statistical/perfect honest-verifier zero knowl-
edge (HVZK) if the base Σ-protocols are statistical/perfect HVZK.
Starting from our Πk,ℓ, we can get a threshold ring signature scheme.
In our threshold ring signature scheme, the size of a signature cor-
responds roughly to O(k log ℓ) group elements. Nice features of our
threshold ring signature include a reduced level of interaction among
the signer, as well as the support for hierarchical access structures. In-
deed, our PTR supports hierarchical relations that are more expressive
then simple thresholds, thus achieving better anonymity properties.
More details are presented in Sec. 4.1.

Parts of such results were published in [11]. My prevalent contri-
bution in such co-authored publication was to design our (k, ℓ)-PTR
and to prove its security.

ETRS with enhanced anonymity. We address the shortcomings
of ETRS mentioned in Sec. 1.4.5. First, we propose stronger security
definitions that guarantee anonymity even against adversaries that see
the full “evolution” of a signature. Second, we propose a new ETRS
construction that achieves our strong anonymity definitions, and also
improves in both computational and communication complexity over
previous work. Our construction relies on extendable non-interactive
witness indistinguishable proof of knowledge (ENIWI PoK), a novel

29

technical tool that we formalize and construct, and that may be of
independent interest. Roughly speaking, witness indistinguishability is
a weaker form of zero knowledge that only guarantees that the verifier
is not able to understand which witness was used by the prover. Since
threshold relations inherently have multiple witnesses, this is sufficient
in several applications. Our ENIWI PoK has the interesting feature of
being updatable by different provers. A prover, starting from a (k, ℓ)-
PTR, can non-interactively build a (k′, ℓ′)-PTR with k′ ≥ k and ℓ′ ≥ ℓ,
using only the witnesses for the “new” k′ − k instances. More details
are presented in Sec. 4.2.

Parts of such results will appear in the proceedings of PKC 2023.
I have worked on these results during my visiting period at IMDEA
Software Institute, under the supervision of Prof. Dario Fiore. My
prevalent contributions in such co-authored result were to identify the
open problem, formulate anonymity definitions suited for real-world
applications of ETRS, define and construct the ENIWI PoK and our
ETRS, and proving the security of both primitives.

Confronting the “ugly side” of provable security. When an-
alyzing previous works we improve on, we found out some inconsis-
tencies in the usage of the provable security paradigm. They can be
described according to the issues mentioned in Sec. 1.1.

• Problematic proofs: We discovered a fallacy in the security
reduction of the Extended Honest-Verifier Zero Knowledge prop-
erty of the (1, ℓ)-PTR of Goel et al. [62]. In particular, they
presented a very high-level reduction to standard properties of
commitment schemes. At a superficial examination, such proof
may seem trivially correct as it resembles many similar secu-
rity reductions. However, we show that the proof is incorrect
and stronger properties for the commitment scheme are needed.
Luckily, the concrete instantiation they proposed also fulfills our
stronger definitions. Recently, Goel et al. [63] updated their pa-
per acknowledging the issues we pointed out. This and other
issues are described in detail in Sec. 4.1.6.

• Inadequate definitions: Regarding the ETRS proposed in [5],
we did not find any technical issue. However, as we already men-

30

tioned in Sec. 1.4.5, we discovered an even more subtle problem.
The paper [5] introduces ETRS as an enabler for count-me-in ap-
plications. They are supposed to allow people to easily express
their opinions while staying anonymous, even from their fellow
signers. However, the definitions they propose are insufficient to
reach such goal. Interestingly, the issue concretely shows up in
their most efficient ETRS. In such ETRS it is straightforward,
looking at two subsequent signatures, to identify who joined the
signature. These issues are described in detail in Sec. 4.2.1 and
Sec. 4.2.3.

31

Chapter 2

Preliminaries

In this chapter, we introduce the notation and the basic concepts that
will be used throughout the thesis. In particular, Sec. 2.1 describes
the notation used in this thesis, Sec. 2.2 reports the main number-
theoretic assumptions, and Sec. 2.3 reviews the main cryptographic
tools used in this thesis.

2.1 Notation

We use N to denote the set of all natural numbers and we let PPT
stand for probabilistic polynomial time. For a probabilistic algorithm
A, A(x) denotes the probability distribution of the output of A when
run with x as input. We use A(x; r) instead to denote the output of
A when run on input x and randomness r. We write AB(·) to indicate
that A is given oracle access to algorithm B. This means that A can
query an oracle to get the output of B on input of its choice. This is
particularly useful in security games where the output of B depends
also on secret information A is not given access to.

We denote with λ ∈ N the security parameter and with poly(·)
a positive polynomial poly. Generally, every algorithm in a cryp-
tographic construction takes in input the security parameter 1λ in
unary. When an algorithm takes more than one input, 1λ is omitted.
We say that a function ν : N→ R is negligible if every positive poly-
nomial poly(·) and all sufficiently large λ it holds that ν(λ) ≤ 1

poly(λ)
.

32

A polynomial-time relation R is a relation for which membership of
(x,w) to R can be decided in time polynomial in |x|. If (x,w) ∈ R
then we say that w is a witness for the instance x. A polynomial-time
relationR is naturally associated with the NP language LR defined as
LR = {x|∃w : (x,w) ∈ R}. Similarly, an NP language L is naturally
associated with a polynomial-time relation RL.

A distribution ensemble {X(a)}a∈{0,1}∗ is an infinite sequence of
probability distributions, where a distribution X(a) is associated with
each value of a. We say that two distribution ensembles {X(n)}n∈N
and {Y (n)}n∈N are computationally indistinguishable if for every PPT
distinguisher D, there exists a negligible function ν such that for all
n ∈ N,

Pr[D(X(n), n) = 1]− Pr[D(Y (n), n) = 1] ≤ ν(n).

We say that {X(n)}n∈N and {Y (n)}n∈N are statistically indistin-
guishable if the above holds for all D. We use ≈s to indicate that two
distributions are statistically indistinguishable. We use ≈ to indicate
that two distributions are identically distributed.

We denote by [n] for an n ∈ N the set of numbers {1, . . . , n}. We
refer to vectors using the bold font as v. To indicate the i-th position
of v, we write v[i], we do the same for binary strings. When using ←
we mean that the variable on the left side is assigned with the output
value of the algorithm on the right side. With ←$, we indicate that
the variable on the left side is assigned a values sampled randomly
according to the distribution on the right side.

When dealing with cyclic groups, we use the multiplicative notation
to denote the group operation. When dealing with pairing groups,
we use the additive notation to denote the group operation and the
multiplicative notation to denote the pairing operation. To simplify
the description, in this chapter we only use the multiplicative notation
as bilinear groups are only used in Sec. 4.2. In Sec. 4.2.4, we will restate
all the relevant assumptions with the additive notation in the bilinear
group setting.

33

2.2 Number-theoretic Assumptions

In this section, we list the number-theoretic assumptions that are of
interest for this thesis.

Assumption 1 (DL). There exists a PPT algorithm GG(1λ) which
returns the description of a cyclic group G in which the sampling of
the elements is efficient, such that for all PPT algorithms A there
exists a negligible function ν(·):

Pr
[︁
A(1λ,G, g, h) = y|G← GG(1λ);h← G; y ← Z|G|; g ← hy

]︁
= ν(λ).

Let G be a cyclic group of order q, g generator of G and let A,B
and X be elements of G. We say that (g, A,B,X) is a Diffie-Hellman
tuple (a DH tuple, in short) if A = gα, B = gβ for some integers
0 ≤ α, β ≤ |G| − 1 and X = gαβ. If this is not the case, the tuple is
called non-DH.

The Computational Diffie-Hellman assumption (the CDH assump-
tion) posits the hardness of computing X given A and B.

Assumption 2 (CDH). For every PPT algorithms A there exists a
negligible function ν(·):

Pr
[︁
A((G, q, g), gα, gβ) = gαβ|(G, q, g)← GG(1λ);α, β ← Zq

]︁
= ν(λ).

The Decisional Diffie-Hellman assumption (the DDH assumption)
posits the hardness of distinguishing a randomly selected DH tuple
from a randomly selected non-DH tuple.

Assumption 3 (DDH). For every PPT algorithm A there exists a
negligible function ν(·) such that⃓⃓⃓
Pr
[︁
(G, q, g)← GG(1λ);α, β, γ ← Zq : A((G, q, g), gα, gβ, gγ) = 1

]︁
−

Pr
[︁
(G, q, g)← GG(1λ);α, β, γ ← Zq : A((G, q, g), gα, gβ, gαβ) = 1

]︁⃓⃓⃓
≤ ν(λ).

2.3 Cryptographic Tools

Hash functions. A hash function Hf is a pair of PPT algorithms
(Gen;H) fulfilling the following:

34

• Gen is a PPT algorithm which takes as input a security param-
eter λ and outputs a key s. We assume that 1λ is included in
s.

• There exists a polynomial poly such that H is (deterministic)
polynomial-time algorithm that takes as input a key s and any
string x ∈ {0, 1}∗,and outputs a string Hs(x) ∈ {0, 1}poly(λ).

The security property of Hf = (Gen,H) is defined using an exper-
iment ExpHashColl for Hf, an adversary A and a security parameter
λ.

ExpHashCollHf,A(λ)

1. s← Gen(1λ).

2. (x, x′)← A(s)

3. Output 1 if and only if x ̸= x′ and Hs(x) = Hs(x′).

Definition 1 (Collision-resistant hash function). A hash function Hf =
(Gen,H) is collision resistant if for all PPT adversaries A there exists
a negligible function ν(·) such that

Pr
[︁
ExpHashCollHf,A(λ) = 1

]︁
≤ ν(λ).

Message Authentication Codes (MAC). A message authenti-
cation code (MAC) consists of a tuple of algorithms (Gen,Tag,Verify)
such that

• Gen(1λ): on input the security parameter, output a key k in the
key space K.

• Tag(m, k): on input a message m in the message spaceM and
a key k, output a tag θ.

35

• Verify(m, θ, k): on input a message m and a key k, output 1 iff
θ is a correct tag on m under key k.

A MAC must satisfy the following properties:

Definition 2 (Completeness). A MAC = (Gen,Tag,Verify) is complete
if for every m ∈M it holds that:

Pr

[︃
Verify(m, θ, k) = 1

⃓⃓⃓⃓
k ← Gen(1λ);
θ ← Tag(m, k);

]︃
= 1.

Definition 3 (Unforgeability). A MAC MAC = (Gen,Tag,Verify) is
unforgeable if for all PPT adversaries A there exists a negligible func-
tion ν(·) such that

Pr
[︁
ExpMacUnfMAC,A(λ) = 1

]︁
≤ ν(λ).

ExpMacUnfMAC,A(λ)

1. k ← Gen(1λ).

2. (m, θ) ← A(1λ)Tag(·,k). Let Q be the set of all queries asked
by A the Tag oracle.

3. Output 1 iff m /∈ Q and Verify(m, θ, k) = 1. Otherwise,
output 0.

Commitment schemes. A (non-interactive) commitment scheme
consists of two PPT algorithms:

• pp ← Gen: on input the security parameter, outputs public pa-
rameters pp.

• com← Commit(pp,m; r) on input the public parameters, a mes-
sage m ∈ {0, 1}k, and randomness r ∈ {0, 1}λ outputs a value
com ∈ {0, 1}l.

36

The pair (m, r) is also called the opening. Intuitively, a secure com-
mitment can be seen as a digital envelope. It satisfies two properties
called binding and hiding. The first property says that it is hard to
open a commitment in two different ways. The second property says
that a commitment hides the underlying message.

Definition 4 (Perfect binding). We say that a commitment scheme
satisfies perfect binding if for all com ∈ {0, 1}l there do not exist values
(m0,m1, r0, r1), withm0 ̸= m1, s.t. pp← Gen(1λ) and Commit(pp,m0; r0) =
Commit(pp,m1; r1) = com.

Definition 5 (Computational hiding). We say that a commitment
scheme satisfies computational hiding if for all pairs of message m0,m1 ∈
{0, 1}k, pp← Gen(1λ), it holds that
{Commit(pp,m0; 1

λ)}λ∈N ≈c {Commit(pp,m1; 1
λ)}λ∈N.

There are also commitment schemes with dual properties, meaning
that hiding is perfect, while binding is computational. However, there
cannot exist commitment schemes having both properties with a per-
fect flavor. There also exist interactive commitment schemes, where
algorithms are replaced by protocols.

Public Key Encryption. A public key encryption (PKE) scheme
is a set of PPT algorithms PKE = (KeyGen,Enc,Dec).

• (pk, sk)← KeyGen(1λ): on input the security parameter, output
a new public and secret key pair.

• a ← Enc(m, pk): on input a message m, and a public key pk,
output a ciphertext a.

• m ← Dec(a, sk) on input a ciphertext a, and a secret key sk,
output a message m.

Additionally, a public key encryption scheme is homomorphic w.r.t. a
function f , if there exists a PPT algorithm that works as follows.

• a′ ← Eval(a, x, pk): on input a ciphertext a, a message x, and
the public key pk. Let y ← Dec(a, sk), it returns a ciphertext a′

s.t. f(y, x) = Dec(a′, sk).

37

There are several notions for the security of public key encryption
schemes. One of the most used ones is indistinguishability under
chosen-plaintext attacks (IND-CPA).

Definition 6 (IND-CPA). A public key encryption scheme PKE =
(KeyGen,Enc,Dec) is IND-CPA secure if for all PPT adversaries A
there exists a negligible function ν(·) such that

Pr
[︁
ExpCPAPKE,A(λ) = 1

]︁
≤ 1

2
+ ν(λ).

ExpCPAPKE,A(λ)

1. (pk, sk)← KeyGen(1λ).

2. (m0,m1)← A(pk).

3. Sample b←$ {0, 1}, compute a = Enc(mb, pk).

4. b′ ← A(a).

5. Output 1 iff b′ = b. Output 0 otherwise.

Digital signatures. A digital signature scheme consists of a set of
algorithms (Gen, Sign,Verify), such that:

• Gen(1λ): on input the security parameter, output a key pair
(sk, pk), where sk is the secret key and pk the public key.

• Sign(m, sk): on input a message m ∈ {0, 1}∗ and a signing key
sk, output a signature σ.

• Verify(m,σ, vk): on input a message m, a signature σ, and the
public key pk, output 1 if the signature σ correctly verifies under
vk.

A digital signature scheme must satisfy the following properties:

38

Definition 7 (Completeness). A digital signature scheme DS = (Gen,
Sign,Verify) is complete if for every m ∈ {0, 1}∗ it holds that:

Pr

[︃
Verify(m,σ, pk) = 1

⃓⃓⃓⃓
(pk, sk)← Gen(1λ);
σ ← Sign(m, sk);

]︃
= 1.

Definition 8 (Unforgeability). A digital signature scheme DS = (Gen,
Sign,Verify) is unforgeable if for all PPT adversaries A there exists a
negligible function ν(·) such that

Pr
[︁
ExpDsUnfDS,A(λ) = 1

]︁
≤ ν(λ).

ExpDsUnfDS,A(λ)

1. (pk, sk)← Gen(1λ).

2. (m,σ)← A(1λ)Sign(·,sk). Let Q be the set of all queries asked
by A the Sign oracle.

3. Output 1 iff m /∈ Q and Verify(m,σ, pk) = 1. Otherwise,
output 0.

2.3.1 Proof Systems

We present here a high-level overview on proof system- We take many
definitions from [119], to which we refer the reader for more details.
We define the notion of proof system for a language L. There are
two parties, namely prover P and verifier V. Both P and V are PPT
interactive algorithms, the language L is in NP, P and V have common
input x, moreover P knows a witness w such that (x,w) ∈ RL. We

Definition 9 (Proof System). A proof system Π = (P,V) for an NP-
language L is a pair of PPT interactive algorithms satisfying the fol-
lowing properties.

Completeness: for all x ∈ RL Pr[⟨P(w),V⟩ (x) = 1] = 1.

39

Soundness: there exists a negligible function ν such that for every
x /∈ L and for every adversary P∗ Pr[⟨P∗,V⟩ (x) = 1] = 0.

Definition 10 (Witness Indistinguishability). A proof system Π =
(P,V) is Witness Indistinguishable (WI) for a relation RL, if for every
malicious verifier V∗, there exists a negligible function ν such that for
all x,w,w′ such that (x,w) ∈ RL and (x,w′) ∈ RL

⃓⃓⃓⃓
Pr
[︁⟨︁
P(w, 1λ),V∗⟩︁ (x) = 1

]︁
− Pr

[︁⟨︁
P(w′, 1λ),V∗⟩︁ (x) = 1

]︁⃓⃓⃓⃓
< ν(λ)

Definition 11 (Zero Knowledge). A proof system Π = (P,V) for an
NP-language L is Zero Knowledge (ZK) if there exists an expected
PPT algorithm S such that for any PPT algorithm V∗ , any (x,w) ∈
RL and any z ∈ {0, 1}∗

{⟨P(w),V∗⟩ (x)} ≈s {SV∗
(x, z)}.

More on soundness. The soundness notion formulated above con-
siders very powerful malicious provers having unbounded computation
capabilities. A relaxed soundness notion that is very useful in practice
focuses on P∗ running in polynomial time. Proof systems for which the
soundness requirement only holds computationally are called argument
systems. In the remainder of this thesis, we will use the term proof
also to denote argument systems and make the distinction explicit
whenever is useful for the discussion. It is important to notice that
the soundness requirement only considers x /∈ L. There are situations
in which a claim can never be false and thus the soundness property
alone is not effective. For this reason (and others), it may be crucial
not only that P convinces V, but also that any P∗ that convinces V
for some x ∈ L must know a witness w such that (x,w) ∈ RL. Such
notion, called proof (or argument) of knowledge, is usually formulated
by the mean of a poly-time extraction algorithm. Σ-Protocols are an
example of proofs of knowledge (cfr., Section 2.3.1.1).

More on zero knowledge. The flavour of zero knowledge described
above is called statistical zero knowledge. If the two distributions are

40

only computationally indistinguishable, then one obtains a different
flavour called computational zero knowledge. The same applies to wit-
ness indistinguishability. Additionally, SV∗

means that the simulator
has only black-box access to the verifier, while z represents an auxil-
iary input to the verifier. Adding an auxiliary input to V∗ is crucial
to ensure that zero knowledge is preserved even if several executions
of the protocol are performed one after another [65].

Interactive zero-knowledge proofs are deniable. The zero knowl-
edge notion given above requires the existence of a simulator algorithm
that creates protocol transcripts that are indistinguishable to regular
interactions with an honest prover. This means that actual conversa-
tions V∗ had with P are useless in proving to a third party that such
interactions actually happened. Indeed, V∗ could have generated such
transcripts by itself running the simulator. This also ensures that V∗

is not able to re-use such conversations to convince a thid party that
x ∈ L.

Non-Interactive Zero Knowledge (NIZK). As opposed to what
said in the previous paragraph, there can be cases where it is essential
that the prover is able to compute a proof that is ZK but at the same
time is verifiable by many different verifiers. There exist systems that
solve this problem considering a scenario where a single message is
generated by the prover. Such message constitutes a proof that can
be verified many times by many independent verifiers. Such proofs
are known as Non-Interactive Zero-Knowledge (NIZK) proofs. NIZK
proofs can exist in the plain model only for trivial languages1. There
are NIZK proofs in the CRS model [26, 58, 71, 72]. There also exist
NIZK arguments in the ROM as shown in the next section.

1Being the proof made of only one message, the malicious prover could use a
simulator that outputs accepting proofs for any statement to violate soundness.
If the PPT simulator outputs accepting proofs only for x ∈ L, it can be used to
efficiently decide membership in L, thus L is in BPP.

41

2.3.1.1 Σ-Protocols

We consider a 3-round public-coin protocol Π for an NP language L
with a poly-time relation RL. Π = (P0,P1,V) is run by a prover
running auxiliary algorithms P0,P1 and a verifier running an auxil-
iary algorithm V. The prover and the verifier receive common input
x and the security parameter. The prover receives as an additional
private input a witness w for x. Prover and verifier use the auxiliary
algorithms P0,P1,V in the following way:

1. The prover runs P0 on common input x, private input w, ran-
domness R, and outputs a message a. The prover sends a to the
verifier;

2. The verifier samples a random challenge c←$ {0, 1}λ and sends
c to the prover;

3. The prover runs P1 on common input x, private input w, first-
round message a, randomness R, and challenge c, and outputs
the third-round message z, which is then sent to the verifier;

4. The verifier outputs 1 if V(x, a, c, z) = 1, and rejects otherwise.

The transcript (a, c, z) for the protocol Π = (P0,P1,V), and common
statement x is called accepting if V(x, a, c, z) = 1.

Definition 12 (Σ-protocol). A 3-round public-coin protocol Π = (P0,P1,V),
is a Σ-protocol for an NP language L with a poly-time relation RL iff
the following properties are satisfied

Completeness: For all x ∈ L and w such that (x,w) ∈ RL it holds
that:

Pr

⎡⎣V(x, a, c, z) = 1

⃓⃓⃓⃓
⃓⃓ R←$ {0, 1}λ; c←$ {0, 1}λ;

a← P0(x,w;R);
z ← P1(x,w, a, c;R)

⎤⎦ = 1.

Special Soundness: ∃ PPT Extract, such that on input x and two
accepting transcripts (a, c0, z0) and (a, c1, z1) for x, where c0 ̸=
c1, it holds that

Pr[(x,w) ∈ RL|w ← Extract(x, a, c0, c1, z0, z1)] = 1.

42

Special Honest-Verifier Zero-Knowledge (SHVZK): There ex-
ists a PPT simulator S that, on input an instance x ∈ L and
challenge c, outputs (a, z) such that (a, c, z) is an accepting tran-
script for x. Moreover, the distribution of the output of S on in-
put (x, c) is computationally/statistically/perfectly indistinguish-
able from the distribution obtained when the verifier sends c as
challenge and the prover runs on common input x and any pri-
vate input w such that (x,w) ∈ RL.

All Σ-Protocols are WI. In [48], it is proved that SHVZK im-
plies WI. Therefore, every Σ-Protocols is WI. We remark that while
SHVZK is formulated w.r.t. a honest verifier, in WI the verifier can
be malicious.

Definition 13 (Computational Σ-protocol). A 3-round public-coin
protocol Π = (P0,P1,V) is a computational Σ-protocol for an NP lan-
guage L with a poly-time relation RL if and only if it is complete,
(computational/statistical/perfect) special honest-verifier zero knowl-
edge, and computational special sound. Computational special sound-
ness is specified below.

Computational Special Soundness: ∃ PPT Extract s.t. ∀ PPT P∗ ∃
a negligible function ν(·) such that ∀x ∈ L it holds that

Pr
[︁
ExpExtP∗,Extract(x) = 1

]︁
≤ ν(|x|).

ExpExtP∗,Extract(x)

1. (a, c0, c1, z0, z1)← P∗(x).

2. If c0 ̸= c1, or V(x, a, c0, z0) = 0, or V(x, a, c1, z1) = 0
return 0.

3. w ← Extract(x, a, c0, c1, z0, z1).

4. Return 1 if (x,w) /∈ RL. Otherwise, return 0.

From now on, we will refer both to Σ-protocols and computational
Σ-protocols simply as Σ-protocols. We will instead clearly state the
considered flavour whenever it is useful for the discussion.

43

Fiat-Shamir transform. Fiat and Shamir [60] define a transforma-
tion, commonly known as the Fiat-Shamir transform, which converts
every public-coin protocol such as Σ-protocols into NIZK arguments
in the random oracle model. The idea is really straightforward. Since
in a Σ-protocol the verifier is trusted to provide a uniformly random
challenge, one can replace it with a random oracle whose output is
indeed a uniformly random string. The prover would give in input
to the random oracle the statement and the first message of the Σ-
protocol, and use its output as the verifier’s challenge. The resulting
protocol requires no interaction, P sends (a, z) to V who computes
c using the random oracle and runs V(x, a, c, z) as usual. Regarding
soundness, the only difference with the interactive version is that P can
locally query the random oracle as many time as he wants. Therefore,
soundness now only holds computationally but if the challenge set is
exponentially large and P runs in polynomial time, P would not be able
to cheat. Regarding zero-knowledge, it is straightforward to observe
that the random oracle removes any influence of a cheating verifier:
Σ-protocols are zero-knowledge if the challenge is uniformly chosen,
and this is exactly what the random oracle does. This is an example
of how a Σ-protocol which is only HVZK can be used to construct a
zero-knowledge proof system secure w.r.t. a malicious verifier.

2.3.1.2 Non-interactive Witness Indistinguishable Proof of
Knowledge

We now define the notion of Non-Interactive Witness Indistinguishable
(NIWI) Proof of Knowledge (PoK) in the CRS model. Let us consider
an NP language L with associated poly-time relation RL. A non-
interactive proof system consists of the following algorithms:

• gk←$ Gen(1λ): on input the security parameter, output a group
key.

• crs← CRSSetup(gk): on input the group key, output a common
reference string crs ∈ {0, 1}λ.

• Π ← Prove(crs, x, w): on input statement x and witness w s.t.
(x,w) ∈ RL, output a proof Π.

44

• 0/1 ← PrVerify(crs, x,Π): on input statement x and proof Π,
output either 1 to accept or 0 to reject.

• Π′ ← RandPr(crs, x,Π): on input statement x and proof Π for
x ∈ L, output a randomized proof Π′.

A non-interactive proof system is said to be a witness indistin-
guishable (NIWI) if all the properties below are satisfied.

Definition 14 (Completeness). A proof system for RL is complete
if ∀λ ∈ N, gk ←$ Gen(1λ), crs ← CRSSetup(gk), (x,w) ∈ RL, and
Π← Prove(crs, x, w) it holds that

Pr[PrVerify(crs, x,Π) = 1] = 1

Definition 15 (Witness Indistinguishability). We say that the proof
system is witness indistinguishable (WI), if the following holds. For
all (x,w1, w2) such that (x,w1), (x,w2) ∈ RL, the tuples (crs,Π1) and
(crs,Π2), where crs ← CRSSetup(gk), gk ←$ Gen(1λ) and for i ∈ [2],
Πi ← Prove(crs, x, wi), are indistinguishable. If the two tuples are
identically distributed, we say that the proof system is perfect WI.

Definition 16 (Soundness). For all PPT A, and for crs← CRSSetup(gk),
gk ←$ Gen(1λ), the probability that A(crs) outputs (x,Π) such that
x /∈ L but PrVerify(crs, x,Π) = 1, is negligible.

Additionally, a NIWI is said to be a NIWI proof of knowledge
(PoK) if the adaptive extractable soundness defined below is also sat-
isfied.

Definition 17 (Adaptive Extractable Soundness). There exists a polynomial-
time extractor Ext = (Ext1,Ext2) with the following properties:

• Ext1(gk) outputs (crsExt, xk) such that crsExt is indistinguishable
from crs obtained running crs← CRSSetup(gk).

• For all PPT A, the probability that A(crsExt, xk) outputs (x,Π)
such that PrVerify(crs, x,Π) = 1 and (x,w) /∈ RL where w ←
Ext2(crsExt, xk, x,Π) is negligible.

45

Additionally, a NIWI is also randomizable if it satisfies the below
property.

Definition 18 (Re-randomizable Proof System). Consider the follow-
ing experiment:

• gk←$ Gen(1λ)

• crs← CRSSetup(gk)

• (x,w,Π)← A(crs)

• If either PrVerify(crs, x,Π) = 0 or (x,w) /∈ RL output ⊥ and
abort. Otherwise, sample b←$ {0, 1}.

– If b = 0 Π′ ← Prove(crs, x, w).

– If b = 1 Π′ ← RandPr(crs, x,Π).

• b′ ← A(Π′)

We say that the proof system is re-randomizable if for every PPT A,
there exists a negligible function ν(·), such that Pr[b = b′] ≤ 1/2+ν(λ).

46

Chapter 3

Automatic Contact Tracing

In this chapter, we consider the recent development of automatic con-
tact tracing systems (ACTs). In particular, we focus on DP3T/GAEN
(cfr., Sec. 3.1), the most deployed ACT, and elucidate its privacy
and integrity weaknesses, with a focus on mass surveillance attacks
(cfr., Sec. 3.3.3 and Sec. 3.3.4). Then, we propose new ACTs, named
Pronto-C2 and Pronto-B2, with improved privacy and integrity guar-
antees (cfr., Sec. 3.3.5). Our ACTs also act as concrete examples
disproving some claims the DP3T team made [110] in their informal
analysis about the security of ACTs (cfr., Sec. 3.3.8). Subsequent
analyses of ACTs in the provable security paradigm [34] have also
confirmed our results (cfr., Sec. 3.3.9).

Finally, we focus on a false alert injection attack called the terrorist
attack which was conjectured by Vaudenay [116] (cfr., Sec. 3.4). We
show how to implement such attack, with the help of smart contracts,
w.r.t. concretely deployed GAEN-based ACTs. Our smart contracts
implement automated black markets in which terrorists can bribe in-
fected users to upload data that would cause false alerts in the ACT.
This trade can occur without the need of the parties to know each
other. The smart contracts guarantee no party can be cheated, and
that there is basically no risk of being caught by the authorities. By
leveraging come peculiarities of GAEN, we bypass the inherent lim-
itations of smart contracts of not being able to query web services
(cfr., Sec. 3.4.2). Exploiting decentralized oracles [126], we also show
that trivial modifications of GAEN do not prevent the attack (cfr.,

47

Sec. 3.4.3). Our work demonstrates that this neglected attack is a
concrete risk for ACTs as it could concretely jeopardize their integrity.

Parts of the results presented in Sec. 3.3 were published in [13,14],
while the results of Sec. 3.4 were published in [16].

3.1 Brief Description of DP3T

In this section, we briefly overview the DP3T’s ACTs as reported in
their white paper [114]. We describe two versions of the system: the
first one, termed as “low-cost”, is more efficient but provides less pri-
vacy guarantees than the second one which is termed “unlinkable”.
There was also another design proposed by the DP3T team. It re-
quires to secret share the pseudonyms and to transmit the shares
across multiple BLE advertisements. However, the DP3T team it-
self subsequently dismissed this design principle as not practical due
to issues that occur at the BLE layer [109].

Low-cost design. Smartphones broadcast locally generated ephemeral
pseudonyms (EphIDs) via BLE advertisements. Whenever a smart-
phone detects an incoming EphID, it locally stores this pseudonym
EphID along with a coarse time information and every data which
might be needed later to compute the risk of contagion (e.g., signal
strength, duration of the contact). As the word ephemeral suggests,
the pseudonyms are periodically changed to prevent tracking.

All the EphIDs that a device will ever generate can be determinis-
tically derived from a short uniformly random secret key sk0. At each
day t, a new secret key is derived as skt = H(skt−1), where H is a
cryptographic hash function.

Starting from skt, the whole set of EphIDs for day t is deter-
mined partitioning in 16-byte chunks a string whose length depends
on how frequently the EphIDs are changed. Such string is computed as
PRG(PRF(skt, c)) where PRF is a pseudo-random function, c is a fixed
public string, and PRG is a stream cipher. The EphIDs obtained with
this procedure will be eventually broadcast in random order.

When a user is tested positive, she uploads the pair (skt, t) to a
backend server which is trusted to provide this information to all other

48

users and to check that the uploads are performed by authorized users,
preventing the dissemination of false alerts. In [112], three candidate
authorization mechanisms are proposed. After this step, the infected
user’s device generates a new random secret key sk0.

Each device can periodically query the backend server in order to
get the new pairs that have been added to the system. Given these
pairs, the device can generate the corresponding values EphIDs seeking
for matches in its local contact database. If a match is found, the risk
of infection is computed given the auxiliary information and the user
is notified when needed. GAEN basically follows the same design. The
most remarkable difference is that instead of having a single key for
the entire contagious time window, GAEN uses a fresh key for each
day. Suck keys are called Temporary Exposure Keys (TEKs).

Unlinkable design. In the unlinkable design, better privacy guar-
antees are traded for a larger volume of downloads and storage space
needed by the smartphone.

In this design, the EphIDs are randomly and independently gener-
ated in the following manner: when a new ephemeral pseudonym is
needed, the smartphone generates the ephemeral pseudonym EphIDi

as TRUNCATE128(H(seedi)).

Smartphones store all the seeds used in the contagious time win-
dow. When a patient is tested positive, she can selectively decide
which pseudonyms she wants to communicate to the server (e.g., she
can exclude pseudonyms used in the presence of a specific person).

After this decision has been made, the smartphone uploads the
set composed by the selected pairs (seedi, i). Upon receiving them,
the server computes H(TRUNCATE128(H(seedi))||i) for each pair and
inserts it in a Cuckoo filter1. Such filters are generated and made
available to the users on a regular basis.

Each smartphone uses these filters to determine whether contacts
with infected individuals occurred. To do so, the smartphone checks
the inclusion into the filters of its recorded ephemeral pseudonyms.

1A Cuckoo filter is a space-efficient probabilistic data structure used to test
whether an element is a member of a set. False positive matches are possible, but
false negatives are not.

49

3.2 Related Work

In this thesis, we mainly focus on the security of the systems pro-
posed by the DP3T team [114]. However, the attacks we present are
significant to other decentralized ACTs such as MIT-PACT [94], UW-
PACT [37] and TCN [108]. Since the first proposals of automatic con-
tact tracing systems came out, researchers started to investigate their
security. Many of these works focused on the analysis of DP3T [114].
Due to its great similarity with GAEN, which is almost identical to
the “low-cost design” of DP3T, practically all the results about it also
apply to GAEN-based ACTs. We review privacy and integrity attacks
to DP3T, and we also mention alternative ACTs that were proposed
in the literature.

Privacy attacks to DP3T/GAEN. Several vulnerabilities of the
DP3T systems have been analysed in various works. Tang [107] ob-
serves that the DP3T systems may be subject to identification attacks
and presents a comprehensive survey on ACTs. In [115], Vaudenay
presents both privacy and integrity attacks. Regarding privacy at-
tacks, the most concerning one is the paparazzi attack. In his work,
Vaudenay presented the paparazzi attack as a deanonymization at-
tack, however it can also be seen as a tracking attack. Basically, in
DP3T it is very easy for an attacker to track the locations visited by
the infected users during the contagious time window. The attack has
two phases. In the first phase, the attacker places passive devices2

recording the pseudonyms broadcast over the BLE channel over a ter-
ritory of his interest. In the second phase, all of these pseudonyms
are matched with the ones derived from the keys distributed by the
official contact tracing server. Since DP3T basically announces all
the pseudonyms that an infected user used during the contagious time
window, the attacker can correlate the pseudonyms used by an indi-
vidual with the location he visited in that time span. GAEN mitigates
this problem by reducing the time window of the tracking to one day
(i.e., instead of uploading one key for the entire contagious time win-

2A passive device is an antenna that works only in reception mode and does
not broadcast any signal. Additionally, it is able to store the received pseudonyms,
along with a time stamp.

50

dow, infected users upload one key per day). However, this assumes
that the keys are properly mixed by the server. Additionally, if the
attacker colludes with the server (i.e., the adversary is the government
itself) this mitigation is worthless. Seiskari shows a proof-of-concept
implementation of the paparazzi attack [102]. The GitHub repository
includes code to replicate the experiment. Baumgärtner et al. [19] also
provide empirical evidence for the paparazzi attack in GAEN.

Another key privacy threat of ACTs is the potential disclosure of
encounters, also known as the social graph. In practice, one does not
want the system to reveal that two infected users met each other, or
that two infected users met the same individual. Although in general
decentralized systems reduce the portion of the social graph that may
be disclosed, they lack of any form plausible deniability. In particu-
lar, [96] shows that users of DP3T system can easily provide digital
evidence of contacts with infected users. It is true that this is only
one edge of the graph, but it comes together with a proof that can be
potentially used to blackmail infected users.

Integrity attacks to DP3T/GAEN. In the context of ACTs, pre-
serving integrity basically means preventing false alerts. DP3T/GAEN
systems are vulnerable to replay attacks [67,96,115]. In this case, the
pseudonyms sent by an individual considered at risk (e.g., a person
who is taking a test) are transmitted by an adversary to a different lo-
cation in order to create fake proximity contacts. GAEN has a pretty
large time window (about 2 hours [67]) for pseudonyms to be replayed
successfully3. Baumgärtner et al. [19] provide empirical evidence of the
concrete feasibility of replay attacks in GAEN. The attack can have
a specific target but can also be performed at large scale. Pietrzak
et al. [9] analyze inverse-sibyl attacks in which multiple adversaries
cooperate to use the same pseudonyms. If one of the attackers gets to
upload his data, many false alerts may be raised. This attack could
be used in combination with the replay attack to increase the number
of affected targets.

3In DP3T such time window would be one day long. In a nutshell, GAEN has a
slightly better resilience to replay attacks because the pseudonyms derived from a
key are broadcast in fixed order instead of a random one. See [67] for more details.

51

There are other attacks that can inject false positives into an ACTs
without requiring to be in close proximity with likely infected users.
Iovino et al. [80] concretely demonstrate the possibility to inject false
alerts by replaying released TEKs. In particular, pseudonyms asso-
ciated with already published TEKs are transmitted to smartphones
whose clock is corrupted in order to make them believe that these
pseudonyms are still valid for risk matching. The attack by Iovino et
al. [80] is only possible if the ACT is vulnerable to replay attacks.

Finally, another class of attacks leading to false alerts involves brib-
ing. Vaudenay envisions various possibilities for the development of
dark economies [116] which could support false alert injection attacks,
allowing them to be carried out at very large scales. In particular, the
lazy student attack is connected to replay attacks. It is based on a
dark economy where a hunter (i.e., seller) collects pseudonyms of indi-
viduals who will likely become infected later on, and deposits them on
a smart contract. If the TEKs corresponding to such pseudonyms are
uploaded to the server of the contact tracing system, the hunter gets
a reward paid by a buyer (i.e., the lazy student). If replay attacks are
doable, the buyer can use them to make target victims’ apps raise false
alerts. This dark economy is sustainable only if the smart contract has
a way to check that pseudonyms were actually reported to the official
server. Another form of dark economy described by Vaudenay is the
terrorist attack. It involves users reporting pseudonyms that differ
from the ones used during the previous days. In fact, in GAEN there
is no mechanism forcing users to upload genuine TEKs. Again, a TEK
could be posted on a smart contract automatically issuing a reward
to whoever reports it to the contact tracing system. This purchase
may lead to a massive amount of fake notifications, without relying
on replay attacks.

On the (missing) risk assessment of the terrorist attack. The
impact of false injection attacks seems to have gone unnoticed or just
ignored. In [82] the cybersecurity risks of contact tracing systems are
reviewed and compared using a subjective scoring scheme. The re-
port considers injection of false alerts notifications by only mentioning
replay attacks or trivial attacks such as recruiting people with symp-
toms, while the terrorist attack is not even mentioned.

52

Vaudenay and Vuagnoux expressed these and other concerns in
their analysis of SwissCovid (i.e. the Swiss GAEN-based ACT) [117,
118]. The Swiss National Cyber Security Center (NCSC) answered to
their criticism seemingly downplaying those risks. The possible devel-
opment of dark economies was ignored4, and a recap table on security
issues reports on SwissCovid marks the concerns expressed by Vaude-
nay as addressed, including false alert injection attacks5. Nevertheless,
no solution or mitigation to such problems is reported.

Alternatives to DP3T/GAEN. Many researchers have proposed
alternative ACTs with the aim of either solving or mitigating the
above issues. Pietrzak [96] and Vaundenay [115] proposed solutions
and mitigations to replay and relay attacks against DP3T. We pro-
posed Pronto-C2, and a lightweight version named Pronto-B2, to tackle
both privacy and integrity attacks [12] (cfr., Sec. 3.3.5). Other sys-
tems that have some similarities to Pronto-C2 are WeTrace [35] and
TraceCORONA [106]. Notably, INRIA (the French national research
centre of computer science and automatics) proposed DESIRE [79],
a hybrid system between the centralized and the decentralized archi-
tecture which takes many design choices from Pronto-C2. Differently
from Pronto-C2, the users’ at-risk status is computed on the central
server instead of users’ smartphones. Unfortunately, due the lack of
flexibility of GAEN no country could have incorporated any of the
proposed improvements in their own ACTs.

4Swiss National Cyber Security Center: Security Issue Submission [INR-4434].
Detailed analysis. https://www.melani.admin.ch/dam/melani/de/dokumente/
2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_R

isk_assessment.pdf. Accessed in June 2021.
5Swiss National Cyber Security Center: SwissCovid Proximity Tracing System

- Public Security Test, page 8. https://www.melani.admin.ch/dam/melani/de/
dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pd

f.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf.
Accessed in June 2021.

53

https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf

3.3 Towards Secure ACTs: Pronto-C2 and

Pronto-B2

Starting from the inspiring list of attacks presented by Vaudenay [115],
we first analyze the degree of privacy and integrity protection achieved
by the DP3T systems. In some of the attacks a government through its
natural power controls (even partially) the server, the laboratories that
detect infections, or the national territory to realize mass surveillance
programs.

In the DP3T systems, one can be traced even when walking alone,
without having any clue that there is somebody tracking her move-
ments. We call this silent tracking. Indeed, a passive antenna can
detect pseudonyms without transmitting anything, and can later on
check if a sniffed pseudonym belongs to the list of infected persons. It
is easy to link the real identity of an infected person to the pseudonyms
she used in the contagious time window. Indeed, such antennas can
also be installed nearby places where the citizen has to identify himself
(e.g., by showing an ID card or paying with a credit card) and this
allows to connect pseudonyms to identities. We believe that this is
an open door to help mass surveillance programs. Additionally, BLE
devices that are already in use for other purposes (e.g., information
kiosks) may be used to track people. Obviously, one can not expect
that nothing else will be done with BLE except contact tracing, and
thus preserving privacy while other uses of BLE continue is a neces-
sary goal. Furthermore, the use of active kiosks running precisely the
BLE-based contact tracing protocol is actually recommended in [94].
Instead, we believe that they should not be put in place. Indeed, mis-
behaving kiosks would be indistinguishable from regular users and thus
the notifications sent to these “simulated users” could be potentially
used to hinder citizens’ privacy.

Next, we present Pronto-B2 and Pronto-C2, two novel decentralized
privacy-preserving ACTs based on BLE. We show that our systems
are arguably more resilient than the DP3T systems against both mass
surveillance attacks and integrity attacks. Furthermore, our ACTs
practically disprove several claims about the security of ACTs made
by the DP3T team [110].

54

3.3.1 High-Level Overview of Pronto-B2 and Pronto-C2

Our main idea can be seen as a paradigm shift compared to the ap-
proach of DP3T. Indeed, instead of asking infected people to hand
over their keys to the Big Brother, we allow citizens to anonymously
and confidentially call each other in the presence of the Big Brother.
The way we do it is explained below. We first discuss Pronto-C2 and
then describe how we can get a more practical system that we call
Pronto-B2 by relaxing some privacy guarantees, still outperforming
DP3T systems in terms of privacy and integrity guarantees.

3.3.1.1 Pronto-C2

In the 70s Merkle, Diffie and Hellman invented public-key cryptog-
raphy. Starting with Merkle’s puzzles, Diffie and Hellman proposed
a key exchange protocol [51] (i.e., the Diffie-Hellman protocol) where
two parties can establish a secret key K by just sending one message
each on a public channel. A message consists of a group element in a
setting where the Decisional Diffie-Hellman assumption holds.

In our view, the most natural way to realize a privacy-preserving
ACT system consists of having as pseudonym a group element that
corresponds to a message in the DH protocol. This natural idea was
also proposed to the DP3T team by the GitHub user a8x96. In order
to actually realize such form of ACT system, one needs to solve the
following two main problems.

Anonymous call: realizing a mechanism that allows an infected party
to use K in order to call the other party in a secure and privacy-
preserving way.

Shortening pseudonyms: making sure that the size of a group ele-
ment fits the number of available bits in a BLE identifier beacon.

Calling (anonymously) the infected person. We solve the first
problem by asking the infected party, after having received a proper

6The GitHub issue opened by a8x9 can be found at https://github.com/D
P-3T/documents/issues/66

55

https://github.com/DP-3T/documents/issues/66
https://github.com/DP-3T/documents/issues/66

authorization from the laboratory that detected the infection, to up-
load K along with the authorization to a bulletin board. The bulletin
board can be just managed by a server as in the DP3T systems, but
ideally it should be implemented through a blockchain so that we can
decentralize the server, making the entire process more transparent
and reliable 7. We suggest the use of digital signatures to implement
the upload authorization mechanism. In order to make the upload of
K unlinkable with the real identity of the infected person, we suggest
the use of blind signatures [41]. The basic idea is that laboratories
receive from the government some unpredictable activation codes that
are then one by one given to infected persons. Then, an infected person
connects to a service in order to exchange the authorization code with
some blind signatures that will be then used to upload on the bulletin
board data associated to calls. Notice that the approach of Pronto-C2
is completely different from the one adopted in the DP3T systems.
Indeed, while in the DP3T systems the pseudonyms of the infected
person are broadcast to everyone we instead ask the infected party to
send a message that is understandable uniquely by the party she was
in close proximity to. Therefore, K is like a phone call through which
the infected party sends to the answering party the following message8:
“Hello, it is you that were next to me...and I’ve just discovered that
I’m infected”.

Every person that is not infected will connect to the server and will
download the recently uploaded keys to search for K (data don’t need
to be stored, the search can happen while downloading data). Notice
that there is roughly a different keyK to check for every BLE identifier
beacon received in the contagious time window. This step should be
preferably performed while the phone is connected to a Wi-Fi network.
Moreover, for those cases where the daily amount of data to download
is excessive, one can think of specifying target states/regions in the
country, in order to manage a restricted amount of information. In
this case, a call would also specify a corresponding state/region.

7In this work, when referring generically to a blockchain we always mean a
permissioned blockchain (e.g., Hyperledger Fabric [3]).

8The Italian word “Pronto” stays for “Hello” and C2 pronounced in English
sounds like “it is you” in Neapolitan language, as in the title of a very popular
song by Nino D’Angelo https://www.youtube.com/watch?v=8DP3UyDS0Ts.

56

https://www.youtube.com/watch?v=8DP3UyDS0Ts

We remark that avoiding that two smartphones with pseudonyms
A and B upload the same K is straightforward: A can just upload
H(K||A||B) while B can just upload H(K||B||A), where H is a cryp-
tographic hash function.

Shortening pseudonyms. Current standards suggest at least 256
bits for a group element to safely run the DH protocol over elliptic
curves. However, this size exceeds the space available in a BLE iden-
tifier beacon. One might think to solve the issue of the small space
in a BLE identifier beacon by just resorting to very short (and there-
fore in our view too risky in case of mass surveillance attacks) keys
or by splitting the information into multiple identifier beacons that
rotate quickly. Obviously Pronto-C2 can work smoothly with such
workarounds, but since they all bring some issues, we propose a differ-
ent approach that allows to use as many bits as desired for the group
element, while still using only a single standard BLE identifier beacon.

In Pronto-C2, we decouple the group element from the pseudonym
precisely like in operating systems a large amount of data is repre-
sented by a pointer. Recall that a value announced in a BLE identifier
beacon should last only for a few minutes, to then be replaced by
a new one. The smartphone will periodically generate new indepen-
dent group elements for DH and will keep them locally. Since such
group elements are too large to be sent in BLE identifier beacons, the
smartphone will upload them to a bulletin board. Notice that this gen-
eration of group elements is done only once in a while, and therefore
can typically be performed when the smartphone is on charge and/or
connected to a Wi-Fi network.

In Pronto-C2 we decouple the group element from the pseudonym
by setting the 128 bit9 pseudonym as the address on the bulletin board
of the corresponding group element. In other words, a pseudonym is a
pointer to a public memory, therefore one can just use a short string to
refer to an arbitrarily large amount of data 10. Recall that the infected
person must compute the key K and push it to the server, while the
non-infected person needs to compute the key K to then check if it

9This is the size for a pseudonym that is commonly allowed by BLE identifier
beacons.

10A similar idea is used in IPFS https://ipfs.tech/.

57

https://ipfs.tech/

exists on the server. Starting from a short pseudonym, every player
will recover the corresponding group element from the bulletin board
and use it to compute the key K.

Silent tracking. Pronto-C2 is clearly secure with respect to silent
tracking. Indeed, when a person walks alone and passes by a silent
tracking device, the sole transmission of the pseudonym used in that
moment by the smartphone does not allow to understand if later on
that person is infected. Indeed, the infected user’s device will simply
not upload any key K corresponding to a key agreement with a silent
tracking device.

Shameless tracking. A government may also try to track citizens
by having on its territory devices that behave as smartphones, broad-
casting pseudonyms with the hope of receiving a call to infer some
information on the locations and/or identities of the citizens. We re-
fer to these tracking attacks as shameless tracking.

It goes without saying that such attacks are easier to detect com-
pared to silent tracking. Indeed, the smartphone application could
easily inform the owner at any time on the number of BLE identifier
beacons that are being received. Therefore, there is more room for
citizens to realize the existence of malicious devices. Any government
that would like to save its reputation convincing citizens to still use
the smartphone application should take severe actions against such
tracking attempts. Notice that the only dangerous BLE devices are
the ones that announce the very specific identifier beacon for the con-
tact tracing system. There are specific codes to differentiate identifier
beacons for different systems. Therefore, it is still completely fine to
have on the territory devices (e.g., information kiosks) that use BLE
to provide other services.

Pronto-C2 is also secure also against shameless tracking. Notice
that with shameless tracking the infected user will upload a call for
the active device that was in her proximity. However, there will be
no way to link multiple calls coming from the same infected citizen11.

11This holds when the uploaded calls cannot be linked through other side-channel
information. We discuss this issue in the following paragraph.

58

Therefore, unless we are in the extreme case where there is only one
new infected person in a large area and in a significant amount of
time, Pronto-C2 protects infected citizens from attempts to track their
movements through active BLE beacons.

Unlinkability over TCP/IP, timing, and other side-channel
attacks. As in all ACT systems, users could be de-anonymized through
the IP address when connecting to servers. Moreover, in Pronto-C2
when uploading a batch of group elements some attention should be
paid so that they are not linkable. We therefore suggest the use of ar-
tificial delays and uploads of bogus data (i.e., dummy traffic) with the
only purpose of making harder any profiling attempt. We also discuss
a simple solution to mitigate the above linkability issues using mixers.
By mixers we essentially mean proxy servers that, after batching and
permuting several upload requests, submit them to the server hiding
the users’ IP addresses. We assume that each user can select her own
favorite mixer among several of them belonging to heterogeneous enti-
ties (e.g., political parties, large organizations defending civil rights).
By doing so, users could pick their favorite options to protect their
IP addresses when uploading their pseudonyms and their anonymous
calls to the bulletin board, and when downloading pseudonyms cor-
responding to the received BLE beacon identifiers. We give a more
detailed description of this idea in Section 3.3.7. We remark that the
server can perform mixing as well, and the privacy will be based on at
least one among server and mixer behaving honestly. We stress that
all ACTs are affected by such issues and mostly ignore them, but still
we prefer to discuss possible workarounds, even though they obviously
introduce extra overhead.

Countermeasures to DoS attacks. Typical DoS attacks can be
mitigated with standard approaches, just to mention some: CAPTCHAs,
proofs of work, anonymous tokens. We will discuss how to mitigate
DoS attacks to the bulletin boards, by allowing regular (i.e., non-
infected) citizens to upload a limited amount of pseudonyms.

59

3.3.1.2 Pronto-B2

While Pronto-C2 satisfies strong privacy notions, the mapping between
pseudonyms and group elements introduces some overhead. We there-
fore propose also a lighter version of Pronto-C2 that we call Pronto-B2
and that does not require to translate the identifier beacon to a group
element. Indeed, instead of performing a DH key exchange, Pronto-B2
performs a key exchange that is not confidential in the presence of
an eavesdropper. This means that whoever is around Alice and Bob
can compute the key K that Alice would use to make an anonymous
call to Bob. The main observation is that if somebody is around,
then she/he would also receive a call in case one out of Alice and Bob
is infected, therefore the leakage is not that relevant. What mainly
matters is that unlinkability holds. Indeed, calls made by an infected
citizen corresponding to contacts in different locations and time slots
must remain completely unlinkable (unlike in DP3T systems).

The key idea to construct Pronto-B2 is rather simple: let Ai and Bi

be the 128-bit beacon identifiers used by Alice and Bob in some given
epoch. If later on Alice is infected, she will make an anonymous call to
Bob by uploading on the bulletin board K = H(Ai||Bi) where H is a
cryptographic hash function modelled as a random oracle. Notice that
like in Pronto-C2, if Alice walks alone and there is a passive antenna,
then no call is generated and Alice is not traced (unlike in DP3T).
Notice also that if Alice is continuously in the range of antennas, but
also in the presence of others, then the adversary would be able to see
the calls generated in different epochs, but the adversary will not be
able to link the calls12.

3.3.2 Threat Model

In this section, we present the adversary goals, capabilities, and the
threats we cover. We introduce several attacks against ACTs and for
each of the attacks the adversary may have different goals, capabilities,
and collude with different entities.

12Obviously this is true only when there is more than one infected citizens mak-
ing calls, otherwise linking is always successful in any system.

60

Adversary goals and threats. An adversary attacking the privacy
of the system wishes to track users. By tracking users we mean that
the adversary can link different locations visited by the same user.
This is irrespective of the fact that the adversary may not know the
real identity of the user who visited such locations.

Notice that, due to the fact that pseudonyms in BLE packets do
not change during a time slot, tracking in these periods is inevitable.

An adversary attacking the privacy also wishes to link locations vis-
ited by users, both diagnosed and non-diagnosed, to their real identi-
ties. For instance, the adversary may attack the privacy by attempting
to link information uploaded by the user to a server through the user’s
IP address.

An adversary attacking the integrity wishes to falsely alert users
of having been in contact with a diagnosed person; replay attacks fall
into this category.

Adversary capabilities. We will consider different threats that in-
volve adversaries with different capabilities. The adversary may place
an arbitrary number of listening BLE devices at arbitrary locations.
Such devices may operate exclusively in reception mode over the BLE
channel. In this case, we say that the adversary is passive and is per-
forming silent tracking. An adversary may also try to track citizens
using devices that behave as regular smartphones. In this case, the
adversary is active and is performing shameless tracking.

For some of our attacks we will consider an adversary that can
even corrupt the server and/or the health authority.

Types of tracking attacks. Many of the proposed attacks (cfr.,
Sections 3.3.3.1, 3.3.3.2, 3.3.3.3) deal with tracking the movements of
infected individuals over the contagious time window. Let us consider
the strongest possible adversary who may try to track infected users,
that is an adversary using active devices (i.e., behaving as regular
smartphones) and colluding with the server. We now evaluate what
is the highest level of privacy protection that can be guaranteed to
infected users in this scenario. Note that an active adversary Adv is
completely indistinguishable from a regular user of the system, this

61

means that whenever Adv comes into contact with an infected user
U who decides to upload data to the system, Adv will be alerted as
prescribed by the system itself. In addition, Adv gets to see all the
data uploaded by U to alert all the users she came into contact with.
Suppose that Adv has placed a series of active devices over a certain
territory, then for each of such locations where U has been over the
contagious time window, U will upload data to server in order to alert
Adv’s devices. This means that Adv will certainly know which of his
devices have been in proximity of an infected user and when.

Therefore, the best we can hope for in this scenario is that Adv
cannot know whether data related to different locations are relative
to the same individual. In this case, a certain degree of privacy is
provided to infected users whose movements remain hidden within
the set of movements of all other diagnosed people who uploaded data
during the same day.

More specifically, we say that a protocol enjoys partial protection
(w.r.t. passive or active adversaries) when an adversary who placed
(passive or active) devices at two different locations X and Y cannot
figure out whether X and Y have been visited by the same infected
user.

Of course, in general, there may be additional information that
helps Adv to disambiguate. For instance, consider the scenario in
which a pseudonym is listened at location X at time t1 and another
one is listened at location Y at time t2 > t1. If no other pseudonym
has been listened at nearby locations at times < t1, there are two
possible explanations: 1) a user turned on his phone at location X
at time t1 and then moved to position Y at time t2; 2) a user U1

turned on his phone at location X at time t1 and then, at time t2, U1

turned his phone off while another user U2 turned his phone on. In
this simple scenario, it seems obvious that the first case is more likely
than the second one. However, disambiguating gets more difficult as
the number of infected individuals and locations increases.

We say that an ACT enjoys full protection from tracking attacks
w.r.t. a passive adversary Adv, if Adv is not able at all to trace the
movements of infected individuals during the contagious time window.
To be more specific, even if there is a single infected user U, Adv
does not get to know even one single location visited by U during the

62

contagious time window.

Furthermore, U may pass nearby such devices both when she is
alone or when some other users of the system are also there. In the
first case, U may not upload any data related to the period of time
she was alone since there is no one to be alerted, while in the second
case an alert should be sent to whom has been in contact with U.
For this reason, an ACT may exhibit different levels of resilience to
tracking attacks depending on the actual encounters the user had, in
particular: it could protect infected users from being tracked in any
case (i.e., it provides full protection), or only for the periods of time
they have been alone. We name the latter as solitary protection from
tracking attacks. Obviously, full protection implies solitary protection.

Threats not addressed. We do not consider threats at the BLE
layer such as using power signal and other side-channel information to
identify users, or issues at the operating system level.

3.3.3 Privacy Attacks for Mass Surveillance

Mass surveillance is an activity put in place to watch, even discontinu-
ously, over a substantial fraction of the population by monitoring, for
example, their movements and/or habits.

Even though decentralized ACTs guarantee, in general, better pri-
vacy compared to centralized ones, mass surveillance is still a possible
threat and must be mitigated as much as possible when introducing
new intrusive technologies.

In the following paragraphs, we present several possible attacks to
ACTs which, when successful, undermine users’ privacy, eventually
contributing to mass surveillance activities. Furthermore, we evaluate
and compare the resilience of our Pronto-C2 and Pronto-B2 systems
(cfr., Sec. 3.3.5) and the DP3T systems (cfr., Sec. 3.3.4.5) against
such attacks.

Our attacks are inspired by the works of Vaudenay [115] and by
the issues reported in the DP3T’s GitHub repository. We carefully
take into account these issues and attacks to illustrate more precise
scenarios unveiling significant mass surveillance attacks.

63

Both the DP3T systems, Pronto-B2 and Pronto-C2 protect the pri-
vacy of non-diagnosed people and the privacy of diagnosed people out
of the contagious time. Since these systems are the main focus of
our work, in some of the following attacks we will assume that the
adversary only attacks the privacy of diagnosed people during the
contagious time window (e.g., roughly, the last two weeks before be-
ing tested positive). However, we remark that privacy protection is
important for all users at any time, and ACTs might strongly violate
privacy, especially when there is an extremely centralized design and
when there is collusion among the various authorities of the system.

3.3.3.1 Paparazzi Attack: Tracking Infected Users with Trusted
Server

This attack is similar to the paparazzi attack reported in [115]. The
main difference between the two is that the one of [115] has the pur-
pose of de-anonymizing infected users, while here we focus on building
a mass surveillance infrastructure to track citizens.

• Attacker’s capabilities: Adv has the ability to install, in a
number of different locations, passive BLE devices. The only
capability of a passive device is to operate over BLE channels in
reception mode. We also assume that such devices are provided
with enough memory to store a significant amount of received
data (i.e., pseudonyms and auxiliary information).

• Attack description: The passive devices record the observed
pseudonyms along with a fine-grained time log. The location of
each device is fixed and determined by the attacker Adv. When a
user B is tested positive and uploads data into the ACT system,
the system itself provides related data to all users. Adv then
combines these data with his logs. Furthermore, the attack is
practically undetectable since the BLE devices operate only in
reception mode.

64

• Attack’s outcome: Adv tracks the infected users over the con-
tagious time window. The attack is considered successful if the
system fails to provide full protection. Variants of the attack
can be considered, where Adv is interested in breaking solitary
protection or partial protection respectively.

3.3.3.2 Orwell Attack: Tracking Infected Users with Col-
luding Server

Orwell attack differs from the paparazzi attack only for the capabili-
ties of the attacker.

• Attacker’s capabilities: The attacker Adv is the same as in
paparazzi attack. However, in addition, Adv can collude with
the server. Notice that the server could be under a significant
influence of the government.

• Attack description: Adv is analogous to the one described in
paparazzi attack. The only difference is that, along with data
provided to all regular users, Adv receives all data that are in
possession of the server.

• Attack’s outcome: The outcome is analogous to the one of
paparazzi attack. As in the paparazzi attack, we can consider
variants where Adv is interested in breaking solitary protection
or partial protection respectively.

3.3.3.3 Matrix Attack: Shameless Tracking of Infected Users
with Colluding Server

• Attacker’s capabilities: The attacker Adv is identical to the
one of the Orwell attack in terms of the information he has ac-
cess to. On the other hand, Adv’s devices are active and can
send messages over the BLE channel.

65

• Attack description: Adv operates similarly to what has been
shown in the previous attacks. Adv combines the data in his pos-
session with the ability to actively send messages of the contact
tracing protocol over the BLE channel in order to track infected
citizens over the contagious time window.

• Attack’s outcome: Adv tracks the infected users over the con-
tagious time window. The attack is considered successful if the
system fails to provide partial protection.

3.3.3.4 Brutus13 Attack: Mapping Real Identities to Pseudonyms

• Attacker’s capabilities: The attacker Adv consists of the server
and the health authorities colluding together.

• Attack description: Adv exploits the authorization mecha-
nism, also used to avoid uploads of false positives, to find a
mapping between the real identity of a user B and her uploaded
data.

• Attack’s outcome: a mapping between the real identity of B
and her uploaded data.

Every ACT where the authorization mechanism consists of simply for-
warding a token provided to B by the health authority is vulnerable to
this attack. Indeed, the health authority - which is aware of the real
identity of B - can communicate the mapping between the token and
the real identity of B to the server, which can in turn derive the map-
ping between this token and data uploaded by B. The authorization
mechanism is not made explicit in many proposals [94, 97]. A reason

13Marcus Junius Brutus was a close friend of Julius Caesar. Brutus had a leading
role in his assassination. His name has become synonymous with severe acts of
betrayal.

66

advocated for this choice is the flexibility to different deployment sce-
narios. However, we want to point out that the used authorization
mechanism reflects into serious implications on users’ privacy.

3.3.4 Other Attacks

3.3.4.1 Bombolo14 Attack: Leakage of Contacts of Infected
Users

• Attacker’s capabilities: The attacker Adv consists of the server
and the health authorities colluding together.

• Attack description: When users are tested positive, they up-
load data to the system. The attacker uses such data to extract
information related to contacts among infected users and the
number of contacts of an infected user.

• Attack’s outcome: Adv succeeds in extracting information as
specified in the attack description.

Systems in which the infected users upload an encoding of the observed
pseudonyms are more prone to this attack since the content and the
amount of communicated data depend on the actual number of expe-
rienced contacts. One could think to mitigate this issue by putting a
bound on the number of contacts that a user can notify. However, it is
not evident what is the appropriate value for this bound to effectively
fight the pandemic.

Additionally, co-location of infected users is more likely to be ex-
posed since infected users who met each other might end up reporting
some linkable information. If at some point two infected users met
each other, the information that these users sent to the server may
enable the reconstruction of clusters of infected users who have been
co-located. Nevertheless, such attacks are ineffective to link multiple

14Franco Lechner, best known as Bombolo, was an Italian comedian. His char-
acters usually played hilarious but harmless jokes.

67

locations visited by a given user, and thus it is hard to imagine how
such leakage could be exploited by mass surveillance attacks.

3.3.4.2 Gossip Attack: Proving Contact With an Infected
User

This attack deals with the possibility to exploit the ACT in order to
produce plausible digital evidence of an encounter. An attack of this
type against the DP3T systems was reported by Pietrzak [96]. Here
we give a description of such attack against a general ACT.

• Attacker’s capabilities: The attacker Adv has the same power
as a regular user. Additionally, Adv might get access to a ser-
vice making him able to prove the ownership of some data at a
specific time (e.g., a blockchain).

• Attack’s outcome: Adv provides a plausible evidence of having
met an infected user B before B declared himself as positive
through the ACT.

Turning Gossip attack into a feature. Suppose that, due to the
pandemic, laboratories are overwhelmed by requests for tests. In this
scenario, having a way to prioritize the requests could be certainly
useful. Indeed, there could be malicious users trying to fake risk no-
tifications so that they eventually get tested, even if it is not actually
needed.

To address this issue, one could leverage the Gossip attack as a fea-
ture. Laboratories could give a higher priority to users who are able
to provide a plausible evidence of having met an infected individual.
Depending on the system, a malicious user attempting to provide a
fake proof would need the collaboration of someone who actually ob-
served at least a pseudonym of an infected user. Such complications
might reduce the noise of malicious users trying to create a fake plausi-
ble evidence. Therefore, prioritizing users with plausible (though not
formally provable) evidence can be a concrete strategy for a health
system.

68

3.3.4.3 Matteotti15 Attack: Putting Opponents in Quaran-
tine

• Attacker’s capabilities: The attacker Adv colludes with the
sever and the health authority. In addition, Adv can place pas-
sive BLE devices at selected locations.

• Attack description: The aim of Adv is to produce false alerts
causing target non-at-risk users to get tested.

• Attack’s outcome: A target non-at-risk user is erroneously
alerted and declared as positive.

We motivate the attack with the following example. In the vast
majority of world’s countries e-voting is not currently deployed, and,
also at parliamentary level, voting is always held in presence. Suppose
that a law, proposed by the government, risks not to get the approval
of the parliament for very few votes. A malicious government could
attempt to falsely report hostile parliamentarians as positive.

Let B be a hostile parliamentarian. Hidden passive BLE devices
could be put in place near the house of B during a given period. These
BLE devices will intercept the pseudonyms EphIDBs of B. Then, the
government will add the EphIDBs to the list of users that will be no-
tified as at-risk users. It is very likely that the next day B will get
tested. At this point, the test of B will come out as positive (the health
authority is also malicious) and an order of quarantine for B would be
issued. As a result, B would be unable to join the next parliament
session.

3.3.4.4 Replay Attack

• Attacker’s capabilities: The attacker Adv is anyone who is
capable of recording and broadcasting pseudonyms.

15Giacomo Matteotti was an Italian socialist politician who openly denounced
the electoral fraud committed by Fascists. He was kidnapped and killed by Fascists.
The day he was murdered, Matteotti should have given a speech at the parliament
in which he would have disclosed significant scandals about the Duce.

69

• Attack description: Vaudenay [115] and Pietrzak [96] discuss
attacks in which Adv, who collects a pseudonym at location X
where the probability to meet an infected person is high, can then
broadcast those pseudonyms to users at a different location Y .
We consider attacks where the listened pseudonyms are broad-
cast at a later time slot, and where messages are only relayed in
one direction. We denote such attacks as replay attacks16.

• Attack’s outcome: Users at location Y will be notified a risk
even though they have been never in contact with infected peo-
ple at location X.

3.3.4.5 Security Analysis of the DP3T Systems

In this section, we analyse the security of both designs of the DP3T
team w.r.t. the attacks proposed in Sec. 3.3.3 and 3.3.4.

The low-cost design of DP3T is vulnerable to Paparazzi at-
tack. The attack is carried out as follows. The attacker Adv controls
a set of passive devices {D1, . . . ,Dn}.

1. Each passive device Di collects the information of people that
pass nearby Di, the information stored consists of a set of pairs
(EphIDj, τj), where EphIDj is the pseudonym of a user that passes
near Di and τj is a fine-grained time log.

2. At the end of the day, Adv downloads the secret key of each
infected user from the server and collects all data from each
device Di.

16If messages are relayed in real time and in both directions (i.e., back and forth
between the likely infected users and the targets), then any solution inherently
requires some location information (e.g., by GPS), or problematic assumptions on
time synchronization. Therefore, we will focus only on replay attacks since they
can be defeated without adding assumptions or penalizing privacy. Furthermore,
replay attacks are very simple to carry out in practice, unlike real-time bidirectional
relay attacks.

70

3. Adv checks if each collected EphIDj is generated starting by a
secret key skj downloaded from the server.

4. Adv tracks the infected individuals who passed nearby the pas-
sive devices over a given contagious time window.

In the scenario we envision, the amount of gathered data can be
considerably large, thus resulting in a possibly very fine-grained track-
ing.

The key issue of the low-cost design, leading to the applicability
of paparazzi attack, lies in the fact that when the secret key of an
infected person is added to the system everyone can derive all the re-
lated EphIDs, enabling the linking of several pseudonyms to the same
infected individual. We point out that this attack is practically un-
detectable, at least at the application level, since the devices do not
need to propagate any signal.

The unlinkable design of DP3T is vulnerable to Orwell attack.
Since the Cuckoo filter allows users to only test inclusion of seemingly
uncorrelated EphIDs in the filter itself, the unlinkable design succeeds
in preventing the paparazzi attack. However, the claim that “infected
people in the unlinkable design are not traceable”, as affirmed in [110]
is oversimplified and requires a deeper treatment. In fact, such claim
is true only w.r.t. attackers who do not cooperate with the server.
Considering an adversary that has control over the server, an attack
analogous to the one described for the low-cost design can be put
in place. In a nutshell, A obtains from the server all the seeds of the
infected citizens and can now match the EphIDs recorded by his devices
with the ones generated from the seeds received by the server. The
element of centralization in the unlinkable design of DP3T requiring
the server to compute the Cuckoo filter of the EphIDs enables mass
surveillance with low overhead.

DP3T systems are vulnerable to Matrix Attack. Since both
designs of DP3T are vulnerable either to the paparazzi or the Orwell
attack, it clearly follows that they are vulnerable to the Matrix attack.
In particular, the additional capability of placing active devices over

71

the territory is not even needed by an adversary succeeding in the
attack against both designs.

DP3T systems withstand Bombolo Attack. DP3T and similar
systems are not affected by this attack. Indeed, the data which are
sent to the server are independent on the actual encounters the infected
user had.

DP3T systems are vulnerable to Brutus attack. DP3T pro-
poses three candidate authorization mechanisms [112]:

1. Simple Authorization Codes: the server generates authorization
codes that are distributed to infected users after a positive test;

2. Activated Authorization Codes: the authorization codes are as-
signed at testing time, and are activated only if the user tests
positive;

3. Data-Bound Authorization: at testing time, the users commit
the data to be uploaded to the server. Committed data is as-
sociated to an authorization code. If the user is tested positive,
then the health authority authorizes the upload of the commit-
ted data associated to the authorization code.

It is simple to notice that the three mechanisms proposed by the
DP3T team are subject to the attack. None of these mechanism ad-
dresses the problem of collusion between the server and the health
authority. Indeed, the data uploaded by an infected user can be al-
ways related to a single authorization code, and then to the identity
of the infected user.

DP3T systems are vulnerable to Gossip Attack. An attack of
this type against the DP3T systems was reported by Pietrzak [96]. As
plausible evidence of an encounter with a user B, A proves to have
been in possession, at a time t1 < t2, of the pseudonym EphIDB of B
who reported himself as positive to the ACT at time t2. The attack is
really straightforward. Whenever A receives a pseudonym from a user
B, she commits it to a blockchain (e.g., Bitcoin). If B is later diagnosed

72

infected and decides to upload his data to the system, A could then
prove that she knew the pseudonym of B prior to this upload. To
do so, A just needs to open the commitment on the blockchain. The
attack works in the same way for both designs of DP3T, since the
revealed EphIDB can be easily matched both with the published filters
and secret keys. Notice that there is no guarantee about the fact that
A himself received the pseudonym over the BLE channel. For example,
a device D in another (even remote) location could have committed
the pseudonym and transferred its opening to A, by e-mail. However,
in this case the attacker is actually the pair (A,D), who indeed met B.
As noted in [96], the attack becomes a more serious threat if coupled
with de-anonymization of B.

As we point out in Section 3.3.4.2, it is possible to consider this
attack as a feature. Even though in the DP3T systems it is possible to
provide a plausible evidence of being at risk by leveraging the Gossip
attack as a feature, it seems, at least at a first glance, that it would
not be easily scalable to a considerable portion of the users.

The DP3T white paper [114] proposes that users who are willing
to do it may share additional data with epidemiologists. Such addi-
tional data are mainly related to encounters with infected individuals.
Therefore, providing evidence of these encounters could help to ensure
that data provided to the epidemiologists are reliable. Nevertheless,
in both designs, DP3T does not provide a mechanism to verify the
legitimacy of the alleged contacts.

The unlinkable design of DP3T is vulnerable to Matteotti
attack. Even though the unlinkable design solves in part the issue
of linkability of the pseudonyms, the attacker Adv that controls the
server gets more power since Adv can add to the Cuckoo filter every
EphID that Adv gets to know. This can cause additional false positives.

If Adv observes EphIDB and EphIDC in the same location and dur-
ing the same time slot, then Adv can add EphIDB and EphIDC to the
filter. The probability that, after checking the filter, both B and C are
notified a risk is high since B will find EphIDC in the filter as well as C
will find EphIDB. Let us assume that B is the target of the attack. At
this point, if B goes to a laboratory to get tested, the health authority
would declare B as positive.

73

Replay attack against DP3T systems. According to [114], the
low-cost design of DP3T is subject to replay attacks occurring within
a day. Mitigations are proposed in [115] and [96]. On the other hand,
since in the unlinkable design ephemeral identifiers are cryptographi-
cally linked to the time slot in which they are broadcast, it is in theory
possible to make a replay attack only within a time slot. Differently to
the low-cost design of DP3T, the pseudonyms in GAEN are implicitly
tied to the time slot in which they are broadcast. Indeed, after they
are derived from a TEK, the pseudonyms related to a given TEK are
broadcast in a fixed order, instead of a random one. The documenta-
tion of GAEN [4] states that the system is vulnerable to replay attacks
occurring in 2-hours windows.

Remark 1. The DP3T documents suggest 15 minutes as length of an
epoch, concluding that in the unlinkable design the replay attack can
be performed only in a time window of the same length. In our opinion,
this is imprecise due to the following reason. To preserve privacy, the
length of the epochs should be randomized otherwise trivial tracking
attacks can be carried out. Therefore, the epoch should not be exactly
900 seconds but a random number of seconds between, e.g., 900-d and
900+d seconds, where d is a given tolerance (e.g., 60 seconds). Taking
such randomization into account, the n-th ephemeral identifier derived
from the secret key will be used up to n · d seconds later. Notice that
randomization of epochs is concretely implemented in GAEN, and this
seems to be the reason why GAEN declares itself vulnerable to replay
attacks done in 2-hours-long time windows.

3.3.5 Pronto-B2 and Pronto-C2: Design and Anal-
ysis

One of the main drawbacks of previous solutions is the possibility
for an attacker to test whether a set of pseudonyms belongs to the
same infected person, and thus to infer the victim’s movements. The
problem is evident in the low-cost DP3T system but, as analyzed in
Section 3.1, also arises in the DP3T’s unlinkable variant.

Our approach diverges radically from the one of the DP3T sys-
tems in that we turn the paradigm upside down. In our system, the

74

infected person is in charge of publishing data directly to people with
whom he/she got in touch. It is up to each participant to verify the
occurrence of a risk.

In this section, we present two protocols, Pronto-B2 and Pronto-C2.
The former is more efficient but offers less privacy guarantees than
the latter, still providing an arguably better protection than DP3T
designs. We will describe Pronto-B2 omitting details regarding upload
authorization and communication with the server that will be made
explicit in Pronto-C2. Moreover, both in the description of Pronto-B2
and Pronto-C2 we will not explicitly deal with the use and the need of
anonymous channels; these details will be taken in account in Section
3.3.7.

3.3.5.1 Pronto-B2

A brief overview. In a nutshell, Pronto-B2 works as follows.
Periodically, each user U performs the following update operation.

Let i be the current time slot. U setups a set of ephemeral keys
EphU,i+j, j = 0, . . . , n − 1, for some parameter n; the ephemeral keys
are random17 strings of 128 bits. The idea is that these ephemeral
keys will be used for the next n time slots. Every n time slots, U runs
again the update operation, previous keys are not overridden.

At each time slot i, user U proceeds as follows. U broadcasts Ephi
and listens for ephemeral keys sent by other users. Every received key
is recorded, along with auxiliary information.

Consider a simple scenario in which Bob tests positive and more-
over he has been in close proximity to his neighbor Alice at time i
(among possibly many other contacts). Let us denote by EphA (resp.,
EphB) Alice’s (resp., Bob’s) ephemeral key at the time of the con-
tact. Bob sets K = H(EphB||EphA) where H is a cryptographic hash
function, and uploads the “call” K to Server.

At the end of the day, to know whether she has been in contact
with an infected person, Alice does the following. For each ephemeral
key EphB she received from a nearby user at a time slot i, she computes
K = H(EphB||EphA), where EphA is the Alice’s ephemeral key at time
i. She downloads from Server the recent calls and then searches for

17They can also be pseudorandom, to avoid delays in generating random bits.

75

occurrences of K in the downloaded calls. If K is present, she is
notified the risk.

Pronto-B2’s setting and actors. We assume the following:

• There is a server Server that is used as a bulletin board.

• The smartphone application has the capability to communicate
with Server in an anonymous manner, hiding the real identity of
the user.

The actors involved in our protocols are:

• The users who run a smartphone application endowed with a
BLE identifier beacon. A generic user will be denoted by U.

• The server (Server) that manages the bulletin board.

• A set of medical laboratories (HAs) who are in charge of testing
the users for the virus.

The Pronto-B2 system. Each user U keeps a set PU that is empty
at the onset. Moreover, U keeps an internal variable called time slot.
At the start of the protocol U’s time slot is set to 0 and each X seconds
the time slot is increased by 1. X is a parameter of the protocol (e.g.,
300 seconds).

We describe Pronto-B2 through the following procedures and events.

• Setup procedure. Each actor runs a setup as described in Fig. 3.1
when joining the system.

• Update procedure. This procedure, described in Fig. 3.2, is run
periodically by each user U every n time slots (i.e., when U is at
time slot j and j is a multiple of n)18.

18We assume each time slot to be short enough to prevent significant linkage
of ephemeral keys to users’ movements, but long enough to correctly evaluate
exposure risks. Moreover, we assume the parameter n to be sufficiently large to
not require the users to perform the expensive Update procedure too frequently
(e.g., n can be set so that the update is performed each week).

76

• U: configure the smartphone application and set the time slot to
0.

• Server: perform any necessary step to accept incoming requests.

Figure 3.1: Pronto-B2 Setup procedure.

In the Update procedure executed at time slot i, each user U does the
following.

• U: for each j = 0, . . . , n − 1 generate an ephemeral key EphU,i+j

drawing an element EphU,i+j at random from {0, 1}128.

Figure 3.2: Pronto-B2 Update procedure.

• Broadcast procedure. The Broadcast procedure, described in
Fig. 3.3, is run multiple times within the time slot. The fre-
quency with which this procedure is executed within a time slot
is another parameter of the protocol.

• Listen Event. The Listen Event, described in Fig. 3.4, is trig-
gered whenever a BLE identifier beacon is received.

• Test Positive Event. The Test Positive Event is triggered when
a user tests positive at one of the laboratories of the HAs. Here,
we ignore details about upload authorization and interaction
with the HA that will be presented later in the description of
Pronto-C2. After the test, U chooses a subset P ′

U of PU. U
can decide upon which time slots to insert in P ′

U based on any
arbitrary criteria (e.g., she can exclude time slots in which U
suspects to have met some people to whom she wants to hide his
infection) and then perform an upload to Server. In more detail,
when the event is triggered, U interacts with Server as depicted
in Fig. 3.5.

• Verify procedure. This procedure, described in Fig. 3.6, is carried
out by a user U who wants to discover whether she got in contact
with some other user U+ who tested positive.

77

• U: Let i be the current U’s time slot. Broadcast via BLE the
ephemeral key EphU,i generated in the last Update procedure.

Figure 3.3: Pronto-B2 Broadcast procedure.

When a BLE message is received as consequence of a broadcast pro-
cedure, the Listen Event is triggered by the user U that receives the
message and proceeds as follows.

• U: let EphR be the received pseudonym, i the current time slot,
and t any other auxiliary information (e.g., BLE signal, location,
time). Add (EphU,i,EphR, t) to the set PU, where EphU,i is the
ephemeral key that U computed in the last Update procedure.

Figure 3.4: Pronto-B2 Listen Event.

• Interaction between U and HA: once U is tested positive at HA,
U is allowed to upload data to Server.

• U → Server: choose a subset P ′
U of PU and for each triple

(EphU,EphR, t) ∈ P ′
U, compute K = H(EphU||EphR) and add K

to K. H is a cryptographic hash function and K is the set of all
calls that U wants to store on Server. Next, send K to Server.

Figure 3.5: Pronto-B2 Test Positive Event.

When a user U wants to verify whether she got in contact with any user
U+ who got a positive test result, U interacts with Server as follows.

• U← Server: Let PU be the set computed by U during the protocol
execution so far. For each triple (EphU,EphR, t) in PU, do the
following:

– Set K = H(EphR||EphU), download the recently uploaded
calls from Server and search for K. If K is present, compute
the risk and notify U accordingly.

Figure 3.6: Pronto-B2 Verify procedure.

78

Remark 2. According to the above description, an infected user could
listen for two ephemeral keys of other users and make a call using those
ephemeral keys. The issue can be solved by requesting users to upload
to the server a preimage of their ephemeral key w.r.t. some one-way
function F . Obviously, in this case the value sent in broadcast will not
be a (pseudo) random string but the output of F on input a (pseudo)
random string. For simplicity, we omit such details. Henceforth, we
will assume Pronto-B2 implicitly uses this slight modification.

Replay attacks. Pronto-B2, unlike DP3T systems, is resilient to
replay attacks. Indeed, an adversary Adv who broadcasts, at location
X, the pseudonym of a user U1 collected during a prior time slot in a
different location Y , would fail in the attempt of causing false at-risk
notifications. This is because, to be notified, a user U2 needs to find, on
the bulletin board, a call which is directed to himself and is generated
by the infected user U1. However, if the two users never met, U1 will
not make calls containing a U2’s ephemeral key. Therefore, U2 cannot
receive a notification. Similarly, it is easy to see that Pronto-B2 is
secure even against replay attacks that happen within the same time
slot.

Tracking attacks in Pronto-B2. Our first protocol Pronto-B2 is
not fully secure against Paparazzi and Orwell attacks (cfr., Sec. 3.3.3).
Indeed, suppose that there is only one infected user. Then, an adver-
sary who listened for the ephemeral keys broadcast by the users can
use the calls uploaded to the server in order to trace the infected user.
Indeed, if a call (Eph1,Eph2) contains a given ephemeral key Eph1 lis-
tened at location X and time t, this implies that the infected user who
made the call has been at X at time t.

Nevertheless, if there are n infected users, each of them is hidden
among the other infected individuals; this means that Pronto-B2 offers
partial protection as described in Section 3.3.2. Indeed, the attacker
may learn that some infected users visited two different places X and
Y but he does not figure out whether the same infected user visited X
and Y . This holds under the assumption that two calls appearing on
the server cannot be linked to the same user, and that a call cannot be
linked to a user. Furthermore, Pronto-B2 offers solitary protection as

79

described in Section 3.3.2, while DP3T does not. That is, an infected
user who has been at locations in which no other user was present
cannot be traced. This intuitively follows from the fact that no calls
are sent by infected users for time slots during which they had no
encounters.

Moreover, unlike DP3T, Pronto-B2 is secure against Matrix attack.
Recall that the adversary in Matrix can place active BLE devices. As
discussed in Section 3.3.2, the best possible privacy guarantee regard-
ing active attacks is partial protection and Pronto-B2 enjoys it. More
precisely, under the assumption that different calls are unlinkable as
explained above, even an active attacker cannot know which infected
user visited a specific place out of all the possible infected users. The
same holds for determining whether two different places have been
visited by the same infected user.

Other attacks. Pronto-B2 (with the modification of Remark 2) is re-
silient to Matteotti attack. Indeed, every call K stored on the bulletin
board has the form K = H(EphC||EphB) and additionally contains the
preimage of EphC. A user B who at some time t broadcasts EphB will
be notified a risk only if B received at time t an ephemeral key EphC
and the preimage is consistent. Since it is hard for Adv to compute
the preimage, we conclude that B is alerted only when B actually met
C and C raised an alert for B.

Pronto-B2 is resilient to Brutus attack when a proper upload au-
thorization mechanism is used. To this regard, more details can be
found in the security analysis of Pronto-C2 (cfr., Sec. 3.3.6).

Regarding the gossip attack, Pronto-B2 is analogous to DP3T. In-
deed, it is possible to carry out the same attack shown in Sec. 3.3.4.5.

Finally, Pronto-B2, has some resilience to Bombolo attack. Indeed,
the calls consist of the output of a cryptographic hash function on the
ephemeral keys so, under the random oracle assumption, it is hard
for the attacker to get co-location information about infected individ-
uals, even if the attacker is colluding with the server and the health
authority. However, the number of contacts the user had is leaked to
the health authority. To this regard, more details can be found in the
security analysis of Pronto-C2 (see Sec. 3.3.6).

80

3.3.5.2 Pronto-C2

A brief overview. In a nutshell, Pronto-C2 works as follows. We
assume the generator g of an elliptic curve group of prime order to be
known to all participants.

Periodically, each user U performs the following update operation.
Let i be the current time slot. U setups a set of ephemeral and secret
keys (EphU,i+j = gskU,i+j , skU,i+j), j = 0, . . . , n−1 for some parameter n.
For k = i, . . . , i+n−1, U sends to Server the string EphU,k and privately
stores the address addrU,k in which EphU,k appears on the bulletin
board. The idea is that these addresses will be used for the next n
time slots. Every n time slots, U runs again the update operation;
previous pairs of ephemeral and secret keys are not overridden.

At each time slot i, user U proceeds as follows. U broadcasts addri
and listens for addresses sent by other users. Each address received
can be recorded along with auxiliary information.

Consider again the simple scenario in which Bob tests positive and
he has been in close proximity to his neighbor Alice at time i. Let
us denote by EphA = gskA (resp., EphB = gskB) Alice’s (resp., Bob’s)
ephemeral key at the time of the contact. Bob computes K ′ = EphskBA

and uploads to Server the key (or “call”)K = H(K ′||EphB||EphA) after
having required the authentication service AuthService to blind sign
K. We use blind signatures to prevent the government to link users to
information on the server. To perform the authentication, Bob needs
to send to AuthService an activation code that Bob received from the
laboratory when he got the diagnosis. We assume that Server accepts
only keys with valid signatures.

At the end of the day, to know whether she has been in contact
with an infected person, Alice does the following. For each address she
received from a nearby user, she retrieves from Server the correspond-
ing ephemeral key. As a result, she has Bob’s ephemeral key EphB.
She computes K ′ = EphskAB and K = H(K ′||EphB||EphA), downloads
from Server the recent calls, and then searches for occurrences of K in
the downloaded calls. If K is present, she is notified the risk.

As additional step to avoid DoS attacks, we add a further authen-
tication step when users store their ephemeral keys to the bulletin
board: each user U that wants to store the ephemeral keys to the

81

bulletin board must contact AuthService to obtain a blind signature
for each of the ephemeral keys that U wishes to store. This step will
leak information to AuthService: AuthService will know which person
is using Pronto-C2 and which one is not using it. It is possible to mit-
igate this issue by requiring persons not using Pronto-C2 to request to
AuthService blind signatures for dummy ephemeral keys.

Pronto-C2’s system and crypto ingredients. The ingredients of
our system are:

• An elliptic curve group of prime order p where the DH key ex-
change is believed to be secure. We assume a generator g of the
group to be publicly known to all participants.

• A blind signature scheme. The blind signature is used to make
AuthService sign users’ data while hiding the signed data. We
refer to [41, 42] for the syntax and security properties of blind
signatures.

• A server Server that is used as a bulletin board. The server
allows a user to write data iff the user is able to provide a valid
(blind) signature issued by the authentication service.

• We assume the smartphone application has the capability to
communicate with Server in an anonymous manner, hiding the
real identity of the user.

Pronto-C2’s setting and actors. The actors involved in our pro-
tocols are:

• The users who run a smartphone application endowed with a
BLE identifier beacon. A generic user will be denoted by U.

• The server (Server) that manages the bulletin board.

• A set of medical laboratories (HAs) that test users for the virus
and release the activation codes to infected users (see below).

82

• The authentication service (AuthService) that is used by all users
to be authorized to upload the ephemeral keys on the bulletin
board, and by infected users to get the authorization to write
data about contacts on the bulletin board. AuthService releases
a set of random activation codes to each HA. A user U is
handed an activation code Code from HA when tested positive.
U can later use Code to request a signature on some data K to
AuthService. The authentication service will blind sign K only
if Code is a valid (not previously used) authentication code re-
leased by AuthService. U can then use the signature to upload
K to Server.

The Pronto-C2 system. Each user U keeps a set PU that is empty
at the onset. Moreover, U keeps an internal variable called time slot.
At the start of the protocol U’s time slot is set to 0 and each X seconds
the time slot is increased by 1. X is a parameter of the protocol (e.g.,
300 seconds).

We describe Pronto-C2 through the following procedures and events.

• Setup procedure. Each actor runs a setup as described in Fig. 3.7
when joining the system.

• Update procedure. This procedure, described in Fig. 3.8, is run
periodically by each user U every n time slots (i.e., when U is at
time slot j and j is a multiple of n)

• Broadcast procedure. There is a Broadcast procedure, described
in Fig. 3.9 that is run multiple times within the time slot. The
frequency with which this procedure is executed within a single
time slot is another parameter of the protocol.

• Listen Event. The Listen Event, described in Fig. 3.10, is trig-
gered whenever a BLE identifier beacon is received.

• Test Positive Event. The Test Positive Event is triggered when
a user tests positive at one of the laboratories of one of the
HAs. When a user U gets a positive test, U gets from HA an
activation code Code. After the test, U chooses a subset P ′

U of

83

• U: configure the smartphone application and set the time slot to
0.

• Server: perform any necessary step to accept incoming requests.

• AuthService: publish two public keys for a blind signature scheme,
one to be used by the users to request an authorization to upload
ephemeral keys and, one to request an authorization to upload
shared keys. In addition, choose random activation codes and
distribute a set of them to each HA.

• HA: receive a set of activation codes from AuthService.

Figure 3.7: Pronto-C2 Setup procedure.

PU. U can decide upon which time slots to insert in P ′
U. U

interacts with AuthService to get the blind signatures and then
perform an upload to Server. More in details, when the event
is triggered, U interacts with Server, AuthService, and HA as
depicted in Fig. 3.11.

• Verify procedure. This procedure, described in Fig. 3.12, is car-
ried out by a user U who wants to discover whether she got in
contact with some other user U+ who tested positive.

3.3.6 Analysis of Pronto-C2

In this section, we informally show that Pronto-C2 withstands all the
attacks shown in Section 3.3.3 and 3.3.4. For the sake of simplicity,
we analyze Pronto-C2 as if ephemeral keys were directly sent over the
BLE channel, ignoring the use of addresses. We therefore assume that
the procedure to store ephemeral keys on the bulletin board effectively
hides the real identity of the owner of each key. In the informal analysis
of the paparazzi and Orwell attacks, we also consider the case of an
adversary who is able to link all the calls of an infected user. We do
that to remark that security w.r.t. the paparazzi and Orwell attacks
holds regardless of the channel used by the infected users to upload
data to the Server.

84

In the Update procedure executed at time slot i, each user U interacts
with Server and AuthService as follows.

• U → AuthService: for each j = 0, . . . , n − 1 generate a pair of
ephemeral and secret keys (EphU,i+j = gskU,i+j , skU,i+j) drawing an
element skU,i+j at random from Zp.

a For each j = 0, . . . , n − 1
interact with AuthService to obtain a blind signature of EphU,i+j.

• U → Server: for each j = 0, . . . , n − 1 upload EphU,i+j to Server
along with the corresponding blind signature computed in the
previous step, and store the address addri+j in which EphU,i+j

appears on the bulletin board.

aTo optimize the space, the user could choose a single seed s during the Setup
procedure and in each time slot i derive skU,i = PRF(s, i).

Figure 3.8: Pronto-C2 Update procedure.

• U: Let i be the current U’s time slot. Broadcast via BLE the
address addri generated in the last Update procedure.

Figure 3.9: Pronto-C2 Broadcast procedure.

When a BLE message is received as consequence of a broadcast pro-
cedure, the Listen Event is triggered by the user U that receives the
message and proceeds as follows.

• U: let addrR be the address contained in the received message, i
the current time slot, and t any other auxiliary information (e.g.,
BLE signal strength, location, time).

Add (EphU,i, skU,i, addrR, t) to the set PU, where EphU,i (resp.,
skU,i) is the ephemeral key (resp., secret key) that U computed
in the last Update procedure.

Figure 3.10: Pronto-C2 Listen Event.

85

• Interaction between U and HA: once U is tested positive at HA, U
gets from HA an activation code Code to interact with AuthService.

• U← Server: U chooses a subset P ′
U of PU and for each quadruple

(EphU, skU, addrR, t) ∈ P ′
U, retrieves from Server the ephemeral

key EphR stored at address addrR. U computes K ′ = EphskUR and
K = H(K ′||EphU||EphR) and adds K to K, where K is the set of
all keys that U wants to store on Server. Next, the following steps
are performed:

– Interaction between U and AuthService: for each valueK ∈ K
computed by U as before, U uses its activation code Code to
interact with AuthService to compute a blind signature σ of
K.

– U→ Server: for each K ∈ K computed by U as before, send
K and σ to Server.

– Server← U: upon receiving any pair (K, σ) from U, verify σ
and if the signature is valid add K to the bulletin board.

Figure 3.11: Pronto-C2 Test Positive Event.

When a user U wants to verify whether she got in contact with any user
U+ who tested positive, U interacts with Server as follows.

• U← Server: Let PU be the set computed by U during the protocol
execution so far. For each quadruple (EphU, skU, addrR, t) in PU do
the following:

– Retrieve from Server the ephemeral key EphR located
at address addrR. Compute K ′ = EphskUR and K =
H(K ′||EphR||EphU), download the recently uploaded keys
from Server and search for K. If K is present, compute the
risk and notify U.

Figure 3.12: Pronto-C2 Verify procedure.

86

• Paparazzi attack: Recall that this attack assumes that the at-
tacker Adv uses only passive devices which operate in reception
mode and are not able to transmit any signal. The only infor-
mation a passive device D observes consists of ephemeral keys
exchanged by users at the position in which D is located. Adv
could try to track an infected user U exploiting the calls avail-
able on the bulletin board. Since the devices used by Adv are
passive, no calls of U will ever be directed to a device D con-
trolled by Adv. The only way for Adv to track U is to extract the
ephemeral keys used to generate the calls and associate them to
a single user. Since the calls are anonymously sent to Server, it
is impossible for Adv to link together the calls of U. However,
the analysis of Orwell attack reported below shows that, even
linking all the calls, it would be impossible for Adv to extract
the ephemeral keys related to each call.

• Orwell attack: The attack differs from the paparazzi attack in
the fact that the adversary Adv can collude with Server,AuthService
and HA. In this scenario, Adv has the following advantages w.r.t.
the attacker of the paparazzi attack:

– Adv knows the real identities of the infected users and the
associated activation code Code assigned to them by HA;

– Adv knows the blinded messages that the infected users
asked AuthService to sign.

This information is not useful for Adv to track a user U. In-
deed, to track U, Adv needs to link all the calls published by
U with U’s ephemeral keys. Assuming that the upload of the
calls on the bulletin board is performed through an anonymous
channel, in order to link these calls, Adv needs to discover which
calls was blinded by U to obtain the corresponding signature
from AuthService. This would require Adv to break the blindness
property of the blind signature, that is unlikely for a polynomial
adversary. Even if Adv somehow managed to link all the calls
(e.g., the channel used to upload data is not anonymous), the
additional information received is the set of calls sent to Server
by U, but none of them can be a call that Adv can understand,

87

since none of passive devices controlled by Adv is the recipient of
a call. Then, Adv would need to take all the couples of ephemeral
keys recorded by each passive device Di, and try to compute a
call between the two users that own these two ephemeral keys.
If the computed call is equal to a call published by U, then Adv
knows that U was located in proximity to Di. By doing it for
each passive devices, Adv could track the movements of U in the
contagious time window. However, if Adv is able to successfully
compute a call starting from two ephemeral identifiers, it is easy
to show that Adv can be used to define an adversary breaking
the computational Diffie-Hellman assumption.

• Matrix attack: Assuming that an anonymous channel is used for
each upload, it is straightforward to see that Pronto-C2 with-
stands the Matrix attack. Indeed, as already argued before, Adv
cannot link U’s calls in different time slots since U uses different
and unlinkable pseudonyms that in turn will produce unlinkable
DH keys. Pronto-C2 offers partial protection to tracking attacks.
Adv will not be able to link multiple calls to the same infected
user, hence the movements of an infected user remain hidden
within the movements of the other infected users. Obviously,
the actual location related to the different calls may act as an-
other information to disambiguate the path of an infected user,
but this is inherent for such a strong adversary (cfr., Sec. 3.3.2).
Nevertheless, since Pronto-C2 provides partial protection, the ad-
versary gets lost as soon as there is some ambiguity.

• Bombolo attack: Co-location information among infected users
is not leaked since an infected user A will upload to Server a
call of the form KA = H(EphskAB ||EphA||EphB) if A passed nearby
B, likewise if B is an infected user B will upload the key KB =
H(EphskBA ||EphB||EphA) if B passed nearby A. Then, the calls
KA and KB uploaded by A and B are different and hard to “co-
locate”19. On the contrary, Pronto-C2 exposes the number of
calls that an infected user U does when U sends these calls to
the AuthService. We notice that this leak of information can be

19This is easy to see if we think of H as a random oracle.

88

mitigated adding some dummy calls.

• Brutus Attack: The data uploaded by a user U in Pronto-C2
cannot be linked to the real identity of U. Data are uploaded in
the following steps:

1. when the infected user uses Code to access AuthService in
order to obtain the blind signatures of the calls and

2. when the infected user uploads the calls to Server along with
the unblinded signatures.

The first step involves uploading Code to AuthService in order
to obtain the blind signature of the calls. Since HA knows the
real identity of each infected user, it is possible for Adv to link
the blind signature requests with an infected person. However,
since the upload of the calls is performed through an anonymous
channel, Adv cannot link the calls with the signature requests
thanks to the blindness property of the signature scheme. This
of course hides the authorship of the uploaded data only inside
the set of the infected users, which is known to Adv.

• Gossip attack: At first sight, one could think that a proof of
contact with an infected user U can be given by user A providing
a proof about the calls on the bulletin board. For instance, let
A be a user holding a secret key skA corresponding to EphA and
let EphU be the ephemeral key of a user U. If A finds a call
K = H(EphskAU ||EphU||EphA) on the bulletin board, A could prove
that he knows the secret key skA corresponding to EphA and that
K is computed as before, thus proving that U made a call to A.
However, recall that in Pronto-C2 all the pseudonyms used by
the users are made public on the bulletin board. So, A could
use EphU, that is public on the bulletin board, to compute a call
K = H(EphskAU ||EphU||EphA) (a call from U to A) and show skA
as proof of the fact that such call has been done. Generally, any
proof of the fact that U made a call to A is not evidence of the
fact that U met A since such proof could have been computed
by A even if U has never been in contact with A. To do so, A
needs to be marked as infected. On the other hand, if A is not

89

infected, a proof of the fact that U made a call to A is instead
plausible evidence of the fact that U met A. For this reason, we
say that the attack affects Pronto-C2 minimally in the sense that
an attacker A can provide a proof (i.e., the secret key skA) of the
contact between U and A that convinces a third party B who
believes that A is not infected. Using this fact, we can interpret
this attack as a feature. Indeed, as stated in Section 3.3.4.2,
laboratories could give a higher priority to users who are able
to provide such a plausible evidence of having met an infected
individual.

• Matteotti attack: Every key K stored on the bulletin board has
the form K = H(K ′||EphC||EphB). A user B who at some time
t broadcasts EphB will be notified a risk only if B received at
time t an ephemeral key EphC and K ′ = EphskBC . Since it is hard
for Adv to compute K ′ without knowing skB or skC, we conclude
that B is alerted only when B actually met C and C put an alert
for B. However, in such case the alert corresponds to an actual
risk for B and does not represent a successful attack.

• Replay attack: Pronto-C2 is not subject to replay attacks. An
adversary Adv who broadcasts, at location X, the pseudonym of
a user U1 collected during a prior time slot in a different location
Y , would fail in the attempt of causing false at-risk notifications.
Indeed, to be notified, a user U2 needs to find a call which is
directed to himself and is generated by the infected user U1.
However, user U1 would never make such a call. Similarly, it is
easy to see that Pronto-C2 is secure even against replay attacks
that happen within the same time slot.

In Tab. 3.1, we report a recap comparison among our ACTs and
DP3T’s ones.

3.3.7 Suggestions for a Practical Realization of
our ACTs

In this section, we give some suggestions for a practical implementa-
tion of Pronto-B2 and Pronto-C2. In particular, we focus on linkabil-

90

Attacks
Low-cost
DP-3T

Unlinkable
DP-3T

Pronto-C2 Pronto-B2

Paparazzi ✗ ✓ ✓ ✝

Orwell ✗ ✗ ✓ ✝

Matrix ✗ ✗ ✓ ✓

Bombolo ✓ ✓ ○ ○
Brutus ✗ ✗ ✓ ✓

Gossip ✗ ✗ ○ ✗

Matteotti ✓ ✗ ✓ ✓

Replay ✗ ✓ ✓ ✓

Table 3.1: We show which system is susceptible to which attack. ✗

denotes that the system is vulnerable to the attack, ✓ denotes safety
against the attack, ○ denotes almost safety against the attack in the
sense that the system is only very mildly affected (cfr., Section 3.3.6),
and ✝ denotes that the protocol offers solitary protection as described
in Section 3.3.2. Recall that Gossip attack can be easily turned into a
feature in Pronto-C2, but not in DP3T systems or in Pronto-B2.

ity/deanonymization attacks due to timings and IP addresses of the
TLS connections with Server when uploading or downloading data.
Such attacks also affect the DP3T designs that seem to ignore them,
and in general are applicable to any system if no specific countermea-
sure is used.

A mitigation based on mixers. One might consider onion routing
to protect U against such attacks, but it is unclear whether the impact
on the performance would make the system unpractical. In order to
give a fair idea on a practical realization of our solutions, we do not
ignore this issue. Therefore, we propose a mitigation based on simple
proxy servers we call mixers. We consider a setting in which U can
freely select a mixer MixServer that she trusts. U will use MixServer
as a proxy to upload data to (or download data from) Server. The
selected mixer is trusted only for keeping the IP address of the user
secret. If a mixer does not perform the upload, this can be easily
detected and the user can delegate the upload to another mixer.

91

Who is running the mixers? Mixers do not need to be approved
by the government and they can be spontaneously run by anyone.
There can be several heterogeneous mixers available provided by large
institutions like no-profit organizations, political parties, national/s-
tate/local governments, as well as smaller mixers that can serve a
community. U will choose the one that he trusts more in performing
properly the service with a sufficiently large amount of collected data.

High-level workflow. Server owns a pair of private and public keys
(skServer, pkServer) of a public key encryption scheme, the public key of
Server is made publicly available at set-up time. Every time U has to
send data to Server, U will actually encrypt the data with pkServer and
send the resulting ciphertexts to MixServer. A mixer waits for enough
data to be collected, and then permutes it and sends it to Server. In
addition, MixServer can download all data from Server so that U can
use MixServer also to retrieve anonymous calls and ephemeral keys.
Server works as a bulletin board, so all data ever received by Server
are made publicly available after being decrypted. If the user feels
uncomfortable in sharing her infected status with MixServer, she can
periodically send to MixServer some dummy calls to be sent to Server.
After decryption, Server will discard such dummy calls. It remains
possible for a user to ignore this suggestion sending the encrypted data
directly to Server using onion routing, and/or relying on the partial
hiding provided by mobile operators and public Wi-Fi networks.

3.3.8 Disproving some DP3T’s Claims

Aside from providing alternative ACTs with improved integrity and
privacy guarantees, Pronto-B2 and Pronto-C2 also act as concrete ex-
amples against some claims made by the DP3T team to justify the
security of their systems. In particular, regarding privacy, we have fo-
cused on mass surveillance attacks since they were one of the reasons
advocated to prefer the decentralized approach. We now report the
claims that are disproved (or at least downsized) by our ACTs.

Privacy attacks. We analyze the following claims related to privacy
attacks:

92

• In [110], the following is presented as an inherent risk of ACTs
(IR1): “any proximity tracing system that notifies users that
they are at risk enables a motivated attacker to identify the
infected people that he or she has been physically near. This
risk is a consequence of the basic proximity tracing functional-
ity.” Although this claim is not incorrect per-se, it may lead
to wrong conclusions. Indeed, the DP3T team answered to
Vaudanay’s paparazzi attack [111] referencing the above claim
to convey that the paparazzi attack was inherent to all ACTs.
Nevertheless, as we extensively showed, this is simply not true
since both Pronto-C2 and Pronto-B2 withstand the paparazzi at-
tack. As we argued in Sec. 3.3.2, such claim is true w.r.t. an
active adversary since the best we can aim for in that case is
partial protection, and that does not prevent de-anonymization.
Indeed, it only guarantees that locations of infected users can-
not be linked. Nevertheless, those locations will be revealed
since the attacker is de-facto indistinguishable from a regular
user who has to be notified. However, the adversary of the pa-
parazzi attack is much weaker as it only uses passive devices,
and thus she does not behave like a regular user. In conclusion,
we agree that de-anonymization of infected users is unavoidable
if we consider the most powerful adversary but we remark that
such fact should not be used to deem as inherent every possible
de-anonymization attack, even the ones carried out by very weak
adversaries. Moreover, this discussion also shows that DP3T
leaks strictly more of what is required by the proximity tracing
functionality which should imply be alerting the at-risk users
only, and not any curious spy eavesdropping the channel with-
out declaring his presence.

• In [110], when discussing tracking of infected individuals (SR4),
the following claim is made “infected people in the unlinkable
design are not traceable”. Here, as opposed to what was done in
the previous point, the weakest possible adversary is implicitly
considered. Namely, a passive adversary who does not collude
with the server. However, if the adversary just colludes with the
server (as it would happen in mass-surveillance scenarios) while

93

still remaining passive, the above claim is false. We have shown
why in the analysis of the Orwell attack in Sec. 3.3.4.5.

• In [110], the DP3T team analyzes ACTs where “an infected per-
son uploads all identifiers observed during the contagious window
to the server”. They argue that “for epochs in which groups of at
least three people were in close proximity to each other, this will
reveal temporal colocation information about infected individu-
als to the server”. This claim is true when systems uploading
recorded pseudonyms are implemented in the most basic way,
having the smartphones simply uploading the pseudonyms they
recorded over the BLE channel as they are. If two smartphones
listened the same pseudonyms, they would upload the same data,
allowing the server to easily infer co-location information about
infected users. This risk is modeled in our work through the
Bombolo attack. We showed with both Pronto-B2 and Pronto-C2
that it is possible to not expose any colocation information while
still uploading data about the encounters infected users had dur-
ing the contagious time window. We achieve this without any
impact on performance (i.e., just using a hash function), by ob-
serving that there are other solutions rather than simply for-
warding to the server the listened pseudonyms. The same tech-
niques can be equally applied to centralized systems, where the
exposure of colocation information of users (also known as the
social graph) was presented as a serious privacy concern (see SR8
of [110]).

Integrity attacks. Regarding integrity attacks, the risk of false
alarms through active relays is discussed in [110] (GR2). In this sce-
nario, the attacker tries to create fake alerts by simply relaying in-
teractions with devices that are likely to be marked as infected later
on. In [110], solutions to these attacks are deemed possible only via
distance bounding protocols or by binding transmissions to locations.
This claim conveys the idea that replay attacks are unavoidable un-
less too complicated techniques are used, or users’ privacy is reduced.
However, as we demonstrated, this is true only for the very powerful
adversary that relays messages in real time and back and forth between

94

the likely infected users and the targets. Indeed, both Pronto-C2 and
Pronto-B2 are resilient to replay attacks (where relays are unidirec-
tional and can happen at later time slots) without relying on any of
the strong assumptions reported above. We also remark that in our
systems even the most powerful adversary would have a hard time
trying to perform a large-scale attack without being detected. Indeed,
for the attack to be successful the infected users would have to upload
a big number of calls even if they were not in proximity to a big num-
ber of people. This allows to detect the attack at the protocol level,
concretely preventing its success. On the other hand, in DP3T/GAEN
the attacker could replay pseudonyms over a stadium with thousands
of people, and the attack could be detected only after the fact, when
many people request to get tested after having received a notification.
At this point the attack could already be considered a success. Indeed,
the goal of the adversary could just be jeopardizing the health system
of a region/country.

3.3.9 Provable Security of our ACTs

In Sec. 3.3.6, we informally evaluated the security of our system w.r.t.
the attacks we elucidated in Sec. 3.3.3 and Sec. 3.3.4. The main intent
of our work was to better clarify the state of affairs about the security
guarantees that ACTs can offer, demonstrating that basic decentral-
ized designs are not inherently eliminating serious mass surveillance
attacks, as well as proposing alternative approaches.

Few months after our work [12] was made available on ePrint, a
paper by Canetti et al. [34] focusing on formulating security definitions
for ACTs was published on ePrint. They also proposed an ACT called
CleverParrot whose design is pretty similar to Pronto-C2. The main
difference is that CleverParrot does not use addresses but it directly
broadcasts DH keys over the BLE channel. As a result, if we assume
the upload channel to the server to preserve users’ anonymity, their
analysis directly applies to Pronto-C2 as well. We can match some of
their security notions to some of our attacks, thus confirming our anal-
ysis. In particular, their notion of diagnosis listener privacy implies
resilience to the paparazzi attack, their notion of upload unlinkability
is analogous to resilience to the matrix attack, and their notion of

95

contact provability is analogous to modelling the gossip attack as a
feature. As integrity guarantee, they also model resilience to replay
attacks. Finally, their notion of mass notification limits addresses the
detectability problem of large-scale relay attacks that we mentioned in
the previous section. For more details about their systems and their
security notions, we refer the reader to [34].

3.4 False Alerts Injection: the Terrorist

Attack

Since BLE was not originally designed to detect a precise distance
among devices, the evaluation of the risk factor is prone to signifi-
cant errors. To this regard, Leith and Farrell recently evaluated the
reliability of BLE for digital contact tracing in several real-world sce-
narios [84].

While false positives due to BLE limitations in measuring distance
can indiscriminately affect all individuals using the smartphone apps,
a much more concerning threat allowing to direct false positive alerts
to specific targets are replay attacks. Indeed, GAEN-based contact
tracing systems20 can be abused through replay attacks [67, 96, 115].
In [99], Gennaro et al. discussed how the capability of running such
attacks at large scale can be used to put a category of citizens in
quarantine with the consequence of severely compromising the results
of an election. In general, the malicious generation of false positives
can be harmful in various ways, the health system can be overloaded of
requests that can penalize those citizens who instead are really affected
by the virus. A student can cause the complete closure of a school or
university and similar attacks can be directed to shops, malls, gyms,
post offices, restaurants, or factories.

Risks related to replay attacks were already known back in April
2020, and GAEN systems have a pretty large time window (about 2
hours) for pseudonyms to be replayed successfully [67]. Nevertheless,
governments have so far considered unlikely that such attacks can
produce enough damage to cancel out the positive effects of genuine

20Sometimes we will refer to them simply as GAEN systems.

96

notifications of at-risk contacts. This could be due to complications
involved in the attack. Indeed, an adversary may not want to get
herself infected, or it could not be easy to identify - and be in physical
proximity with - an individual that soon will report to be infected.

In [116], Vaudenay envisioned the possibility of using smart con-
tracts to realize a terrorist attack against decentralized systems. There-
fore, the attack could potentially apply to GAEN-based systems as
well. In this case, the attacker would spread on his targets some
pseudonyms, subsequently promising through a smart contract a re-
ward to whoever uploads the corresponding keys. Therefore, an in-
fected individual who participates in the contract will cash a reward,
and false positive alerts will raise on the smartphones of the targets
selected by the terrorist.

Dissemination of infected TEKs in GAEN-based ACTs In
GAEN, the TEKs of infected users are disseminated via a back-end
server that periodically posts a list of digitally signed TEKs. An im-
portant point is that the user’s device evaluates the reported TEKs
if and only if the digital signature verifies successfully under a public
key that has been previously communicated by the developers of the
ACT to Apple and Google. Google motivates this requirement say-
ing that it ensures that keys received by the devices are actually from
the authorized server and not from malicious third parties21. Theo-
retically, one could also rely on server authentication using TLS, but
the use of Content Delivery Networks (CDNs) to disseminate TEKs
(e.g., the CDN used by Immuni is operated by Akamai, while the
SwissCovid’s one is operated by Amazon) requires protection against
malicious modifications operated by the CDN itself. Unfortunately, as
we will see next, this requirement paves the way for the development
of dark economies where TEKs to be uploaded by infected users are
traded through smart contracts.

21Google: Exposure Notification Reference Key Server https://google.githu
b.io/exposure-notifications-server/.

97

https://google.github.io/exposure-notifications-server/
https://google.github.io/exposure-notifications-server/

3.4.1 Terrosist Attack: Our Contribution

In this thesis, we show that the terrorist attack envisioned by Vau-
denay can be concretely mounted against currently deployed GAEN-
based contact tracing systems. In particular, we have analyzed its
concrete feasibility w.r.t. two systems, such as Immuni [78], used in
Italy and SwissCovid [105], used in Switzerland. We expect several
other deployed GAEN systems to suffer from the same vulnerabilities.

More generally, our work shows how to attack the integrity of cur-
rently deployed GAEN-based contact tracing systems by leveraging
blockchain technology. A very alarming side of our contribution is that
current systems can be compromised without the need for the attacker
to get infected, or to be with high probability in close proximity to in-
dividuals that will be soon detected positive and will upload the keys.
Our attacks consist of smart contracts to establish a mediator-free
market where parties, without knowing each other, without meeting
in person and without running risks to be cheated, can abuse exposure
notifications procedures of GAEN systems. We give a brief description
of the mentioned smart contracts in the following.

Trading TEKs exploiting publicly verifiable lists of infected
TEKs. As a main contribution we show a smart contract named
Take-TEK that allows a buyer (i.e., the adversary willing to spread
false positive alerts) to decide the TEKs that will be uploaded by a
seller (i.e., the infected individual that is willing to monetize her right
to upload TEKs to the servers of the GAEN system). The smart
contract requires the buyer to deposit the amount of cryptocurrency
(we will call it prize) that he is willing to give to the seller. The seller
instead will deposit an amount of cryptocurrency in order to reserve
a time slot in which she will try to upload the TEKs. In case she
does not manage to complete the upload of the TEKs, the deposit
will be assigned to the buyer. The deposit of the seller is therefore
useful to make unlikely that a seller tries to prevent other sellers from
completing the job.

Take-TEK crucially relies on the server publishing such lists of
TEKs along with a signature verifiable with a publicly known public
key. We show that the Take-TEK attack can be deployed to generate

98

fake false positive alerts w.r.t. both Immuni and SwissCovid. Indeed,
both systems follow strongly the design of GAEN and announce such
signed lists of TEKs using ECDSA signatures.

Regardless of Immuni and SwissCovid making available or not their
signature public keys, we have successfully extracted the public keys
from previously released signatures. Therefore, Take-TEK can be in-
stantiated to attack both (and possibly many more) systems. More
details are discussed in Sec. 3.4.2.

Trading TEKs without publicly verifiable signatures: DECO.
One might think that realizing the terrorist attack via smart con-
tracts (e.g., Take-TEK) crucially relies on exploiting those signed lists
of TEKs under a known (or extractable) public key. At first sight,
a fix to such vulnerabilities consists of hiding the public keys and to
use a signature scheme such that it is hard to extract the public key
from signed messages. However, we show that things are actually more
complicated for designers of contact tracing systems. In particular, we
show another way to buy/sell TEKs that follows a completely differ-
ent approach. The key idea is requiring the seller to prove that a TLS
session with the server led to a successful upload of the buyer’s TEKs.
The only requirements on the communication between the smartphone
app and the server are that 1) both the TEKs and the positive (or
negative) outcome of the upload procedure are part of the exchanged
application data in the TLS session, and 2) the upload phase consists
of just one request made by the client and the response of the sever
(e.g., as it is in SwissCovid). At first sight, the attack seems very
hard to realize since notoriously TLS produces deniable communica-
tion transcripts when it comes to application data (i.e., exchanged
messages are only authenticated and not digitally signed). However,
we exploit a recent work of Zhang et al. [126]. They show how to build
a fully decentralized TLS oracle, named DECO, for commonly used
ciphersuites. Further details are described in Sec. 3.4.3.

Remark on the actual work done by our smart contracts.
Both our smart contracts provide full guarantees to both seller and
buyer at the expense of running some cryptographic operations that
can obviously produce transaction costs. Nevertheless, if we make an

99

additional optimization based on pragmatism, the expensive compu-
tations may happen very rarely in practice. Indeed, we notice that the
main computational cost for those smart contracts consists of checking
at the very end that the seller has completed the task of uploading
TEKs correctly. We observe that a buyer can check that TEKs are
published by the server on his own. As a result, he would be satisfied
in finding out that the trade has been completed successfully. There-
fore, it is natural to expect that the buyer would give his approval
to the smart contract to transfer the money to the seller avoiding the
execution of expensive computations, and therefore saving transaction
costs22. Since this behavior would be visible in the wild, the reputa-
tion of the buyer would also benefit from such approvals and more
sellers would want to run contracts with him. Moreover, a (some-
what irrational) buyer that refuses to speed up the execution of the
smart contract would anyway not stop the final transfer of the de-
posited money to the seller. As a result, the buyer would only get a
worse reputation. In conclusion, the expensive work done by our smart
contracts belongs to pieces of code that would rarely be executed in
practice.

3.4.2 Trading TEKs in GAEN Systems

The GAEN API was created to provide an efficient platform for expo-
sure notifications on top of which countries can easily develop digital
contact tracing systems. GAEN is supposed to solve various techni-
cal problems (e.g., changing BLE MAC address synchronously with
the rotation of pseudonyms, keeping BLE advertisements on in back-
ground) on a large fraction of available smartphones. At the same
time, the API is so inflexible that it forces anyone who is willing to
benefit from it to adopt a specific design for contact tracing. What is

22Obviously, the smart contract can be adjusted so that, in case the buyer does
not give his approval and the seller shows that she completed successfully her part
of the contract, the expensive transactions costs due to the lack of help from the
buyer are charged to the wallet of the buyer. A simple way to realize this could be
asking for an additional deposit made by the buyer. This deposit should clearly
cover the transaction costs of the seller in case the buyer does not give his approval,
and the seller shows that she successfully completed the upload procedure.

100

left in the hand of the developers is merely the creation of the graphical
interface, the choice of some parameters, the realization of a server to
gather and spread data about infected users and, more importantly, an
authentication mechanism to avoid the upload of data by non-infected
users.

Whenever a user is tested positive, she is given the right to upload
her TEKs to the server so that the other users can be notified a risk
of infection. The mechanism can be implemented in different ways.
For example, a simple method consists of a code generated by the app
that is given first to the health operator in order to activate it on
the server. Then, once the server has authorized the code, the app
will upload the TEKs along with the code (e.g., Immuni follows this
approach). More complex mechanisms may be put in place. However,
the attack we show next works for every GAEN-based contact tracing
system under some natural assumptions that we will discuss later.

In order to evaluate the contagion risk, GAEN provides appropriate
methods that take as input two files containing the last TEKs and the
related signature. The matching is not performed if the signature does
not verify under a public key previously known to Google and Apple.
The first file is named export.bin and contains, along with other
fields, a list of TEKs belonging to infected users that have decided to
perform the upload procedure. Each TEK has also a date attached,
which indicates when such TEK was used. The second file, named
export.sig, contains a digital signature of the file export.bin23. An
example of export.bin is reported in Fig. 3.13.

3.4.2.1 Take-TEK Smart Contract: Buying/Selling TEKs
Uploads

To simplify the description, we will refer to the TEKs file published
by the server as a list of pairs of values. In each pair, the first value is
a TEK and the second value is the corresponding date of usage date.

23Apple: Setting Up an Exposure Notification Server https://developer.ap
ple.com/documentation/exposurenotification/setting_up_an_exposure_

notification_server. Google: Exposure Key export file format and verification
https://developers.google.com/android/exposure-notifications/expos

ure-key-file-format

101

https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://developers.google.com/android/exposure-notifications/exposure-key-file-format
https://developers.google.com/android/exposure-notifications/exposure-key-file-format

start_timestamp: 1591254000 //starting time of included keys

end_timestamp: 1591268399 //end time of included keys.

region: "222" batch_num: 1 batch_size: 1

signature_infos {

verification_key_version: "v1" //version of used verification key

verification_key_id: "222"

signature_algorithm: "1.2.840.10045.4.3.2"

1: "it.ministerodellasalute.immuni"}

keys {

key_data: ".." //base64 encoded TEK

transmission_risk_level: 8

rolling_start_interval_number: 2651616 //date of usage of TEK

rolling_period: 144}...

Figure 3.13: An example of an export.bin file for Immuni, the Ital-
ian contact tracing app. The meaning of the main fields is com-
mented on the side. The start timestamp and end timestamp are
expressed in UTC seconds, rolling start interval number is ex-
pressed in 10 minutes increments from UNIX epoch. The export.sig
contains the digital signature of the export.bin file, along with the
field signature infos.

Let the seller P be an infected user who would like to monetize her
right to upload TEKs, and buyer B someone who is interested in pay-
ing P in order to upload TEKs of his interest. If the seller can prove
she acted as promised, this selling process can be executed remotely
remaining automated, anonymous, and scalable. GAEN’s design re-
quiring the list of TEKs to be signed makes the verification easy to the
smart contract, and greatly facilitates such trades. The trade can be
performed using a blockchain capable of executing sufficiently power-
ful smart contracts (e.g., Ethereum). Such smart contract guarantees
that P gets an economic compensation if and only if P uploads to the
server the TEKs specified by B.

The high-level functioning of the smart contract is as follows. (1)
B creates the smart contract posting a list of TEKs with the related
date, and deposits a prize to be redeemed by a seller. (2) An interested
P makes a small deposit to declare her intention to upload the TEKs

102

specified by B (the purpose of this small deposit is explained later).
After having made this deposit, (3) P has a specified amount of time
to complete the upload procedure. Before the time runs out, P must
provide a list of TEKs which includes all the pairs (tek, date) specified
by B, along with a valid signature under the server’s public key. If P
manages to do so, she gets a reward, otherwise both deposits go back
to B.

By making a deposit, the seller reserves a time slot during which
she can perform the upload. Such deposit protects the buyer from
denial of service (DoS) attacks by sellers who actually do not have
the right to upload TEKs. Here, as in the remainder of the paper,
with the word DoS we mean attacks carried out by fake sellers which
prevent honest sellers from participating to the trade.

We name the above smart contract Take-TEK and the attack that
leverages the use of this smart contract Take-TEK attack. The time
window given to P must be wide enough to take into account that
new TEKs are not continuously released by the server, in fact, several
hours may pass between the submission of a TEK and its publication.
Obviously, the amounts of both deposits will be significantly higher
than transaction fees. A custom software is needed to upload arbitrary
TEKs to the server. However, this simple software may be developed
even by other entities (not just the buyers), and publicly distributed
on the Internet or other sources (e.g., Darknet). Therefore, all the
seller would need to do is just running a software on a smartphone/-
computer; something that is easily doable by a large fraction of the
infected citizens willing to gain money24. Additionally, the time given
to the seller to complete the upload after having been tested positive
must be long enough to reserve a slot on the blockchain (i.e., enough to
wait that the transaction related to the seller’s deposit gets confirmed)
and subsequently send the TEKs via the custom software.

Attack description. B and P own wallets pkB and pkP respectively.
The buyer has no assurance that the seller is actually an infected
person, and she is not just a malicious party trying to slow down the

24COVID-19 by itself caused a global economic crisis which led to lower wages
and job losses. More details at https://en.wikipedia.org/wiki/COVID-19_re
cession.

103

https://en.wikipedia.org/wiki/COVID-19_recession
https://en.wikipedia.org/wiki/COVID-19_recession

buyer’s plan. Thus, some collateral must be deposited by P too. The
seller will lose the collateral deposit in case she is not able to prove that
she sent the buyer’s TEKs to the server S. Let the signature scheme
used by GAEN be (GenS, SignS,VerifyS). The protocol description is
depicted in Fig. 3.14 and a brief overview of the main functions follows
below.

Constructor(TB, vkS, t, dP): It takes as input a set of tuples TB :=
(tekBi , date

B
i)i∈[n] with n ≤ maxteks 25, where teki is the i-th TEK

of the buyer and datei is the associated date, the verification
key vkS to be used to verify the signature of the TEKs list,
a timestamp t, indicating the maximum time the seller has to
provide the correct list and signature, and the collateral value
dP that the seller must deposit.

Deposit(): must be triggered by B and takes as input a quantity p of
coins as the payment for the seller.

Promise(): must be triggered by the seller P by sending a quantity of
collateral deposit dP as a payment when invoked.

SendTeks(TKS, σT): must be triggered by the seller P to provide a list
of TEKs together with its signature σT . Let the list released by
the server be T = (teki, datei)i∈[N], where N is the number of
published TEKs. It checks that:

• TB ⊆ T and VerifyS(T, σT; vkS) = 1.

If the checks passes, dB coins are transferred to the seller’s wallet
pkP.

3.4.2.2 On the Practicality of Take-TEK Attack

Various proposed upload authorization mechanisms include manual
steps (e.g., SwissCovid uses an authorization code, termed covidcode,
which lasts for 24 hours) which, in order to function properly, naturally

25The maximum number of TEKs that can be uploaded in one shot depends on
the particular ACT.

104

Take-TEK Attack

We consider two entities: the seller P and the buyer B, with wallets
pkB and pkP respectively. The protocol works as follows:

1. B invokes the constructor, taking as input the buyer’s TEKs
list TB, the server verification key vkS that will be used to
verify the signed TEKs list, a timestamp t, and a value dP
indicating the minimal amount that P must deposit in order
to participate.
After having created the contract, B triggers the function
Deposit to deposit the prize p aimed for the seller who up-
loads TB to the server.

2. P deposits her collateral by triggering the function Promise.
Now the seller has at most time t to send a TEKs list T
signed by the server.

3. If P, before time t, triggers the function SendTeks submitting
a signed TEKs list T such that it satisfies conditions TB ⊆ T
and VerifyS(T, σT; vkS) = 1, the collateral deposit dP of P and
the prize p are transferred to P’s wallet. Otherwise, if time t
has passed, they are moved to B’s wallet.

Figure 3.14: The steps followed by buyer B and seller P to carry out
the Take-TEK attack.

give the seller enough time to perform the steps mentioned in the
section above. For example, if a code is communicated to the infected
user via a phone call, she should be given a fairly large amount of
time to write down the code and insert it in the app later on (the
needs of people with disabilities and of elder people must be taken
into account). Even systems that have fairly strict requirements on the
time by which the upload procedure must be completed should allow
for errors and recovery procedures, which may give additional time
to the future seller. For example, Immuni requires that the infected

105

user dictates, via phone call, a code that appears on her device. After
that, the user must complete the upload within two minutes. If this
does not happen, the procedure must be repeated. Additionally, the
system should be tolerant. People should have the opportunity to
perform the upload procedure later on if they are unable to do it in
that precise moment. It is worth noticing that strict requirements on
the upload phase reduce users’ privacy. A clear example is Immuni,
where the medical operator, by checking whether a code has been used
or is instead expired, gets to know whether or not the infected user
actually uploaded her TEKs.

Implementation. We implemented Take-TEK as a smart contract
for Ethereum, published it in a public repository26, and tested it lo-
cally. Since Ethereum does not use ECDSA-SHA256 (i.e., the one used
in GAEN) for built-in transaction signature verification, there is the
need to use specific solidity smart contract libraries27 which lead to
extra gas usage. Considering the exchange rate of 206 dollars per ETH
token on the 20th of July 2020, signature verification costs around 11
dollars (1235000 of gas). In order to compute the full cost, one should
add about 0.4 dollars (45000 of gas) for each TEK that is contained
in the export.bin file28. Notice that in principle our smart contract
can handle export files large as the maximum data that an Ethereum
transaction can handle (i.e., around 44 Kbytes). However, by splitting
the export files in multiple chunks to be sent to the smart contract in
different transactions, one can easily overcome such limitation. Fur-
thermore, to avoid the expensive (in terms of gas) operation of storing
such chunks on the smart contract, one can make the following opti-
mization. Instead of storing the chunk, the smart contract will just
store the intermediate hash values according to the Merkle-Damg̊ard
architecture of SHA-256. Such value is computed on input both the
current chunk and the intermediate hash value produced from the pre-

26Code available at https://github.com/danielefriolo/TEnK-U.
27The library we used for signature verification is available at https://github

.com/tdrerup/elliptic-curve-solidity.
28The cost of 45000 of gas includes TEKs extraction from the file as well as

checking if the stored TEKs are in the extracted ones. To simplify the gas evalu-
ation, we assume that B stores only one TEK in the contract.

106

https://github.com/danielefriolo/TEnK-U
https://github.com/tdrerup/elliptic-curve-solidity
https://github.com/tdrerup/elliptic-curve-solidity

vious chunk. When processing a chunk, the smart contract inspects it
and marks the buyers’ TEKs contained in the chunk. The smart con-
tract also takes care of possible splits of a TEK between two chunks.
When the last chunk is submitted, the smart contract verifies that
all the buyers’ TEKs were included. Then, it verifies the signature
according to the final hash value computed using the accumulated
intermediate hashes.

3.4.2.3 Subtleties in the Wild

In Sec. 3.4.2.1, we gave a high-level overview of how TEKs uploads
can be sold safely via blockchains. However, there are some subtleties
we overlooked for the sake of simplicity. We first analyze the advan-
tages for adversaries when using automated trade compared to already
known attacks. Then, we consider certain problems that arise while
trying to concretely mount our attack against deployed GAEN-based
contact tracing systems. We also show how these difficulties are easily
tackled if very small modifications to our attack are made.

Advantages of automated trade (for an adversary). One might
think that malicious injection of fake TEKs is inherent in decentralized
contact tracing systems since there is no control over the smartphone
used by infected individuals and thus, when the time of the upload
comes, the infected person can always use a smartphone belonging to
someone else.

While it is true that such simple attacks are very hard to tackle,
they have limited impact for at least two reasons: 1) the buyer must
handover his smartphone to the seller, and this requires physical prox-
imity; 2) sellers and buyers must trust each other since an illegal pay-
ment must be performed without being able to rely on justice in case
of missing payment or aborted upload of keys. Indeed, even if in need
of money, people are generally afraid of dealing with criminals since
they may get scammed or threatened. Additionally, the buyer might
expose the sellers’ identities to the authorities in case he gets legally
persecuted. Equally, the buyer may share the same concern w.r.t. an
unreliable seller. It goes without saying that some citizens are prone

107

to violate the rules29 when they believe that risks are low compared
to the advantages.
As such, attacks involving the exchange of smartphones, or the usage of
a malicious app uploading TEKs sent by a criminal contacted directly
by the infected citizen, do not scale and their damage may be consid-
ered tolerable. Having a mechanism which allows this trade to happen
remotely, in anonymity, and ensuring no party is cheated, solves all the
above problems for parties willing to abuse contact tracing systems.
Indeed, it provides a framework for large-scale black markets of TEKs.
The seller would not feel threatened in any way and could easily earn
money, on the other hand, the buyers would benefit from a larger set
of users to be in business with, therefore succeeding in many possible
attack scenarios. Other systems for black markets based on reputa-
tions could also be used, but they are clearly less appealing than the
transparency and usability of mediator-free smart contracts.

ACTs and data minimization. The effectiveness of ACTs is strictly
related to various factors among which the percentage of active popu-
lation using them. Appropriate measures should be taken to earn citi-
zens’ trust since it is the only way to guarantee broad adoption. With
this in mind, the European Commission released a series of recommen-
dations in relation to data protection stating the need of identifying
solutions that are the least intrusive and comply with the principle of
data minimization [56]. A similar recommendation has been given by
the Chaos Computer Club (CCC)30, the Europe’s largest ethical hack-
ers association, which explicitly states that “data which is no longer
needed must be deleted”. Corona-Warn, the German contact-tracing
system, declares to be fully compliant with CCC’s guidelines31. Many
other systems are inspired by similar principles. For example, the Ital-

29The infected person also commits a violation by allowing the injection of fake
TEKs.

3010 requirements for the evaluation of “Contact Tracing” apps https://www.
ccc.de/en/updates/2020/contact-tracing-requirements. Accessed August
2020.

31Criteria for the Evaluation of Contact Tracing Apps https://github.com/c
orona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7

e703b20650ea/pruefsteine.md. Accessed August 2020.

108

https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md

ian system Immuni also declares that data is deleted when no longer
needed32, as well as the Swiss system SwissCovid which also specifies
a retention period for the TEKs and the upload authorization codes
33. In its recommendation to build a verification server authenticating
the uploaded TEKs, Google states that identifiable information should
not be associated with uploaded data34.
The adoption of the above measures ensures that uploaded data do
not link to, nor identify a particular individual. This is very impor-
tant considering that GAEN systems are vulnerable to the paparazzi
attack.

Evaluation of seller’s risks. Considering the above data minimiza-
tion principles, are the seller and the buyer at risk of being legally
persecuted for a trade that may be deemed as illegal? The answer
seems to be no. If data is handled as specified above, there would be
no way to associate the seller to her uploaded TEKs at a later time.
Data exchanged during the attack would also not directly compromise
neither the buyer nor the seller35.

However, there is a problem for a seller who really wants to mini-
mize the chance of getting caught. In fact, since the TEKs proposed
by the buyer are posted in clear on the blockchain, authorities may
become aware of them and activate ad-hoc procedures monitoring the
incriminated TEKs and exploiting the upload authorization process
to identify the guilty seller. This does not seem to directly contradict
the data minimization principle when national security is at stake. If

32https://github.com/immuni-app/immuni-documentation.
33https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epi

demien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovi

d-app-und-contact-tracing.html. Accessed August 2020.
34Google: Exposure Notification Verification Server https://developers.goo

gle.com/android/exposure-notifications/verification-system. Accessed
August 2020.

35In this analysis, we refer only to contact tracing system data and messages
exchanged via the blockchain during the execution of the attack. We do not take
into account border-line situations as, for example, the case where there is only
a single infected individual. We also ignore additional information that may help
investigators figuring out who the seller is, for example how the money are spent
after the trade.

109

https://github.com/immuni-app/immuni-documentation
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing.html
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing.html
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing.html
https://developers.google.com/android/exposure-notifications/verification-system
https://developers.google.com/android/exposure-notifications/verification-system

the server getting the TEKs upload monitors the requests (e.g., by
storing connection logs) without colluding with the health authority,
the seller could be easily incriminated after the TEKs have been de-
tected in the smart contract by just looking at her IP stored together
with such request. However, in this case, the usage of an anonymity
service like Tor [52] can easily reduce the chance of getting caught.
If the authorities are colluding, the upload authorization codes (e.g.,
the covidcode) may be associated with the identities of infected users,
and TEKs could be in turn mapped to a precise individual via such
codes. However, by slightly increasing the complexity of the smart con-
tract, such risk may be completely avoided. It suffices for the buyer
to encrypt his TEKs with a public key provided by the seller, who
then will use a non-interactive zero-knowledge (NIZK) proof system
to prove that the TEKs encrypted under the specified public key are
indeed contained in the list signed with the server’s public key. This
requires an additional interaction with the buyer, who has to publish
the encrypted TEKs. Once again, the seller is protected by a timer
which assigns her all the deposits if the buyer does not reply. Efficient
Ethereum implementations of NIZK proofs are known in literature,
like NIZKs for Σ-protocols [120] or zk-SNARKs [103,130,131].

Even if the buyer decides to claim the authorship of the attack at a
later point in time (e.g., as it usually happens for terrorist attacks) by
opening the encrypted values on the blockchain to published TEKs,
the seller would not be at risk if data was handled according to the
principles of data economy and anonymity. Any evidence based on
contact tracing data would be a clear indicator that those principles
have been violated. This could result in a big disincentive in using the
app, since citizens may think (probably rightfully) that data could also
be abused for other reasons, perhaps for mass surveillance purposes.
Finally, we want to point out that even if several researchers raised the
concern about the possible birth of black markets [99,116], we did not
find any document related to any ACT, either issued by governments
or national security agencies, which deeply evaluates these risks. To
the best of our knowledge, no risk analysis ever mentions to monitor
the dark web and blockchains looking for suspicious smart contracts. It
goes by itself that if blockchains are not monitored, all extra measures
taken in this paragraph to protect the seller are not necessary.

110

Other subtleties. There are two other subtleties with limited im-
pact to consider for the actual realization of the attack. We describe
them in Sec. 3.4.4.1 and Sec. 3.4.4.2 and shortly mention them here:

• Extracting public keys from signatures : Generally, servers’ public
keys do not seem to have been made publicly available neither by
Google and Apple, nor by the countries which deployed GAEN-
based ACTs36. However, the employed signature algorithm (i.e.,
ECDSA) allows to retrieve this public key starting from a pair
of signed messages.

• Updates of public keys : The structure of the export.bin file al-
lows for updates of the used digital signature key (see Fig. 3.13).
Therefore, it might happen that, after the seller makes the de-
posit and accepts to upload the buyer’s TEK, the server, by
coincidence, decides to use a new key which was never used be-
fore. Thus, the server would produce a signature that is not
verifiable under the public key posted on the smart contract.
However, by making a slight modification to the smart contract,
it is possible to handle also this unfortunate event. Moreover,
keys have changed very rarely in export files.

3.4.3 Connecting Smart Contracts to TLS Ses-
sions

The Take-TEK attack relies on the fact that a digital signature is used
to authorize uploads. Additionally, the ability to extract the public key
from signed messages may also play a key role. Therefore, one might
think that to protect GAEN systems the public key should remain
hidden and the signature scheme should be such that extracting the
public key from message-signature pairs is hard. In this way, due to
the inability of the smart contract to verify that a TEK is officially in
a list of infected TEKs, the attack would fail. However, things are not

36Once an ACT hands its public key over to Google and Apple, it can completely
rely on GAEN APIs to perform signature verification without storing the public
key in clear in the app source code (see https://developers.google.com/andr

oid/exposure-notifications/exposure-key-file-format for more details).

111

https://developers.google.com/android/exposure-notifications/exposure-key-file-format
https://developers.google.com/android/exposure-notifications/exposure-key-file-format

so easy. Indeed, we show that TLS oracles can be used to prove to
a smart contract that an upload was successfully performed, without
relying on signatures of TEKs.

3.4.3.1 Decentralized Oracles

Recently, Zhang et al. [126], introduced the concept of Decentralized
Oracles. Roughly, an oracle is an entity that can be queried by a client
to interact with a TLS server and help the client proving statements
about the connection transcript. Previously known oracle construc-
tions rely on trusted/semi-trusted execution environments [125], thus
not giving any help in our case. DECO [126] is the first work where
a fully-decentralized construction is proposed for specific ciphersuites
such as CBC-HMAC and AES-GCM coupled with DH key exchange
with ephemeral secrets. We recall that a TLS connection is divided
in two parts: a handshake phase where key exchange is performed,
and a phase during which the transferred data is encrypted/decrypted
by the client/server using the key exchanged in the previous phase.
GAEN servers usually accept Elliptic-Curve Diffie-Hellman key Ex-
change (ECDHE) for the first phase, while for the second phase some
servers accept only AES-GCM (e.g., Immuni), whereas others, like
SwissCovid’s one, accept also CBC-HMAC as a ciphersuite. To guar-
antee the integrity of data, the plaintext is usually compressed and a
MAC on the compressed string is calculated using a key derived from
the DH exchanged key.

Decentralized Key-Exchange. We provide below an informal de-
scription of the key-exchange in DECO for ECDHE that is called Three
Party Handshake (3PHS).

We assume three entities: a prover P, a verifier V, and a server
S. P and V jointly act as a TLS client. The overall idea of DECO is
that the prover and verifier, after performing some two-party computa-
tions, compute shares of the exchanged key, while the server computes
the entire key without even noticing that P and V are two distinct
interacting entities.

When using CBC-HMAC, the keys kMAC
P , kMAC

V (such that kMAC
P +

kMAC
V = kMAC) are learned by P and V respectively, while kEnc is only

112

known to P. When using AES-GCM, the same key is used for both
encryption and MAC, therefore both P and V just get a share of it.
While P and V only learn their secret shares of the key, the server S
gets to know both kEnc and kMAC.

Let G be an EC group generator. The key exchange phase works
as follows:

• P establishes a TLS connection with the server S.

• When receiving the DH share YS = sS ·G from S, P forwards it
to V37.

• V samples a DH secret sV and sends his DH share YV = sV · G
to P.

• P samples her DH secret sP, calculates her DH share YP = sP ·G,
calculates the combined DH share Y = YP + YV, and sends Y to
S.

Finally, S computes the DH exchanged key as Z = sS · Y . P and V
will compute their secret shares of Z as ZP = sP ·YS and ZV = sV ·YS.
Note that ZP + ZS = Z, where + is the EC group operation. Now
that P and V have secret shares of EC points, they use secure two-
party computation (2PC) to evaluate a PRF (that we call TLS-PRF)
to derive the keys kMAC

P and kMAC
V . The authors face and solve several

challenges in order to derive keys efficiently via 2PC. We do not cover
this part, a more detailed description can be found in [126].

Encrypted communication. At the end of the 3PHS, P and V
have to engage in a 2PC protocol to correctly calculate the MAC
and the encryption on the plaintext to be sent to the server, without
revealing the shares to each other. Privacy of the plaintext is also
ensured with respect to V. For CBC-HMAC, the encryption of such
plaintext is computed exclusively by P who holds the encryption key.
The authors [126] provide hand-optimized protocols which are much

37P would also receive from S a certificate and a digital signature that certify
the server’s identity. P would also forward them to V to convince him that an
interaction with the desired server is taking place.

113

more efficient then the ones obtained by directly applying 2PC tech-
niques. The 2PC protocol for AES-GCM is a lot slower than the one
for CBC-HMAC since for AES-GCM P and V must cooperate also for
the encryption.

Proving statements. An important feature of DECO is that P,
when the communication with S ends, can prove, in zero knowledge,
statements on the communication transcript in a very efficient way.
However, to make their protocol practical for our goal, we do not try
to maintain the transcript private. As a result, we will not discuss
this part of DECO which can be found in [126]. In the following, we
describe how to adapt DECO to our scenario.

3.4.3.2 A Smart Contract Oracle

Our goal is to make the smart contract play the role of the DECO
verifier. In this way, the smart contract would be able to verify that
the intended communication between the seller and the server took
place and to reward the seller accordingly. Unfortunately, we can not
just plug DECO into a smart contract for several reasons. For example,
DECO requires to run intensive 2PC related tasks, to sample random
values, and to maintain a private state38.

Therefore, we keep running the DECO protocol off-chain but we
find a way to connect the DECO run between the prover and the ver-
ifier to the state of the smart contract, so that the smart contract will
eventually be able to act as an impartial judge punishing the mali-
cious party when a deviation from the prescribed honest behavior is
detected. In particular, the seller acts as a prover and the buyer as a
verifier, and we guarantee no party is able to cheat (i.e., the seller is
paid if and only if she performs the upload of the requested TEKs) by
binding the off-chain execution to the state of the smart contract itself.
Furthermore, we guarantee privacy of the messages exchanged between
the server and the prover only until their TLS connection is open. Af-
ter the communication ends, the seller proves that she acted honestly
by providing the application-level messages exchanged with the server,

38Keeping a private state inside a smart contract is not possible and computa-
tionally intensive operations generate high costs.

114

along with the corresponding MAC tags w.r.t. the MAC key which is
bound to the smart contract. To be more specific, the smart contract
freezes a share of the MAC key and the seller has to show a commu-
nication transcript (i.e., the messages exchanged with the server and
corresponding MAC tags) which is consistent with such share. Privacy
of the upload request message to be sent to the server is crucial while
the TLS session is open because the verifier may abort the protocol
and use the authorization token of the prover to upload data by himself
without paying out the promised reward. On the other hand, mak-
ing the communication public after it took place does not endanger
the prover, apart from the considerations made in Section 3.4.2.3, and
makes the verification procedure much more practical. What we need
is that the shares of the prover and the verifier are kept private until
the end of the protocol, and then revealed to the smart contract, along
with other information, for verification and reward paying. In addi-
tion, the TLS session timeout should be big enough to allow for the
2PC execution. To this regard, Zhang et. al already verified the prac-
tical feasibility of their protocol [126]. Obviously, P must know how
to reach V to carry out the protocol. To address concerns regarding
anonymity, V may set up a Tor hidden service39. Using hidden ser-
vices may significantly slow down the process, however we found both
Immuni and SwissCovid servers to give a generous time out window
of two hours40. Another point to consider is that upload authoriza-
tion tokens may have a limited duration. For example, in SwissCovid,
the smartphone, by interacting with an appropriate server (different
from the TEKs upload server, called CovidCode-Service), exchanges
the covid code for a signed JWT token that is valid for 5 minutes41.
Then, this token is sent by the smartphone to the server along with
the TEKs to complete the upload. Thus, the upload message con-
taining the TEKs and the authorization token must be computed and

39More on Tor hidden services can be found at https://2019.www.torprojec
t.org/docs/onion-services.

40Interestingly, in June 2020 the timeout of a TLS session with both Immuni
and SwissCovid upload servers was limited to 5 minutes, but it has been then
extended to two hours.

41See CovidCode-Service configuration https://github.com/admin-ch/Covi

dCode-Service/blob/develop/src/main/resources/application-prod.yml.

115

https://2019.www.torproject.org/docs/onion-services
https://2019.www.torproject.org/docs/onion-services
https://github.com/admin-ch/CovidCode-Service/blob/develop/src/main/resources/application-prod.yml
https://github.com/admin-ch/CovidCode-Service/blob/develop/src/main/resources/application-prod.yml

sent to the server within 5 minutes from the reception of the JWT
token. Given the high efficiency of DECO when CBC-HMAC is used,
even when bandwidth is limited [88], it is reasonable to think that
the attack is feasible in SwissCovid. In Immuni instead, no signed
token is used. In fact, the upload must be completed within 2 minutes
after the infected user has communicated the code to the health oper-
ator. Therefore, in Immuni the attack would less likely be operative,
especially with Tor, given that the slower AES-GCM ciphersuite is
required.

Protocol description. From now on, we refer to the seller and the
buyer as prover P and verifier V respectively; we denote the server as S.
In the following, we explain the detailed attack for the CBC-HMAC
ciphersuite. When creating the smart contract, aside depositing a
prize for P, V also posts the DH share YV = sV ·G he is willing to use
during the 3PHS, along with requested TEKs (and dates).

First, P transacts on the smart contract to reserve a time slot
of duration t1 by which a DECO protocol run must be performed
together with V and S, and the data needed to redeem the reward
must be posted on the smart contract by P. If time t1 elapses, P loses
her slot. This reservation mechanism is needed to prevent V from
getting back the reward while an honest P performs the upload of
the requested TEKs. In fact, the verifier could also act as a prover
and simulate a reward-paying interaction with the server to the smart
contract, which would have no mean to distinguish it from a fake
one42. By adding a reservation mechanism, we are sure a malicious V
cannot play a simulated transcript in the smart contract while honest
P is performing with him the DECO protocol run. Furthermore, since
the communication for the upload between the server and the prover
consists of just a single query followed by a single response, it is not
possible for a cheating verifier to make the timer expire avoiding to pay
the prover while at the same time the upload of the TEKs successfully
completes. In fact, once V cooperates with P to build a valid request,

42During the 3PHS handshake V will also forward to P a digital signature from
S. This signature convinces P that V is interacting with the desired S. However,
our smart contract ignores this detail.

116

S will reply to P independently of what V does, thus giving P all she
needs to redeem the reward.

When executing the 3PHS, P checks that the value Y ′
V sent by V

during the handshake corresponds to the value YV posted on the smart
contract. This prevents V from providing an erroneous DH share and
blaming P for it. If this is not the case, P aborts. Since no upload
message has been sent to the server yet, no party gains advantage from
this operation. If V’s share is correct (i.e., YV = Y ′

V), parties engage in
the communication with S and jointly compute the MAC (via 2PC as
in [126]) on the upload request mc generated by P . If the connection
ends successfully43, the elected P posts (only who reserved this slot is
allowed to post this message) on the smart contract the following:

• The entire communication transcript, that is (mc,ms) together
with the MACs (θc, θs), calculated by the client(s) P ↔ V and
the server S.

• The prover’s secret sP.

• The DH share of the server YS received during the 3PHS.

Then, the smart contract starts a timer t2 indicating the maximum
time V has to reveal his secret sV. In case V does not do that, the
prize is automatically transferred to the seller P. If V reveals sV, the
smart contract does the following:

• Check that YV = sV ·G and if not, transfer the prize to P.

• If the check passes, reconstruct the secret Z from sV, sP, Ys, and
apply TLS-PRF to derive the MAC key kMAC.

Now the smart contract has everything it needs to check that the fields
inside message mc (from the prover to the server) are correct (i.e., the
buyer’s TEK are present), the response message (from the server to

43This can be inferred from the communication. For example, as in SwissCovid
(see SwissCovid Server Controller: https://github.com/DP-3T/dp3t-sdk-bac

kend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-s

dk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/con

troller/GaenController.java), S may reply P with either a success message
such as “200 OK” or an error message.

117

https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java)
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java)
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java)
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java)

the prover) is positive, and that the MACs (θc, θs) verify w.r.t. kMAC.
If all the checks pass, the prize is transferred to P, otherwise P gains
no prize and the deposit is returned back to V.

As mentioned before, V is not encouraged to provide a different
public key w.r.t. the one he used in DECO execution, otherwise P will
just abort. On the other hand, the prover is not able to earn a reward
without uploading the promised TEKs. In fact, the probability for
the prover to come up with a pair (m′

c, θ
′
c) (resp. (m

′
s, θ

′
s)) that verifies

under the key k′MAC derived from Z ′ = Z ′
P+Z ′

V with Z ′
P := s′P ·Y ′

S and
ZV := sV · Y ′

S is negligible due to the fact that sP is fixed and honestly
generated, thus randomizing Z ′, hence k′MAC.

A note on DoS attacks. It is important to prevent DoS attacks
run by sellers who actually do not have the right to upload TEKs and
end up by just wasting the buyer’s precious time. In the previous
discussion this protection is not provided: before sending the jointly
computed message (mc, θc), the seller can decide to not forward the
message to the server. Now, the buyer has to open his commitment
to show his secret sV in order to not lose the prize. As a result,
the committed value cannot be used in other runs. To address this
issue, the smart contract can be modified to handle multiple sessions.
Instead of storing YV as a single DH contribute, the buyer stores the
root of a Merkle tree. Now, when the seller interacts with the contract
to reserve a session, a session id (a simple counter j suffices) is assigned
to her: the DH contribute used in the 3HPS will correspond now to the
j-th leaf of the Merkle tree. Now, when the buyer has to open his secret
sV, he also reveals the path of the Merkle tree from the root to the leaf
j. The smart contract will now verify that the contribute is correctly
derived from the root by following a path with correct openings. Let
us consider a Merkle root committing to 2k elements, thus allowing
the buyer to open as many sessions. For a k large enough, a malicious
seller should spend a considerable amount of money in order to reserve
all the sessions.

118

3.4.4 Other Subtleties: Details

In this section, we report more details on some subtleties about our
attacks we skimmed on in the previous sections for the sake of clarity.

3.4.4.1 Extracting Public Keys from Signatures

Take-TEK (cfr., Section 3.4.2.1) requires that the server’s public key is
known to both the involved parties. This guarantees that the buyer is
sure the reward is paid only to sellers who actually upload data to the
ACT, and that honest sellers are sure they will be able to satisfy the
conditions to be paid, namely obtaining a valid digital signature for
reward redemption. A GitHub issue asking for the public key of the
Italian contact tracing app was opened on the 7th of June 2020 and it
has still not been addressed at the time of writing44. The SwissCovid
Android app contains a configuration file specifying the production
version of the bucket public key45 that is used to perform signature
verification outside GAEN. Anyway, as we can notice with Immuni,
this is not a requirement. One might think that keeping the verifi-
cation keys secret may prevent attacks as the one of Section 3.4.2.1.
However, it turns out that it is actually not the case. In fact, since
GAEN uses ECDSA, starting from a signature and the related message
we can recover two candidate public keys, one of which will match the
actual one with overwhelming probability. A practical example show-
ing this procedure can be found in [121]. Such message/signature
pairs are generally made publicly available and are easily accessible
by appropriately querying the server of the specific contact tracing
system. Multiple pairs per day may be released. A comprehensive
description on how to get this data has been provided by the Test-
ing Apps for COVID-19 Tracing (TACT) project, along with scripts
to automate the downloading process [83]. We also practically per-
formed the extraction procedure, successfully extracting the keys for
both SwissCovid and Immuni.

44See https://github.com/immuni-app/immuni-documentation/issues/11

4.
45The value BUCKET PUBLIC KEY can be found in https://github.com/DP-3T/

dp3t-app-android-ch/blob/master/app/backend_certs.gradle.

119

https://github.com/immuni-app/immuni-documentation/issues/114
https://github.com/immuni-app/immuni-documentation/issues/114
https://github.com/DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle
https://github.com/DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle

3.4.4.2 Updates of Public Keys

There is a subtle technical problem with the attack described in Sec-
tion 3.4.2.1. The digital signature keys that the server uses may change
over time. In fact, as shown in Fig. 3.13, the export.bin file includes
a field indicating a version for the verification key. This field follows
a progressive numeration, that is the first version is termed v1, the
second one v2 and so on. This means that the server may change the
verification key it uses, perhaps within a set of keys that have been
pre-shared with Google and Apple. Therefore, it might happen that,
after the seller makes the deposit and accepts to upload the buyer’s
TEK, the server, by coincidence, decides to use a new key which was
never used before, thus producing a signature that is not verifiable
under the public key posted on the smart contract.

However, by making a slight modification to the smart contract, it
is possible to handle also this unfortunate event. Having realized that
she would be unable to redeem the reward, the seller might activate
a special recovery condition. After this, the buyer will be able to
collect both deposits if and only if he manages to provide a pair of
export files which have an end timestamp (Fig. 3.13) subsequent to the
time of the recovery request and verify under the public key originally
posted on the smart contract; otherwise the deposits are returned to
the original owners. Obviously, enough time should be given to the
buyer to provide the export files, similarly to what happens to the
seller after her deposit.

This event is certainly very annoying for the seller and might play
as disincentive to join the trade, but taking a look at real-world data
one realizes that this is a relatively rare event. We considered several
countries which are currently using a digital contact tracing system,
namely: Italy, Switzerland, Austria, Germany, Ireland, Northern Ire-
land, Denmark, Latvia, Canada and US Virginia. Until January 13th
2021 (last time we checked), only US Virginia and Italy have switched
to the second version of the verification key. In particular, the change
to the Italian system dates back to the 15th of June 202046 and no
modifications have been made since then. To the best of our knowl-
edge, the criteria by which the verification key should change is not

46This change occurred in the 4th export file.

120

documented anywhere.

3.4.4.3 CBC-HMAC vs AES-GCM

Differently from CBC-HMAC, AES-GCM relies on the same key for
both encryption and MACs. The impact of AES-GCM is twofold: 1)
more computation is needed to perform the required 2PC to calculate
messages from/to the server, due to the AES algorithm itself, 2) the
prover does not learn the encryption key after 3PHS, meaning that
both encryption and decryption must be done via 2PC as well. On
the smart contract side, this difference boils down to a lack of fairness.
After V and P have calculated together the upload message and sent it
then to S, V could decide not to help the prover to decrypt the server’s
response. Now, P has no witness in her hands to give to the smart
contract in order to prove that she has correctly performed the TEKs
upload. As a result, she cannot redeem the prize. The problem can be
easily solved by giving to the smart contract the burden of decrypting
the server’s ciphertext. In our approach, V must commit to his key
and open it later. When this happens, the smart contract reconstructs
the MAC/encryption key, decrypts the ciphertext, does the necessary
checks, and pays the prize to P. The CBC-HMAC version of DECO
is way faster then the AES-GCM one. However, looking at practical
evaluations made by the authors [88, 126] it is reasonable to think
that all their solutions may fit in the time window given by contact
tracing servers (e.g., 2 hours in Immuni and SwissCovid) for the TLS
connection47, even when hiding V through Tor hidden services. What
is less likely is that, in the case of Immuni which uses AES-GCM and
requires the upload to be completed within two minutes, the upload
request message (mc, θc) is computed and sent to the server in time;
especially when the prover and the verifier communicate via Tor.

47Full TLS connection logs dating to June 2020 can be found in [15].

121

Chapter 4

Threshold Cryptography

In this chapter, we provide new contributions in the area of thresh-
old cryptography. We first consider proofs over threshold relations
(cfr., Sec. 4.1). In this setting, a statement is composed of ℓ instances
and a prover wants to prove, in zero knowledge, that it knows a wit-
ness for at least k of them. We provide a generic construction that
starting from the Σ-protocols for proving knowledge of a witness for
the individual instances outputs a Σ-protocol for the threshold rela-
tion (cfr., Sec. 4.1.4). The input Σ-protocols have to be stackable
Σ-protocols (cfr., Sec. 4.1.4.1) and the output protocol is still a stack-
able Σ-protocol. Our result improves prior results either in terms of
communication complexity, or of generality (cfr., Tab. 4.1). We then
show how to distribute the computation of the prover and use this to
obtain a threshold ring signature (cfr., Sec. 4.1.5). Our threshold ring
signature has interesting features such as reduced interaction among
the signers, and support for hierarchical access structures.

Then, we build a new extendable threshold ring signature (ETRS)
with enhanced anonymity properties (cfr., Sec. 4.2). Our ETRS is
based on a novel tool we formalize and construct called extendable
non-interactive witness indistinguishable proof of knowledge (ENIWI
PoK) (cfr., Sec. 4.2.7 and Sec. 4.2.10). An ENIWI PoK is a NIWI
PoK for a threshold relation that can be non-interactively updated by
many different provers to increase either k or ℓ. We then show how to
construct an ETRS starting from an ENIWI PoK and other standard
cryptographic tools. We improve previous constructions in terms of

122

anonymity guarantees, size, and time complexity (cfr., Tab. 4.2 and
Tab. 4.3). The strong anonymity guarantees of our ETRS allow to
run public anonymous petitions where the supporters (who desire to
remain anonymous) do not have to trust each other.

While confronting ourselves with previous works [5, 64] we found
examples of pitfalls of the provable security paradigm such as falla-
cies in the security proofs and inadequate definitions. We analyse
and provide solutions to such issues. For example, we show that the
proof of EHVZK in [64] was incorrect. To this regard, we provide new
definitions of 1-out-of-2 equivocal commitment scheme as well as re-
vised security proofs (cfr., Sec. 4.1.6). Regarding ETRS we show that
the anonymity definition proposed in [5] is inadequate for real-world
count-me-in applications. We show that such inadequacy concretely
shows up in the most efficient ETRS proposed in [5] (cfr., Sec. 4.2.3).
To fix this issue, we propose stronger definitions as well as an ETRS
satisfying such definitions.

Parts of the results of Sec. 4.1 were published in [11]. The results of
Sec. 4.2 will appear in the proceedings of PKC 2023. In the meanwhile,
we published such results on ePrint [10].

4.1 Proofs over Threshold Relations

With the advent of blockchain technology and cryptocurrencies, there
has been more interest in designing practical systems for decentralized
computations. In particular, there is an effort towards systems produc-
ing succinct messages that can later be uploaded on blockchains guar-
anteeing some public verifiability. Notable examples of such tools are
threshold signatures and succinct non-interactive arguments of knowl-
edge (SNARKs). W.r.t. the above motivation we focus on proofs over
threshold relations (PTRs) where a statement consists of ℓ instances
and the prover wants to prove knowledge of witnesses for at least k of
them. For simplicity, we will refer to such a proof as a (k, ℓ)-PTR.

123

4.1.1 Related work

Several previous works have focused on obtaining (k, ℓ)-PTR for prac-
tical languages. In [48], Cramer et al. showed how to efficiently
combine Σ-protocols in order to obtain a (k, ℓ)-PTR. Their construc-
tion mainly consists of running Σ-protocols for all instances combining
them efficiently, and thus the costs (i.e., computations and communi-
cation) of their (k, ℓ)-PTR essentially consist of the sum of the costs
of all the underlying Σ-protocols. The resulting protocol is still a
Σ-protocol. More recently, a different technique has been proposed
in [45] where Ciampi et al. showed how to obtain a similar result with
the additional feature of postponing the need to know the instances
to the last round (i.e., delayed input). The delayed-input (k, ℓ)-PTR
of Ciampi et al. relies on the DDH assumption and can be applied to
all Σ-protocols as [48]. The resulting protocol is a 3-round public-coin
proof of knowledge. Unfortunately, since this composition technique
relies on a computationally-hiding commitment scheme, it produces a
protocol which only achieves computational zero knowledge regardless
of the underlying Σ-protocols being statistical/perfect zero knowledge.
However, statistical/perfect zero knowledge is very important since it
protects the privacy of past proof computed by the prover forever (e.g.,
even if quantum computers become a concrete threat).

Very recently, Attema et al. in [7], improving a prior work of
Groth and Kohlweiss [70], have shown how to obtain a very compact
(k, ℓ)-PTR. However, the result of [7] only works for discrete loga-
rithms (and variations), thus remaining far from the general results
of [48]. Their construction requires a logarithmic number of rounds1

and is secure against polynomial-time adversarial provers only (while
preserving statistical/perfect zero knowledge). They require a shared
random string (SRS) as trusted parameters.

Even more recently, Goel et al. in [64] have broken the barrier
of linear (in ℓ) communication complexity when composing generic
Σ-protocols, showing an efficient composition for a large class of Σ-
protocols (which they call stackable Σ-protocols) obtaining logarith-
mic communication complexity. Their construction is secure against

1The result of [70] instead works only for k = 1, but it just requires 3 rounds.

124

polynomial-time adversarial provers only2, obtaining computational
special soundness. They give an instantiation of their construction
based on a commitment scheme that relies on the discrete logarithm
assumption. Their instantiation requires as trusted parameters the
description of a collision-resistant hash function (CRHF) and parame-
ters for Pedersen commitments. The perfect hiding of the commitment
scheme allows to preserve statistical/perfect zero knowledge when the
underlying Σ-protocols are perfect/statistical zero-knowledge. While
their construction applies to a large class of Σ-protocols, the tech-
niques of [64] are communication-efficient only when k = 1. In the full
version of their paper [62], Goel et al. discuss (see Sec. 9.1 and App. F
of [62]) an approach for the case of k > 1 but unfortunately, as they
acknowledge, their proposal strongly affects communication, without
providing substantial improvements over [48]. Goel et al. left explic-
itly open the problem of efficiently combining Σ-protocols in order to
break, for generic values of k, the linear (in ℓ) barrier achieved by [48]
(see [62], page 32, Sec. 9.1).

Alternative approaches. Recently, in [77] the result of [76] has
been extended to (k, ℓ)-PTRs retaining the same communication ad-
vantage of [76] while optimizing computation efficiency. Their ap-
proach has communication complexity proportional to k times the
longest branch. Mac’n’Cheese [18] is an interactive commit-and-prove
zero-knowledge proof system for binary and arithmetic circuits. The
communication complexity is proportional to k times the longest cir-
cuit plus an additive term which is logarithmic in ℓ. As commit-
ments it uses information-theoretic MACs based on vector oblivious
linear evaluation (VOLE). Note that Mac’n’Cheese is inherently pri-
vate coin since the soundness relies on the verifier keeping the MAC
key secret. Therefore, it is not immediately clear whether it can be
modified to support public verifiability. Finally, one might leverage
succinct proof techniques such as STARKs [22] or SNARKs [92] to
get a communication-efficient (k, ℓ)-PTR. While these techniques can

2For ease of presentation, we will use the term PTR even when the soundness
property holds only against a computationally bounded adversarial prover. We will
do the same for computational Σ-protocols which only satisfy a weaker version of
special soundness called computational special soundness (cfr., Sec. 2.3.1.1).

125

achieve even constant proof size, they have several drawbacks such as
a huge workload for provers and the use of strong assumptions and/or
problematic trusted setups. Although all the approaches above ap-
ply to NP-complete languages, we note that they are not so obviously
efficiently generalizable to arbitrary languages. Instead, approaches
based on composing Σ-protocols are more beneficial to protocol de-
signers. Indeed, if there is a Σ-protocol (with specific additional prop-
erties) for the base relation, a protocol designer can use the compo-
sition technique directly for the (k, ℓ) case without the need to run a
possibly expensive NP-reduction.

Open problem. In light of the above state of affairs, we have the
following natural and interesting (both theoretically and practically)
open question:

Is it possible to obtain practical (i.e., round, communication and
computation-efficient) (k, ℓ)-proofs of knowledge for threshold relations
for a large class of Σ-protocols (and thus for several useful languages)
with communication complexity sublinear in ℓ preserving statistical/per-
fect zero knowledge?

4.1.2 Proofs over Threshold Relations: Our Con-
tribution

In this work, we solve the above open problem when k = o(ℓ
log ℓ

) by
showing how to efficiently combine the same large class of Σ-protocols
considered in [62] obtaining a (k, ℓ)-PTR with communication com-
plexity that is roughly3 k log ℓ. In scenarios where k is way smaller
than ℓ (e.g., k is constant or even

√
ℓ) this is a significant improve-

ment. Moreover, our construction, similarly to [62], can also be used
for (k, ℓ)-PTR involving Σ-protocols for different languages. The pro-
tocol obtained through our techniques is still a Σ-protocol and thus,
it can be combined again with our techniques or other techniques
(e.g., [48]) for composing Σ-protocols. Finally, our construction pre-
serves the flavour of the zero-knowledge property of the composed

3We will be more precise later making the impact of the security parameter
explicit.

126

protocols. Indeed, our (k, ℓ)-PTR called Πk,ℓ is still statistical/per-
fect honest-verifier zero knowledge (HVZK) if the base Σ-protocols
are statistical/perfect HVZK. Our construction can also be instanti-
ated, with small modifications, using the commitment scheme of [45].
In this case, our (k, ℓ)-PTR would provide computational HVZK but
it would only require a shared CRHF as setup, that is a milder setup
compared to requiring a shared random string.

We use the (1, ℓ)-PTR of [62], to which we refer as Π1,ℓ, as a build-
ing block and start with their observation that repeating k times their
construction is insecure since an adversarial prover might succeed in
using a witness for the same instance in all the k executions. This
is precisely the problem left unsolved in [62] for (k, ℓ)-PTRs that we
solve in this paper.

Compact proof of consistency of commitment parameters.
In Π1,ℓ, the use of a witness is associated to log ℓ pairs of parameters
of a commitment scheme for pairs of messages such that, for every
pair, one parameter allows for equivocation and the other parameter
prevents equivocation. We will say that one parameter is equivocal
and the other one is binding. Only the prover knows which element
is equivocal for every pair. We say that a commitment scheme is 1-
out-of-2 equivocal when a commitment phase requires to commit to
two messages, one with binding parameters and one with equivocal
parameters, without allowing the receiver to distinguish them, even
after the commitment is opened.

In the following, we assume w.l.o.g. that ℓ is a power of 2 and
give a simplified description of our approach. Let x0, . . . , xℓ−1 be the
instances and let xi with i ∈ {0, . . . , ℓ − 1} be the instance corre-
sponding to witness wi known to the prover. The log ℓ pairs of param-
eters are chosen so that the j-th pair has the first parameter binding
if the j-th bit of i is zero (for j = 0, . . . , log ℓ − 1) and equivocal
otherwise. Notice that the connection between a pair of parameters
that can be either (equivocal,binding) or (binding,equivocal) and a
bit of the index of an instance makes the log ℓ pairs of parameters
associated to xi logically different from the log ℓ pairs of parame-
ters associated to xj, as long as i ̸= j. We observe that to show
that in k executions of Π1,ℓ the k witnesses correspond to k differ-

127

ent instances, one can focus on showing that the k sequences of log ℓ
pairs of parameters are all disjoint in the sense that for every pair
(ā = a0, a1, . . . , alog ℓ−1), (b̄ = b0, b1, . . . , blog ℓ−1) of elements in these k
sequences, there is always a position j ∈ {0, . . . , log ℓ − 1} such that
only one out of aj and bj has the first parameter that is binding. We
focus on efficiently proving the above property of all pairs in these k se-
quences as follows: first, we require the prover to sort the k sequences
according to the order relation derived by assigning to every sequence
of log ℓ pairs of parameters a string of log ℓ bits where the j-th bit is 0
if and only if the j-th pair of parameters in the sequence has the first
element that is binding. The prover has all the information to sort
these k sequences since the prover itself decided those parameters and
thus it knows which one is binding and which one is equivocal. Once
the k sequences are sorted, in order to prove that they are all disjoint
(in the sense explained above) it suffices for the prover to show that
for every two consecutive elements (ā, b̄) in such ordered sequence of
k elements, the bit representation of b̄ is greater than the one of ā.
With such trick, the prover must provide k− 1 proofs in total to show
that all sequences are different. Each of such proofs is about proving a
property of the involved 4 log ℓ parameters4. We show a concrete and
efficient instantiation for the parameters of the 1-out-of-2 equivocal
commitment scheme GGHK from [62]. The communication complex-
ity of each of the above k − 1 proofs is O(log ℓ). In Table 4.1, we
compare our results to the previously discussed approaches to obtain
(k, ℓ)-PTRs. For the sake of completeness, in this comparison we make
the security parameter λ explicit. Notice that our approach, while be-
ing less communication-efficient than [7, 70], is more flexible since it
applies to a much wider family of languages.

Threshold ring signatures. As pointed out in [62], by making Π1,ℓ

non-interactive with the aid of a random oracle one gets a ring signa-
ture whose size is logarithmic in the size of the ring ℓ (see [62] Page 4
and Sec. 9.3). Following a similar approach, starting from our Πk,ℓ we
can get a threshold ring signature scheme according to Def. 3 of [75],
but considering PPT adversaries instead of quantum polynomial-time

4For each proof there are two sequences of log ℓ pairs of parameters.

128

adversaries. In a threshold ring signature scheme, k signers cooper-
ate to sign a message hiding their identities within a larger group of
size ℓ. In our threshold ring signature scheme, the size of a signa-
ture corresponds roughly to O(k log ℓ) group elements. Interestingly,
while featuring a relatively simple design, our construction improves
in terms of signature size on many literature works [30,93,122]. Other
schemes have signature size which is linear in ℓ (while being indepen-
dent of k) and thus are also outperformed when k << ℓ [43, 75, 128].
When comparing our construction to others achieving more compact
signature sizes [8, 75, 90], our construction still has interesting advan-
tages in terms of resilience to adversarially chosen keys (see [75]) or
used assumptions. An additional feature of our threshold ring signa-
ture is that it requires a reduced level of interaction. The signers just
have to interact with one party called the aggregator. After having
interacted with all the signers, the aggregator just compiles all the
received contributions into one threshold ring signatures which can be
publicly posted. Finally, our techniques allow threshold ring signa-
tures with more advanced hiding properties. Indeed, since our Πk,ℓ is
still a stackable Σ-protocol, it can be used as a base Σ-protocol for
our threshold ring signature, thus expressing more complex relations
with better anonymity properties (i.e., “threshold-of-threshold”). In
particular, they can express hierarchical relations such as “k out of ℓ
groups signed a message, and within each group i ∈ [ℓ] of size ℓi, at
least ki members signed the message”. The number of levels of the
hierarchy is arbitrary.

4.1.3 Technical Overview of [62]

We first describe 1-out-of-2 equivocal commitments (see Sec. 4.1.4.2
for more details) that are a major tool used in [62]. Then, we show
how [62] exploits 1-out-of-2 equivocal commitments to get a (1, ℓ)-
PTR.

1-out-of-2 equivocal commitments in a nutshell. A 1-out-of-2
equivocal commitment allows a sender to commit to two values one
of which is guaranteed to be binding, either unconditionally or under
computational assumptions. The other element instead can be equivo-

129

Protocol Rounds Communication Values of k Language

[48] 3 O(ℓCC(Σ)) Any k All Σ
[70] 3 O(λ log ℓ) k = 1 DL-like
[7] O(log ℓ) O(λ log(2ℓ− k)) Any k DL-like
[62] 3 O(CC(Σ) + λ log ℓ) k = 1 Stackable Σ
[62] 3 O(k(CC(Σ) + λℓ)) k > 1 Stackable Σ
Ours 3 O(k(CC(Σ) + λ log ℓ)) Any k Stackable Σ

Table 4.1: Comparison of several techniques for (k, ℓ)-PTR. When comparing
more language-generic techniques like ours and [48,62], we express the communica-
tion complexity both in terms of the communication complexity of the underlying
Σ-protocol CC(Σ) and of the security parameter λ. Notice that the communica-
tion complexity of [70] does not depend on k since their technique only works for
k = 1. The Language column reports the languages or the class of the Σ-protocols
for which the corresponding composition technique works. Despite being the least
communication efficient, [48] can be applied to a wider class of Σ-protocols.

cated using a trapdoor that is known to the sender. Once the commit-
ment is opened, the commitment scheme itself would guarantee that
the equivocal position is not leaked. Before sending the commitment
to the receiver, the commitment scheme parameters are generated by
the sender who has to decide which position is equivocal. From now
on, we call non-trapdoor (NT) a parameter that is associated with a
binding position, while a trapdoor parameter (T) is associated with
an equivocal position.

(1, ℓ)-PTR through Σ-protocols. For simplicity, we will focus on
instances belonging to the same language. Nevertheless, both in [62]
and in our results it is possible to go beyond this restriction (see Sec. 8
of [62]).

The main idea in [62] is that every involved Σ-protocol has a deter-
ministic HVZK simulator, called Extended HVZK (EHVZK) simulator
which, given a challenge c, a third-round message z, and a statement
x, outputs a simulated a such that (a, c, z) is an accepting transcript
for the instance x. With EHVZK in their hands, the authors introduce
the notion of stackable Σ-protocols. A Σ-protocol is stackable if (i)
it has an EHVZK simulator and (ii) the third-round message is recy-
clable, meaning that the distribution of such messages is independent
of the instance for every instance in the language.

130

Let us first consider just two of the ℓ instances, say x1 and x2.
Given two executions Σ1 and Σ2 of a stackable Σ-protocol Π for in-
stances x1 and x2 respectively, an execution Σ1,2 of the composed
Σ-protocol Π1,2 defined by Goel et al. [62] for x1 ∨ x2 can be con-
structed as follows. Let us assume that the prover P1,2 knows the
witness corresponding to x1. We name a1 (respectively a2) the first-
round message of the underlying execution Σ1 (respectively Σ2), a the
first-round message of the execution Σ1,2 of Π1,2, c the challenge sam-
pled by the verifier V1,2 for Π1,2, and z the last message of Σ1,2. Since
Σ1 and Σ2 are executions of the stackable Σ-protocol Π, their third-
round messages have the same distribution. Therefore, the accepting
third-round message from Σ1 can be re-used as a third-round message
for Σ2 as described in the composed Σ-protocol Π1,2 below:

• P1,2 computes the first-round message a1 of protocol Π on input
the instance x1 and witness w1. P1,2 commits to a1 using a
1-out-of-2 equivocal commitment scheme. The value a1 is put
in the binding position, while the equivocal position commits
to 0. We denote the resulting commitment as com. The first-
round message a in the execution Σ1,2 of the composed protocol
Π1,2 includes com as well as the parameters of the commitment
scheme.

• Upon receiving the challenge c from V1,2, P1,2 computes z′ us-
ing witness w1, and equivocates the equivocal position of the
commitment with a simulated a2. The value a2 is obtained by
running the EHVZK simulator of Π with input the instance x2,
c, and the value z′ computed above. Then, P1,2 sends z

′ and the
opening values of com to V1,2 as a third-round message z of Σ1,2.
The value z also includes the commitment parameters.

• V1,2 reconstructs a1 and a2 by running the EHVZK simulator
of Π. Then, V1,2 checks that both (a1, c, z

′) and (a2, c, z
′) are

accepting transcripts for V1 and V2, and that com actually opens
to a1 and a2.

Since Π1,2 is still a stackable Σ-protocol, it can be recursively used to
prove the instance x1 ∨ x2 ∨ x3 ∨ x4. Indeed, this can be seen again

131

as an OR of two statements, therefore the Σ-protocol for the instance
(x1∨x2)∨ (x3∨x4) can be composed using the same technique. Then,
one can iterate the same process to obtain a (1, 8)-PTR by applying
the same technique to two (1, 4)-PTR, and so on. Such composition
of ℓ disjunctive instances can be represented by the following binary
tree: the leaves of the tree represent the ℓ base executions (Σ1, . . . ,Σℓ)
of the Σ-protocol Π. Given two siblings nodes i and j, with associated
protocol execution Σi for the instance xi and Σj for the instance xj

respectively, the parent node t of i and j describes the execution of the
protocol Σt obtained by applying the compiler for (1, 2)-PTR of [62].
Moreover, edges (t, i) and (t, j) are labeled as follows: if Pt knows a
witness for the instance xi, then the edge (t, i) is labelled with NT to
indicate that, in the commitment computed by Pt in the first round,
the position where xi is used is binding. The edge (t, j) is labeled with
T to indicate that the position where xj is used is equivocal. If Pt

knows a witness for xj instead, then the opposite holds. An example
of a tree induced by recursively applying the composition of [62] for
a (1, 2)-PTR to get a (1, 8)-PTR is shown in Fig. 4.1. This recursive
application of the (1,2)-PTR gives a communication complexity for
the (1, ℓ)-PTR that is roughly logarithmic in ℓ.

(k, ℓ)-PTR extension. In [62], an extension of their compiler to
achieve a (k, ℓ)-PTR5 is proposed. They propose a k-out-of-ℓ binding
vector-of-vectors commitment scheme. This modification allows to
equivocate at most ℓ − k positions. Roughly speaking, they instanti-
ate such a primitive by making the commit algorithm output a matrix
of k × ℓ commitment values (i.e., each row is a 1-out-of-ℓ equivocal
commitment), together with a non-interactive zero-knowledge proof
that the binding position is different in each row. As pointed out
in [62], with this technique they lose their ability to recursively apply
the (1, 2)-PTR compiler. As a result, their (k, ℓ)-PTR has a commu-
nication complexity of roughly O(kℓ) (see Table 4.1).

5See Sec. 9.1 and App. F of [62].

132

4.1.4 Our Techniques

Our approach for a communication-efficient (k, ℓ)-PTR. In
[62], the location of the instance for which the prover knows the wit-
ness uniquely determines the way parameters are laid out over the
composition tree. For example, in Fig. 4.1 the instance for which P1,2

knows the witness is x1. This means that, starting from Σ1,2, the po-
sition containing the first message of Σ1 has to be binding. Indeed,
since P1,2 only holds a witness for x1, P1,2 is able to produce an accept-
ing transcript exclusively for Σ1. Therefore, the third-round message
to be recycled has to come from Σ1, while the committed first-round
message of the execution Σ2 needs to be equivocated with the out-
put of the EHVZK simulator. It follows that, climbing up the tree,
the commitment position containing the first message of Σ1,2 has to
be binding. Indeed, V1,2,3,4 will in turn execute V1,2 and V3,4, which
internally use the verifiers of the base Σ-protocols. This means that
in Σ3,4 the prover recycles the third-round message of Σ1,2 and that
in Σ1,2,3,4 the committed first-round message of Σ3,4 has to be equiv-
ocated accordingly in order to get an accepting transcript. Applying
the same reasoning again, it is easy to conclude that in Σ1,...,8 the
binding position of the 1-out-of-2 equivocal commitment is again the
same.

A crucial idea of [62] to achieve logarithmic communication com-
plexity is reusing commitment parameters and openings across the
same levels of the composition tree. The composition is designed so
that commitment parameters and openings are part of the third-round
message of the composed protocol. Indeed, since the composed Σ-
protocol of [62] is itself stackable, it follows that its EHVZK simulator
takes as input commitment parameters and openings to generate a
suitable first-round message, namely a 1-out-of-2 equivocal commit-
ment reusing the same openings and parameters6. This means that
since all the Σ-protocols executions that belong to the same level of

6For this composition to work and to compress the communication complexity
down to logarithmic, the size of the equivocal commitment must be independent
of the size of the committed value. To solve this issue, committed values have to
be compressed down to a constant size with the aid of a collision-resistant hash
function.

133

the tree share the same third-round message, they also have to use
the exact same commitment parameters. Therefore, in the (1, ℓ)-PTR
of [62] given the instance xi corresponding to the witness used by the
prover, there is a unique way in which commitment parameters can
be laid out over the composition tree. Thus, to build a (k, ℓ)-PTR it
suffices to repeat the construction of [62] k times and to prove that the
composition trees of such k executions are all distinct. In this section
we describe how we design a communication-efficient Σ-protocol for
the above goal.

Σ1,...,8

Σ1,2,3,4

Σ1,2

Σ1 Σ2

Σ3,4

Σ3 Σ4

Σ5,6,7,8

Σ5,6

Σ5 Σ6

Σ7,8

Σ7 Σ8

NT3

NT2

NT1 T1

T2

NT1 T1

T3

NT2

NT1 T1

T2

NT1 T1

Figure 4.1: An example of a composition tree induced by the recursive applica-
tion of the (1, 2)-PTR of [62] in which 8 base Σ-protocols are composed to obtain
a (1, 8)-PTR. In this example, P1,...,8 knows a witness for the instance x1. This
implies that, going from the root to the leaves, the left-most branch must be non-
trapdoor. Additionally, commitment openings and parameters are re-used across
the same level of the composition tree and this is emphasized by using the same
index and the same color for all the edges within a level.

4.1.4.1 Stackable Σ-protocols

Let us consider the notion of Σ-protocol as a 3-round public coin pro-
tocol Π = (P0,P1,V) with the properties defined in Sec. 2.3.1.1. Tra-
ditionally, Σ-protocols enjoy the special soundness property with a

134

perfect flavour. However, for convenience, in the remainder of the pa-
per we will use the term Σ-protocols also to refer to protocols that
just enjoy computational special soundness.

We now define the stackable Σ-protocol of [62].

Definition 19 (Computational/Statistical EHVZK). Let Σ = (P0,P1,V),
be a Σ-protocol for an NP language L. Σ is EHVZK if there exists
a PPT algorithm SEHVZK such that for all PPT/unbounded D, and

c ∈ {0, 1}λ, there exists an efficiently samplable distribution D
(z)
x,c and

a negligible function ν(·) such that for all x ∈ L⃓⃓⃓
Pr
[︁
ExpEHVZK(P0,P1),D(c) = 1

]︁
−Pr

[︁
ExpEHVZKSEHVZK,D(c) = 1

]︁⃓⃓⃓
≤ ν(|x|).

We say instead that a Σ-protocol is perfect EHVZK if the difference
between the probabilities is exactly 0. The experiment ExpEHVZK for
EHVZK follows.

ExpEHVZKP′,D(c)

1. (x,w)← D(c).

2. If (x,w) ̸∈ RL, return 0.

3. If P′ = SEHVZK, sample z←$ D
(z)
x,c and compute a ←

SEHVZK(x, c, z).

4. Otherwise, sample R←$ {0, 1}λ, compute a ← P0(x,w;R)
and z ← P1(x,w, a, c;R).

5. Return D(x,w, a, c, z).

Definition 20 (Σ-protocol with recyclable third messages). Let Σ =
(P0,P1,V) be a Σ-protocol for an NP language L, Σ has recyclable
third messages if for every c ∈ {0, 1}λ, there exists an efficiently sam-

plable distribution D
(z)
c , such that for all (x,w) ∈ RL, it holds that

D
(z)
c ≈ {z|R←$ {0, 1}λ; a← P0(x,w;R); z ← P1(x,w, c;R)}.

135

Definition 21 (Stackable Σ-protocol). We say that a Σ-protocol Σ =
(P0,P1,V), is stackable, if it is a EHVZK Σ-protocol and has recyclable
third messages.

4.1.4.2 1-out-of-2 Equivocal Commitment Schemes

We now define the notion of 1-out-of-2 equivocal commitment scheme.
The sender commits to a pair of messages (m0,m1) with m0,m1 ∈
{0, 1}λ, where λ ∈ N is the security parameter. A 1-out-of-2 equivocal
commitment scheme CS = (Setup,Gen,BindCom,EquivCom,Equiv,RT)
consists of five PPT algorithms and a polynomial-time relation RT .
The algorithm Setup generates a common reference string pp. We de-
note by Ypp the space of well-formed commitment parameters w.r.t.
pp and require that membership in Ypp can be checked efficiently. The
above algorithms work as follows:

• pp ← Setup(1λ; r): on input the security parameter, and ran-
domness r, generates public parameters pp.

• (p0, p1, td)← Gen(pp, β; r): on input public parameters pp, bind-
ing position β ∈ {0, 1}, and randomness r, returns the commit-
ment parameters (p0, p1) ∈ Ypp and the trapdoor td for param-
eter p1−β such that (p1−β, td) belongs to RT

7.

• com ← BindCom(pp, p0, p1,m0,m1; r): on input public parame-
ters pp, commitment parameters p0, p1, messages m0, m1, and
randomness r outputs a commitment com.

• (com, aux) ← EquivCom(pp, β,m, p0, p1, td; r): on input public
parameters pp, binding position β, message of the binding po-
sition m, commitment parameters p0, p1, trapdoor td, and ran-
domness r returns a commitment com and auxiliary information
aux.

• r ← Equiv(pp, β,m0,m1, p0, p1, td, aux): on input public param-
eters pp, binding position β, messages m0, m1, commitment pa-

7The statement for RT may also depend from pp. We will omit this dependence
to simplify the notation.

136

rameters p0, p1, trapdoor td, and auxiliary information aux, de-
terministically returns an equivocation randomness r.

In the following, we assume that pp was already generated by a
trusted third party using the algorithm Setup. Furthermore, we will
omit the randomness from the input of the algorithms, except when
it is relevant. A sender and a receiver interact using the commitment
scheme as follows.

Commit Phase: The sender, on input m and binding position β,
computes (p0, p1, td)← Gen(pp, β), (com, aux)← EquivCom(pp, β
,m, p0, p1, td). The sender sends (com, p0, p1) to the receiver.

Reveal Phase: The sender, on input m∗, computes r ← Equiv(pp, β,
m0,m1, p0, p1, td, aux) where mβ = m and m1−β = m∗, and
sends (r,m0,m1) to the receiver. The receiver computes com′ ←
BindCom(pp, p0, p1,m0,m1; r) and accepts if com′ = com and
(p0, p1) ∈ Ypp, rejects otherwise.

We state below the properties we require for the 1-out-of-2 equiv-
ocal commitment scheme.

Partial Equivocation: For all λ ∈ N, pp ← Setup(1λ), β ∈ {0, 1},
(p0, p1) ∈ Ypp, (m0,m1) ∈ {0, 1}2λ, td such that (p1−β, td) ∈ RT

the following holds:

Pr

⎡⎢⎢⎣ BindCom(pp, p0, p1,
m0,m1; r) = com

⃓⃓⃓⃓
⃓⃓⃓⃓ (com, aux)← EquivCom(

pp, β,mβ, p0, p1, td);
r ← Equiv(pp, β,m0,
m1, p0, p1, td, aux)

⎤⎥⎥⎦ = 1.

Computational Fixed Equivocation: Given the experiment
ExpFixEquiv below, for every non-uniform PPT A, there exists a
negligible function ν(·) such that for any λ ∈ N:
Pr[ExpFixEquivA(λ) = 1] ≤ ν(λ).

137

ExpFixEquivA(λ)

1. pp← Setup(1λ).

2. (p0, p1, r
1, r2, r3, r4,

m1
0,m

2
0,m

1
1,m

2
1,m

3
0,m

4
0,m

3
1,m

4
1)← A(pp).

3. Return 1 if ∃β ∈ {0, 1} such that

(BindCom(pp, p0, p1,m
1
0,m

1
1; r

1) = BindCom(pp,

p0, p1,m
2
0,m

2
1; r

2) ∧
(BindCom(pp, p0, p1,m

3
0,m

3
1; r

3) = BindCom(pp,

p0, p1,m
4
0,m

4
1; r

4) ∧
(m1

1−β ̸= m2
1−β) ∧ (m3

β ̸= m4
β) ∧ ((p0, p1) ∈ Ypp).

Return 0 otherwise.

Moreover, the protocol achieves perfect fixed equivocation if for
any unbounded A it holds that Pr[ExpFixEquivA(λ) = 1] = 0.

Computational Position Hiding: Given the experiment ExpHid be-
low, for every non-uniform PPT A, there exists a negligible func-
tion ν(·) such that for any λ ∈ N:
Pr[ExpHidA(λ) = 1] ≤ 1

2
+ ν(λ).

ExpHidA(λ)

1. pp← Setup(1λ).

2. Sample β←$ {0, 1} and compute (p0, p1, td) ←
Gen(pp, β).

3. β′ ← A(pp, p0, p1).
4. Return 1 if β′ = β and 0 otherwise.

Moreover, if A is unbounded and ν(λ) = 0 we say that the
scheme is perfect position hiding.

138

Computational Trapdoorness: Given the experiment ExpTrap, for
every non-uniform PPT A, there exists a negligible function ν(·)
such that for any λ ∈ N :
Pr[ExpTrapA(λ) = 1] ≤ 1

2
+ ν(λ).

ExpTrapA(λ)

1. pp← Setup(1λ).

2. (m0,m1, p0, p1, td, β)← A(pp).
3. If (p0, p1) ̸∈ Ypp or (p1−β, td) ̸∈ RT abort the experi-

ment.

4. Sample b←$ {0, 1}. If b = 0, set (com, aux) ←
EquivCom(pp, β,mβ, p0, p1, td) and set r ←
Equiv(pp, β,m0,m1, p0, p1, td, aux). If b = 1, sample
r←$ D and set com← BindCom(pp, p0, p1,m0,m1; r).

5. b′ ← A(pp,m0,m1, p0, p1, td, β, com, r).

6. Return 1 if b = b′, return 0 otherwise.

Moreover, if A is unbounded and ν(λ) = 0 we say that the
protocol achieves perfect trapdoorness.

GGHK enjoys computational fixed equivocation, perfect position
hiding and perfect trapdoorness8. Moreover, since GGHK has perfect
position hiding and perfect trapdoorness, the use of this commitment
scheme in Π1,ℓ preserves the statistical/perfect zero knowledge prop-
erty of the underlying Σ-protocols. Computational fixed equivocation
forces the special soundness to be only computational instead (special
soundness is degraded in any case since in [62] a hash function is used
to compress the size of first-round messages).

8Our definition slightly differs from the one in [62]. In particular, our fixed
equivocation property implies the partial binding of [62]. We need this slightly
stronger property to prove the soundness of our (k, ℓ)-PTR. Natural instantiations
such as GGHK enjoy the fixed equivocation property. The remaining properties
are just a restatement of the minimal requirements for a 1-out-of-2 commitment
scheme in [62].

139

4.1.4.3 Πord: a Σ-Protocol to Prove Parameters Ordering

We use the following notation: for any vector v, v[z] indicates the z-th
element of the vector v. The first element of a vector v is indexed as
v[1]. Moreover, we use [n] for n ∈ N to identify the set {1, . . . , n}.
Let x = ((p10, p

1
1), . . . , (p

n
0 , p

n
1)) be a vector containing n pairs of pa-

rameters corresponding to n instantiations of a 1-out-of-2 equivocal
commitment scheme, where pi0 represents the parameter of the first
position of the i-th commitment instantiation, and pi1 is the analogue
for the second position. Consider the relations RT0 and RT1 , where
RT0 = {(x = (p0, p1), w) : p1 is a trapdoor parameter and w is the
corresponding trapdoor} and, similarly RT1 = {(x = (p0, p1), w) : p0
is a trapdoor parameter and w is the corresponding trapdoor} (i.e.,
(x = (p0, p1), w) ∈ RTi

if and only if (p1−i, w) ∈ RT with i ∈ {0, 1}).
We present a Σ-protocol Πord that, given a vector X = (x1, . . . ,xk)
of vectors each containing n pairs of parameters corresponding to n
instantiations of a 1-out-of-2 equivocal commitment scheme, allows a
prover P to efficiently prove knowledge of a witness for X ∈ L where

L ={X : ∃W = (w1, . . . ,wk) such that

∀ i, j ∈ [k] with i ̸= j ∃z ∈ [n], such that bi,z ̸= bj,z}
(4.1)

where bi,z, bj,z ∈ {0, 1} satisfy (xi[z],wi[z]) ∈ RTbi,z
, (xj[z],wj[z]) ∈

RTbj,z
.

An efficient Σ-protocol. One could naively prove the above state-
ment by separately proving that each vector of n pairs of commit-
ment parameters differs in the way equivocal and binding parame-
ters are laid out w.r.t. every other vector. Carrying out such proof
would involve a quadratic (in k) amount of separate proofs. We in-
stead take a different path, that is introducing a strict total order-
ing among these k vectors of n pairs of commitment parameters. In
particular, we map a vector x of n pairs of commitment parameters
to a binary string s ∈ {0, 1}n by setting s = b1|| . . . ||bn, for which
(x[z],w[z]) ∈ RTbz

. Let sm with m ∈ [k] be the string resulting by
applying the above mapping to a vector xm of n pairs of commitment
parameters. W.l.o.g. consider the case where s1 > . . . > sk. If the

140

above order relation holds, it follows that all the k vectors of n pairs
of commitment parameters are logically different from each other in
terms of how the trapdoor parameters are laid out in at least one po-
sition. Notice that after having introduced such ordering among the k
vectors of n pairs of commitment parameters, one can come up with
the language Lord described by only a linear number of comparisons.
Indeed, the language of Equation 4.1 can be equivalently rewritten as
Lord = {X : ∃W = (w1, . . . ,wk) such that s1 > s2 > . . . > sk}, where
for all m ∈ [k], sm = b1|| . . . ||bn, for which (xm[i],wm[i]) ∈ RTbi

.

Instantiation. Let us consider two binary strings s1 ∈ {0, 1}n and
s2 ∈ {0, 1}n, in which we use s[i] to indicate the i-th bit of the string s,
it is pretty straightforward to see that if s1 > s2, the following formula
also holds9:

n⋁︂
i=1

(︄(︄
i−1⋀︂
j=0

(s1[j] = s2[j])

)︄
∧ (s1[i] > s2[i])

)︄
. (4.2)

Indeed, this corresponds to performing a bit-wise comparison be-
tween s1 and s2, starting from the most significant bit. Namely, if
s1 > s2, the first different bit between the two strings has value 1 in
s1 and 0 in s2.

Building on this observation, we can construct a protocol Πord′ to
prove that two binary strings, each representing a vector of n 1-out-
of-2 equivocal commitment parameters, are such that one is greater
than the other. Then, given k vectors of commitment parameters, one
can prove that X = (x1, . . . ,xk) ∈ Lord, where |xi| = n for all i ∈ [k],
by using Πord′ k − 1 times. We denote the resulting protocol as Πord.

1-out-of-2-commitment of [62]. In [62], a t-out-of-ℓ equivocal
commitment scheme GGHK based on the discrete logarithm assump-
tion is defined. GGHK uses the same SRS of the non-interactive
version of the Pedersen commitment scheme, namely, two genera-
tors g0, h of a group G where the discrete logarithm of g0 in base

9For consistency reasons, we assign the index 1 to the first position within the
string and we say that si[0] = 0.

141

h is not known. For the interesting case of t = 1 and ℓ = 2, the
commitment parameters are two group generators algebraically de-
rived from the SRS. The receiver is able to verify that the parameters
are correctly generated via a simple algebraic check. In particular,
Ypp = {p0 ∈ G, p1 ∈ G : p1 = p20g

−1
0 }. The trapdoor associated to

the equivocal position is the discrete logarithm in base h of the cor-
responding parameter. Thus, RT = {(x,w) : x = hw}. We refer the
reader to [62] for more details on the actual construction.

Instantiating Πord for the commitment of [62]. We now in-
stantiate Πord for vectors of commitment parameters of GGHK. To
do so, we just need to express Formula 4.2 in terms of the param-
eters of GGHK. Given (pa0, p

a
1), we represent membership of (pab , w)

in RT as the function RDL(p
a
b , w) evaluating to 1 if w is the dis-

crete logarithm of pab w.r.t. h and 0 otherwise. Given two vectors
of n commitment parameters of GGHK P = ((p10, p

1
1), . . . , (p

n
0 , p

n
1)) and

Q = ((q10, q
1
1), . . . , (q

n
0 , q

n
1)), and two vectors of corresponding witnesses

Wp = (w1
p, . . . , w

n
p) and Wq = (w1

q , . . . , w
n
q), Formula 4.2 can be rewrit-

ten as a relation Rord′ on input ((P,Q), (Wp,Wq))
10:

n⋁︂
i=1

(︄(︃ i−1⋀︂
j=0

(︁
((RDL(p

j
0, w

j
p)∧RDL(q

j
0, w

j
q))∨(RDL(p

j
1, w

j
p)∧RDL(q

j
1, w

j
q))
)︁)︃

∧ (RDL(p
i
1, w

i
p) ∧RDL(q

i
0, w

i
q))

)︄
. (4.3)

Basically, for each bit of the strings s1 and s2 of Formula 4.2, such
bits are equal if the corresponding parameters pairs have the same
trapdoor position, meaning that either the sender knows the discrete
log of both the first positions of the pairs, or that the same applies
for the second position of both parameters pairs. A bit of a string is
defined to be 1 if the corresponding parameters pair has in its first

10In the following formula the AND ranging from j = 0 to j = i− 1 is evaluated
as true for j = 0. Indeed, according to the notation used in this paper, there are
no parameters pair in the position 0 of the vector.

142

position a group element with a discrete log that is known to the
sender, while it is 0 if the same applies to the second position.

Given k vectors V1, . . . , Vk of n pairs of commitment parameters
and k vectors W1, . . . ,Wk of witnesses, the relation proved by Πord, is
defined as follows:

Rord((V1, . . . , Vk), (W1, . . . ,Wk)) =
k−1⋀︂
i=1

Rord′((Vi, Vi+1), (Wi,Wi+1)).

(4.4)

Our instantiation of Πord can be obtained via OR/AND compo-
sitions of the Schnorr’s Σ-protocol [48], which is also stackable [62].
As a result, Πord is a stackable Σ-protocol with computational special
soundness and perfect EHVZK. Πord′ , proving Rord′ , achieves commu-
nication complexity O(nλ+ λ log n) = O(nλ). Πord can be obtained
by repeating Πord′ k − 1 times in parallel, obtaining a communication
complexity of O((k − 1)nλ) = O(knλ).

4.1.4.4 Efficient (k, ℓ)-PTR

We build our (k, ℓ)-PTR repeating the (1, ℓ)-PTR of [62] k times and
using Πord with statements the k vectors of commitment parameters
of length O(log ℓ) that constitute the composition trees. Notice that
Πord is defined over ordered tuples of pairs of commitment parame-
ters. However, the prover can easily sort the k underlying (1, ℓ)-PTRs
according to such order. Let (P1,ℓ

0 ,P1,ℓ
1) be the prover algorithms of

the (1, ℓ)-PTR from [62]. W.l.o.g., we also assume that the algorithm
P1,ℓ
0 outputs, together with the first-round message a to be sent to

V1,ℓ, the tuple of commitment parameters ((p10, p
1
1), . . . , (p

log ℓ
0 , plog ℓ1))

and the related witnesses tuple (td1, . . . , tdlog ℓ). In our (k, ℓ)-PTR
Πk,ℓ = (Pk,ℓ

0 ,Pk,ℓ
1 ,Vk,ℓ), the prover takes as input a tuple of statements

x = (x1, . . . , xℓ) and k witnesses w = ((w1, α1), . . . , (wk, αk)) in which
αj ∈ [ℓ] is the position of the j-th witness. Πk,ℓ uses the (1, ℓ)-PTR

Π1,ℓ = (P1,ℓ
0 ,P1,ℓ

1 ,V1,ℓ), and Πord = (Pord
0 ,Pord

1 ,Vord).

143

First Round: The prover invokes Pk,ℓ
0 that, on input (x,w; rand)

computes a as follows:

1. Parse rand as randP1|| . . . ||randPk
||randord;

2. For all j ∈ [k]: Run (aj,pj, tdj) ←
P1,ℓ
0 (x, (wj, αj); randPj

), where pj =

((p
(1,j)
0 , p

(1,j)
1), . . . , (p

(log ℓ,j)
0 , p

(log ℓ,j)
1)) and tdj =

(td(1,j), . . . , td(log ℓ,j));

3. Generate aord ← Pord
0 ((pj)j∈[k], (tdj)j∈[k]; randord);

The prover sends a = (a1, . . . , ak, aord,p1, . . . ,pk) to the ver-
ifier.

Second Round: The verifier samples c ∈ {0, 1}λ and sends c to
the prover.

Third Round: The prover invokes Pk,ℓ
1 that computes z as fol-

lows: For each j ∈ [k] run zj ← P1,ℓ
1 (x, (wj, αj), c; randPj

)
and zord ← Pord

1 ((pj)j∈[k], (tdj)j∈[k], c; randord);

Then, the prover sends z = (z1, . . . , zk, zord) to the verifier.

Verification: The verifier invokes Vk,ℓ that, on input (x, a =
(a1, . . . , ak, aord,p1, . . . ,pk), c, z = (z1, . . . , zk, zord)), returns
a bit b as follows:

1. For i ∈ [k] and j ∈ [log ℓ] check that (p
(i,j)
0 , p

(i,j)
1) ∈ Ypp,

where the pairs (p
(i,j)
0 , p

(i,j)
1) are taken from zi;

2. Check that pi = (p
(i,j)
0 , p

(i,j)
1)j∈[log ℓ];

3. For all i ∈ [k] check that V1,ℓ(x, ai, c, zi) = 1;

4. Check that Vord((pj)j∈[k], aord, c, zord) = 1;

5. If all the previous checks are successful, output 1. Oth-
erwise, output 0.

Figure 4.2: Our communication-efficient (k, ℓ)-PTR from stackable Σ-
protocols.

144

Considering the relationRk,ℓ = {((x1, . . . , xℓ), ((w1, α1), . . . , (wk, αk)))|1 ≤
α1 < . . . < αk ≤ ℓ∧ ∀ j ∈ [k] : (xαj

, wj) ∈ RL}, we state the theorem
below.

Theorem 1. Let Π1,ℓ be the stackable Σ-protocol of [62], and let Πord

be the stackable Σ-protocol of Sec. 4.1.4.3. Πk,ℓ = (Pk,ℓ,Vk,ℓ) described
in Fig. 4.2 is a stackable Σ-protocol for relation Rk,ℓ with compu-
tational special soundness. Furthermore, Πk,ℓ preserves the EHVZK
flavour of the underlying Π1,ℓ.

We remark that, since the EHVZK flavour of our Πord instantiation
is perfect, Πord does not affect the EHVZK flavour of Πk,ℓ. We will go
through the proof by proving lemmas for completeness, computational
special soundness, and EHVZK.

Lemma 1 (Completeness). Πk,ℓ is complete.

Proof. It follows from the completeness of the underlying protocols.

For the sake of clarity, we first report a sketch of the proof of the
computational special soundness property. Then, we report a detailed
proof of the theorem.

Computational special soundness proof sketch. To prove the
computational special soundness of Πk,ℓ, we exploit the computational
special soundness of the k executions of Π1,ℓ, the computational spe-
cial soundness of Πord, as well as the partial equivocation and the
fixed equivocation properties of the 1-out-of-2 equivocal commitment
scheme. Let us first review the extractor Extract1,ℓ of Π1,ℓ. Extract1,ℓ
works via recursive calls to Extract1,2, the extractor of Π1,2. Starting
from the root of the composition tree, both the children nodes are
considered and every time two accepting transcripts with the same
first-round message are found, Extract1,2 is called again. The base case
for the recursion is a leaf node having two accepting transcripts with
the same first-round message. In this case, the extractor of the base
Σ-protocol is called instead. Since the computational special sound-
ness of Π1,ℓ is proven using Extract1,ℓ shown above, we are guaranteed
(except with negligible probability) that at least one of such leaf nodes

145

exists. This in turn implies that at each level of the tree there is at
least one node having two accepting transcripts with the same first-
round message that we can give as input to Extract1,2. However, in
principle there could be more than one of such nodes in each level.
On such nodes Extract1,2 would be called again, and we would get at
least one witness for the corresponding OR relation (recall that Π1,2

proves the OR relation on two statements, such statements may be OR
statements as well). The extraction algorithm will recursively lead to
at least one witness for one base statement. Given the way the com-
position tree is constructed, witnesses extracted from different nodes
are always related to different statements. For the sake of simplic-
ity, let us focus on the case in which exactly one witness is extracted
from each pair of accepting transcripts of Π1,ℓ. We now have to ar-
gue why all these k witnesses must be related to different statements.
Let us assume that two witnesses related to the same statement are
extracted from two executions of Π1,ℓ. Let us consider the composi-
tion trees of such executions. The computational special soundness
of Πord guarantees (except with negligible probability) that there is
one level in which, using the extractor of Πord, we extract a trapdoor
for a different edge in each of the two trees (namely, a trapdoor for
the first and the second parameter of the commitment scheme). If
we consider such level, we can define a sub-tree containing the leaf
corresponding to the extracted witness and having as root the parent
node corresponding to the first edge in which we extracted a trapdoor
for different edges. We are now able to break the fixed equivocation
property of the commitment scheme at the first level of one of the two
of such sub-trees. Indeed, consider the sub-tree having the extracted
trapdoor on the same side of the extracted witness. W.l.o.g. let it
be the left side. Since we extracted a witness for the left side, the
first-round message of the corresponding left side Σ-protocol is the
same in both transcripts, while the right-side first-round message is
equivocated (otherwise, we would have extracted a witness also for this
side). This means we already have a commitment which equivocates a
message on the right side. Thanks to the extracted trapdoor and the
partial equivocation property, we are now able to construct a fresh
commitment w.r.t. the same parameters which successfully equivo-
cates the left side. This would break the fixed equivocation property

146

of the commitment scheme, thus reaching a contradiction. The ac-
tual proof is slightly more involved since, as we already argued above,
from each pair of executions of Π1,ℓ it is generally possible to extract
more than one witness. Therefore, in general we are not guaranteed
to find a sub-tree having a level with an extracted trapdoor on one
side and an equivocated commitment on the other side. However, in
the full proof we exploit the fact that the number of extracted wit-
nesses per composition tree using Extract1,ℓ is strictly less than k11 to
argue that, among all the k pairs of composition trees with the same
first-round message, there always exists a tree on which we are able
to run the above reduction to the partial equivocation and the fixed
equivocation properties of the commitment scheme. We prove this by
induction. We exploit the fact that at each level of the tree there are
at most two configurations of the extracted trapdoors and witnesses
that do not allow the above reduction at that level. Furthermore, we
use the observation that extracting a witness from a node at level i−1
requires extracting a witness from at least one of its children nodes at
level i.

Computational special soundness full proof. Before proving
that Πk,ℓ is computational special sound we will first make some ob-
servations and introduce an additional lemma that we will use later
on.

From now on, we consider the following notion of composition tree
T for an accepting transcript of Π1,ℓ. Given an accepting transcript
(a, c, z) of Π1,ℓ, for an instance (x1, . . . , xℓ), where a contains a 1-out-
of-2 equivocal commitment to values aleft and aright, we label the nodes
of T as follows. Every node of T is inductively labeled with an instance
and an accepting transcript for that instance:

• The root is labeled with Σroot = ((x1, . . . , xℓ), a, c, z).

• Given a node m at level q, with q ∈ [log ℓ], labeled with Σm =
((xi, . . . , xj), am, c, zm = (z̃m, rm, (p

q
0, p

q
1))), for 1 ≤ i < j ≤ ℓ, the

11All witnesses extracted from the same composition tree are related to different
statements by construction. Thus, in this case we would not need to show any
reduction.

147

left child node of m is at level q + 1 and is labeled with Σleft =
((xi, . . . , x(j+i−1)/2), aleft, c, z̃m), and the right child node is at
level q+1 and is labeled with Σright = ((x((j+i+1)/2)+1, . . . , xj), aright,
c, z̃m)

12, where aleft is the first-round message of the transcript for
statement (xi, . . . , x(j+i−1)/2) and aright is the first-round message
of the transcript for statement (x((j+i+1)/2)+1, . . . , xj).

Moreover, for each nodem at level q in T labeled with Σm = ((xi, . . . , xj),
am, c, zm = (z̃m, rm, (p

q
0, p

q
1))), the edge going from m to its left child is

labeled with pq0 and the edge from m to its right child is labeled with
pq1. We say that the edges from m to their children are edges at level
q.

Let (a, c, z) be an accepting transcript for Π1,ℓ, we notice that

p = ((p10, p
1
1), . . . , (p

log ℓ
0 , plog ℓ1)) contained in z represents the labeling

of the edges of the composition tree T for (a, c, z). Indeed, each node
m in level q, for q ∈ [log ℓ], has the edge to the left child labeled with
pq0 and the edge to the right child labeled with pq1. We denote with T p

a composition tree having an edge labeling defined by p. An example
of a composition tree is illustrated in Fig. 4.1.

The extractor of Π1,ℓ in terms of composition trees. Let us now
review how ExtractΠ1,ℓ

, the extractor of Π1,ℓ proposed in [62], works in
terms of composition trees. ExtractΠ1,ℓ

takes in input two composition
trees whose roots have accepting transcripts with the same first-round
massage and different challenges. Due to stackability, we can look at
every node of a composition tree as representing the transcript for
the Σ-protocol for an OR relation on a subset of all the ℓ involved
statements. The root of the tree Σroot represents the transcript for the
Σ-protocol for the whole relation R1,ℓ. For each node with statements
(xi, . . . , xj), its left child Σleft and right child Σright represent the Σ-
protocol transcripts for a relation R1,(j−i+1)/2 on the first and second
half of the subset of instances respectively. It follows that the leaves
represent the Σ-protocols transcripts for the individual instances xi

12We recall that z̃m contains the commitment parameters used to generate the
first-round message of the children of node m. Therefore, all the children of node
m use the same commitment parameters pair.

148

with i ∈ [ℓ]. ExtractΠ1,ℓ
is a recursive composition of the extractor

ExtractΠ1,2 of the underlying Π1,2.
Consider the following two accepting transcripts Σ1

root and Σ2
root

(with associated composition trees T 1 and T 2) having the same first-
round message aroot = (com, p0, p1), c

1 ̸= c2, z1 = (z̃1, r, p0, p1), z
2 =

(z̃2, r, p0, p1). Given these accepting transcripts, it is possible to com-
pute transcripts for Σleft and Σright as follows: a

1
left ← SEHVZK

left (xleft, c
1, z̃1),

a1right ← SEHVZK
right (xright, c

1, z̃1), a2left ← SEHVZK
left (xleft, c

2, z̃2), a2right ← SEHVZK
right (

xright, c
2, z̃2), where xleft = (x1, . . . , xℓ/2) and xright = (xℓ/2+1, . . . , xℓ).

Therefore, whenever a1left = a2left or a1right = a2right it is possible to call
again ExtractΠ1,2 on the two composition sub-trees of T 1 and T 2 rooted
at the respective children nodes that have the same-first round mes-
sages (i.e., either the left or the right children nodes). For each pair of
nodes in T 1 and T 2 having the same first-round message, looking again
at the children nodes, either a1left is equal to a2left or a1right is equal to
a2right with overwhelming probability, otherwise it is possible to break
the computational special soundness of Π1,2 and thus the computa-
tional special soundness of Π1,ℓ. Therefore, the latter leads to at least
one extracted witness for an instance xj with j ∈ [ℓ]. In general, up
to ℓ witnesses could be extracted.

Trapdoor equivalence class. We now introduce the concept of
trapdoor equivalence class. Informally, a trapdoor equivalence class
identifies all vectors of trapdoors having the same trapdoor (and non-
trapdoor) position for all parameters pairs.

Definition 22 (Trapdoor Equivalence Class). Let p = ((p10, p
1
1), . . . , (p

n
0 ,

pn1)) be a vector of parameters of a 1-out-of-2 equivocal commitment
scheme (cfr., Sec. 4.1.4.2), and let RT be its associated poly-time
relation. Let td = (td1, . . . , tdn) be a vector of trapdoors such that
for every i ∈ [n], there exists β ∈ {0, 1} such that RT (p

i
β, tdi) = 1.

The trapdoor equivalence class [td]RT
p is the set containing all vec-

tors td′ = (td′1, . . . , td
′
n) in which for every i ∈ [n], and β ∈ {0, 1},

RT (p
i
β, tdi) = RT (p

i
β, td

′
i).

We now define the notion of valid trapdoor equivalence class. In-
formally, a trapdoor equivalence class is said to be valid w.r.t. two
composition trees with the same edge labels if there is no level in such

149

trees where a trapdoor is related to a parameter (e.g., in the first po-
sition) while an equivocation is performed in the position of the other
parameter (e.g., the second position).

Definition 23 (Valid Trapdoor Equivalence Classes). Let p = ((p10, p
1
1)

, . . . , (plog ℓ0 , plog ℓ1)) be a vector of parameters of a 1-out-of-2 equivocal
commitment scheme (cfr., Sec. 4.1.4.2) with associated poly-time re-
lation RT . Let (a, c, z) and (a, c′, z′), with c ̸= c′, be two accepting
transcripts of Π1,ℓ for the same instance x = (x1, . . . , xℓ), and T p

and T ′p be the composition trees associated with those accepting tran-
scripts. Let us take (td1, . . . , tdlog ℓ) ∈ [td]RT

p . A trapdoor equivalence
class [td]RT

p is valid w.r.t. T p and T ′p if, for every level i ∈ [log ℓ] (of
both T p and T ′p), there does not exist a node m at level i in which

((RT (p
i
0, tdi) = 1)∧(a(i,m)

right ̸= a′
(i,m)
right))∨((RT (p

i
1, tdi) = 1)∧(a(i,m)

left ̸= a′
(i,m)
left))

where a
(i,m)
left (resp. a

(i,m)
right) is the first-round message associated to

the left (resp. right) child of node m which is at level i of T p. The

same holds w.r.t a′
(i,m)
left , a′

(i,m)
right , and T ′p.

Lemma 2. Let (a, c, z) and (a, c′, z′) be two accepting transcripts for
Π1,ℓ for the same statement (x1, . . . , xℓ) and c ̸= c′. Let T p and T ′p be
the two composition trees associated with (a, c, z) and (a, c′, z′) respec-
tively. Let CS be the 1-out-of-2 equivocal commitment scheme with
associated relation RT used in Π1,ℓ. If ExtractΠ1,ℓ

extracts s different
witnesses, then the number of valid trapdoor equivalence classes [td]RT

p

w.r.t. T p and T ′p is upper-bounded by s.

Proof. Let i be a level of T p and T ′p and t be the number of valid
trapdoor equivalence classes [td]RT

p (see Def. 23). Let us call tdj =

(tdj1, . . . , td
j
log ℓ) the representative of the j-th valid trapdoor equiva-

lence class [tdj]RT
p for j ∈ [t]. We define Li, Ei and si as follows:

• Li =
⌈︂∑︁

j∈[t](RT (pi0,td
j
i))

t

⌉︂
+
⌈︂∑︁

j∈[t](RT (pi1,td
j
i))

t

⌉︂
. Li can either be 1 or

2. Li is 1 if, at level i, either RT (p
i
0, td

j
i) = 1 and RT (p

i
1, td

k
i) =

0 or RT (p
i
0, td

k
i) = 0 and RT (p

i
1, td

j
i) = 1 for some j, k ∈ [t].

Otherwise, Li is 2.

150

• Ei =
i∏︁

j=1

Lj Ei represents the number of valid equivalence classes

for the sub-trees of T p and T ′p having only the first i levels.
Elog ℓ is equal to t.

• si represents the number of witnesses that can be extracted from
the i-th level of T p and T ′p. It is trivial to see that si ≥ si−1

for every i ∈ [log ℓ].

In the following, we use a(i,m) to indicate the first-round message con-
tained in the node m at level i in composition tree T p. Additionally,
a
(i,m)
left indicates the first-round message contained in the left child of

node m at level i of composition tree T p. The pedix “right” indicates
a right child node. The apex “ ′ ” is added to indicate that a node is
from composition tree T ′p.

We prove the lemma by induction. For every level i ∈ [log ℓ],
Ei ≤ si.

Base case: Let us consider the root m of T p and T ′p. By inspection,
it is clear that if s0 = 1 then either a

(0,m)
left = a′

(0,m)
left or a

(0,m)
right =

a′
(0,m)
right but not both at the same time. Indeed, in this last case s0

would be equal to 2. Therefore, fixed one of the two cases above,
there exists only one valid equivalence class, thus L0 = 1. Let us
assume that a

(0,m)
left = a′

(0,m)
left and a

(0,m)
right ̸= a′

(0,m)
right . Indeed, if L0 = 2

and s0 = 1, then there exists tdj1 and tdk1 from two different
equivalence classes with representative tdj and tdk respectively
such that either RT (p0, td

j
1) = 1 or RT (p0, td

k
1) = 1 violating the

validity property of Def. 23. If s1 = 2 the base case is trivially
true since L1 ≤ 2. Therefore, in the base case it holds that
E2 = L2 ≤ s2.

Inductive case: We now show that Ei−1 ≤ si−1 implies Ei ≤ si. We
notice that for increasing values of i the values of Ei and si are
monotone non-decreasing. Indeed, Ei is a product of non-zero
integers. Regarding si, extracting a witness from a node at level
i− 1 requires extracting a witness from at least one of its child
nodes at level i. Therefore, if Ei = Ei−1 then Ei ≤ si trivially
follows from Ei−1 ≤ si−1. We now show that if Ei = 2Ei−1, then

151

si ≥ 2si−1. If Ei = 2Ei−1 then it holds that Li−1 = 2 which
means that there exists tdji and tdki in equivalence classes with
representatives tdj and tdk satisfying either RT (p

i
0, td

j
i) = 1 and

RT (p
i
1, td

k
i) = 1 or RT (p

i
0, td

k
i) = 1 and RT (p

i
1, td

j
i) = 1. Let

us assume by contradiction that si < 2si−1. In this case there

must be at least a witness at level i− 1 such that a
(i,m)
left = a′

(i,m)
left

and a
(i,m)
right ̸= a′

(i,m)
right or a

(i,m)
right = a′

(i,m)
right and a

(i,m)
left ̸= a′

(i,m)
left for some

node m. From the above observation, it follows that at least one
of the trapdoor equivalence classes does not satisfy the validity
requirement of Def. 23. Then, it holds that si ≥ 2si−1, from
which it follows that Ei ≤ si.

Lemma 3 (Computational Special Soundness). Πk,ℓ is computational
special sound.

Proof. Computational special soundness follows from the computa-
tional special soundness of Π1,ℓ, the computational special soundness
of Πord, and the fixed equivocation property of CS. To prove compu-
tational special soundness of Πk,ℓ we define the extractor ExtractΠk,ℓ

based on the extractor ExtractΠ1,ℓ
of Π1,ℓ and the extractor ExtractΠord

of Πord as follows.
Given two accepting transcripts with the same first-round message

a = (a1, . . . , ak, aord,p1, . . . ,pk), c ̸= c′, z = (z1, . . . , zk, zord), and z′ =
(z′1, . . . , z

′
k, z

′
ord) for statement (x1, . . . , xℓ), ExtractΠk,ℓ

runs, for each i ∈
[k], the extractor of each (1, ℓ)-PTR, i.e. ExtractΠ1,ℓ

((x1 . . . , xℓ), ai, c,
c′, zi, z

′
i).

From each execution of ExtractΠ1,ℓ
((x1 . . . , xℓ), ai, c, c

′, zi, z
′
i), ExtractΠk,ℓ

obtains with overwhelming probability at least a witness (wi
1, j

i
1), oth-

erwise it is possible to break the computational special soundness of
Π1,ℓ. Indeed, (ai, c, zi) and (ai, c

′, z′i) are two accepting transcripts for
statement (x1 . . . , xℓ) for Π1,ℓ otherwise Vk,ℓ cannot accept the tran-
scripts (a, c, z) and (a, c′, z′). If ExtractΠ1,ℓ

((x1 . . . , xℓ), ai, c, c
′, zi, z

′
i)

does not return a valid witness, then ExpExtP1,ℓ∗,ExtractΠ1,ℓ
(x1, . . . , xℓ)

returns 1, that happens only with negligible probability.
Let us consider the case in which, for all i ∈ [k], a set of witnesses

wi = {(wi
1, j

i
1), . . . , (w

i
k, j

i
f i)} with f i < k is extracted from each (1, ℓ)-

152

PTR. Recall that for u ∈ [f i], each index jiu ∈ [ℓ] simply specifies the
base instance the extracted witness corresponds to. Additionally, con-
sider I i = {ji1, . . . , jif i} and the case for which |

⋃︁k
i=1 I

i| < k. Namely,
this is the case in which less than k witnesses for different statements
in (x1, . . . , xℓ) are extracted from the (k, ℓ)-PTR. We only need to
consider this case since otherwise we would have already extracted
a witness for relation Rk,ℓ. This case implies that from each (1, ℓ)-
PTR less than k witnesses are extracted, since the witness extracted
by ExtractΠ1,ℓ

are always related to different elementary statements by
construction.

We run ExtractΠord
on input ((pi)i∈[k], aord, c, c

′, zord, z
′
ord) obtaining,

with overwhelming probability, a witness for (pi)i∈[k] being in Rord.
Otherwise, it is possible to break the computational special soundness
of Πord. The reduction follows the same blueprint of the one shown
for the computational special soundness of Π1,ℓ. We now argue that
there must be two composition trees T pi and T ′pi , with i ∈ [k], in
which there exists a node m at level q ∈ [log ℓ] in which RT (p

q
0, td

i
q) =

1, a
(q,m)
left = a

′(q,m)
left and a

(q,m)
right ̸= a

′(q,m)
right (or equally RT (p

q
1, td

i
q) = 1,

a
(q,m)
right = a

′(q,m)
right , and a

(q,m)
left ̸= a

′(q,m)
leftq

), where tdiq is an element of the

vector tdi = (tdi1, . . . , td
i
log ℓ) related to pi, and tdi was extracted using

ExtractΠord
. Namely, tdi is a representative of a trapdoor equivalence

class which is not valid according to Def. 23. Indeed, by Lemma 2
the number of valid trapdoor equivalence classes is upper-bounded by
the number of extracted witnesses, which is strictly less than k in this
case. Nevertheless, thanks to the computational special soundness of
Πord, ExtractΠk,ℓ

extracts, with overwhelming probability, k vectors of
trapdoors, all belonging to different trapdoor equivalence classes13.
Therefore, one of such vectors must belong to a non-valid trapdoor
equivalence class, thus allowing the following reduction. Consider the
transcripts associated to node m at level q in both T pi and T ′pi . They
are of the form (a(q,m), c, z), (a′(q,m), c′, z′) with a(q,m) = a′(q,m), c ̸= c′,
z = (z∗, r, pq0, p

q
1), and z′ = (z∗′, r′, pq0, p

q
1). We now use these two

accepting transcripts to break the fixed equivocation property of the
1-out-of-2 equivocal commitment scheme. W.l.o.g. we consider the
case a

(q,m)
left = a

′(q,m)
left and a

(q,m)
right ̸= a

′(q,m)
right . A does the following:

13Indeed, this is the requirement imposed by the relation Rord.

153

• (m0,m
′
0,m1)←$ {0, 1}3λ with m0 ̸= m′

0.

• (com′, aux)← EquivCom(pp, β = 1,m1, p
q
0, p

q
1, td

i
q);

• r∗ ← Equiv(pp, β = 1,m0,m1, p
q
0, p

q
1, td

i
q, aux)

• r∗′ ← Equiv(pp, β = 1,m′
0,m1, p

q
0, p

q
1, td

j
q, aux)

A outputs (pq0, p
q
1, r, r

′, r∗, r∗′, a
(q,m)
left , a

′(q,m)
left , a

(q,m)
right , a

′(q,m)
right ,m0,m

′
0,m1,m1).

Thanks to the partial equivocation property of the commitment
scheme, BindCom(pp, pq0, p

q
1,m0,m1, r

∗) = BindCom(pp, pq0, p
q
1,m0,m

′
1, r

∗′).
Additionally, since the two transcripts are accepting, we have that
BindCom(pp, pq0, p

q
1, a

(q,m)
left , a

(q,m)
right , r) = BindCom(pp, pq0, p

q
1, a

′(q,m)
left , a

′(q,m)
right , r′).

Therefore, A breaks the fixed equivocation property with the same
probability that less than k witnesses for different elementary state-
ments are extracted, thus reaching a contradiction.

For the sake of clarity, we first report a sketch of the proof of the
EHVZK property. Then, we report a detailed proof of the theorem.

Extended honest-verifier zero knowledge proof skech. We
name the EHVZK simulator of Πk,ℓ as Sk,ℓ and we use Dk,ℓ to indicate
the third-round messages distribution of Πk,ℓ. Sk,ℓ, on input statement
(x1, . . . , xℓ), challenge c, and third-round message z = (z1, . . . , zk, zord)
sampled fromDk,ℓ, outputs the first-round message (a1, . . . , ak, aord,p1,
. . . ,pk). Recall that the EHVZK property requires that all third-round
messages of honest protocol executions for statements x ∈ L follow the
same distribution. Such distribution must be efficiently samplable.
Furthermore, running the simulator on input statement x ∈ L, a uni-
formly random challenge c, and a third-round message z sampled from
such distribution, deterministically produces a first-round message a
so that (a, c, z) is indistinguishable from honest protocol execution
transcripts (cfr., Sec. 4.1.4.1). Notice that sampling from Dk,ℓ simply
consists of sampling each zi, with i ∈ [k], from D1,ℓ (i.e., the third-
round messages distribution of Π1,ℓ), and sampling zord from Dord (i.e,
the third-round messages distribution of Πord). Since both Π1,ℓ and
Πord are EHVZK, such distributions exist and are efficiently samplable.

154

We construct Sk,ℓ in terms of the EHVZK simulators of the un-
derlying protocols. We name the EHVZK simulator of Π1,ℓ as S1,ℓ
and we use Sord to indicate the EHVZK simulator of Πord. Sk,ℓ parses
each zj, with j ∈ [k], and selects the commitment parameters pj =

((p
(1,j)
0 , p

(1,j)
1), . . . , (p

(log ℓ,j)
0 , p

(log ℓ,j)
1)). Sk,ℓ gives in input to Sord the

instance (p1, . . . ,pk), the challenge c, and zord, thus obtaining aord.
Then, Sk,ℓ runs S1,ℓ((x1, . . . , xℓ), c, zi) for each of the k (1, ℓ)-PTR ob-
taining (a1, . . . , ak). Finally, Sk,ℓ outputs (a1, . . . , ak, aord,p1, . . . ,pk).
We now show that Πk,ℓ is EHVZK via hybrid arguments. The first hy-
brid H1 corresponds to the real protocol execution, except that zord is
sampled from Dord and aord is obtained running Sord. The real proto-
col and H1 are indistinguishable thanks to the EHVZK of Πord. Then,
a sequence of k hybrids H2, . . . ,Hk+1 follows; each hybrid Hi, with
i ∈ {2, . . . , k + 1} differs from the previous one because zi, the third-
round message of the i-th (1, ℓ)-PTR, is sampled from D1,ℓ, and the
first-round message ai is computed using S1,ℓ. Each hybrid is indistin-
guishable from its predecessor due to the EHVZK of Π1,ℓ. The proof
of EHVZK of Πk,ℓ ends by observing that Hk+1 is identical to Sk,ℓ. No-
tice that Πord is perfect EHVZK and that Π1,ℓ preserves the EHVZK
flavour of the composed protocols. Thus, Πk,ℓ clearly preserves the
EHVZK flavour of the composed protocols.

Lemma 4 (Extended Honest-Verifier Zero Knowledge). Πk,ℓ is Ex-
tended Honest-Verifier Zero Knowledge.

Proof. Let D
(z)∗
x,c be the third-round message distribution of Π1,ℓ, and

D
(z)′
c be the third-round message distribution of Πord. Let SEHVZK

1,ℓ be

the EHVZK simulator of Π1,ℓ, for i ∈ [k], and SEHVZK
ord be the EHVZK

simulator of Πord. Let D
(z)
c =

{︂
(z1, . . . , zk, zord)| ∀i ∈ [k] zi←$ D

(z)∗
c ,

zord←$ D
(z)′
c

}︂
.

We define simulator SEHVZK
k,ℓ (x = (x1, . . . , xℓ), c, (z1, . . . , zk, zord)) as

follows:

1. Compute ai ← SEHVZK
1,ℓ (x, c, zi), for all i ∈ [k];

2. Parse zi = (z̃j, {rj}j∈[log ℓ],pi), for all i ∈ [k];

3. Compute aord ← SEHVZK
ord ((p1, . . . ,pk), c, zord);

155

4. Return (a1, . . . , ak, aord,p1, . . . ,pk).

We prove that Πk,ℓ is EHVZK with the following hybrid arguments.

H0: this is equal to the real game with honest prover, except that
the prover of hybrid H0 takes in input (x,w, c, (z1, . . . , zk, zord)),

where zi ∈ D
(z)
c for all i ∈ [k] and zord ∈ D

(z)′
c . The additional

inputs c and (z1, . . . , zk, zord) are ignored during the execution
by the prover of hybrid H0. We notice that H0 is distributed
identically to the real game.

H10: It is identical toH0 except that aord is computed using SEHVZK
ord ((p1,

. . . ,pk), c, zord) where (p1, . . . ,pk), c and zord are taken from the
prover’s additional input specified in H0. Recall that zi, for
i ∈ [k], contains also pi. If there exists a distinguisher DEHV ZK

that distinguishes H0 from H10 with non-negligible advantage,
we can construct a distinguisher Dord that distinguishes an ex-
ecution of SEHVZK

ord from an execution of Πord with the same ad-
vantage. The reduction works as follows:

• Dord samples randomness rand, computes (aj, tdj)← P1,ℓ
0 (x,

(wj, ij); rand) and zj = (z̃j, {ri}i∈[log ℓ],pj)← P1,ℓ
1 (x, (wj, ij),

c; rand), for all j ∈ [k]. Then, Dord outputs the statemen-
t/witness pair ((p1, . . . ,pk), (td1, . . . , tdk)) in the experi-
ment (cfr., Def. 32) ExpEHVZKP′,Dord

(c) (where P′ is either
(Pord

0 ,Pord
1) or SEHVZK

ord) receiving back (aord, zord).

• Dord, on input ((p1, . . . ,pk), (td1, . . . , tdk), aord, c, zord), for-
wards (x,w, a, c, z) to DEHV ZK , where a = (a1, . . . , ak, aord,
p1, . . . ,pk) and z = (z1, . . . , zk, zord). Dord outputs what-
ever DEHV ZK outputs.

H1i: for each i ∈ [k], this is equal to H1i−1
except that all values

a1, . . . , ai are computed using SEHVZK
1,ℓ (x, c, zi) where c and zi are

taken from the prover’s additional input specified in H0.

If there exists a distinguisher DEHV ZK that distinguishes H1i

fromH1i+1
with non-negligible advantage, we can construct a dis-

tinguisher D1,ℓ that distinguishes a simulated execution SEHVZK
1,ℓ

156

from an execution of Π1,ℓ with the same advantage. The reduc-
tion works as follows:

• D1,ℓ samples randomness rand, D1,ℓ computes (aj, tdj) ←
P1,ℓ
0 (x, (wj, ij); rand) and zj = (z̃j, {ri}i∈[log ℓ],pj)← P1,ℓ

1 (x,
(wj, ij), c; rand), for each j < i. Then, Dord samples zj ←$ Dz

c

and computes aj ← SEHVZK
1,ℓ (x, c, zj) for each j > i. The

value aord is computed from SEHVZK((p1, . . . ,pk), c, zord) for

zord←$ D
(z)′
c . Then D1,ℓ, outputs the statement/witness

pair (x, wi) in the experiment ExpEHVZKP′,D1,ℓ
(c) (where

P′ is either (P1,ℓ
0 ,P1,ℓ

1) or SEHVZK
1,ℓ), receiving back (ai, zi).

• D1,ℓ, on input (x, wi, ai, c, zi), sends (x,w, a, c, z) to DEHV ZK ,
where a = (a1, . . . , ak, aord,p1, . . . ,pk) and z = (z1, . . . , zk, zord).
D1,ℓ outputs whatever DEHV ZK outputs.

H2: this is equal to SEHVZK
k,ℓ (x, c, (z1, . . . , zk, zord)). H2 is identical to

H1k .

On the communication complexity of our (k, ℓ)-PTR. Πord

has a communication complexity of O(kλ log ℓ). The communica-
tion complexity of a single execution of Π1,ℓ is O(λ log ℓ+ CC(Σbase)),
where Σbase is the underlying protocol. The k repetitions of Π1,ℓ lead
to a communication complexity of O(k(λ log ℓ+ CC(Σbase)) in total.
Therefore, the communication complexity of Πk,ℓ is:
O(k(λ log ℓ+ CC(Σbase) + k(λ log ℓ)) = O(k(λ log ℓ+ CC(Σbase)).

4.1.5 Threshold Ring Signatures

A natural application of proofs over threshold relations is ring signa-
tures. Given a set of ℓ signers, a ring signature is a digital signature
that guarantees that a message was signed by a signer in the set (also
called the ring) but at the same time protects the identity of the signer.
There is a direct link between (1, ℓ)-PTRs and ring signatures. For
example, as pointed out in [62] one can get a ring signature whose size

157

is logarithmic in the size of the ring by making their (1, ℓ)-PTR non-
interactive using a random oracle (see [62] Page 4 and Sec. 9.3). The
ℓ public keys would be the statement of the proof, and the composed
Σ-protocol would be a proof of knowledge of at least one signing key
(i.e., the witness). Properly using the random oracle makes the sign-
ing process non-interactive and ties the proof to the signed message.
Threshold ring signatures are a natural extension of ring signatures.
In a threshold ring signature, k signers cooperate to sign a message
while hiding their identity within the larger group of size ℓ. By using
our construction for (k, ℓ)-PTR, one can easily get a threshold ring
signature.

Let the statement x = (vk1, . . . , vkℓ) be a tuple containing the
signers’ verification keys (vk1, . . . , vkℓ). Consider the associated (1, ℓ)-
PTR to prove knowledge of at least one signing key ski related to
one of the verification keys (vk1, . . . , vkℓ), and the (k, ℓ)-PTR to prove
knowledge of at least k signing keys related to k of the ℓ verification
keys. Let Σbase be the base Σ-protocol to prove the knowledge of
the signing key ski related to the verification key vki. Finally, let
the aggregator A be a third party who aggregates the work of the k
signers to create the final signature. A is trusted for anonymity, but
not for unforgeability (roughly, A knows the identities of the signers,
but should not be able to produce a threshold ring signature on its
own, even after having performed several aggregations).

Let K be a set of indexes indicating the k signers within the ring
of size ℓ. Consider a message m to be signed which is known to all
signers and to A. Our threshold ring signature works as follows.

1. For all i ∈ K, each signer Si computes the first-round message
ai of Σbase for statement vki and witness ski, and sends ai to A.

2. Using the first-round messages for Σbase received in the previous
step, A computes the first-round messages a1,ℓi = (com, (pj0, p

j
1)j∈[log ℓ])

14

for each of the k underlying (1, ℓ)-PTR of [62] for statement x.
Moreover, A computes the first-round message aT of the proof

14In [62] a1,ℓi is obtained from recursively composing ℓ/2 instances of a 1-out-of-2

equivocal commitment. Therefore, a1,ℓi is of the form (com, (pj0, p
j
1)j∈[log ℓ]), where

(pj0, p
j
1)j∈[log ℓ] is a log ℓ size tuple of pair of commitment parameters.

158

of parameters ordering Πord with the k tuples of commitment
parameters pairs (pj0, p

j
1)j∈[log ℓ] (i.e., one for each a1,ℓi computed

by A) as statement15.

A sends all the first-round messages of the underlying (1, ℓ)-PTR,
(i.e., (a1,ℓ1 , . . . , a1,ℓk)), together with Πord’s first-round message aT
to each Si.

3. Si computes the challenge c for our (k, ℓ)-PTR compiler by hash-
ing the statement x together with the (k, ℓ)-PTR first-round
message a = (a1,ℓ1 , . . . , a1,ℓk , aT) and the message m to be signed
(i.e., c = H(x||a||m)). Then, Si computes the third-round mes-
sage zi of Σbase from its first-round message ai and the challenge
c, and sends zi to A.

4. A computes each third-round message z1,ℓi of the (1, ℓ)-PTR
of [62] from the statement x, ai, c = H(x||a||m), and the val-
ues zi received from each Si. Then, A computes the third-
round message zT of the proof of parameters ordering Πord on
the same challenge c and first-round message aT . A publishes
the (k, ℓ)-threshold ring signature σ = (a = (a1,ℓ1 , . . . , a1,ℓk , aT),

c = H(x||a||m), z = (z1,ℓ1 , . . . , z1,ℓk , zT)) of a message m under the
signers’ verification keys x = (vk1, . . . , vkℓ).

Our above construction can be seen as A applying the Fiat-Shamir
transform to our (k, ℓ)-PTR by delegating the computation of the
underlying protocol Σbase (to prove knowledge of the signing key ski
relative to the verification key vki) to each signer Si.

Informally, A is unable to forge a signature because of (1) the
special soundness of the underlying Σbase (i.e., each signer Si can-
not come up with an accepting transcript (ai, c, zi) without knowing
ski), (2) the special soundness of the non-interactive version of our
(k, ℓ)-PTR compiler of Sec. 4.1.4.4 (i.e., A cannot come up with an
accepting transcript without knowing at least k accepting transcripts
for Σbase on the challenge c = H(x||a||m) and statement x, where each

15A will use, for each ai containing the commitment parameters tuple
(pj0, p

j
1)j∈[log ℓ], the corresponding witness W = (wj)j∈[log ℓ] to generate the first-

round message aT of Πord.

159

of those transcripts is computed from different signing keys), (3) the
ZK property of the underlying non-interactive version of Σbase

16 (i.e.,
A cannot learn the signing key of any signer Si by interacting with Si).
Anonymity, instead, is guaranteed by the zero-knowledge property of
the non-interactive version of our (k, ℓ)-PTR.

Extension to hierarchical ring signatures. We can go beyond
threshold ring signatures. Consider the following scenario as a pos-
sible example. An organization is made of ℓ2 different sub-groups,
each of them containing ℓ1 signers. Each sub-group can approve the
content of a message if k1 members agree to sign the message. Then,
organization-wide, this message is considered approved if at least k2 of
the ℓ2 sub-groups signed such message. We name such scenario hierar-
chical ring signature (i.e., a “threshold-of-threshold” ring signature).

The aggregator A, in order to compute such a hierarchical ring
signature, will compute a (k2, ℓ2)-PTR with the approach described in
the previous paragraph using a (k1, ℓ1)-PTR as the base Σ-protocol: A
will compute the first-round messages of the (k2, ℓ2)-PTR starting from
the first-round messages of the k2 underlying instances of the (k1, ℓ1)-
PTR used as a base Σ-protocol. A, instead of directly communicating
with the signers, will now talk to aggregators A1, . . . , Aℓ2 , where each
Ai, i ∈ [ℓ2] is associated to a sub-group of signers Si

1, . . . , S
i
ℓ1
. At least

k2 of those Ai for i ∈ {1, . . . , ℓ2} will, in turn, execute the base Σ-
protocol for a (k1, ℓ1)-PTR by interacting with its own subset of signers
Si
1, . . . , S

i
k1

using the technique described in the previous paragraph,
with the difference that the challenge c now depends on the statement
used by A for the (k2, ℓ2)-PTR. The very same technique can be easily
extended to an arbitrary number of levels.

4.1.6 On the Security Proofs of [62]

In this section, since we defined 1-out-of-2 equivocal commitments dif-
ferently w.r.t. [62], we prove the security of the (1, ℓ)-PTRof [62] using
the commitment defined in Sec. 4.1.4.2. Then, we focus on two subtle

16Notice that when a Σ-protocol with HVZK is compiled into a non-interactive
argument system using the Fiat-Shamir transform it becomes ZK in the random
oracle model.

160

issues in the security proofs of [62]. The first one is an inaccuracy
more than an actual mistake and involves the special soundness prop-
erty. The second one is more significant. In particular, the proof of
the EHVZK property contained a mistake. At a certain point of the
security reduction the indistinguishability of two hybrids is reduced to
a property that it is actually insufficient. This is why we introduced a
hiding property of the commitment scheme called trapdoornes that it
is strictly stronger than the usual hiding property. In a recent update
of their paper [63], Goel et al. acknowledged the issues we pointed
out.

Computational special soundness of [62]. It is possible to cre-
ate an extractor Extract1,2 for Π1,2 using the extractor Extract′ of
the underlying protocol Π′. Extract1,2 receives in input two accept-
ing transcripts of Π1,2 (a = (com, p0, p1), c0, z0 = (z′0, r0, p0, p1)) and
(a = (com, p0, p1), c1, z1 = (z′1, r1, p0, p1)) for the same statement x.
Extract1,2 can derive the first-round messages of the underlying under-
lying protocol Π′ by running its EHVZK simulator. Let such messages
be a10 ← SEHVZK

base (x0, c0, z
′
0), a

1
1 ← SEHVZK

base (x1, c0, z
′
0), a

2
0 ← SEHVZK

base (x0,
c1, z

′
1), a

2
1 ← SEHVZK

base (x1, c1, z
′
1).

With non-negligible probability either a10 = a20 or a11 = a21, other-
wise it is possible to break the computational fixed equivocation of
CS. GGHK has computational fixed equivocation, therefore there is
a negligible probability that a PPT P∗ breaks the fixed equivocation
property. Assume a10 ̸= a20 and a11 ̸= a21, the adversarial sender A
breaks the fixed equivocation property of CS as follows:

• A sends (p0, p1, r0, r1, r0, r1, a
1
0, a

2
0, a

1
1, a

2
1, a

1
0, a

2
0, a

1
1, a

2
1) to the chal-

lenger of fixed equivocation.

Since the two transcripts are accepting, it holds that BindCom(pp,
p0, p1, a

1
0, a

1
1; r0) = BindCom(pp, p0, p1, a

2
0, a

2
1; r1) = com such that a =

(com, p0, p1). Thus A wins the fixed equivocation experiment with the
same probability that a10 ̸= a20 and a11 ̸= a21. Since the probability that
A wins the fixed equivocation experiment is negligible, the following
holds with non-negligible probability: either a10 = a20 or a11 = a21. It
follows that Extract1,2 has, with non-negligible probability, at least

161

one pair of accepting transcripts for Π′ sharing the same first-round
message to give in input to Extract′.

Extract1,2 runs Extract′ on such transcripts and outputs whatever
Extract′ outputs. Recall that x = (x0, x1) and Extract′ outputs a wit-
ness w such that (xi, w) ∈ RL with i ∈ {0, 1}, which is also a valid
witness for x0 ∨ x1 If Π

′ is special sound, Extract′ successfully extracts
a witness with probability 1. Instead, if special soundness holds only
computationally Extract′, Extract will have a negligible probability of
failure.

In [62] an hash function is used to compress the first message of
Π. We consider this in the rest of the proof. Let Hf = (Gen,H)
be a collision resistant hash function, now the message a produced
by P0 is a = Hs((com, p0, p1)), where s is a random value defined
in a CRS17 and generated using algorithm Gen on the same security
parameter used in Π. Let us assume that even if the adversarial prover
P∗ of Π cannot break the partial binding of CS and cannot break the
special soundness of the underlying protocol Π′, P∗ can still break
computational special soundness of Π. We can show that in this case
there exists an adversary A with access to P∗ that wins in ExpHashColl
with non-negligible probability. A obtains the value s in the CRS
and the message (a, c0, c1, z0, z1) from P∗. Looking at the transcripts
(a, c0, z0) and (a, c1, z1), it cannot be that a is equal to Hs((com, p0, p1))
for the same (com, p0, p1), otherwise, as previously shown, it is possible
to break either the special soundness of Π′ or the partial binding of CS.
Then there must exists two values (com, p0, p1) and (com′, p′0, p

′
1) such

that Hs((com, p0, p1)) = Hs(com′, p′0, p
′
1)). This means that A found

a collision for Hf, thus reaching a contradiction. Since A can win
in this experiment only with negligible probability, it follows that P∗

can break computational special soundness with the same negligible
probability.

EHVZK of [62]. Let D
(z)
c =

{︂
(z∗, r, p0, p1)|r←$ D; z∗←$ D

(z∗)
c ; (p0,

p1, td)← Gen(pp, β = 1)
}︂
, where D is the randomness space of the un-

17We recall that the CRS does not need to be generated by a trusted entity since
it is composed only of the description of a CRHF (e.g., SHA256 in practice).

162

derlying 1-out-of-2 equivocal commitment scheme18 and pp the shared
random string previously generated running Setup(1λ). It is straight-
forward to see that Π1,2 is EHVZK with recyclable third-round mes-
sages.

The simulator SEHVZK((x0, x1), c, (z
∗, r, p0, p1)) is defined as follows.

1. Compute ab ← SEHVZK
base (xb, c, z

∗), for b ∈ {0, 1};

2. Compute com← BindCom(pp, p0, p1, a0, a1, c; r);

3. Return (com, p0, p1).

Consider the following hybrids:

H0: it is equivalent to the real game with the honest prover P.

H1: it is equivalent to H0 except that the protocol is not interactive
and uses a challenge c randomly sampled from {0, 1}λ as chal-
lenge from V. The distribution of those two hybrids is identical
since c is a random value.

H2: it is equivalent to H1 except that the prover P uses c and z∗

from D
(z∗)
c as input for SEHVZK

base to compute aβ in the first round.
Additionally, the execution of P′

1 in the third round is removed

since the value z∗ used is the one taken in input from D
(z)
c . If

there exists a distinguisher DEHV ZK that distinguishes H1 from
H2 with non-negligible probability, we can define a distinguisher
D′

EHV ZK that breaks the EHVZK property of Π′. D′
EHV ZK sends

(xβ, w) to P′ in the experiment ExpEHVZKP′,D′
EHV ZK

(c). P′ re-

turns (aβ, c, z̃).

D′
EHV ZK computes a transcript as follows:

• (p0, p1, td)← Gen(pp, β);

• (com, aux)← EquivCom(pp, β, vβ, p0, p1, td);

• a1−β ← SEHVZK
base (x1−β, c, z̃);

• r ← Equiv(pp, β, a0, a1, p0, p1, td, aux).

18For GGHK D = {0, 1}2λ.

163

D′
EHV ZK sends (a = (com, p0, p1), c, z = (z̃, r, p0, p1)) to DEHV ZK

and returns the value returned by DEHV ZK .

Since Π′ is perfect EHVZK,H1 andH2 are identically distributed.

H3: it is the same as H2 excepts that P computes com← BindCom(pp,
p0, p1, a0, a1; r), where r is not generated by first calling EquivCom(
pp, β, aβ, p0, p1, td) and then Equiv(pp, β, a0, a1, p0, p1, td, aux; rand1)
but it is taken from the input of P. If there exists a distin-
guisher DEHV ZK that distinguishes between H2 and H3 with
non-negligible probability, we can define an adversary Atrap that
breaks the trapdoorness property of the underlying 1-out-of-2
equivocal commitment scheme.

• Given (x = (x0, x1), w),Atrap computes vb ← SEHVZK
base (xb, c, z

∗),
for each b ∈ {0, 1}, and (p0, p1, td)← Gen(pp, β) where β is
from the input of P;

• Atrap sends (a0, a1, p0, p1, td, β) to ExpTrap(λ), and receives
(com, r) from ExpTrap.

• Atrap sends (a = (com, p0, p1), c, (z
∗, r, p0, p1)) to DEHV ZK

and receives back a bit b. Atrap outputs b.

Note thatAtrap perfectly simulatesH2 when ExpTrap uses EquivCom
to generate com and then Equiv to generate r, and perfectly sim-
ulatesH3 when ExpTrap uses BindCom together with a uniformly
random r to generate com.

H4: it is the same as H3 except that the prover of H4 fixes the binding
position to β′ = 1 when calling the parameter generation algo-
rithm Gen. If β′ = β, the two hybrids are identically distributed.
Let us consider the case in which β′ ̸= β. If there exists a dis-
tinguisher DEHV ZK that distinguishes between H3 and H4 with
non-negligible probability, we can define an adversary Ahid that
breaks the position hiding property of the 1-out-of-2 equivocal
commitment scheme with non-negligible probability.

• Given (x = (x0, x1), w),Ahid computes vb ← SEHVZK
base (xb, c, z

∗),
for each b ∈ {0, 1}.

164

• Ahid receives (p0, p1, td) from ExpHid.

• Ahid sets (a = (com, p0, p1), c, z = (z∗, r, p0, p1)), where c
and z∗ are the value in input to P, and com is generated
by running BindCom with the messages (a0, a1) and the
randomness r taken from the input of P. Ahid sends (a, c, z)
to DEHV ZK and receives a bit b. Ahid outputs b.

Note that Ahid perfectly simulates H3 given β = 0 when ExpHid
calculates (p0, p1, td) from β = 0, and perfectly simulates H4

when ExpHid calculates (p0, p1, td) from β = 1.

H5: it is equal to H4 except that the prover P takes additional inputs
(z∗, r, p0, p1)) taken from D

(z)
c , and uses such inputs instead of

sampling them by itself. H4 and H5 are indistinguishable since
the values passed in input in H5 are identically distributed to
the values computed in H4.

Note that H5 is identically distributed to the simulator
SEHVZK((x0, x1), c, (z

∗, r, p0, p1)). This concludes the proof.

Achieved properties. Since the commitment scheme GGHK achieves
computational fixed equivocation, perfect position hiding and perfect
trapdoorness in the SRS model, the resulting protocol Π1,2 of [62] is
computational special sound and preserves the EHVZK flavour of Π′.
The above is achieved in the SRS model.

Remark 3. We notice that in [62] they refer to the standard for-
mulation of Σ-protocols requiring special soundness to hold for an
unbounded prover. Nevertheless, they then go on by proposing an
extractor that fails only with negligible probability assuming the com-
mitment scheme is computational partial binding (i.e., a weaker ver-
sion of the fixed equivocation property stating that it is infeasible to
generate a commitment and accepting openings to both (m1

0,m
1
1) and

(m2
0,m

2
1) such that m1

0 ̸= m2
0 and m1

1 ̸= m2
1.). It is straightforward to

notice that their construction cannot achieve statistical/perfect special
soundness in the classical sense since it relies on a security property
that only holds computationally. We took care of this subtlety by
formally defining computational special soundness in Sec. 2.3.1.1 and
using such definition in the reduction presented above.

165

Remark 4. We also noticed an issue in the proof for EHVZK proposed
in [62]. They prove EHVZK using the following hybrids:

• Hβ that is equivalent to the real protocol, except that in the first
round aβ is generated using SEHVZK

base (xβ, c, z);

• Hβ,p0,p1 that is equivalent to Hβ, except that the commitment is
computed setting β = 1.

In [62], they argue that Hβ and Hβ,p0,p1 are perfectly indistin-
guishable thanks to the perfect hiding of their commitment, but this
property is not enough to prove the indistinguishability of the two hy-
brids. Indeed, their hiding definition did not involve the commitment
opening at all, that is instead sent in the third round of the protocol.
It is straightforward to see that it is possible to construct a commit-
ment that is hiding according to the definition of [62] but reveals the
biding position during the Reveal phase, thus making the two hybrids
clearly distinguishable. For example, considering the Reveal Phase of
the commitment scheme in Sec. 4.1.4.2, we can modify the message
sent by the sender to the receiver concatenating the index of the bind-
ing position to it. It is straightforward to see that the resulting scheme
is still perfect hiding according to the definition of [62]. However, this
is not the only issue of the reduction presented in [62]. Indeed, the
simulator just uses BindCom instead of EquivCom and Equiv, but this
change is never performed in the reduction. Therefore, even if Hβ,p0,p1

was indistinguishable from Hβ, Hβ,p0,p1 does not match the distribu-
tion of the simulator as argued in [62]. For this reason we introduced a
stronger hiding property called trapdoorness, which involves both the
commit and the reveal phase, and requires that running BindCom is
indistinguishable from running EquivCom and Equiv. Crucially, after
having reduced to the trapdoorness property, we can switch the bind-
ing position by leveraging the position hiding property we defined,
which only involves an adversary having access to the commitment
parameters but not to the corresponding trapdoor.

166

4.2 Extendable Threshold Ring Signatures

Anonymity is a central requirement in several privacy-preserving tech-
nologies. Notable examples are e-voting protocols [100], anonymous
authentication [91], and privacy-protecting cryptocurrencies [113]. A
central cryptographic primitive that can be used to provide anonymity
in applications are threshold ring signatures (cfr., Sec. 1.4.1). Opti-
mizing threshold ring signatures in terms of efficiency, used assump-
tions, and size obviously produces important improvements in the cor-
responding applications. Moreover, extending the functionalities pro-
vided by such primitives may enable new interesting applications. In
this section, we give new contributions on extendable threshold ring
signatures (ETRS) with applications to anonymous count-me-in. Part
of the results presented in this section will appear at PKC 2023. In
the meanwhile, we published our results on ePrint [10].

4.2.1 Related Work

Threshold ring signatures were introduced by Bresson et al. [30]. They
provided a construction based on RSA. The size of the signature is
O(n log n), where n is the size of the ring. Subsequent works proposed
new constructions from a variety of assumptions focused on either
relaxing the setup assumptions, reducing the signature size, or getting
rid of the ROM.

Several works have signatures of size linear in n [2, 75, 95, 129],
while some others proposed constructions with signature size that can
be sub-linear in n [8,11,123]19, or even O(t) [74,90]. Some works have
also focused on providing post-quantum security [2, 23,75].

In [93], the concept of flexibility was introduced. A flexible thresh-
old ring signature scheme allows one to modify an already created
signature on a message m with threshold t and ring R into a new
signature on message m with threshold t + 1 w.r.t. R, without the
intervention of the previous signers.

Usually, threshold ring signatures are formulated as an interactive
protocol run among the signers. Some schemes have a weaker require-
ment [8, 11], where the signers just have to interact with one party

19In particular, [123] has size O(t
√
n), [11] is O(t log n), and [8] is O(log n).

167

called the aggregator. After having interacted with all the signers,
the aggregator just compiles all the received contributions into one
threshold ring signatures which can then be publicly posted. Munch-
Hansen et al. [90] presented a threshold ring signature based on RSA
accumulators with size O(t). Their scheme also achieves flexibility.
Moreover, they introduce a stronger anonymity property that demands
that a signer cannot be deanonymized even by their fellow signers.
In this scenario, having non-interactive signing is crucial since the
deanonymization could be done by exploiting communication meta-
data such as the IP address. The same applies to signatures using
an aggregator, unless the aggregator is trusted. Recently, Aranha et
al. [5] have further enhanced the functionality of threshold ring signa-
ture by proposing extendable threshold ring signatures ETRS. ETRS
are flexible and they also allow to extend the ring of a given signature
without the need of any secret.

Shortcoming of ETRS Aranha et al. [5] observe how the richer flex-
ibility of ETRS can enable more advanced forms of whistleblowing or
anonymous petitions. The first signer could create a ring signature
with a sufficiently large ring announcing a proposition in the signed
message. After such cause becomes public, other parties could support
the cause via extend and/or join operations. As also reported in [5],
an observer who has seen signatures on an old ring R and on a new
ring R′ can always compute R′ \R, and this can help narrowing down
the identity of the signers. This problem is inherent in the functional-
ity provided by ETRS, and it worsens as t approaches the size of the
ring. A clear example is the one of a signature w.r.t. ring R with
threshold t = n − 1, where n = |R|, which is transformed into a sig-
nature with threshold t = n′ − 1 w.r.t. R′, |R′| = n′ = n+ 1 (i.e., the
threshold is increased by one and the final ring contains an additional
public key of a user A). By looking at the two signatures, one can
infer that one signer of the last signature either comes from |R| or
it is A with probability 1

2
. In [5], the authors address this issue by

proposing an anonymity definition in which the adversary is restricted
to see only the signature obtained eventually, after all the extend and
join operations have been applied. However, this restriction hinders
the use of ETRS in real-world count-me-in applications since it bears

168

an implicit requirement: the signers should privately interact to incre-
mentally produce the ETRS and then only the final signature can be
made public to the outside world. This means that all the possible
advocates of a proposal should be given access to a private bulletin
board where partial signatures are posted. Additionally, the abstract
of [5] informally mentions the importance of fellow signer anonymity
(FSA), a property stating that “it is often crucial for signers to re-
main anonymous even from their fellow signers”. Such requirement
was previously formally modeled in [90], but it is not captured by
the anonymity definitions of [5]. Indeed, it is unclear how such prop-
erty could be guaranteed when anonymity is only formulated w.r.t.
an adversary who cannot see intermediate signatures (as real signers
would) and does not have the secret key of any of the signers (as in
the definition of [5]).

4.2.2 Our Contributions

In this chapter, we address the aforementioned shortcomings of ETRS.
First, we propose a stronger security definition that guarantees anonymity
even against adversaries that see the full “evolution” of a signature.
Second, we propose a new ETRS construction that achieves our strong
anonymity definition, and also improves in efficiency over previous
work (cfr., Table 4.2 and 4.3). Our construction relies on extendable
non-interactive witness indistinguishable proof of knowledge (ENIWI
PoK), a novel technical tool that we formalize and construct, and
that may be of independent interest. In what follows, we present our
contributions in more detail.

Stronger anonymity for ETRS. Even though certain leaks are in-
herent when the adversary gets to see several ETRS, one should aim at
building a scheme which leaks nothing more than that. To this regard,
we start from the anonymity definition proposed in [5] and we make it
stronger as follows. We allow the adversary A to see all the ETRS that
led to the final signature. In a nutshell, A outputs two sequences of
operations which at every step lead to an ETRS on the same message,
with the same ring, and the same threshold in both sequences. The
challenger C picks one of such sequences at random, executes it, and

169

gives to A the corresponding outputs of each step. We then require
that A only has a negligible advantage in guessing which sequence was
applied. We also propose a security game that models fellow signer
anonymity for ETRS.

Constructing ETRS. In [5], two constructions of ETRS are pro-
posed: the first one is obtained from extendable same-message linkable
ring signatures (SMLERS)20, while the second one is constructed from
signatures of knowledge (SoK) for the discrete log relation, public key
encryption (PKE), and the discrete log assumption. The first scheme
achieves our stronger anonymity notion but suffers quite high com-
plexity; for instance, the signature size is O(tn). The second scheme
in [5] is more compact but does not fulfill our stronger anonymity
notion. Indeed, anyone who sees an ETRS before and after a join op-
eration can easily pinpoint the exact signer who joined the signature
(see Sec. 4.2.3 for more details). It follows that such scheme is also
not fellow signer anonymous, since no secret key is required to carry
out the above attack.

We construct an ETRS which fulfills our stronger anonymity defi-
nition and is also fellow signer anonymous. As shown in Tab. 4.2 and
Tab. 4.3, our ETRS also generally improves the constructions given
in [5] in terms of both time complexity and signature size. In Sec. 4.2.3,
we give a high-level overview of both ETRS presented in [5]. To build
our ETRS, we introduce the notion of ENIWI PoK, which may be of
independent interest. We then show how to build an ETRS from an
ENIWI PoK for a hard relation, and an IND-CPA homomorphic public
key encryption scheme.

ENIWI PoKs. In [38], Chase et al. examined notions of malleability
for non-interactive proof systems. They defined the notion of allow-
able transformation T = (Tx, Tw) w.r.t. a relation R. A transforma-
tion is allowable w.r.t. R if on input (x,w) ∈ R it gives as output

20SMLERS were introduced in [5] as well. A SMLERS is a ring signature which
is also extendable. In addition, it allows to link two signatures produced by the
same signer on the same message, even on different rings. The SMLERS of [5]
is obtained from signatures of knowledge for the discrete log relation, collision-
resistant hash functions, and the discrete log assumption.

170

Scheme Size Anonymity FSA

SMLERS [5] O(tn) Strong Yes
DL + SoK + PKE [5] O(N) Weak No
Ours O(n) Strong Yes

Table 4.2: Comparison of signature size and anonymity guarantees
of our ETRS and the ones presented in [5]. We use n to indicate
the size of the ring and t to indicate the threshold. In the DL +
SoK + PKE construction of [5] the signature size depends on a fixed
upper bound on the ring size N . We say that a scheme achieves weak
anonymity if it achieves the anonymity property of [5], while we say
that a scheme achieves strong anonymity if our stronger anonymity
definition is satisfied. FSA stands for fellow signer anonymity.

Scheme Sign Join Extend Verify

SMLERS [5] O(tn) O(n) O(tn) O(tn)
DL + SoK + PKE [5] O

(︁
N2
)︁
O
(︁
N2
)︁
O
(︁
N2
)︁
O
(︁
N2
)︁

Ours O(n) O(n) O(n) O(n)
Table 4.3: Comparison of time complexities of our ETRS and the ones
presented in [5].

(Tx(x) = x′, Tw(w) = w′) ∈ R. Then, a proof system is said to be
malleable w.r.t. an allowable transformation T = (Tx, Tw), if there
exists a poly-time algorithm that on input the initial statement x, the
transformation T , and an accepting proof Π, gives an accepting proof
Π′ for the transformed statement x′. They also considered more com-
plex transformations including n statements and proofs. They showed
that Groth-Sahai (GS) proofs [72] are malleable w.r.t. the language of
sets of pairing product equations and they define a set of elementary
allowable transformations which can be used to build more complex
ones, including conjunctions and disjunctions. They also observed that
since GS is re-randomizable, a transformation of a proof followed by
its re-randomization is indistinguishable from a proof computed from
scratch for statement x′ using witness w′. They called this property
derivation privacy.

In this paper, we further explore the notion of malleability for
non-interactive witness indistinguishable (NIWI) proofs of knowledge
(PoKs) in the context of threshold relations. A threshold relation Rt

171

is defined w.r.t. a relation R as Rt = {(x = (k, x1, . . . , xn), w =
((w1, α1), . . . , (wk, αk)))|1 ≤ α1 < . . . < αk ≤ n ∧ ∀ j ∈ [k] :
(xαj

, wj) ∈ R}. Let Lt be the corresponding NP language. In words,
the prover wants to prove it has k witnesses for k different statements
out of n statements. The transformations we explore are extend and
add operations:

• Extend: transform a proof for (k, x1, . . . , xn) ∈ Lt into a proof
for (k, x1, . . . , xn, xn+1) ∈ Lt.

• Add: transform a proof for (k, x1, . . . , xn) ∈ Lt into a proof for
(k + 1, x1, . . . , xn) ∈ Lt.

While the extend operation can be realized without using any private
input of the “previous” prover, as modelled in [38], the same does
not hold for the add operation. Indeed, thanks to extractability, an
accepting proof for (k + 1, x1, . . . , xn) ∈ Lt can only be generated by
the prover, except with negligible probability, using k + 1 witnesses
for k + 1 different statements out of all the n statements. It follows
that the add transformation must require a witness for statement xi,
with index i ∈ [n] that was not previously used, and it cannot produce
an accepting proof for the updated statement on input a witness for
a previously used index. It is straightforward to notice that this fact
could be used to check whether or not a given witness was used in the
proof, thus violating witness indistinguishability.

Therefore, we put forth the new notion of ENIWI PoK. In an
ENIWI PoK, when the prover computes a proof Π for a statement
x = (k, x1, . . . , xn), it also outputs a list of auxiliary values AUX =
(aux1, . . . , auxn). The auxiliary value auxi will be later used to perform
the add operation via an additional algorithm called PrAdd. PrAdd, on
input an accepting proof Π for (k, x1, . . . , xn) ∈ Lt, a witness wi for a
not previously used index i s.t. (xi, wi) ∈ RL, and the corresponding
auxiliary value auxi, outputs a proof Π′ for (k + 1, x1, . . . , xn) ∈ Lt.
Analogously, there is an additional algorithm PrExtend that is used to
perform the extend operation. PrExtend does not require any auxiliary
value. PrExtend, on input an accepting proof for (k, x1, . . . , xn) ∈ Lt,
and a statement xn+1, outputs a proof Π′ for (k, x1, . . . , xn+1) ∈ Lt

and the auxiliary value auxn+1 related to statement xn+1. The auxil-
iary value auxn+1 can later be used to perform an add operation using

172

witness wn+1 s.t. (xn+1, wn+1) ∈ RL. The verification algorithm is left
unaltered and does not take any auxiliary value in input.

Similarly to derivation privacy, we require that the outputs of both
the extend and add operations followed by a re-randomization are in-
distinguishable from proofs created using the regular prover algorithm.
Regarding witness indistinguishability, we have to treat the auxiliary
values in a special manner. Indeed, giving out all the auxiliary val-
ues would at least reveal the indices of the used witnesses. Therefore,
we propose a new notion called extended witness indistinguishabil-
ity. In this notion, the adversary A samples a x = (k, x1, . . . , xn)
and two witnesses wi as ((wi

1, α
i
1) . . . , (w

i
k, α

i
k)), s.t. (x,wi) ∈ Rt for

i ∈ {0, 1}. Then, the challenger C outputs a proof computed using one
of the two witnesses, but it only gives to A a subset of all the auxil-
iary values. Such subset includes the auxiliary values only related to
certain indices, namely ({1, . . . , n} \ ({α0

1, . . . , α
0
n} ∪ {α1

1, . . . , α
1
n})) ∪

({α0
1, . . . , α

0
n}∩{α1

1, . . . , α
1
n}). In words, those are the auxiliary values

related to the indices for which one of the following conditions holds:
(i) the index was not used in either w0 or w1; (ii) the index was used
in both w0 and w1. We require that A has negligible advantage in
guessing whether w0 or w1 was used to create the proof. The idea
is that if we build upon a NIWI and if the auxiliary values are only
tied to the indices of the used witness and not to their concrete val-
ues, then giving the auxiliary values for the “irrelevant” positions to
A does not give A any advantage. Although it could seem a cumber-
some notion, ENIWI is enough to obtain strongly anonymous ETRS,
and could possibly have other applications.

High-level overview of our ENIWI. We propose an ENIWI for the
base relation R of pairing product equations (PPEs) in which all the
variables are elements of group two, public constants are either paired
with secret values or with the public generator, and the target element
is the neutral element.

We build our ENIWI from GS proofs. GS is a commit-and-prove
system where secret variables are first committed and the prover algo-
rithm takes as input the committed values as well as the commitments
randomnesses to create some proof elements. The proof can be ver-
ified on input the statement, the commitments, and proof elements.

173

We first modify known techniques to get disjunctions of PPEs [31,69]
into a technique to get proofs of partial satisfiability of k out of n
PPEs. Such transformation modifies the starting PPEs via some ad-
ditional variables M̂ i with i ∈ [n] s.t. k of the PPEs are left unaltered
while n − k of them now admit the trivial solution, thus allowing for
simulation. The value of M̂ i is constrained to two values, depending
on whether or not the proof for the i-th equation should be simulated.
We then observe that such proofs can be turned into an ENIWI pro-
vided with the extend and the add operations. The auxiliary values
can be seen as the commitment openings related to such variables
which allow to replace an M̂ i allowing for simulation with a new one
preventing simulation. The idea is that to perform the add operation,
the old commitment to a variable M̂ i would be replaced with a fresh
one. Then, auxi would allow to erase from the proof element the con-
tribution related to the old committed variable and to subsequently
put in the contribution of the freshly committed variable. The extend
operation is more straightforward since it does not need to erase any
contribution, but only to add the contribution of a new variable. At a
high level, extended witness indistinguishability is achieved since the
M̂ i variables are only tied to the particular equation being simulated or
not, but not to the actual value of any of the variables. Proofs can also
be re-randomized leveraging the re-randomizability of GS and by ap-
propriately updating the auxiliary values after the re-randomization.

High-level overview of our ETRS. To get an ETRS, we just need a
way to turn an ENIWI in a signature scheme preserving its extendabil-
ity properties. In [57], it is shown how to create a signature of knowl-
edge (SoK) from a NIWI PoK in the random oracle model (ROM). In
a nutshell, the message is hashed to produce the CRS which is then
used to prove the statement of the SoK. The resulting proof constitutes
the signature. We leverage their technique to create an ETRS starting
from an ENIWI PoK. The idea is that since the transformation given
in [57] just modifies how the CRS is generated, we are able to replace
the NIWI PoK with an ENIWI PoK to get an ETRS instead of a regular
signature. In our ETRS, the i-th signer has as public key a statement
xi for a hard relation RL for which it exists an ENIWI, along with the
public key pkie of an IND-CPA public key encryption scheme (PKE)

174

which is homomorphic w.r.t. the update operation of the auxiliary
values. The corresponding secret key is wi s.t. (xi, wi) ∈ RL, along
with the secret key of the encryption scheme skie. The first signer S
hashes the message m to get the CRS, then S uses her own witness
to create a proof for (1, x1, . . . , xn) ∈ Rt. By creating such proof, the
signer will also get auxiliary values (aux1, . . . , auxn). Since publish-
ing the auxiliary values in the clear would reveal the identity of the
signer, each individual auxi is encrypted using the public key of the i-
th signer. A new signer willing to join will decrypt auxi and run PrAdd
to update the proof. To extend the ring, it suffices to run PrExtend
to update the proof. Finally, to ensure anonymity we exploit the fact
that ENIWI PoKs are re-randomizable. We re-randomize all the proofs
after running either PrAdd or PrExtend. We additionally exploit the
homomorphic property of the encryption scheme to update the auxil-
iary values after each re-randomization. We prove the security of our
ETRS in the ROM.

Both the constructions presented in [5] use SoKs for the discrete
log relation as a building block without specifying a concrete instan-
tiation. Whether they require the ROM or not depends on whether
there exists a practical21 SoK without random oracles for that rela-
tion. The authors also provide an implementation in which they use
the Schnorr identification scheme with the Fiat-Shamir transform as a
SoK. Such SoK requires the ROM. In our ETRS, all operations require
linear time in n as the number of equations to be proved linearly de-
pends on n. Additionally, GS proofs have constant size for each type
of equation, therefore the size of the ETRS is O(n). Note that both
time complexity and signature size do not depend on t.

4.2.3 A Closer Look to the Results of [5]

In this section, we give a high-level overview of the two ETRS presented
in [5].

21Chase and Lysyanskaya [39] proposed a generic construction under standard
complexity assumptions in the common random string model, but it is not practical
since it uses general non-interactive zero-knowledge (NIZK) proofs.

175

SMLERS-based ETRS. The first ETRS given in [5] is based on
same-message linkable ring signatures (SMLERS). In a nutshell, a
SMLERS is a ring signature which is provided with the Extend al-
gorithm. In addition, it allows to link two signatures produced by the
same signer on the same message, even on different rings. This is done
via a linkability tag that is uniquely determined by the signer and the
message. To construct an ETRS, it simply suffices to concatenate sev-
eral SMLERS on the same message, provided they do not carry the
same linkability tag, and to extend all the SMLERS to have the same
ring. Their SMLERS has size O(n), where n is the size of the ring.
Therefore, the compiled ETRS has size O(tn). The same reasoning
applies to the time complexity of most of the operations. Although
the anonymity property was proven in [5] according to their weaker
definition, it seems reasonable to assume that this construction could
be proven secure under our stronger definition without much effort.

DL+SoK+PKE ETRS. The second construction of ETRS proposed
in [5] works with a prime order group, with two public group elements
(g,H), and a signature of knowledge for relation R for knowledge of
the discrete logarithm either of a certain value h or of a pk. When
the first signature is generated, the signer generates N points of the
form (xi, tdi) ∈ Z2

p. All these points define a unique polynomial p
of degree N such that p(0) = dlog(H) and p(xi) = tdi for all i ∈
[N]. The discrete log of H is not known, but this polynomial can be
interpolated in the exponent to obtain a polynomial f s.t. f(x) =
gp(x). To either sign or join a signature, the signer has to produce a
signature of knowledge for R using a random point (x, y = gp(x)) with
x /∈ {xi}i∈[N]. If the DL problem is hard, the signer cannot know the
discrete log of y and thus the signature of knowledge must satisfy the
second clause of R which requires proving knowledge of the secret key.
To extend a signature instead, an x ∈ {xi}i∈[N] will be used, so that
the corresponding trapdoor can be used to satisfy the first clause of the
relation. The used pair (xi, tdi) is removed from the list of trapdoors.
However, to make the owner of the public key pk able to join at a later
time, along with the signature of knowledge, the point xi is posted
together with an encryption of tdi under pk. As a result, the owner
of pk can decrypt tdi and put it back to the list of trapdoors, before

176

producing a fresh signature of knowledge using her secret key as a
witness. Although neither space nor time complexities depend on the
threshold t, they all take time and space proportional toN even though
the actual ring size n << N . In particular, every operation requires to
interpolate the polynomial in the exponent, which takes quadratic time
in the number of interpolated points N . Regarding anonymity, it is
pretty straightforward to observe that Def. 26 is not satisfied. Indeed,
after a join operation, a “trapdoored” point xi which was related to a
signature of knowledge for a certain key pki goes back in the trapdoor
list, and it is replaced by a new random “non-trapdoored” point. This
movement of xi from one list to another clearly indicates that pki has
joined the signature.

4.2.4 Preliminaries

We work over bilinear groups gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← Gen(1λ).
Gen(1λ) is a generator algorithm that on input the security parameter,
outputs the description of a bilinear group. We call such description
group key gk. Ĝ, Ȟ,T are prime p order groups, ĝ, ȟ are generators
of Ĝ, Ȟ respectively, and e : Ĝ × Ȟ → T is a non-degenerate bilinear
map. We will use additive notation for the group operations and
multiplicative notation for the bilinear map e.

Assumption 4 (DDH). The Decisional Diffie-Hellman (DDH) holds
in Ĝ if for all PPT adversaries A, the probability that A distinguishes
the two distributions (ĝ, ξĝ, ρĝ, ξρĝ) and (ĝ, ξĝ, ρĝ, κĝ), where ξ, ρ, κ←
Zp is negligible. Tuples of the form (ĝ, ξĝ, ρĝ, ξρĝ) are called Diffie-
Hellman (DH) tuples. The DDH problem in Ȟ is defined in a similar
way.

Assumption 5 (SXDH). The Symmetric eXternal Diffie-Hellman
(SXDH) assumption holds relative to Gen if there is no PPT ad-
versary A that breaks the DDH problem in both Ĝ and Ȟ for gk =
(p, Ĝ, Ȟ,T, e, ĝ, ȟ)← Gen(1λ).

Assumption 6 (Double Pairing Fixed Term Assumption). We say
the double pairing fixed term assumption holds relative to Ĝ if for

177

gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← Gen(1λ), and for all PPT adversaries A we
have

Pr
[︂
â, b̂←$ Ĝ \ (0̂, 0̂); b′̌ ← A(gk, â, b̂) : b′̌ ∈ Ȟ, â · ȟ+ b̂ · b′̌ = 0T

]︂
≤ negl(λ).

Lemma 5. If the double pairing fixed term assumption holds for gk,
then the Decisional Diffie-Hellman assumption holds for Ĝ.

Proof. We build an adversary B for the DDH assumption which makes
black-box use of A. B gets the DDH challenge (â, b̂, ĉ). If â = 0̂ or
b̂ = 0̂ or ĉ = 0̂, B aborts. This event occurs with negligible probability.
B sets the challenge for A to be (ĉ, b̂). With probability ϵ, B gets back
b′̌ ∈ Ȟ s.t. ĉ · ȟ+ b̂ · b′̌ = 0T from A. B outputs 1 iff â · ȟ+ ĝ · b′̌ = 0T,
and 0 otherwise. If (â, b̂, ĉ) is a DH tuple, B outputs 1 with probability
exactly ϵ. In the other case, since â ̸= 0̂, b̂ ̸= 0̂, and ĉ ̸= 0̂, there is no
trivial b′̌ s.t. â · ȟ+ ĝ · b′̌ = 0T.

4.2.4.1 ElGamal Encryption

The ElGamal encryption scheme is a public key encryption scheme
with the following algorithms. The public parameters pp produced by
Setup are implicitly available to all other algorithms:

• pp← Setup(1λ): on input the security parameter, sample a cyclic
group Ĝ of prime order p, a generator ĝ. Output pp = (Ĝ, ĝ).

• (pk, sk)← KeyGen(): sample an element ζ ←$ Z∗
p. Define public

key as pk = v̂ = (ζĝ, ĝ)⊤ ∈ Ĝ
2×1

and sk = ζ = (−ζ−1, 1).
Output (pk, sk).

• â ← Enc(m̂, pk): with input the public key and a message m̂ ∈
Ĝ, sample r ←$ Zp and output ciphertext â = e⊤m̂+ v̂r ∈ Ĝ

2×1
,

where e = (0, 1).

• m̂ ← Dec(â, sk): with input the secret key and a ciphertext

a ∈ Ĝ
2×1

, output m̂ = ζâ.

The ElGamal encryption scheme is also homomorphic, with the func-
tion f being the group operation. In more detail:

178

• a′ ← Eval(a1, m̂2, pk): compute a2 = Enc(m̂2, pk), output a′ =
a1 + a2. If the ciphertexts contained messages m̂1 and m̂2, the
output ciphertext will contain message m̂1 + m̂2.

The ElGamal encryption is IND-CPA secure if the DDH assumption
holds in Ĝ. Additionally, ciphertexts updated with Eval are identically
distributed to freshly generated ciphertexts.

4.2.5 Groth-Sahai Proofs

The Groth-Sahai proof system [72] is a proof system for the language
of satisfiable equations (of types listed below) over a bilinear group
gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← Gen(1λ). The prover wants to show that
there is an assignment of all the variables that satisfies the equation.
Such equations can be of four types:

Pairing-product equations (PPE): For public constants âj ∈ Ĝ,
b̌i ∈ Ȟ, γij ∈ Zp, tT ∈ T:∑︂

i

x̂i · b̌i +
∑︂
j

âj · y̌j +
∑︂
i

∑︂
j

γijx̂i · y̌j = tT.

Multi-scalar multiplication equation in Ĝ (MEĜ): For public con-

stants âj ∈ Ĝ, bi ∈ Zp, γij ∈ Zp, t̂ ∈ Ĝ:∑︂
i

x̂ibi +
∑︂
j

âjyj +
∑︂
i

∑︂
j

γijx̂iyj = t̂.

Multi-scalar multiplication equation in Ȟ (MEȞ): For public con-
stants aj ∈ Zp, b̌i ∈ Ȟ, γij ∈ Zp, ť ∈ Ȟ:∑︂

i

xib̌i +
∑︂
j

aj y̌j +
∑︂
i

∑︂
j

γijxiy̌j = ť.

Quadratic equation in Zp (QE): For public constants aj ∈ Zp, bi ∈
Zp, γij ∈ Zp, t ∈ Zp:∑︂

i

xibi +
∑︂
j

ajyj +
∑︂
i

∑︂
j

γijxiyj = t.

179

Here, we formalize the GS proof system as in [54]. The GS proof
system is a commit-and-prove system. Each committed variable is
also provided with a public label that specifies the type of input (i.e.,
scalar or group element). Accordingly, the prover algorithm takes as
input a label L which indicates the type of equation to be proved
(i.e., L ∈ {PPE,MEĜ,MEȞ,QE}). GS features the following PPT
algorithms, the common reference string crs and the group key gk are
considered as implicit input of all the algorithms.

• crs ←$ CRSSetup(gk): on input the group key, output the com-
mon reference string.

• (l, c) ← com(l, w; r): return a commitment (l, c) to message w
according to the label l and randomness r.

• π ← Prove(L, x, (l1, w1, r1), . . . , (ln, wn, rn)): consider statement
x as an equation of type specified by L, and on input a list of
commitment openings produce a proof π.

• 0/1 ← PrVerify(x, (l1, c1), . . . , (ln, cn), π): given committed vari-
ables, statement x, and proof π, output 1 to accept and 0 to
reject.

• ((l1, c
′
1), . . . , (ln, c

′
n), π

′)← RandPr(L, (l1, c1), . . . , (ln, cn), π; r): on
input equation type specified by L, a list of commitments, a proof
π, and a randomness r, output a re-randomized proof along with
the corresponding list of re-randomized commitments.

GS can be also used to prove that a set of equations S, with possibly
shared variables across the equations, has a satisfying assignment. To
do so, the prover has to reuse the same commitments for the shared
variables while executing the Prove algorithm for each individual equa-
tion. The above description can also fit the interface of NIWI PoK
(cfr., Sec. 2.3.1.2). Indeed, the Prove algorithm can just launch the
com and the Prove algorithm above with the appropriate labels, and
return as a proof both the commitments and the proof elements. Sim-
ilarly, the PrVerify and RandPr algorithms of the NIWI PoK interface
have just to appropriately parse their inputs and call the PrVerify and
RandPr algorithms described above.

180

The GS proof system is proved to be a NIWI for all types of
the above equations under the SXDH assumption. In addition, it
is a NIWI PoK for all equations involving solely group elements.
To be more specific, Escala and Groth formulated the notion of F -
knowledge [54] (i.e., a variation of adaptive extractable soundness, see
Def. 17 in Sec. 2.3.1.2) for a commit-and-prove system. In a nutshell, it
requires the existence of an Ext2 algorithm that, on input a valid com-
mitment and the extraction key produced by Ext1, outputs a function
F of the committed value. They prove that GS enjoys F -knowledge.
For commitments to group elements, F is identity function. Regard-
ing commitments to scalars, F is a one-way function that uniquely
determines the committed value.

4.2.5.1 Internals of GS Proofs

In [54], the authors provide a very fine-grained description of GS
proofs. In this description, we report only the aspects that are rel-
evant to our constructions. It is possible to write the equations of
Sec. 4.2.5 in a more compact way. Consider x̂ = (x̂1, . . . , x̂m) and
y̌ = (y̌1, . . . , y̌n), which may be both public constants (i.e., written
before as âj, b̌i) or secret values. Let Γ = {γij}m,n

i=1,j=1 ∈ Zm×n
p . We can

now write a PPE as x̂Γy̌ = tT. Similarly, a MEĜ, a MEȞ, and a QE
can be written as x̂Γy = t̂, xΓy̌ = ť, and xΓy = t. This holds for

x̂ ∈ Ĝ
1×m

, y̌ ∈ Ȟn×1
,x ∈ Z1×m

p ,y ∈ Zn×1
p . Additionally, for equations

of type MEĜ, MEȞ, and QE, we can, without loss of generality, assume
the target element to be the neutral element. For PPE we will restrict
ourselves to the case in which tT = 0T, and no public constants are
paired with each other, unless one of the two is a generator specified in
the public parameters. The structure of the crs is clear from Fig. 4.3,
where the Ext1 algorithm is shown.

In Fig. 4.4, we report the commitment labels and corresponding
commit algorithm that are of interest for this work. In Fig. 4.5, a list
of the possible commitment labels for each equation type.

In Fig. 4.6 and in Fig. 4.7, we report the prover and verifier algo-
rithm respectively. Finally, in Fig. 4.8 we report a description of the
proof re-randomization algorithm.

181

(crs, xk)← Ext1(gk)

Parse gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)
ρ←$ Zp, ξ ←$ Z∗

p and σ ←$ Zp, ψ ←$ Z∗
p

v̂ = (ξĝ, ĝ)⊤ and v̌ = (ψȟ, ȟ)

ŵ = ρv̂ and w̌ = σv̌

û = ŵ + (0̂, ĝ)⊤ and ǔ = w̌ + (0̌, ĝ)

ξ = (−ξ−1 mod p, 1) and

ψ = (−ψ−1 mod p, 1)⊤

crs = (û, v̂, ŵ, ǔ, v̌, w̌)

xk = (ξ,ψ)

return (crs, xk)

Figure 4.3: Generation of the CRS along with the extraction key in
the GS proof system.

4.2.6 Extendable Threshold Ring Signature

A non-interactive extendable threshold ring signature scheme ETRS is
defined as a tuple of six PPT algorithms ETRS = (Setup,KeyGen, Sign,
Verify, Join,Extend), where the public parameters pp produced by Setup
are implicitly available to all the other algorithms:

• pp← Setup(1λ): on input the security parameter, outputs public
parameters pp.

• (pk, sk)← KeyGen(): generates a new public and secret key pair.

• σ ← Sign(m, {pki}i∈R , sk): returns a signature with threshold
t = 1 using the secret key sk corresponding to a public key pki
with i ∈ R.

• 0/1 ← Verify(t,m, {pki}i∈R , σ): verifies a signature σ for the
message m against the public keys {pki}i∈R with threshold t.
Outputs 1 to accept, and 0 to reject.

• σ′ ← Join(m, {pki}i∈R , sk, σ): it takes as input a signature σ for
message m produced w.r.t. ring R with threshold t, and the new

182

Input Randomness Output
pubĜ, x̂ r = 0, s = 0 ĉ = e⊤x̂
comĜ, x̂ r, s←$ Zp ĉ = e⊤x̂+ v̂r + ŵs
baseĜ, ĝ r = 0, s = 0 ĉ = e⊤ĝ
scaĜ, x r ←$ Zp, s = 0 ĉ = ûx+ v̂r

Input Randomness Output

pubȞ.y̌ r = 0, s = 0 ď = y̌e

comȞ, x̌ r, s←$ Zp ď = y̌e+ rv̌ + sw̌

baseȞ, ȟ r = 0, s = 0 ď = ȟe

scaȞ, y r ←$ Zp, s = 0 ď = yǔ+ rv̌
Figure 4.4: GS commit labels and corresponding commit algorithm,
e = (0, 1).

L Labels for xi, i ∈ [m] Labels for yj, j ∈ [n]
PPE baseĜ, pubĜ, comĜ baseȞ, pubȞ, comȞ
MEĜ baseĜ, pubĜ, comĜ scaȞ
MEȞ scaĜ baseȞ, pubȞ, comȞ
QE scaĜ scaȞ

Figure 4.5: Possible GS commit labels for each equation type.

signer secret key sk (whose corresponding pk is included in R).
It outputs a new signature σ′ with threshold t+ 1.

• σ′ ← Extend(m,σ, {pki}i∈R , {pki}i∈R′): extends the signature σ
with threshold t for the ring R into a new signature σ′ with
threshold t for the larger ring R∪R′.

To formalize the properties of ETRS, we use the notion of ladder
as in [5]. A ladder lad is a sequence of tuples (action, input), where
action takes a value in the set {Sign, Join,Extend} and the value of
input depends on the value of action. If action = Sign, then input is a
pair (R, i), where R is the ring for the signature and i is the signer’s
identity. If action = Join, then input is an identifier i that identifies
the signer that joins the signature. If action = Extend, then input is a

183

Prove(L,Γ, {(lxi
, xi, (rxi

, sxi
))}mi=1, {(lyj , yj, (ryj , syj))}nj=1)

if x ∈ Ĝm
define Ĉ = e⊤x+ v̂rx + ŵsx else if x ∈ Zm

p define Ĉ = ûx+ v̂rx

if y ∈ Ȟn
define Ď = e⊤y + ryv̌ + syw̌ else if y ∈ Zn

p define Ď = ǔy + ryv̌

Set α = β = γ = δ = 0

if L = PPE α, β, γ, δ ←$ Zp

if L = MEĜ α, β ←$ Zp

if L = MEȞ α, γ ←$ Zp

if L = QE α←$ Zp

π̌v̂ = rxΓĎ + αv̌ + βw̌ π̂v̌ = (Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ
π̌ŵ = sxΓĎ + γv̌ + δw̌ π̂w̌ = (Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ

return π = (π̌v̂, π̂v̌, π̌ŵ, π̂w̌)

Figure 4.6: Prover algorithm of the GS proof system.

PrVerify(L,Γ, {(lxi
, ĉi)}mi=1, {(lyj , ďj)}nj=1),π)

Check that the equation has a valid format.

Check Ĉ = (ĉ1 . . . ĉm) ∈ Ĝ2×m
and Ď = (ď1 . . . ďn)

⊤ ∈ Ȟn×2

Check π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌) ∈ Ȟ2×1 × Ȟ2×1 × Ĝ1×2 × Ĝ1×2

Check ĈΓĎ = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌

return 1 if and only if all checks pass and 0 otherwise.

Figure 4.7: Verifier algorithm of the GS proof system.

ring R that is the ring to use to extend the previous ring. We notice
that a ladder unequivocally determines a sequence of ETRS, each one
with a specific ring and threshold value. In Fig. 4.11, the algorithm
Proc is described. Proc takes as input a message, a ladder, and a cor-
responding list of keys, and outputs the sequence of all the signatures
that correspond to each step of the ladder. It outputs ⊥ whenever the
ladder has an inconsistent sequence of actions or is incompatible with
the list of keys provided in the input.

Definition 24 (Correctness for ETRS). For all λ ∈ N, for any mes-
sage m ∈ {0, 1}∗, for any ladder lad of polynomial size identifying a

184

(Ĉ
′
, Ď

′
, π′)← RandPr(L,Γ, {(lxi

, ĉi)}mi=1, {(lyj , ďj)}nj=1,π; r)

Parse r = (rx, sx, ry, sy)

Define Ĉ = (ĉ1 . . . ĉm) ∈ Ĝ2×m
, Ď = (ď1 . . . ďn)

⊤ ∈ Ȟn×2

Parse π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌)

if x ∈ Ĝm
define Ĉ

′
= Ĉ + v̂rx + ŵsx else if x ∈ Zm

p define Ĉ
′
= Ĉ + v̂rx

if y ∈ Ȟn
define Ď

′
= Ď + ryv̌ + syw̌ else if y ∈ Zn

p define Ď
′
= Ď + ryv̌

if L = PPE α, β, γ, δ ←$ Zp

if L = MEĜ α, β ←$ Zp

if L = MEȞ α, γ ←$ Zp

if L = QE α←$ Zp

π̌′
v̂ = π̌v̂ + rxΓĎ

′
+ αv̌ + βw̌ π̂′

v̌ = π̂v̌ + ĈΓry − v̂α− ŵγ

π̌′
ŵ = π̌ŵ + sxΓĎ

′
+ γv̌ + δw̌ π̂′

w̌ = π̂w̌ + ĈΓsy − v̂β − ŵδ

return (Ĉ
′
, Ď

′
, π′ = (π̌′

v̂, π̂
′
v̌, π̌

′
ŵ, π̂

′
w̌))

Figure 4.8: Proof re-randomization algorithm of the GS proof system.

ring R, it holds that:

Pr

⎡⎢⎢⎣
(︄

ℓ⋀︁
j=1

Verify(t,m, {pki}i∈R , σj) = 1

)︄
∨(Σ, t,R) = ⊥

⃓⃓⃓⃓
⃓⃓⃓⃓ pp← Setup(1λ);

Lkeys ← {KeyGen()}i∈R;
(Σ, t,R)← Proc(m, Lkeys, lad);

{σ1, . . . , σℓ} = Σ

⎤⎥⎥⎦ = 1.

Definition 25 (Unforgeability for ETRS). An extendable threshold
ring signature scheme ETRS is said to be unforgeable if for all PPT
adversaries A, the success probability in the experiment of Fig. 4.9 is

Pr
[︁
ExpcmEUF

A,ETRS(λ) = win
]︁
≤ negl(λ).

Definition 26 (Anonymity for ETRS). An extendable threshold ring
signature scheme ETRS is said to provide anonymity if for all PPT
adversaries A, the success probability in the anonymous extendability
experiment of Fig. 4.10 is Pr

[︁
ExpANEXT

A,ETRS(λ) = win
]︁
≤ 1

2
+ negl(λ). In

185

ExpcmEUF
A,ETRS(λ)

1 : Lkeys, Lcorr, Lsign, Ljoin ← ∅
2 : pp← ETRS.Setup(1λ)

3 : O← {OSign,OKey,OCorr,OJoin}
4 : (t∗,m∗,R∗, σ∗)← AO(pp)

5 : q1 ← |{(m∗,R, ·) ∈ Lsign : R ⊆ R∗}|
6 : q2 ← |{(m∗, i, ·) ∈ Ljoin : i ∈ R∗}|
7 : q ← q1 + q2

8 : if |R∗ ∩ Lcorr|+ q ≥ t∗

9 : return lose

10 : if Verify(t∗,m∗, {pkj}j∈R∗ , σ∗) = 0

11 : return lose

12 : return win

OSign(m,R, i)

1 : if (i ∈ Lcorr ∨ i /∈ R) return ⊥
2 : for j ∈ R
3 : if (j, pkj , ·) /∈ Lkeys

4 : return ⊥
5 : σ ← ETRS.Sign(m, {pkj}j∈R , ski)
6 : Lsign ← Lsign ∪ {(m,R, i)}
7 : return σ

OKey(i, pk)

1 : if pk = ⊥
2 : (pki, ski)← ETRS.KeyGen()

3 : Lkeys ← Lkeys ∪ {(i, pki, ski)}
4 : else

5 : Lcorr ← Lcorr ∪ {i}
6 : pki ← pk

7 : Lkeys ← Lkeys ∪ {(i, pki,⊥)}
8 : return pki

OCorr(i)

1 : if (i, pki, ski) ∈ Lkeys ∧ ski ̸= ⊥
2 : Lcorr ∪ {i}
3 : return (pki, ski)

4 : return ⊥

OJoin(m,R, i, σ)

1 : if i ∈ Lcorr return ⊥
2 : for j ∈ R
3 : if ((j, pkj , ·) /∈ Lkeys)

4 : return ⊥
5 : σ′ ← Join(m, {pkj}j∈R , ski, σ)
6 : Ljoin ← Ljoin ∪ {(m, i, σ)}
7 : return σ′

Figure 4.9: Unforgeability game for ETRS (security experiment and
oracles). This notion is reported from [5].

this experiment, the ladders submitted by A are said to be well-formed
if all the actions in the ladder are pairwise of the same type, and they
have the same ring as input.

186

Remarks on anonymity and unforgeability for ETRS. Wemod-
ify our definition of anonymity for ETRS making it stronger w.r.t. the
one in [5]. The difference is that the adversary now gets to see all the
intermediate ETRS instead of just the final one (see lines 11 and 12
of Chal in Fig. 4.10). This modification enables count-me-in applica-
tions where partial signatures get publicly posted. In addition, in the
experiment we add the checks of lines 15 and 17 to rule out a trivial
attack inherent to any ETRS. Indeed, since the Join operation cannot
increase the threshold of an ETRS when using a secret key that was
already used before, A could use this fact to distinguish between the
ladders.

The Combine algorithm is introduced in [5] as a procedure to com-
bine together two signatures on the same message with two different
(not necessarily disjoint) rings. The output is a signature having as
ring the union of the two rings and as threshold the cardinality of the
union of the signers sets of the starting signatures. The Combine algo-
rithm can be run without knowing any secret key. In [5], the authors
showed that the Join operation can be obtained as the concatenation
of the Sign operation and the Combine operation. In order to avoid
the same attack described before, the checks in lines 11 and 13 of the
experiment of Fig. 4.10 are needed. We notice that our ETRS only
provides a weaker form of Combine in which the starting rings are
disjoint (cfr., Sec. 4.2.8). A similar discussion holds for lines 5 − 8
of the unforgeability experiment in Fig. 4.9. In particular, they rule
out trivial attacks due to A asking too many sign, join, or corruption
queries.

Fellow signer anonymity. We also define a stronger version of
anonymity called fellow signer anonymity. This game models the re-
quirement that even a signer cannot determine any of the other signers
by just looking at all the signatures that were produced. It is straight-
forward to notice that fellow signer anonymity implies anonymity for
ETRS.

Definition 27 (Fellow Signer Anonymity for ETRS). An extendable
threshold ring signature scheme ETRS is said to provide fellow signer
anonymity if for all PPT adversaries A, the success probability in the

187

ExpANEXT
A,ETRS(λ)

1 : b←$ {0, 1}
2 : Lkeys, Lcorr, Lsign, Ljoin ← ∅
3 : pp← ETRS.Setup(1λ)

4 : (m∗, lad∗0, lad
∗
1)← AO(pp)

5 : Σ← Chalb(m
∗, lad∗0, lad

∗
1)

6 : b∗ ← AO(Σ)

7 : if ∃ i ∈ lad∗0.S s.t. i ∈ Lcorr

8 : return lose

9 : if ∃ i ∈ lad∗1.S s.t. i ∈ Lcorr

10 : return lose

11 : for i ∈ lad∗0.S ∪ lad∗1.S
12 : if ∃ (m∗, ·, i) ∈ Lsign

13 : return lose

14 : if ∃ (m∗, i, ·) ∈ Ljoin

15 : return lose

16 : if b∗ ̸= b return lose

17 : return win

Chalb(m
∗, lad∗0, lad

∗
1)

1 : if (lad∗0, lad
∗
1) is not well-formed

2 : return ⊥
3 : if ∃ i ∈ lad∗0.S s.t. i ∈ Lcorr

4 : return ⊥
5 : if ∃ i ∈ lad∗1.S s.t. i ∈ Lcorr

6 : return ⊥
7 : val0 ← Proc(m∗, Lkeys, lad

∗
0)

8 : val1 ← Proc(m∗, Lkeys, lad
∗
1)

9 : if val0 = ⊥ ∨ val1 = ⊥
10 : return ⊥
11 : Parse val0 as (Σ0, t0,R0)

12 : Parse val1 as (Σ1, t1,R1)

13 : Σ← Σb

14 : return Σ

Figure 4.10: Anonymous extendability game. We use lad.S to in-
dicate the set of signers of a ladder lad. A has access to oracles
O← {OSign,OKey,OCorr,OJoin}. We propose a stronger notion com-
pared to [5]. Indeed, in our definition the adversary gets to see all the
intermediate signatures instead of only the final ETRS.

experiment of Fig. 4.12 is Pr
[︁
ExpANFS

A,ETRS(λ) = win
]︁
≤ 1

2
+ negl(λ).

4.2.7 Extendable Non-interactive Witness Indis-
tinguishable Proof of Knowledge

Given an NP language L with associated poly-time relation RL, we
define the related threshold relation Rt as follows.

188

Proc(m, Lkeys, lad)

1 : Σ← ∅, t = 0

2 : Parse lad as ((action1, input1), . . . , (actionl, inputl))

3 : if action1 ̸= Sign return ⊥
4 : else

5 : Parse input1as (R1, i1)

6 : for j ∈ R1 if (j, pkj , ·) /∈ Lkeys return ⊥
7 : if ski1 = ⊥ ∨ i1 /∈ R1 return ⊥
8 : R ← R1,S ← {i1}
9 : σ ← Sign(m, {pkj}j∈R , ski1),Σ← Σ ∪ {σ}

10 : for l′ ∈ [2, . . . , l]

11 : if actionl
′
= Sign return ⊥

12 : else

13 : if actionl
′
= Join parse inputl

′
as (il

′
)

14 : if il
′
/∈ R ∨ il′ ∈ S return ⊥

15 : σ ← Join(m, {pkj}j∈R , skl
′
i , σ)

16 : Σ← Σ ∪ {σ},S ← S ∪ {il′}, t = t+ 1

17 : if actionl
′
= Extend parse inputl

′
as (Rl′)

18 : for j ∈ Rl′if (j, pkj , ·) /∈ Lkeys return ⊥
19 : σ ← Extend(m,σ, {pkj}j∈R , {pkj}j∈Rl′)

20 : R ← R∪Rl′ ,Σ← Σ ∪ {σ}
21 : else return ⊥
22 : return (Σ, t,R)

Figure 4.11: Process algorithm for ETRS.

Rt ={(x = (k, x1, . . . , xn), w = ((w1, α1), . . . , (wk, αk)))|
1 ≤ α1 < . . . < αk ≤ n ∧ ∀ j ∈ [k] : (xαj

, wj) ∈ RL}.

An extendable non-interactive proof system for a threshold relation

189

ExpANFS
A,ETRS(λ)

1 : b←$ {0, 1}
2 : Lkeys, Lcorr, Lsign, Ljoin ← ∅
3 : p← ETRS.Setup(1λ)

4 : (m∗, lad∗, i∗, j∗)← AO(pp)

5 : Σ← Chalb(m
∗, lad∗, i∗, j∗)

6 : b∗ ← AO(Σ)

7 : if i∗ ∈ Lcorr ∨ j∗ ∈ Lcorr

8 : return lose

9 : if ∃ (m∗, ·, i∗) ∈ Lsign

10 : return lose

11 : if ∃(m∗, ·, j∗) ∈ Lsign

12 : return lose

13 : if ∃ (m∗, i∗, ·) ∈ Ljoin

14 : return lose

15 : if ∃(m∗, j∗, ·) ∈ Ljoin

16 : return lose

17 : if b∗ ̸= b

18 : return lose

19 : return win

Chalb(m
∗, lad∗, i∗, j∗)

1 : if i∗ ∈ Lcorr ∨ j∗ ∈ Lcorr

2 : return ⊥
3 : lad∗.add((Extend, {i∗}))
4 : lad∗.add((Extend, {j∗}))
5 : if b = 0

6 : lad∗.add((Join, i∗))

7 : if b = 1

8 : lad∗.add((Join, j∗))

9 : val← Proc(m∗, Lkeys, lad
∗)

10 : if val = ⊥
11 : return ⊥
12 : else

13 : Parse val as (Σ, t,R)
14 : return Σ

Figure 4.12: Fellow signer anonymity game. We use lad.S to indicate
the set of signers of a ladder lad and lad.add to indicate that we are
adding the pair (action, input) as the last element of the ladder. A has
access to oracles O← {OSign,OKey,OCorr,OJoin}.

Rt consists of the following PPT algorithms. The group key gk ←
Gen(1λ) is considered as an implicit input to all algorithms:

• crs ←$ CRSSetup(gk): on input the group key gk, output a uni-
formly random22 common reference string crs ∈ {0, 1}λ.

22Here we are also assuming that the crs is uniformly random since it is needed
by our ETRS construction.

190

• (Π, (aux1, . . . , auxn))← Prove(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk,
αk))): on input ((k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))) ∈ Rt,
output a proof Π and auxiliary values (aux1, . . . , auxn). The
auxiliary value auxi is used later on to perform an add operation
using a witness for a not previously used statement xi.

• 0/1← PrVerify(crs, (k, x1, . . . , xn),Π): on input statement (k, x1,
. . . , xn), and a proof Π, output 1 to accept and 0 to reject.

• (Π′, auxn+1) ← PrExtend(crs, (k, x1, . . . , xn), xn+1,Π): on input
statements (k, x1, . . . , xn), xn+1, and a proof Π for (k, x1, . . . ,
xn) ∈ Lt, output an updated proof Π′ for (k, x1, . . . , xn, xn+1) ∈
Lt, and additional auxiliary value auxn+1. The auxiliary value
auxn+1 is used later on to perform an add operation using a
witness for xn+1.

• (Π′, aux′α) ← PrAdd(crs, (k, x1, . . . , xn), (w, α), aux,Π): on input
statement (k, x1, . . . , xn), witness (w, α), auxiliary value aux, and
proof Π for (k, x1, . . . , xn) ∈ Lt, output an updated proof Π′ for
(k + 1, x1, . . . , xn) ∈ Lt, and updated auxiliary value aux′α.

• (Π′, r = (r1, . . . , rn)) ← RandPr(crs, (k, x1, . . . , xn),Π): on input
statement x and proof Π for x ∈ Lt, output a re-randomized
proof Π′ and update randomness ri (related to auxiliary value
auxi) with i ∈ [n].

• aux′i ← AuxUpdate(crs, auxi, ri): on input auxiliary value auxi,
and update randomness ri, output updated auxiliary value aux′i.
AuxUpdate is used to update the auxiliary values after a proof has
been re-randomized. The used input randomness is the one given
in output by RandPr. To simplify the notation, we write AUX′ ←
AuxUpdate(crs,AUX, r) to indicate that a list of auxiliary values
is updated by appropriately parsing AUX and r and running the
update operation on each element of the list.

• 0/1← AuxVerify(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk)), (aux1,
. . . , auxn),Π): on input statement (k, x1, . . . , xn), witness ((w1,
α1) . . . , (wk, αk)), auxiliary values (aux1, . . . , auxn), and proof Π,
output 1 if the auxiliary values are consistent with the statement,

191

the proof, and the witness. Return 0 otherwise. If AuxUpdate
returns 1, we are guaranteed that the subsequent extend/add
operations can be correctly executed23.

An extendable non-interactive proof system is said to be an ex-
tendable non-interactive witness indistinguishable (ENIWI) proof of
knowledge if it satisfies adaptive extractable soundness (Def. 17) and
the following properties.

Definition 28 (Completeness). An extendable non-interactive proof
system forRt is complete if ∀λ ∈ N, gk← Gen(1λ), crs←$ CRSSetup(gk),
(x,w) ∈ Rt, and (Π,AUX)← Prove(crs, x, w) it holds that

Pr[PrVerify(crs, x,Π) = 1 ∧ AuxVerify(crs, x, w,AUX,Π) = 1] = 1

Definition 29 (Transformation Completeness). An extendable non-
interactive proof system for Rt is transformation complete if ∀λ ∈ N,
gk ← Gen(1λ), crs ←$ CRSSetup(gk), (x,w) ∈ Rt, and (Π,AUX) such
that PrVerify(crs, x,Π) = 1 and AuxVerify(crs, x, w,AUX,Π) = 1 the
following holds with probability 1:

• AuxVerify(crs, x, w,AUX′,Π′) = 1, where (Π′, r) ← RandPr(crs,
x,Π) and AUX′ ← AuxUpdate(crs,AUX, r).

• Parse x as (k, x1, . . . , xn) and w as ((w1, α1) . . . , (wk, αk)). (Π′,
aux′)← PrAdd(crs, x, (w′, α′), aux,Π), modify AUX replacing auxα′

with aux′.

If α′ ̸∈ {α1, . . . αk}, (xα′ , w′) ∈ RL, then PrVerify(crs, (k+1, x1, . . . ,
xn),Π

′) = 1, and AuxVerify(crs, (k+1, x1, . . . , xn), ((w1, α1) . . . , (wk,
αk), (w

′, α′)),AUX,Π′) = 1.

• (Π′, auxn+1)← PrExtend(crs, x, xn+1,Π), modify AUX adding aux-
iliary value auxn+1. Then, PrVerify(crs, (k, x1, . . . , xn+1),Π

′) = 1,
and AuxVerify(crs, (k, x1, . . . , xn+1), w,AUX,Π

′) = 1.

Definition 30 (Re-Randomizable Addition). Consider the following
experiment:

23We introduce AuxVerify merely as an internal utility to simplify the description
of our definitions.

192

• gk← Gen(1λ)

• crs←$ CRSSetup(gk)

• (x,w,Π∗,AUX∗)← A(crs)

• Parse x as (k, x1, . . . , xn) and w as ((w1, α1) . . . , (wk, αk))

• If (x,w) /∈ Rt or PrVerify(crs, (k − 1, x1, . . . , xn),Π
∗) = 0 or

AuxVerify(crs, (k−1, x1, . . . , xn), ((w1, α1) . . . , (wk−1, αk−1)),AUX
∗,

Π∗) = 0 output ⊥ and abort. Otherwise, sample b←$ {0, 1} and
do the following:

– If b = 0, (Π0,AUX0)← Prove(crs, x, w); (Π, r)← RandPr(crs,
x,Π0),AUX← AuxUpdate(crs,AUX0, r)

– If b = 1, (Π1, aux
∗) ← PrAdd(crs, x, (wk, αk),AUX

∗,Π∗).
Replace in AUX∗ the value auxαk

with aux∗. (Π, r)← RandPr(
crs, x,Π1),AUX← AuxUpdate(crs,AUX∗, r)

• b′ ← A(Π,AUX)

We say that the proof system has re-randomizable addition if for every
PPT A, there exists a negligible function ν(·), such that Pr[b = b′] ≤
1/2 + ν(λ).

Definition 31 (Re-Randomizable Extension). Consider the following
experiment:

• gk← Gen(1λ)

• crs←$ CRSSetup(gk)

• (x,w, xn,Π
∗,AUX∗)← A(crs)

• Parse x as (k, x1, . . . , xn−1)

• If (x,w) /∈ Rt or PrVerify(crs, x,Π∗) = 0 or AuxVerify(crs, x, w,
AUX∗,Π∗) = 0 output ⊥ and abort. Otherwise, sample b ←$

{0, 1} and do the following:

193

– If b = 0 (Π0,AUX0)← Prove(crs, (k, x1, . . . , xn), w); (Π, r)←
RandPr(crs, (k, x1, . . . , xn),Π0),AUX← AuxUpdate(crs,AUX0,
r)

– If b = 1 (Π1, aux
∗) ← PrExtend(crs, x, xn,Π

∗). Append the
value aux∗ to AUX∗. (Π, r)← RandPr(crs, (k, x1, . . . , xn),Π1),
AUX← AuxUpdate(crs,AUX∗, r)

• b′ ← A(Π,AUX)

We say that the proof system has re-randomizable extension if for every
PPT A, there exists a negligible function ν(·), such that Pr[b = b′] ≤
1/2 + ν(λ).

Definition 32 (Extended Witness Indistinguishability). Consider the
following experiment.

• gk← Gen(1λ)

• crs←$ CRSSetup(gk)

• (x,w0, w1)← A(crs)

• Parse x as (k, x1, . . . , xn), w
i as ((wi

1, α
i
1) . . . , (w

i
k, α

i
k)), for i ∈

{0, 1}

• If (x,w0) /∈ Rt or (x,w1) /∈ Rt output ⊥ and abort. Otherwise,
sample b←$ {0, 1} and do the following:

– (Π, (aux1, . . . , auxn))← Prove(crs, x, wb).

– Set I0 = {α0
1, . . . , α

0
k}, I1 = {α1

1, . . . , α
1
k}, I = I0 ∩ I1,

S = ([n] \ (I0 ∪ I1)) ∪ I, and AUX = {auxi}i∈S.

• b′ ← A(Π,AUX)

We say that the proof system has extended witness indistinguishability
(EWI) if for every PPT A, there exists a negligible function ν(·), such
that Pr[b = b′] ≤ 1/2 + ν(λ).

194

4.2.8 Our Extendable Threshold Ring Signature

In Fig. 4.13 and Fig. 4.14, we show our ETRS from an ENIWI PoK
ENIWI for a hard relation RL, and an IND-CPA public key encryption
scheme PKE which is homomorphic w.r.t. ENIWI.AuxUpdate. By hard
relation we mean that a PPT A who is given x ∈ L, has negligible
probability of providing a witness w such (x,w) ∈ RL. We also re-
quire that RL is public coin samplable, meaning that it is possible to
efficiently sample random x ∈ L. We omit the Setup algorithm from
the description since it simply runs the setup algorithm of PKE and
samples a hash function mapping arbitrary strings into elements in
the correct space24.

Instantiating our ETRS. We work over a bilinear group gk =
(p, Ĝ, Ȟ,T, e, ĝ, ȟ) for which the SXDH assumption is believed to hold.
In Sec. 4.2.10, we show an ENIWI PoK having as base relation pairing
product equations in which all the variables are elements of Ȟ, public
constants are either paired with secret values or with ȟ, and the target
element is 0T. In particular, we can use as base relation the following:
RL = {(x = (â, b̂, ȟ), w = b′̌|â · ȟ + b̂ · b′̌ = 0T}. In Lem. 5, we prove
that this is a hard relation under the DDH assumption in Ĝ. Addi-
tionally, since in our ENIWI AuxUpdate simply consists of applying
the group operation between two elements of Ȟ, we can use ElGamal
instantiated in Ȟ as public key encryption scheme.

Remark on malicious extenders. As in [5], we do not consider
security definitions accounting for malicious signers that try to pre-
vent future signers from joining the signature. For example, in our
construction a malicious extender could just encrypt a wrong auxil-
iary value. An approach that could be investigated to tackle this issue
is adding a NIZK proving that the content of the encrypted auxiliary
values is s.t. AuxVerify = 1. Such NIZK would need to be malleable
so that it could be updated after every re-randomization step, as well
as whenever the signature is extended.

24Our ENIWI PoK is based on GS, so we need a cryptographic hash function that
allows to hash directly to both the source groups of the pairing group. See [61] for
more details.

195

On combining signatures. One might wonder if concrete instan-
tiations of our ETRS could also support the Combine operation as de-
scribed in [5]. Whenever there is a shared public key (i.e., statement)
in two ETRS, such signatures cannot be combined. Indeed, consider
the case of two proofs over the same ring where there is a common base
statement for which a corresponding witness was used in both proofs.
Then, the combined proof should not have a resulting threshold that
counts it twice. This means that the output of Combine would be dif-
ferent depending on whether two NIWI proofs on the same statement
used the same witness or not. This is in clear contradiction with the
witness indistinguishability property. On the other hand, the above
observation does not exclude the possibility of having a weaker form of
Combine where the starting signatures are constrained to have disjoint
rings. Indeed, our instantiation of Sec. 4.2.13 could be easily modified
to support the corresponding Combine operation. Such operation ex-
ploits basically the same technique of the extend operation, and thus
we omit its description.

196

Sign(m, {pki}i∈R , sk)

1 : A← ∅
2 : (crs, pkO = (x1, pk

1
e))← H(m)

3 : (pk2, . . . , pkn+1) ≪ {pki}i∈R
4 : for i ∈ [n+ 1]

5 : (xi, pk
i
e) ≪ pki

6 : (w, ske) ≪ sk

7 : if ̸ ∃xj , s.t. (xj , w) ∈ RL

8 : return ⊥
9 : Let x = (1, x1, . . . , xn, xn+1)

10 : (Π,AUX)← ENIWI.Prove(x, (w, j))

11 : for i ∈ [n+ 1]

12 : if i = j ∨ i = 1

13 : a← PKE.Enc(⊥, pkje)
14 : else

15 : a← PKE.Enc(AUX[i], pkie)

16 : A← A ∪ a

17 : return σ = (1,Π,A)

KeyGen()

1 : (pke, ske)← PKE.KeyGen()

2 : Sample (x,w) ∈ RL

3 : (pk = (x, pke), sk = (w, ske))

4 : return (pk, sk)

Verify(t,m, {pki}i∈R , σ)

1 : (crs, pkO = (x1, pk
1
e))← H(m)

2 : (pk2, . . . , pkn+1) ≪ {pki}i∈R
3 : for i ∈ [n+ 1]

4 : Parse pki = (xi, pk
i
e)

5 : Parse σ = (k,Π,A)

6 : Let x = (k, x1, . . . , xn+1)

7 : if k < t

8 : return 0

9 : else

10 : return ENIWI.PrVerify(x,Π)

Figure 4.13: ETRS from ENIWI PoK and IND-CPA homomorphic PKE.
For space reasons, we omit crs from the input of the ENIWI algorithms
and consider it as an implicit input. We use AUX[i] to indicate the
i-th element of list AUX. The symbol ≪ indicates parsing of data. In
this figure, we report the Sign,KeyGen, and Verify algorithms.

197

Extend(m,σ, {pki}i∈R , pk∗)

1 : if pk∗ ∈ {pki}i∈R return ⊥
2 : (pkO = (x1, pk

1
e))← H(m)

3 : (pk2, . . . , pkn+1) ≪ {pki}i∈R , (xn+2, pk
n+2
e) ≪ pk∗, (k,Π,A) ≪ σ

4 : (xi, pk
i
e) ≪ pki for i ∈ [n+ 1]

5 : Let x = (k, x1, . . . , xn+1)

6 : (Π, aux)← ENIWI.PrExtend(x, xn+2,Π)a←
7 : PKE.Enc(aux, pkn+2

e)

8 : A← A ∪ a, Let x̄ = (k, x1, . . . , xn+2)

9 : (Π, r1, . . . , rn+2)← ENIWI.RandPr(x̄,Π)

10 : for ai ∈ A

11 : ai ← PKE.Eval(ai, ri, pk
i
e)

12 : return σ = (k,Π,A)

Join(m, {pki}i∈R , sk, σ)

1 : (pkO = (x1, pk
1
e))← H(m)

2 : (pk2, . . . , pkn+1) ≪ {pki}i∈R
3 : (xi, pk

i
e) ≪ pki for i ∈ [n+ 1]

4 : (w, ske) ≪ sk

5 : if ̸ ∃xj , j ∈ [n+ 1] s.t (xj , w) ∈ RL

6 : return ⊥
7 : (k,Π,A) ≪ σ, (a1, . . . , an+1) ≪ A, (w, ske) ≪ sk

8 : aux← PKE.Dec(aj , ske), Let x = (k, x1, . . . , xn+1)

9 : (Π, aux′j)← ENIWI.PrAdd(x, (w, j), aux,Π)

10 : Set aj ∈ A as aj ← PKE.Enc(⊥, pkje), k ← k + 1

11 : (Π, r1, . . . , rn+1)← ENIWI.RandPr(x,Π)

12 : for ai ∈ A

13 : ai ← PKE.Eval(ai, ri, pk
i
e)

14 : return σ = (k,Π,A)

Figure 4.14: ETRS from ENIWI PoK and IND-CPA homomorphic PKE.
In this figure, we report the Extend and Join algorithms.

198

4.2.9 Security of Our Extendable Threshold Ring
Signature

We now prove the following theorem regarding the security of our
ETRS.

Theorem 2. Let ENIWI be an extendable non-interactive witness in-
distinguishable proof of knowledge for an hard relation RL, and PKE
be an IND-CPA public key encryption scheme which is homomorphic
w.r.t. ENIWI.AuxUpdate, then the scheme reported in Fig. 4.13 and
Fig. 4.14 is an extendable threshold ring signature scheme.

We will prove Thm. 2 using Lem. 6 to prove that the signature
scheme described in Fig. 4.13 and Fig. 4.14 is unforgeable and Lem. 7
to prove that such signature scheme is anonymous. For the sake of
clarity, we first give proof sketches. After that, we provide complete
proofs with detailed reductions.

Lemma 6. The signature scheme described in Fig. 4.13 and Fig. 4.14
is unforgeable according to Def. 25.

Proof sketch. The basic idea of the proof is to turn an adversary
A breaking the unforgeability with non-negligible probability into an-
other adversary B that extracts a witness for an instance x ∈ L of the
hard relation, which is sampled by a challenger C. In order to build
this reduction, we need to show how to simulate all the oracle queries
of A during the game. We do this by showing a series of hybrid games,
starting from the game described in Fig. 4.9.

The first change consists into replying to Join queries by computing
every time a new proof from scratch using ENIWI.Prove, instead of
updating the current proof using PrAdd. This change is not detected
by A thanks to the re-randomizable addition of the ENIWI.

The second change is that B can guess j∗, that is the index of the
random oracle query in which A will query the message used in the
forgery, and i∗, that is the index of a “new” signer used to create the
forgery formj∗ . We notice that, by the rules of the unforgeability game
(see checks of lines 5− 8 of the unforgeability experiment in Fig. 4.9),
this index i∗ must exist, A never makes a corruption query for i∗, and

199

it does not ask for any Sign/Join query involving i∗ on message mj∗ .
Whenever B discovers that it did not guess such indices correctly, B
aborts. Nevertheless, since these indices can be kept perfectly hidden
in A’s view, B guesses these two indices with noticeable probability.

The next change consists into programming the random oracle to
switch to an extraction-mode crs for the query on message mj∗ . Addi-
tionally, for each j ̸= j∗, we can program the random oracle to output
a pkOj

for which B knows the witness w1j s.t. (x1j , w1j) ∈ RL. Every
Join/Sign query involving the signer i∗ and a message mj, with j ̸= j∗,
is answered using w1j instead of wi∗ . This change is not detectable by
A thanks to the extended WI and the adaptive extractable soundness
of ENIWI. Indeed, extended WI guarantees that A cannot notice the
change of the used witness, and the adaptive extractable soundness
guarantees that the probability of extracting a witness for statement
xi∗ from the forgery does not change, except up to a negligible fac-
tor. Importantly, in order to reduce the indistinguishability of these
changes to these two properties of the ENIWI we take advantage of the
fact that we have a different CRS for every message. Finally, after ap-
plying all these changes, B can set xi∗ as the x received from C. Given
the forgery generated by A, B can extract a witness for statement x,
breaking the hardness of RL.

Proof. We build an adversary B that uses A to extract a witness for
an instance of RL which is sampled by a challenger C. In particular,
B replies to all oracle queries of A, including queries to the random
oracle.

We prove unforgeability via a sequence of hybrid arguments. In
each hybrid, B will change how it replies to certain queries, but in a
way s.t. A cannot detect the change. In the final hybrid, B will be
able to use a forgery from A to extract a valid witness for the instance
sampled by C.

H0: This is exactly the unforgeability game of figure Fig. 4.9.

H1: This is equivalent toH0 except that when replying to Join queries,
B uses the Prove algorithm instead of the PrAdd algorithm. Ad-
ditionally, before performing AuxUpdate, each element of A is re-
placed with a fresh encryption of the auxiliary values in output

200

of Prove algorithm. Let (k,Π0,A0) and (k,Π1,A1) the output of
a Join query in H0 and H1 respectively. If A can distinguish be-
tween the two hybrids, B can use A to break the re-randomizable
addition (Def. 30) of ENIWI. Let (Π′,AUX′) be the proof and aux-
iliary values (i.e., not encrypted) held by B before the Join query.
Let Cadd be the challenger of Def. 30. B sends (x,w,Π′,AUX′)
(B can recover x, and w from Lkeys) to Cadd and receives back
(Π,AUX). Once A asks for a join operation, B sends (k,Π,A),
where A is the encryption of the elements in AUX (again the
encryption keys are available in Lkeys). This perfectly simulates
the input of the adversary of the re-randomizable addition game
(cfr., Def. 30).

H2: This is equivalent to H1 except that B tries to guess an index
j∗ ∈ [qm], where qm is a bound on the number of random ora-
cle queries. In particular, B’s guess is that the j∗-th different
queried message will be the one w.r.t. A outputs its forgery. If
the message used by A in the forgery differs from mj∗ , then B
aborts. The probability that B does not abort in this hybrid is
at least 1

qm
.

H3: This is equivalent to H2 except that B programs the random ora-
cle on messagemj∗ to give as output a CRS crsExt s.t. (crsExt, xk)←
Ext1(gk). H3 is indistinguishable from H2 due to the adaptive
extractable soundness of ENIWI. (Def. 17). Indeed, crsExt is in-
distinguishable from a crs generated with CRSSetup, which is in
turn a random string.

H4 This is equivalent to H3 except that for every message mj, with
j ̸= j∗, B programs the random oracle to give as output a random
pkOj

= (x1j , pk
1
ej
) for which B knows w1j s.t. (x1j , w1j) ∈ RL.

Since RL is public-coin samplable, pkOj
is equally distributed in

H3 and H4.

H5: Let us consider the forgery given in output byA as (k∗,mj∗ ,R∗, (k∗,
Π∗,A∗)). Let xj∗̃ be the trapdoor statement corresponding to
message mj∗

25 and {xi}i∈R∗ be the statements corresponding to

25We use j∗̃ as a special index for the trapdoor statement related to mj∗ .

201

all the users in the ring of the forgery. For A to be admissi-
ble, there must be at least a statement xi∗ ∈ {xi}i∈R∗ ∪ {xj∗̃}
that was not involved in any corrupt query, or any Join/Sign
w.r.t. the forgery message mj∗ . If this does not hold, the checks
of the unforgeability experiment of line 8 of Fig. 4.9 cannot be
successful.

Let H5 be equivalent to H4 except that B tries to guess i∗ sam-
pling it uniformly at random from {i}i∈[qKG] ∪ {j ∗̃}, where qKG

is a polynomial bound on the number of key generation queries
that A can do. When A outputs its forgery, B uses the ex-
tractor (w1, . . . , wk∗) ← Ext2(crsExt, xk, (k

∗, {xi}i∈R∗ ∪ {xj∗̃}),
Π∗) to extract the witnesses from proof Π∗. If the extraction
fails, or none of the extracted witnesses wz, with z ∈ [k∗], is s.t.
(xi∗ , wz) ∈ RL, B aborts. Due to the adaptive extractable sound-
ness of ENIWI, the extraction fails only with negligible probabil-
ity. Thus, the probability that B does not abort in this hybrid
is at least 1

qKG+1
.

H6: This is equivalent to H5 except that every time A makes Sign or
Join queries involving i∗ for message mj ̸= mj∗ , B answers using
the witness wj

1 for the trapdoor statement x1j to compute the
proof and the auxiliary values while still encrypting ⊥ in ai∗ .
The queries for message mj = mj∗ are answered in the same
way, since no query for message mj∗ ever involves i∗.

If i∗ is equal to j ∗̃, then H5 and H6 are equally distributed since
no Sign or Join query can involve xj∗̃ by construction. Let us
consider the case for which i∗ is related to a registered key. We
now argue that H5 is indistinguishable from H6 thanks to ex-
tended WI property (Def. 32). Let us call D the distinguisher
that distinguishesH5 fromH6 with probability greater than neg-
ligible. Let AEWI be the adversary that exploits D to break the
extended WI of ENIWI against a challenger CEWI. W.l.o.g. we
consider a query OSign(mj,R, i∗) for message mj, with j ̸= j∗,
and signer index i∗. Trivially, it can be extended to any query
involving i∗.

1. AEWI chooses as statement x the public keys of the ring R,

202

AEWI chooses w0 = w1j̃
and w1 = wi∗ .

2. AEWI sends (x,w0, w1) to the challenger of extended WI
CEWI, and receives back (Π,AUX)26.

3. AEWI generates the signature starting from (Π,AUX) as in
the Sign algorithm (except for the fact that ai∗ is obtained
encrypting ⊥) and sends this signature as answer to the
query OSign(mj,R, i∗) performed by A.

4. At the end of the experiment,A outputs the forgery (k∗,mj∗ ,
R∗, (k∗,Π∗,A∗)) to AEWI.

5. AEWI runs D on input its view.AEWI returns 1 if D says that
the hybrid is H5, and 0 otherwise.

AEWI breaks the extended WI property with the same advan-
tage that D has in distinguishing the two hybrids. Therefore,
H5 and H6 are indistinguishable27. Additionally, we now ar-
gue that the probability of extracting a witness for i∗ does not
change between the two hybrids, except for a negligible quantity.
To see why this holds, let us consider an AEWI that at step 5.,
runs the extractor Ext2(crsExt, xk, (k

∗, {xi}i∈R∗ ∪ {xj∗̃}),Π∗) to
extract the witnesses (w1, . . . , wk∗) used in the forgery instead
of calling D. If the forgery contains wi∗ s.t. (xi∗ , wi∗) ∈ RL,
AEWI returns 1, and 0 otherwise. If |Pr[AEWI outputs 1|H5] −
Pr[AEWI outputs 1|H6]| > negl(λ), then AEWI would itself be a
distinguisher between the two hybrids. Therefore, since this
would break the extended WI property, we reach a contradic-
tion. Importantly, we exploit the fact that we have a different
CRS for every message. Indeed, we only switch one CRS to the
extraction mode; namely the one corresponding to the forgery
message mj∗ . This allows us to simultaneously reduce to EWI

26Notice that here AUX does not include auxi∗ and auxj̃ .
27Notice that this reduction in principle does not capture the fact that A can

perform multiple sequential queries in a single execution. Consider a modified
EWI definition with a game in which the challenger accepts multiple queries and
always replies according to the bit sampled at the beginning of the game. It
is straightforward to observe that a proof system which fulfils the regular EWI
definition also fulfils the modified EWI definition.

203

for all the queries on messages mj ̸= mj∗ , and to extract the
witnesses from the forgery on message mj∗ in order to finalize
the game as shown in the next hybrid.

H7: This is equivalent to H6 except that when prompted to gener-
ate a key pair for i∗, B would return as public key the pair
(x, pke), where x, instead of being freshly sampled, is the one
that C sent to B in the hard relation game. H6 and H7 are
equally distributed. Now, B extracts from the forgery a wit-
ness for the hard relation sampled by the challenger of the hard
relation game, thus reaching a contradiction.

Lemma 7. The signature scheme described in Fig. 4.13 and Fig. 4.14
satisfies the anonymity property of Def. 26.

Proof sketch. Through a sequence of indistinguishable hybrids, we
switch from a challenger B using lad0 to a B using lad1. We show
that at every hybrid, B can exploit A distinguishing between the two
hybrids to break some properties of the underlying primitives. First,
B changes the way it processes the ladders and replies to Join queries.
In particular, B computes every time a new proof from scratch using
ENIWI.Prove, instead of running the Join/Extend algorithms, analo-
gously to the proof of unforgeability. After that, when processing the
ladders, B will encrypt ⊥ in all signers’ ciphertexts. This change is
not detected by A thanks to the IND-CPA property of the encryption
scheme. At the end, B fixes the ladder used in the anonymity game
to be lad1. This change is unnoticeable thanks to the extended WI of
ENIWI.

Proof. H0: This is exactly the anonymous extendability game of Fig. 4.10.

H1: This is equivalent to H0 except that when running the Join al-
gorithm, B uses the Prove algorithm instead of the PrAdd al-
gorithm. Additionally, instead of performing AuxUpdate, each
element of A is replaced with a fresh encryption of the auxiliary

204

values in output of Prove algorithm. Showing that H1 is indis-
tinguishable from H0 basically mirrors the discussion of H1 in
Lem. 6.

H2: This is equivalent to H1 except that when running the Extend
algorithm in the ladder, B uses the Prove algorithm instead
of the PrExtend algorithm. Additionally, instead of performing
AuxUpdate, each element of A is replaced with a fresh encryption
of the auxiliary values in output of Prove algorithm. Showing
that H2 is indistinguishable from H1 basically mirrors the dis-
cussion for the previous hybrid, except that now we would use A
to break the re-randomizable extension property (cfr., Def. 31)
of ENIWI.

H3: This is equivalent toH2 except that, when processing the ladders,
B encrypts ⊥ in all the signers’ ciphertexts. Note that auxiliary
values are already not used at all by B at this point. Recall that
in order to win, A cannot corrupt any of the signers. This is
indistinguishable from H2 thanks to the IND-CPA property of
the encryption scheme 28.

H4: This is equivalent to H3 except that B does not sample b at ran-
dom but fixes b = 0. If b = 0 also inH3, the hybrids are identical.
Let us assume that b = 1 in H3. Let ΣHj be the challenge list
given to A at the end of Hj, with j ∈ {3, 4}. Let us denote

the i-th element of ΣHj as σ
Hj

i = (k,Π
Hj

i ,A
Hj

i), where i ∈ [l]
and l is the length of the ladders. We now argue that A cannot
distinguish H4 from H3. First, since the ladders are well-formed
all the σH3

i and σH4
i contain an ENIWI w.r.t. the same state-

ment. Let us assume A corrupted all the keys that are not in

28Let us consider an extended version of the IND-CPA game that is trivially
implied by the standard IND-CPA game. In this extended game, the adversary
A has access to a key generation and a corruption oracle. Let n be the number
of key generation queries. At the end of this step, A outputs a pair of messages
(m0,m1) and an index i. C checks that i is not corrupted, and samples a random
bit b←$ {0, 1}. C encrypts mb using public key pkie, A wins if it guesses the value
of b. Indistinguishability of H3 and H2 can be proven via a reduction to this
extended IND-CPA game through a sequence of hybrids in which one ciphertext
at a time is modified to encrypt ⊥.

205

the ladders29. Therefore, A gets to see the corresponding aux-
iliary values. As a result, an A distinguishing between H4 and
H3 would get access to two ENIWI with auxiliary values asso-
ciated to keys whose corresponding witnesses were not used in
any of the two ENIWI. In addition to that, A just gets encryp-
tions of values that are uncorrelated with the two ENIWI and
the auxiliary values. It follows that we can directly reduce the
indistinguishability between H4 and H3 to the security game of
extended witness indistinguishability (cfr., Def. 32).

Lemma 8. The signature scheme described in Fig. 4.13 and Fig. 4.14
enjoys fellow signer anonymity (cfr., Def. 27).

The proof follows essentially the same path of the one of Lem. 7.

4.2.10 Our Extendable Non-Interactive Witness
Indistinguishable Proof of Knowledge

In this section, we first show how to extend the GS proof system to
define a proof system for a threshold relation. After that, we show
how to further modify such scheme to get our ENIWI PoK.

4.2.11 GS Proofs of Partial Satisfiability

In [31, 69], it is shown how to transform n sets of certain types of
equations S1, . . . , Sn to a set of equations S ′ s.t. S ′ is satisfied when-
ever one of S1, . . . , Sn is satisfied. A witness for Si, with i ∈ [n], is
easily mapped to a witness for S ′. Indeed, this transformation realizes
a disjunction. The transformation works by assuming that S1, . . . , Sn

have independent variables, adding variables b1, . . . bn−1 ∈ {0, 1}, and
defining bn = 1 − b1 − . . . − bn−1. Then, for i ∈ [n], bi is used to
modify all the equations in Si so that they remain the same if bi = 1,
but they admit the trivial solution for bi = 0. Slightly increasing the
overhead of these compilers, it is also possible to implement partial
satisfiability proofs for an arbitrary threshold k, meaning that S ′ is

29These are the only keys A can corrupt while still being admissible.

206

satisfied iff k of S1, . . . , Sn are satisfied. To do so, the main idea is to
define bn ∈ {0, 1}, and to prove that b1 + . . .+ bn = k.

A case which is relevant to this paper is when S1, . . . , Sn contain
only PPEs with tT = 0T, all the variables of the PPEs are elements of
Ȟ, and public constants are either paired with secret values or with ȟ.
In this case, the prover would:

1. Add variables b1, . . . , bn and prove that bi ∈ {0, 1} ∀i ∈ [n]. This
can be done with quadratic equations, by adding the equations
bi(1− bi) = 0. Let us define such equations to be of type B, we
will refer to a specific equation using Bi.

2. Add variables M̂1, . . . , M̂n and prove biĝ− M̂ i = 0, with i ∈ [n].
This can be done via multi-scalar multiplication equations in Ĝ.
Since bi ∈ {0, 1}, it follows that M̂ i ∈ {0̂, ĝ}. Let us define such
equations to be of typeM.

3. Add equation
∑︁n

i=1 M̂ i · ȟ− kĝ · ȟ = 0T. Since M̂ i ∈ {0̂, ĝ}, this
equation implies that exactly k of the M̂ i, with i ∈ [n], are equal
to ĝ. Let us call such equation as K.

4. For each Si, with i ∈ [n], let Qi be the number of equations in
Si, let Ji,q be the number of variables in the equation q ∈ [Qi] of
Si. For each variable y̌i,q,j with q ∈ [Qi], j ∈ [Ji,q], define variable

x̌i,q,j and add equation M̂ i · y̌i,q,j−M̂ i · x̌i,q,j = 0T. Since k of the

M̂ i are equal to ĝ, this implies that for k equations sets it must
hold that all y̌i,q,j = x̌i,q,j. Let us define such equations to be of
type Y .

5. For each equation in each Si, replace all the original y̌i,q,j with
the corresponding x̌i,q,j. This allows to set all x̌i,q,j = y̌i,q,j = 0̌
for each set Si for which the prover does not have a satisfying
assignment. For the k sets for which the prover does have a
satisfying assignment, the prover sets y̌i,q,j = x̌i,q,j. Let us define
such equations to be of type X .

207

4.2.12 High-level Overview of our ENIWI.

We construct our ENIWI by observing that GS proofs of partial satis-
fiability can be updated in two ways:

• Extend: consider a proof Π for a set of equations S which is
satisfied if k out of n of the original equations sets S1, . . . , Sn

are satisfied. On input a new equations set Sn+1 and the proof
Π, compute a new equations set S ′ which is satisfied if k out of
the n+1 equations sets S1, . . . , Sn, Sn+1 are satisfied. Output S ′

and the corresponding updated proof Π′.

• Add: consider a proof Π for a set of equations S which is satis-
fied if k out n of the original equations sets S1, . . . , Sn are satis-
fied. On input the proof Π for S, a witness for an equations set
Si with i ∈ [n] which was not previously used to create Π, and
some corresponding auxiliary information auxi, compute a new
equations set S ′ which is satisfied if k+1 out of the n equations
sets S1, . . . , Sn are satisfied. Output S ′ and the corresponding
updated proof Π′.

In particular, one can notice that each step of the partial satisfi-
ability proof described in Sec. 4.2.11 only adds equations featuring
independent variables, except for step 3. In step 3, one equation
is added combining all variables M̂ i with i ∈ [n]. The equation is∑︁n

i=1 M̂ i · ȟ − kĝ · ȟ = 0T. Let us compute the GS proof for such
equation. Let crs be (û, v̂, ŵ, ǔ, v̌, w̌).

• Variables M̂ i are committed as group elements (i.e., with label
comĜ), thus ĉM̂ i

= e⊤M̂ i + v̂ri + ŵsi, with ri, si ←$ Zp.

• ĝ is the base element of Ĝ, thus it is publicly committed with
label baseĜ as ĉĝ = (0, ĝ)⊤.

• ȟ is the base element of Ȟ, and thus it is publicly committed
with label baseȞ as (0, ȟ).

This results in Ĉ = (ĉM̂1
, . . . , ĉM̂n

, ĉĝ), Ď = (0, ȟ), rx = (r1, . . . , rn, 0)
⊤,

sx = (s1, . . . , sn, 0)
⊤, ry = 0, sy = 0.

208

This means that π̂v̌ = −v̂α − ŵγ and π̂w̌ = −v̂β − ŵδ, with
α, γ, β, δ being random elements in Zp.

Let us compute rxΓĎ = (r1, . . . , rn, 0)
⊤(1, . . . , 1,−k)(0, ȟ) = (0,∑︁n

i=1 riȟ). Similarly, we have that sxΓĎ = (0,
∑︁n

i=1 siȟ). Let us
define auxi = (aux1i , aux

2
i) = (riȟ, siȟ). This means that π̌v̂ = rxΓĎ +

αv̌+βw̌ = (0,
∑︁n

i=1 aux
1
i)+αv̌+βw̌ and π̌ŵ = sxΓĎ+δv̌+γw̌ = (0,∑︁n

i=1 aux
2
i) + δv̌ + γw̌.

We notice that the proof elements for equation K are essentially a
sum of n independent contributions (i.e., the auxi values) for each of
the involved n variables (i.e., M̂ i with i ∈ [n]). We can exploit this
fact to perform the extend and add operations in the following way.
Let us consider the steps of Sec. 4.2.11.

• Extend: Add new equations of types B,M,Y ,X by defining
the corresponding new independent variables, and compute the
related GS proofs. Modify equation K to be

∑︁n+1
i=1 M̂ i · ȟ− kĝ ·

ȟ = 0T and update π̌v̂ and π̌ŵ as π̌v̂ = π̌v̂ + (0, rn+1ȟ), π̌ŵ =
π̌ŵ +(0, sn+1ȟ), where rn+1 and sn+1 are the randomnesses used
to commit to the new variable M̂n+1 = 0̂.

• Add: Replace the committed variables for the equations Bi,Mi,
Yi,Xi with new committed variables bi = 1, M̂ i = ĝ, and y̌i,q,j =
x̌i,q,j. Replace the old corresponding GS proofs with freshly com-

puted ones. Modify equation K to be
∑︁n

i=1 M̂ i · ȟ− (k+1)ĝ · ȟ =
0T, and update π̌v̂ and π̌ŵ as π̌v̂ = π̌v̂−(0, aux1i)+(0, r′iȟ), π̌ŵ =
π̌ŵ − (0, aux2i) + (0, s′iȟ), where r′i and s′i are the randomnesses
used for the fresh commitment to M̂ i = ĝ.

It is pretty straightforward to notice that, after any of the two
above modifications, the resulting proof is an accepting proof for the
updated threshold relation. Indeed, both the extend and add opera-
tion symbolically compute the proofs in the same way a prover for the
updated threshold relation would do from scratch.

4.2.13 Our ENIWI

We now describe our ENIWI in detail. In particular, it is an ENIWI
PoK over the language of sets of pairing product equations where all

209

the variables are elements of Ȟ, public constants are either paired with
secret values or with ȟ, and the target element is 0T. For simplicity,
we consider each statement xi as containing only one equation.

• crs← CRSSetup(gk): run GS.Setup(gk). This results in crs = (û,
v̂, ŵ, ǔ, v̌, w̌).

• (Π, (aux1, . . . , auxn))← Prove(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk,
αk))): on input ((k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))) ∈ Rt,
define A = {α1, . . . , αk}30 and do the following.

1. For each equation xi, i ∈ [n], define new variables and
equations:

– Define variable bi = 1 if i ∈ A, and bi = 0 otherwise.

– Define quadratic equation Bi as bi(1− bi) = 0.

– Define variables M̂ i = ĝ if i ∈ A, and M̂ i = 0̂ other-
wise.

– Define multi-scalar multiplication equationMi as biĝ−
M̂ i = 0.

– Let Ji be the number of variables in equation xi. For
each variable y̌i,j, with j ∈ [Ji], define a variable x̌i,j.
Set x̌i,j = y̌i,j, if i ∈ A, and x̌i,j = 0̌ otherwise.

– For each variable y̌i,j, with j ∈ [Ji], define pairing prod-

uct equation Yi,j as M̂ i · y̌i,j − M̂ i · x̌i,j = 0T.

– Modify pairing product equation xi by replacing each
variable y̌i,j, with j ∈ [Ji], with variable x̌i,j. Let us
call such modified equation Xi.

Moreover, define pairing product equation K as
∑︁n

i=1 M̂ i ·
ȟ − kĝ · ȟ = 0T. At the end of this step, there will be n
equations of types B,M,X , n

∑︁n
i=1 Ji equations of type Y ,

and one equation of type K.
2. For each equation of types B,M,Y ,X generate appropri-

ate commitments (using GS.com) to all variables, resulting

30A indicates what are the k equations the prover has a satisfying assignment
for.

210

in lists of commitments CB,CM,CY ,CX respectively31.
Then, for each equation of types B,M,Y ,X , run GS.Prove
with the obvious inputs obtaining proof elements lists πB,
πM,πY ,πX . For example, πB contains proof elements πBi,
with i ∈ [n], each of them obtained running GS.Prove for
equation Bi using commitments CBi (and related random-
nesses) from CB.

Moreover, for equation K do the following32:

– Commit to M̂ i, with i ∈ [n], with label comĜ and ran-

domness (ri, si), i.e., (comĜ, ĉM̂ i
)← GS.com(comĜ, M̂ i;

(ri, si)), resulting in ĉM̂ i
= e⊤M̂ i + v̂ri + ŵsi.

– Commit to ĝ with label baseĜ and randomness (0, 0),
i.e., (baseĜ, ĉĝ) ← GS.com(baseĜ, ĝ; (0, 0)), resulting in
ĉĝ = (0, ĝ)⊤.

– Commit to ȟ with label baseȞ and randomness (0, 0),
i.e., (baseȞ, ďȟ) ← GS.com(baseȞ, ȟ; (0, 0)), resulting in
ďȟ = (0, ȟ).

Do the following steps:

– Define Ĉ = (ĉM̂1
, . . . , ĉM̂n

, ĉĝ), Ď = (0, ȟ), rx = (r1, . . . ,
rn, 0)

⊤, sx = (s1, . . . , sn, 0)
⊤, ry = 0, sy = 0. This

means that π̂v̌ = −v̂α− ŵγ and π̂w̌ = −v̂β − ŵδ.

– Compute rxΓĎ = (r1, . . . , rn, 0)
⊤(1, . . . , 1,−k)(0, ȟ) =

(0,
∑︁n

i=1 riȟ). Similarly, we have that sxΓĎ = (0,
∑︁n

i=1

siȟ). Define auxi = (aux1i , aux
2
i) = (riȟ, siȟ), with i ∈

[n].

– Compute π̌v̂ = rxΓĎ + αv̌ + βw̌ = (0,
∑︁n

i=1 aux
1
i) +

αv̌+βw̌ and π̌ŵ = sxΓĎ+δv̌+γw̌ = (0,
∑︁n

i=1 aux
2
i)+

δv̌ + γw̌.

31Whenever different equations share the same variables, we can think of the
commitments lists as containing copies of the exact same commitments. Clearly,
in practice data does not need to be replicated.

32We report the whitebox computation of the GS prover to show how to compute
the auxiliary values. Furthermore, for sake of clarity, we report again commitments
to variables M̂ i with i ∈ [n], which were already created to prove other equations.

211

Let πK = (π̂v̌, π̂w̌, π̌v̂, π̌ŵ) and CK = (Ĉ, Ď). Output
(Π = (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK),AUX =
(aux1, . . . , auxn)).

• 0/1 ← PrVerify(crs, (k, x1, . . . , xn),Π) reconstruct equations of
type B,M,Y ,X ,K, appropriately parse Π, and for every equa-
tion run GS.PrVerify with the obvious inputs. For example, the
proof for equation Bi is verified giving, after appropriate parsing,
commitmentsCBi and proof element πBi in input to GS.PrVerify.
Return 1 iff all the calls to GS.PrVerify return 1.

• (Π′, auxn+1) ← PrExtend(crs, (k, x1, . . . , xn), xn+1,Π) do the fol-
lowing:

1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK),
AUX = (aux1, . . . , auxn).

2. For each of the 4 equation types B,M,Y ,X , add a new
equation related to xn+1 by defining the corresponding new
independent variables, bn+1 = 0, M̂n+1 = 0̂ and all the
y̌n+1,j = 0̌, with j ∈ [Jn+1].

3. Compute commitments to new variables and appropriately
add them to CB,CM,CY ,CX .

4. Compute the related new GS proofs and add them to πB,
πM,πY ,πX accordingly.

5. Parse πK as (π̂v̌, π̂w̌, π̌v̂, π̌ŵ) and update π̌v̂ and π̌ŵ as
π̌v̂ = π̌v̂ + (0, rn+1ȟ), π̌ŵ = π̌ŵ + (0, sn+1ȟ), where rn+1

and sn+1 are the randomnesses used to commit to the new
variable M̂n+1 = 0̂.

6. Set auxn+1 = (aux1n+1, aux
2
n+1) = (rn+1ȟ, sn+1ȟ).

7. Output (Π, auxn+1).

• (Π′, aux′α)← PrAdd(crs, (k, x1, . . . , xn), (w, α), aux,Π) do the fol-
lowing:

1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK).

212

2. For each of the 4 equation types B,M,Y ,X , replace the
variables in equations related to xα (i.e, Bα,Mα,Xα, and
all Yα,j with j ∈ Jα) as follows: bα = 1, M̂α = ĝ and all the
y̌α,j = x̌α,j, with j ∈ [Jα].

3. Replace the commitments related to equations Bα,Mα,Xα,
and all Yα,j, with j ∈ Jα with freshly generated ones up-
dating CB,CM,CY ,CX accordingly.

4. Replace the GS proofs related to equations Bα,Mα,Xα, and
all Yα,j with j ∈ Jα, with freshly generated ones replacing
proof elements of πB,πM,πY ,πX accordingly.

5. Parse πK as (π̂v̌, π̂w̌, π̌v̂, π̌ŵ) and update π̌v̂ and π̌ŵ as
π̌v̂ = π̌v̂−(0, aux1α)+(0, r′αȟ), π̌ŵ = π̌ŵ−(0, aux2α)+(0, s′αȟ),
where r′α and s′α are the randomnesses used for the fresh
commitment to M̂α = ĝ.

6. Set aux′α = (aux1α, aux
2
α) = (r′αȟ, s

′
αȟ).

7. Output (Π, aux′α).

• (Π′, r1, . . . , rn)← RandPr(crs, (k, x1, . . . , xn),Π):

1. Run GS.RandPr on each of the proofs, appropriately fixing
the random coins when randomizing proofs related to equa-
tions involving shared variables (i.e., s.t. we end up again
with shared variables having the exact same commitments).
Let r′i, s

′
i, with i ∈ [n] be the randomnesses used to update

commitments to all M̂ i, with i ∈ [n]. Define ri = (r′i, s
′
i).

Let randomized proof elements and commitments be con-
tained in Π′.

2. Output (Π′, r1, . . . , rn)

• aux′ ← AuxUpdate(crs, aux, r):

1. Parse r as (r′, s′), and aux as (aux1, aux2).

2. Output aux′ = (aux1 + r′ȟ, aux2 + s′ȟ).

• 0/1← AuxVerify(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk)), (aux1,
. . . , auxn),Π):

213

1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK).
Parse CK as Ĉ = (ĉM̂1

, . . . , ĉM̂n
, ĉĝ) and Ď = (0, ȟ).

2. Check that (auxα1 , . . . , auxαk
) all open (ĉM̂α1

, . . . , ĉM̂αk
) to

ĝ. Namely, check that ĉM̂ i
· (ȟ, ȟ)+ v̂ · (−aux1i ,−aux1i)+ ŵ ·

(−aux2i ,−aux2i) = (0̂, ĝ)⊤ · (ȟ, ȟ), for all i ∈ A.

3. Check that remaining auxiliary values open commitments
ĉM̂ i

with i ∈ [n] \A to 0̂. Namely, check that ĉM̂ i
· (ȟ, ȟ) +

v̂ · (−aux1i ,−aux1i)+ ŵ · (−aux2i ,−aux2i) = (0̂, 0̂)⊤ · (ȟ, ȟ), for
all i ∈ [n] \ A.

Theorem 3. If GS (cfr., Sec. 4.2.5) is a NIWI for all equation types
and a NIWI PoK for pairing product equations, then the construc-
tion above is an ENIWI PoK. The base relation RL consists of pairing
product equations in which all the variables are elements of Ȟ, public
constants are either paired with secret values or with ȟ, and the target
element is 0T.

Lemma 9. The proof system described above enjoys completeness and
transformation completeness.

Proof. Due to the completeness of GS, for honestly generated proofs
the output of PrVerify is always 1. Let us prove that the same holds
for AuxVerify. Let us consider a commitment to a group element x̂ as
ĉ = ex̂+ v̂r + ŵs with r, s←$ Zp, with corresponding auxiliary value
aux = (aux1 = rȟ, aux2 = sȟ). The check performed by AuxVerify is
the following, where x̂ ∈ {ĝ, 0̂} depends on the commitment and the
auxiliary value to be checked.

ĉ · (ȟ, ȟ) + v̂ · (−aux1,−aux1) + ŵ · (−aux2,−aux2) = (0̂, x̂)⊤ · (ȟ, ȟ)

Let us consider the left side of the above equation, we have:

[(0̂, x̂) + (rξĝ, rĝ)⊤ + (sρξĝ, sρĝ)⊤] · (ȟ, ȟ)+
(ξĝ, ĝ)⊤ · (−rȟ,−rȟ) + (ρξĝ, ρĝ)⊤ · (−sȟ,−sȟ) =
(0̂, x̂)⊤ · (ȟ, ȟ)

By observing that RandPr and AuxUpdate shift the commitments and
the auxiliary values of the same randomness, it is straightforward to

214

see that the first requirement of transformation completeness is also
satisfied. Similarly, regarding the second requirement, PrAdd just re-
places a commitment and corresponding auxiliary value with new ones
that still pass the check performed by AuxVerify. The same holds for
the third requirement, where PrExtend just adds a new commitment
with corresponding auxiliary value.

Lemma 10. The proof system described above enjoys re-randomizable
addition. (Def. 30).

Proof. Let us point out the differences between the experiment exe-
cutions with b = 0 and b = 1. In both cases, RandPr and AuxUpdate
are executed to update both the proof and the auxiliary values before
handling them to A. Let us now consider what happens to the ele-
ments of Π and AUX before the above steps. When b = 0 both Π and
AUX are freshly computed using the witness provided by A. When
b = 1 all proofs and commitments are just taken from the proof Π∗

(provided by A), excluding the ones related to variables bαk
, M̂αk

, xαk

yαk,j,for j ∈ [Jαk
], which are freshly generated.

Let us now focus on commitments ĉM̂ i
to variablesMi

ˆ , with i ∈ [n],
contained in proof Π∗. It is straightforward to observe that after run-
ning GS.RandPr, we get new commitments that are equally distributed
to randomly chosen commitments toMi

ˆ . The list AUX∗ contains group
elements satisfying the verification equations checked by AuxVerify33.
Auxiliary values are updated as random group elements of Ȟ, using the
same randomness previously used to re-randomize the commitments
(which are elements of Ĝ). Due to transformation completeness, re-
randomized commitments together with updated auxiliary values still
satisfy such equation.

Therefore, the joint distribution of commitments and auxiliary val-
ues after re-randomization and update is equally distributed to ran-
domly chosen commitments to Mi

ˆ along with corresponding auxiliary
values satisfying the verification equations checked by AuxVerify.

Finally, as already shown in previous works [21,38,72], re-randomized
proof elements (i.e, π values) are distributed as randomly chosen proof
elements from the space of all valid proof elements, given that the com-
mitments to the involved variables are fixed. Since the commitments

33We are guaranteed of that since otherwise A would not be admissible.

215

are fully re-randomized, the result is a randomly chosen proof given
a fixed solution, along with openings of the randomly chosen com-
mitments contained in the proof. This means that, for all equations
involving any of the variables Mi

ˆ with i ∈ [n], the joint distribution
of commitments, proofs elements, and AUX is identically distributed
both when b = 0 and b = 134. Finally, for all the equations not involv-
ing any of the variables Mi

ˆ with i ∈ [n], it suffices to reduce to the
re-randomizability property of GS.

Lemma 11. The proof system described above enjoys re-randomizable
extension (Def. 31).

Proof. The proof basically mirrors the one of re-randomizable addi-
tion.

Lemma 12. The proof system described above enjoys extended witness
indistinguishability (Def. 32).

Proof. Notice that the proof Π contains a tuple of commitments and
proof elements for each statement xi with i ∈ [n] (i.e., (CBi,CMi,CY i,
CX i,πBi,πMi,πY i,πX i)). Let us now consider the EWI experiment,
where A chooses a statement x = (k, x1, . . . , xn) and two witnesses w0

and w1 such that (x,w0) ∈ Rt and (x,w1) ∈ Rt. Let (Πb,AUXb) be
the output of the challenger conditioned on the value of b. We argue
that (Π0,AUX0) is indistinguishable from (Π1,AUX1).

For each of the tuples of the proof Πb, we have that either i ̸∈ S
or i ∈ S.

If i ̸∈ S, AUX does not contain any information regarding the
i-th tuple35. In this case, the i-th tuples when b = 0 and b = 1 are
indistinguishable thanks to the WI of the underlying GS proof system.

If i ∈ S, we can distinguish two additional cases: (i) i is the index
of a witness used both in w0 and in w1, and (ii) i is an index of a
statement not used in both w0 and w1.

Let i ∈ S be an index used both in w0 and w1. In this case, the
value in M̂ i is ĝ. A obtained the auxiliary value associated with M̂ i.

34In particular, note that after the invocation of PrAdd, all the proofs are ac-
cepting, including the one of equation K.

35Notice that the randomness used in different commitments is always uniformly
sampled.

216

We now consider all the elements of the i-th tuple and we argue that
they are indistinguishable in both hybrids:

1. (CBi,πBi) are indistinguishable since bi = 1 in both hybrids.

2. (CMi,πMi) are indistinguishable since M̂ i = ĝ, bi = 1 in both
hybrids;

3. Variables y̌i,q,j, x̌i,q,j may differ in the two hybrids. However, A
cannot distinguish (CY i,πY i) in the two hybrids. Indeed, the
distribution of the proof elements is uniform over all possible
terms satisfying the equation conditioned on the commitments,
and all the commitments and auxiliary values are equally dis-
tributed in both hybrids.

4. Finally, (CX i,πX i) do not involve any M̂ i, and thus they are
not related to AUX. They are indistinguishable thanks to the
WI of the underlying GS proof system.

Whenever i ∈ S is not used in both w0 and w1, we have that
M̂ i = 0̂ and AUX will contain openings to random commitments to
0̂. We notice that in the two hybrids, the entire i-th tuple is com-
puted running the GS prover on the same inputs. Therefore, they are
identically distributed.

There are two last element to take into account, namely CK and πK.
These are indistinguishable in both hybrids for the reasons previously
argued in step 3.

Lemma 13. The proof system described above enjoys adaptive ex-
tractable soundness (Def. 17).

Proof. The algorithm Ext1 just runs GS.Ext1. The algorithm Ext2 runs
GS.Ext2 for the equation K. Due to the soundness of GS proofs, and
thanks to the proofs of equations of typeM and B, we are guaranteed
to extract, except with negligible probability, k values M̂ i = ĝ. Let
A = {α1, . . . , αk : M̂α1 = . . . = M̂αk

= ĝ}. Ext2 runs GS.Ext2 for the
k equations Xαi

with αi ∈ A. Let wi be the witness extracted from
the proofs for equation Xαi

, with αi ∈ A. Due to the soundness of GS
proofs, and thanks to the proofs of equations of type Y it holds that
equations Xαi

are the same as statement xαi
, with αi ∈ A. Therefore,

w = {(w1, α1), . . . , (wk, αk)} is such that ((k, x1, . . . , xn), w) ∈ Rt.

217

Conclusion

In this thesis, we analyzed the provable security paradigm from three
angles that we denoted as the Good, the Bad, and the Ugly. With
good we denoted cryptographic protocols and primitives whose se-
curity is carefully formalized and argued according to the provable
security paradigm. With bad we denoted the bad consequences of
neglecting the design principles of provable security when building
privacy-preserving complex systems. As a very recent example of “the
bad”, we analysed the design flaws of the most widely deployed auto-
matic contact tracing system (ACT) (i.e., GAEN/DP3T) which allow
concerning privacy and integrity attacks. To this regard, our con-
tribution was two-fold as we have both elucidated the feasibility of
known and novel attacks - including the terrorist attack whose impact
has been underestimated - and we have proposed two novel ACTs
(i.e., Pronto-B2 and Pronto-C2) which are resilient to most of such at-
tacks. With ugly we denoted situations in which the provable security
paradigm could be deceiving, meaning that the approach is followed
when proposing a new cryptographic scheme/protocol, but the con-
struction may be insecure when deployed in practice. To this regard,
we considered the problem of both faulty security proofs and inade-
quate definitions that were present in recent publications in the area
of threshold cryptography. In particular, we focused on proofs over
threshold relations, threshold ring signatures, and extendable thresh-
old ring signatures. We overcame the issues of previous works by
proposing stronger definitions, new constructions, and revisited secu-
rity proofs. Additionally, our new constructions improve the previous
ones in terms of efficiency, security, and/or features.

In the area of proofs over threshold relations, a recent line of

218

work [1,124] focused on proving statements that consist of several the-
orems composed in conjunctive normal form (CNF), that is a conjunc-
tion of several disjunctive statements. A proof for a CNF statement
can be very straightforwardly obtained by running several (1, n)-PTRs
in parallel. Nevertheless, this simple approach neglects any saving (of
computation or communication) that could be obtained exploiting the
fact that the same theorems may be repeated in multiple clauses. Re-
cent works exploited this fact by modelling the statement in CNF as
a directed acyclic graph (DAG), and then running a proof about the
DAG which is much smaller than - but logically equivalent to - the
initial statement. An interesting open question is to assess whether
stacking techniques can be used to obtain further improvements, and
to analyze the case of conjunctions of (k, n)-PTRs, which has not been
the focus of any prior work.

There is a consistent body of literature works that has analyzed
several different aspects of ring signatures. Some recent works have
focused on obtaining compact ring signatures in the plain model [17],
and even from post-quantum secure assumptions [40]. Another recent
work also answered the theoretical question of building a ring signature
scheme by composing regular signature schemes in a black-box way
[29]. Being extendable threshold ring signatures a very recent notion,
such aspects have not been explored in this context yet and are an
interesting direction for future work.

219

Bibliography

[1] Masayuki Abe, Miguel Ambrona, Andrej Bogdanov, Miyako
Ohkubo, and Alon Rosen. Acyclicity programming for sigma-
protocols. In Kobbi Nissim and Brent Waters, editors,
TCC 2021: 19th Theory of Cryptography Conference, Part I,
volume 13042 of Lecture Notes in Computer Science, pages 435–
465, Raleigh, NC, USA, November 8–11, 2021. Springer, Heidel-
berg, Germany.

[2] Carlos Aguilar Melchor, Pierre-Louis Cayrel, and Philippe Ga-
borit. A new efficient threshold ring signature scheme based
on coding theory. In Johannes Buchmann and Jintai Ding,
editors, Post-quantum cryptography, second international work-
shop, PQCRYPTO 2008, pages 1–16, Cincinnati, Ohio, United
States, October 17–19, 2008. Springer, Heidelberg, Germany.

[3] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian
Cachin, Konstantinos Christidis, Angelo De Caro, David
Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic,
Sharon Weed Cocco, and Jason Yellick. Hyperledger fabric:
a distributed operating system for permissioned blockchains.
In Proceedings of the Thirteenth EuroSys Conference, EuroSys
2018, Porto, Portugal, April 23-26, 2018, pages 30:1–30:15.
ACM, 2018.

220

[4] Apple and Google. Apple and Google’s exposure notification
system. 2020. https://www.apple.com/covid19/contacttra
cing.

[5] Diego F. Aranha, Mathias Hall-Andersen, Anca Nitulescu, Elena
Pagnin, and Sophia Yakoubov. Count Me In! Extendability for
Threshold Ring Signatures. In Goichiro Hanaoka, Junji Shikata,
and Yohei Watanabe, editors, PKC 2022: 25th International
Conference on Theory and Practice of Public Key Cryptography,
Part II, volume 13178 of Lecture Notes in Computer Science,
pages 379–406. Springer, Heidelberg, Germany, 2022.

[6] Wikipedia Article. Pan-european privacy-preserving proximity
tracing. Wikipedia, Oct 2022. https://en.wikipedia.org/wik
i/Pan-European_Privacy-Preserving_Proximity_Tracing.

[7] Thomas Attema, Ronald Cramer, and Serge Fehr. Compress-
ing proofs of k-out-of-n partial knowledge. In Tal Malkin and
Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021,
Part IV, volume 12828 of Lecture Notes in Computer Science,
pages 65–91, Virtual Event, August 16–20, 2021. Springer, Hei-
delberg, Germany.

[8] Thomas Attema, Ronald Cramer, and Matthieu Rambaud.
Compressed Σ-protocols for bilinear group arithmetic circuits
and application to logarithmic transparent threshold signatures.
In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology – ASIACRYPT 2021, Part IV, volume 13093 of Lec-
ture Notes in Computer Science, pages 526–556, Singapore, De-
cember 6–10, 2021. Springer, Heidelberg, Germany.

[9] Benedikt Auerbach, Suvradip Chakraborty, Karen Klein,
Guillermo Pascual-Perez, Krzysztof Pietrzak, Michael Walter,
and Michelle Yeo. Inverse-sybil attacks in automated contact
tracing. In Kenneth G. Paterson, editor, Topics in Cryptology –
CT-RSA 2021, volume 12704 of Lecture Notes in Computer Sci-
ence, pages 399–421, Virtual Event, May 17–20, 2021. Springer,
Heidelberg, Germany.

221

https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
https://en.wikipedia.org/wiki/Pan-European_Privacy-Preserving_Proximity_Tracing
https://en.wikipedia.org/wiki/Pan-European_Privacy-Preserving_Proximity_Tracing

[10] Gennaro Avitabile, Vincenzo Botta, and Dario Fiore. Ex-
tendable threshold ring signatures with enhanced anonymity.
Cryptology ePrint Archive, Paper 2022/1568, 2022. https:

//eprint.iacr.org/2022/1568.

[11] Gennaro Avitabile, Vincenzo Botta, Daniele Friolo, and Ivan
Visconti. Efficient proofs of knowledge for threshold relations. In
Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard
Jensen, and Weizhi Meng, editors, ESORICS 2022: 27th Euro-
pean Symposium on Research in Computer Security, Part III,
volume 13556 of Lecture Notes in Computer Science, pages 42–
62, Copenhagen, Denmark, September 26–30, 2022. Springer,
Heidelberg, Germany.

[12] Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan
Visconti. Towards defeating mass surveillance and sars-cov-
2: The pronto-c2 fully decentralized automatic contact trac-
ing system. Cryptology ePrint Archive, Paper 2020/493, 2020.
https://eprint.iacr.org/2020/493.

[13] Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan
Visconti. Towards Defeating Mass Surveillance and SARS-CoV-
2: The Pronto-C2 Fully Decentralized Automatic Contact Trac-
ing System. In NDSS CoronaDef Workshop on Secure IT Tech-
nologies against COVID-19, pages 45–52, 2021.

[14] Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan
Visconti. Privacy and integrity threats in contact tracing sys-
tems and their mitigations. IEEE Internet Computing, 2022. To
appear.

[15] Gennaro Avitabile, Daniele Friolo, and Ivan Visconti. Terrorist
attacks for fake exposure notifications in contact tracing systems.
Cryptology ePrint Archive, Paper 2020/1150, 2020. https:

//eprint.iacr.org/2020/1150.

[16] Gennaro Avitabile, Daniele Friolo, and Ivan Visconti. Terrorist
attacks for fake exposure notifications in contact tracing sys-
tems. In Kazue Sako and Nils Ole Tippenhauer, editors, ACNS

222

https://eprint.iacr.org/2022/1568
https://eprint.iacr.org/2022/1568
https://eprint.iacr.org/2020/493
https://eprint.iacr.org/2020/1150
https://eprint.iacr.org/2020/1150

21: 19th International Conference on Applied Cryptography and
Network Security, Part I, volume 12726 of Lecture Notes in Com-
puter Science, pages 220–247, Kamakura, Japan, June 21–24,
2021. Springer, Heidelberg, Germany.

[17] Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Klucz-
niak, and Jonas Schneider. Ring signatures: Logarithmic-
size, no setup - from standard assumptions. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2019, Part III, volume 11478 of Lecture Notes in Com-
puter Science, pages 281–311, Darmstadt, Germany, May 19–23,
2019. Springer, Heidelberg, Germany.

[18] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter
Scholl. Mac’n’cheese: Zero-knowledge proofs for boolean and
arithmetic circuits with nested disjunctions. In Tal Malkin and
Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021,
Part IV, volume 12828 of Lecture Notes in Computer Science,
pages 92–122, Virtual Event, August 16–20, 2021. Springer, Hei-
delberg, Germany.

[19] Lars Baumgärtner, Alexandra Dmitrienko, Bernd Freisleben,
Jonas Höchst, Mira Mezini, Markus Miettinen, Thien Duc
Nguyen, Alvar Penning, Filipp Roos, Ahmad-Reza Sadeghi,
Michael Schwarz, and Christian Uhl. Mind the GAP: Security
& privacy risks of contact tracing apps. In TrustCom 2020, Se-
curity Track, pages 458–467, 2020.

[20] Johannes K Becker, David Li, and David Starobinski. Tracking
anonymized bluetooth devices. Proceedings on Privacy Enhanc-
ing Technologies, 2019(3):50–65, 2019.

[21] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf
Kohlweiss, Anna Lysyanskaya, and Hovav Shacham. Random-
izable proofs and delegatable anonymous credentials. In Shai
Halevi, editor, Advances in Cryptology – CRYPTO 2009, vol-
ume 5677 of Lecture Notes in Computer Science, pages 108–125,
Santa Barbara, CA, USA, August 16–20, 2009. Springer, Hei-
delberg, Germany.

223

[22] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Ri-
abzev. Scalable zero knowledge with no trusted setup. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lec-
ture Notes in Computer Science, pages 701–732, Santa Barbara,
CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[23] Slim Bettaieb and Julien Schrek. Improved lattice-based
threshold ring signature scheme. In Philippe Gaborit, edi-
tor, Post-Quantum Cryptography - 5th International Workshop,
PQCrypto 2013, pages 34–51, Limoges, France, June 4–7, 2013.
Springer, Heidelberg, Germany.

[24] Ward Beullens, Shuichi Katsumata, and Federico Pintore. Cala-
mari and Falafl: Logarithmic (linkable) ring signatures from iso-
genies and lattices. In Shiho Moriai and Huaxiong Wang, editors,
Advances in Cryptology – ASIACRYPT 2020, Part II, volume
12492 of Lecture Notes in Computer Science, pages 464–492,
Daejeon, South Korea, December 7–11, 2020. Springer, Heidel-
berg, Germany.

[25] Manuel Blum. How to prove a theorem so no one else can claim
it. In Proceedings of the International Congress of Mathemati-
cians, pages 1444–1451, 1987.

[26] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive
zero-knowledge and its applications (extended abstract). In 20th
Annual ACM Symposium on Theory of Computing, pages 103–
112, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[27] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham.
Aggregate and verifiably encrypted signatures from bilinear
maps. In Eli Biham, editor, Advances in Cryptology – EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Sci-
ence, pages 416–432, Warsaw, Poland, May 4–8, 2003. Springer,
Heidelberg, Germany.

[28] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam
Ghadafi, Jens Groth, and Christophe Petit. Short accountable

224

ring signatures based on DDH. In Günther Pernul, Peter Y. A.
Ryan, and Edgar R. Weippl, editors, ESORICS 2015: 20th Eu-
ropean Symposium on Research in Computer Security, Part I,
volume 9326 of Lecture Notes in Computer Science, pages 243–
265, Vienna, Austria, September 21–25, 2015. Springer, Heidel-
berg, Germany.

[29] Pedro Branco, Nico Döttling, and Stella Wohnig. Universal ring
signatures in the standard model. In Shweta Agrawal and Dong-
dai Lin, editors, Advances in Cryptology - ASIACRYPT 2022 -
28th International Conference on the Theory and Application of
Cryptology and Information Security, Taipei, Taiwan, December
5-9, 2022, Proceedings, Part IV, volume 13794 of Lecture Notes
in Computer Science, pages 249–278. Springer, 2022.

[30] Emmanuel Bresson, Jacques Stern, and Michael Szydlo. Thresh-
old ring signatures and applications to ad-hoc groups. In Moti
Yung, editor, Advances in Cryptology – CRYPTO 2002, vol-
ume 2442 of Lecture Notes in Computer Science, pages 465–480,
Santa Barbara, CA, USA, August 18–22, 2002. Springer, Hei-
delberg, Germany.

[31] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A pub-
lic key encryption scheme secure against key dependent chosen
plaintext and adaptive chosen ciphertext attacks. In Antoine
Joux, editor, Advances in Cryptology – EUROCRYPT 2009,
volume 5479 of Lecture Notes in Computer Science, pages 351–
368, Cologne, Germany, April 26–30, 2009. Springer, Heidelberg,
Germany.

[32] Ran Canetti, Oded Goldreich, and Shai Halevi. The random
oracle methodology, revisited. J. ACM, 51(4):557–594, jul 2004.

[33] Ran Canetti and Shafi Goldwasser. An efficient threshold public
key cryptosystem secure against adaptive chosen ciphertext at-
tack. In Jacques Stern, editor, Advances in Cryptology – EURO-
CRYPT’99, volume 1592 of Lecture Notes in Computer Science,
pages 90–106, Prague, Czech Republic, May 2–6, 1999. Springer,
Heidelberg, Germany.

225

[34] Ran Canetti, Yael Tauman Kalai, Anna Lysyanskaya, Ronald L.
Rivest, Adi Shamir, Emily Shen, Ari Trachtenberg, Mayank
Varia, and Daniel J. Weitzner. Privacy-preserving automated ex-
posure notification. Cryptology ePrint Archive, Paper 2020/863,
2020. https://eprint.iacr.org/2020/863.

[35] Alessandro De Carli, Muriel Figueredo Franco, A. Gassmann,
Christian Killer, Bruno Rodrigues, Eder J. Scheid, D. Schoen-
baechler, and Burkhard Stiller. Wetrace - A privacy-preserving
mobile COVID-19 tracing approach and application. CoRR,
abs/2004.08812, 2020.

[36] Wouter Castryck and Thomas Decru. An efficient key recovery
attack on sidh (preliminary version). Cryptology ePrint Archive,
Paper 2022/975, 2022. https://eprint.iacr.org/2022/975.

[37] Justin Chan, Dean P. Foster, Shyam Gollakota, Eric Horvitz,
Joseph Jaeger, Sham M. Kakade, Tadayoshi Kohno, John Lang-
ford, Jonathan Larson, Sudheesh Singanamalla, Jacob E. Sun-
shine, and Stefano Tessaro. PACT: privacy sensitive pro-
tocols and mechanisms for mobile contact tracing. CoRR,
abs/2004.03544, 2020. https://arxiv.org/abs/2004.03544.

[38] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and
Sarah Meiklejohn. Malleable proof systems and applications. In
David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes
in Computer Science, pages 281–300, Cambridge, UK, April 15–
19, 2012. Springer, Heidelberg, Germany.

[39] Melissa Chase and Anna Lysyanskaya. On signatures of knowl-
edge. In Cynthia Dwork, editor, Advances in Cryptology –
CRYPTO 2006, volume 4117 of Lecture Notes in Computer Sci-
ence, pages 78–96, Santa Barbara, CA, USA, August 20–24,
2006. Springer, Heidelberg, Germany.

[40] Rohit Chatterjee, Sanjam Garg, Mohammad Hajiabadi, Dak-
shita Khurana, Xiao Liang, Giulio Malavolta, Omkant Pandey,
and Sina Shiehian. Compact ring signatures from learning with

226

https://eprint.iacr.org/2020/863
https://eprint.iacr.org/2022/975
https://arxiv.org/abs/2004.03544

errors. In Tal Malkin and Chris Peikert, editors, Advances in
Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture
Notes in Computer Science, pages 282–312, Virtual Event, Au-
gust 16–20, 2021. Springer, Heidelberg, Germany.

[41] David Chaum. Blind signature system. In David Chaum, ed-
itor, Advances in Cryptology – CRYPTO’83, page 153, Santa
Barbara, CA, USA, 1983. Plenum Press, New York, USA.

[42] David Chaum. Blind signature systems. U.S. Patent #4,759,063,
July 1988.

[43] Jiangshan Chen, Yupu Hu, Wen Gao, and Hong-Liang Li.
Lattice-based Threshold Ring Signature with Message Block
Sharing. KSII, 13(2):1003–1019, 2019.

[44] Sherman S. M. Chow, Victor K.-W. Wei, Joseph K. Liu, and
Tsz Hon Yuen. Ring signatures without random oracles. In
Ferng-Ching Lin, Der-Tsai Lee, Bao-Shuh Lin, Shiuhpyng Shieh,
and Sushil Jajodia, editors, ASIACCS 06: 1st ACM Symposium
on Information, Computer and Communications Security, pages
297–302, Taipei, Taiwan, March 21–24, 2006. ACM Press.

[45] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa
Siniscalchi, and Ivan Visconti. Online/offline OR composition
of sigma protocols. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 63–
92, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Ger-
many.

[46] Andrew Clement, Jilian Harkness, George Rain, and Laura
Tribe. Snowden surveillance archive. 2020. https://snow

denarchive.cjfe.org/greenstone/cgi-bin/library.cgi.

[47] Ronald Cramer and Ivan Damg̊ard. Zero-knowledge proofs for
finite field arithmetic; or: Can zero-knowledge be for free? In
Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98,

227

https://snowdenarchive.cjfe.org/greenstone/cgi-bin/library.cgi
https://snowdenarchive.cjfe.org/greenstone/cgi-bin/library.cgi

volume 1462 of Lecture Notes in Computer Science, pages 424–
441, Santa Barbara, CA, USA, August 23–27, 1998. Springer,
Heidelberg, Germany.

[48] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers.
Proofs of partial knowledge and simplified design of witness hid-
ing protocols. In Yvo Desmedt, editor, Advances in Cryptology –
CRYPTO’94, volume 839 of Lecture Notes in Computer Science,
pages 174–187, Santa Barbara, CA, USA, August 21–25, 1994.
Springer, Heidelberg, Germany.

[49] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A
secure and optimally efficient multi-authority election scheme.
In Walter Fumy, editor, Advances in Cryptology – EURO-
CRYPT’97, volume 1233 of Lecture Notes in Computer Science,
pages 103–118, Konstanz, Germany, May 11–15, 1997. Springer,
Heidelberg, Germany.

[50] Noel Danz, Oliver Derwisch, Anja Lehmann, Wenzel Puenter,
Marvin Stolle, and Joshua Ziemann. Provable security analy-
sis of decentralized cryptographic contact tracing. Cryptology
ePrint Archive, Report 2020/1309, 2020. https://ia.cr/2020
/1309.

[51] Whitfield Diffie and Martin Hellman. New directions in cryp-
tography. IEEE transactions on Information Theory, 22(6):644–
654, 1976.

[52] Roger Dingledine, Nick Mathewson, and Paul F. Syverson.
Tor: The second-generation onion router. In Matt Blaze, ed-
itor, USENIX Security 2004: 13th USENIX Security Sympo-
sium, pages 303–320, San Diego, CA, USA, August 9–13, 2004.
USENIX Association.

[53] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor
Shoup. Anonymous identification in ad hoc groups. In Christian
Cachin and Jan Camenisch, editors, Advances in Cryptology –
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer

228

https://ia.cr/2020/1309
https://ia.cr/2020/1309

Science, pages 609–626, Interlaken, Switzerland, May 2–6, 2004.
Springer, Heidelberg, Germany.

[54] Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In
Hugo Krawczyk, editor, PKC 2014: 17th International Confer-
ence on Theory and Practice of Public Key Cryptography, vol-
ume 8383 of Lecture Notes in Computer Science, pages 630–649,
Buenos Aires, Argentina, March 26–28, 2014. Springer, Heidel-
berg, Germany.

[55] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K.
Liu, and Dongxi Liu. Short lattice-based one-out-of-many proofs
and applications to ring signatures. In Robert H. Deng, Valérie
Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, ACNS
19: 17th International Conference on Applied Cryptography
and Network Security, volume 11464 of Lecture Notes in Com-
puter Science, pages 67–88, Bogota, Colombia, June 5–7, 2019.
Springer, Heidelberg, Germany.

[56] European Commission. Guidance on apps supporting the fight
against COVID 19 pandemic in relation to data protection. Of-
ficial Journal of the European Union, 2020. https://ec.europ
a.eu/info/sites/default/files/5_en_act_part1_v3.pdf.

[57] Antonio Faonio, Dario Fiore, Luca Nizzardo, and Claudio Sori-
ente. Subversion-resilient enhanced privacy ID. In Steven D.
Galbraith, editor, Topics in Cryptology – CT-RSA 2022, volume
13161 of Lecture Notes in Computer Science, pages 562–588, Vir-
tual Event, March 1–2, 2022. Springer, Heidelberg, Germany.

[58] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-
interactive zero knowledge proofs based on a single random
string (extended abstract). In 31st Annual Symposium on Foun-
dations of Computer Science, pages 308–317, St. Louis, MO,
USA, October 22–24, 1990. IEEE Computer Society Press.

[59] Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel
Nurtay, Lucie Abeler-Dörner, Michael Parker, David Bonsall,

229

https://ec.europa.eu/info/sites/default/files/5_en_act_part1_v3.pdf
https://ec.europa.eu/info/sites/default/files/5_en_act_part1_v3.pdf

and Christophe Fraser. Quantifying sars-cov-2 transmission sug-
gests epidemic control with digital contact tracing. Science,
368(6491):eabb6936, 2020.

[60] Amos Fiat and Adi Shamir. How to prove yourself: Practical so-
lutions to identification and signature problems. In Andrew M.
Odlyzko, editor, Advances in Cryptology – CRYPTO’86, vol-
ume 263 of Lecture Notes in Computer Science, pages 186–194,
Santa Barbara, CA, USA, August 1987. Springer, Heidelberg,
Germany.

[61] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart.
Pairings for cryptographers. Discrete Applied Mathematics,
156(16):3113–3121, 2008. Applications of Algebra to Cryptog-
raphy.

[62] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and
Gabriel Kaptchuk. Stacking Sigmas: A Framework to Com-
pose Σ-Protocols for Disjunctions. Cryptology ePrint Archive,
Report 2021/422, 2021. Version of 09 November 2021 https:

//eprint.iacr.org/archive/2021/422/20211109:180510.

[63] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and
Gabriel Kaptchuk. Stacking Sigmas: A Framework to Com-
pose Σ-Protocols for Disjunctions. Cryptology ePrint Archive,
Report 2021/422, 2022. Version of 20 October 2022 https:

//eprint.iacr.org/archive/2021/422/20221020:032739.

[64] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and
Gabriel Kaptchuk. Stacking sigmas: A framework to composeΣ-
protocols for disjunctions. In Orr Dunkelman and Stefan Dziem-
bowski, editors, Advances in Cryptology – EUROCRYPT 2022,
Part II, volume 13276 of Lecture Notes in Computer Science,
pages 458–487, Trondheim, Norway, May 30 – June 3, 2022.
Springer, Heidelberg, Germany.

[65] Oded Goldreich and Yair Oren. Definitions and properties of
zero-knowledge proof systems. Journal of Cryptology, 7(1):1–32,
December 1994.

230

https://eprint.iacr.org/archive/2021/422/20211109:180510
https://eprint.iacr.org/archive/2021/422/20211109:180510
https://eprint.iacr.org/archive/2021/422/20221020:032739
https://eprint.iacr.org/archive/2021/422/20221020:032739

[66] Google. Google: Exposure notification reference key server.
2020. https://google.github.io/exposure-notificat

ions-server/.

[67] Google and Apple. Exposure notification cryptography specifica-
tion. 2020. https://blog.google/documents/69/Exposure_

Notification_-_Cryptography_Specification_v1.2.1.pdf.

[68] Google and Apple. Google and Apple’s exposure notification
system. 2020. https://www.apple.com/covid19/contacttra
cing.

[69] Jens Groth. Simulation-sound NIZK proofs for a practical lan-
guage and constant size group signatures. In Xuejia Lai and Ke-
fei Chen, editors, Advances in Cryptology – ASIACRYPT 2006,
volume 4284 of Lecture Notes in Computer Science, pages 444–
459, Shanghai, China, December 3–7, 2006. Springer, Heidel-
berg, Germany.

[70] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs:
Or how to leak a secret and spend a coin. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, Part II, volume 9057 of Lecture Notes in Com-
puter Science, pages 253–280, Sofia, Bulgaria, April 26–30, 2015.
Springer, Heidelberg, Germany.

[71] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-
interactive zero knowledge for NP. In Serge Vaudenay, editor,
Advances in Cryptology – EUROCRYPT 2006, volume 4004 of
Lecture Notes in Computer Science, pages 339–358, St. Peters-
burg, Russia, May 28 – June 1, 2006. Springer, Heidelberg, Ger-
many.

[72] Jens Groth and Amit Sahai. Efficient non-interactive proof sys-
tems for bilinear groups. In Nigel P. Smart, editor, Advances in
Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes
in Computer Science, pages 415–432, Istanbul, Turkey, April 13–
17, 2008. Springer, Heidelberg, Germany.

231

https://google.github.io/exposure-notifications-server/
https://google.github.io/exposure-notifications-server/
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing

[73] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-
knowledge protocol fitted to security microprocessor minimizing
both trasmission and memory. In C. G. Günther, editor, Ad-
vances in Cryptology – EUROCRYPT’88, volume 330 of Lecture
Notes in Computer Science, pages 123–128, Davos, Switzerland,
May 25–27, 1988. Springer, Heidelberg, Germany.

[74] Abida Haque, Stephan Krenn, Daniel Slamanig, and Christoph
Striecks. Logarithmic-size (linkable) threshold ring signatures in
the plain model. In Goichiro Hanaoka, Junji Shikata, and Yohei
Watanabe, editors, Public-Key Cryptography – PKC 2022, pages
437–467. Springer, Heidelberg, Germany, 2022.

[75] Abida Haque and Alessandra Scafuro. Threshold ring signatures:
New definitions and post-quantum security. In Aggelos Kiayias,
Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020: 23rd International Conference on Theory and Prac-
tice of Public Key Cryptography, Part II, volume 12111 of Lec-
ture Notes in Computer Science, pages 423–452, Edinburgh, UK,
May 4–7, 2020. Springer, Heidelberg, Germany.

[76] David Heath and Vladimir Kolesnikov. Stacked garbling for dis-
junctive zero-knowledge proofs. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology – EUROCRYPT 2020,
Part III, volume 12107 of Lecture Notes in Computer Science,
pages 569–598, Zagreb, Croatia, May 10–14, 2020. Springer, Hei-
delberg, Germany.

[77] David Heath, Vladimir Kolesnikov, and Stanislav Peceny. Gar-
bling, stacked and staggered - faster k-out-of-n garbled function
evaluation. In Mehdi Tibouchi and Huaxiong Wang, editors,
Advances in Cryptology – ASIACRYPT 2021, Part II, volume
13091 of Lecture Notes in Computer Science, pages 245–274, Sin-
gapore, December 6–10, 2021. Springer, Heidelberg, Germany.

[78] Immuni Team. Immuni’s high-level description. https://gith
ub.com/immuni-app/immuni-documentation, 2020. Accessed:
2020-08-23.

232

https://github.com/immuni-app/immuni-documentation
https://github.com/immuni-app/immuni-documentation

[79] Inria PRIVATICS Team. DESIRE: A Third Way for a European
Exposure Notification System. https://github.com/3rd-way

s-for-EU-exposure-notification/project-DESIRE/blob/m

aster/DESIRE-specification-EN-v1_0.pdf, 2020. Accessed:
2020-06-03.

[80] Vincenzo Iovino, Serge Vaudenay, and Martin Vuagnoux. On the
effectiveness of time travel to inject COVID-19 alerts. In Ken-
neth G. Paterson, editor, Topics in Cryptology – CT-RSA 2021,
volume 12704 of Lecture Notes in Computer Science, pages 422–
443, Virtual Event, May 17–20, 2021. Springer, Heidelberg, Ger-
many.

[81] Neal Koblitz and Alfred Menezes. Another look at “provable
security”. Cryptology ePrint Archive, Paper 2004/152, 2004.
https://eprint.iacr.org/2004/152.

[82] Franck Legendre, Mathias Humbert, Alain Mermoud, and Vin-
cent Lenders. Contact tracing: An overview of technologies and
cyber risks. CoRR, abs/2007.02806, 2020. https://arxiv.or

g/abs/2007.02806.

[83] Dough Leith and Stephen Farrell. Testing apps for COVID-19
tracing (TACT). https://down.dsg.cs.tcd.ie/tact/, 2020.
Accessed: 2020-08-23.

[84] Douglas J. Leith and Stephen Farrell. Coronavirus contact trac-
ing: evaluating the potential of using bluetooth received sig-
nal strength for proximity detection. Comput. Commun. Rev.,
50(4):66–74, 2020.

[85] Zhen Liu, Khoa Nguyen, Guomin Yang, Huaxiong Wang, and
Duncan S. Wong. A lattice-based linkable ring signature sup-
porting stealth addresses. In Kazue Sako, Steve Schneider, and
Peter Y. A. Ryan, editors, ESORICS 2019: 24th European Sym-
posium on Research in Computer Security, Part I, volume 11735
of Lecture Notes in Computer Science, pages 726–746, Luxem-
bourg, September 23–27, 2019. Springer, Heidelberg, Germany.

233

https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE/blob/master/DESIRE-specification-EN-v1_0.pdf
https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE/blob/master/DESIRE-specification-EN-v1_0.pdf
https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE/blob/master/DESIRE-specification-EN-v1_0.pdf
https://eprint.iacr.org/2004/152
https://arxiv.org/abs/2007.02806
https://arxiv.org/abs/2007.02806
https://down.dsg.cs.tcd.ie/tact/

[86] Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practi-
cal lattice-based (linkable) ring signature. In Robert H. Deng,
Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, edi-
tors, ACNS 19: 17th International Conference on Applied Cryp-
tography and Network Security, volume 11464 of Lecture Notes in
Computer Science, pages 110–130, Bogota, Colombia, June 5–7,
2019. Springer, Heidelberg, Germany.

[87] Luciano Maino and Chloe Martindale. An attack on sidh with
arbitrary starting curve. Cryptology ePrint Archive, Paper
2022/1026, 2022. https://eprint.iacr.org/2022/1026.

[88] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-
Louis, Alexander Frolov, Tyler Kell, Tyrone Lobban, Christine
Moy, Ari Juels, and Andrew Miller. Candid: Can-do decen-
tralized identity with legacy compatibility, sybil-resistance, and
accountability. In 2021 IEEE Symposium on Security and Pri-
vacy (SP), pages 1348–1366, 2021.

[89] Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge.
In Bart Preneel, editor, AFRICACRYPT 09: 2nd International
Conference on Cryptology in Africa, volume 5580 of Lecture
Notes in Computer Science, pages 272–286, Gammarth, Tunisia,
June 21–25, 2009. Springer, Heidelberg, Germany.

[90] Alexander Munch-Hansen, Claudio Orlandi, and Sophia Yak-
oubov. Stronger notions and a more efficient construction of
threshold ring signatures. In Patrick Longa and Carla Ràfols,
editors, Progress in Cryptology - LATINCRYPT 2021: 7th In-
ternational Conference on Cryptology and Information Security
in Latin America, volume 12912 of Lecture Notes in Computer
Science, pages 363–381, Bogotá, Colombia, October 6–8, 2021.
Springer, Heidelberg, Germany.

[91] Moni Naor. Deniable ring authentication. In Moti Yung, editor,
Advances in Cryptology – CRYPTO 2002, volume 2442 of Lec-
ture Notes in Computer Science, pages 481–498, Santa Barbara,
CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany.

234

https://eprint.iacr.org/2022/1026

[92] Anca Nitulescu. zk-SNARKs: A Gentle Introduction. https:

//www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf,
2020.

[93] Takeshi Okamoto, Raylin Tso, Michitomo Yamaguchi, and Eiji
Okamoto. A k-out-of-n ring signature with flexible participation
for signers. Cryptology ePrint Archive, Paper 2018/728, 2018.
https://eprint.iacr.org/2018/728.

[94] PACT Team. Decentralized privacy-preserving proximity trac-
ing. 2020. https://pact.mit.edu/wp-content/uploads/202
0/04/The-PACT-protocol-specification-ver-0.1.pdf.

[95] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann.
A multivariate based threshold ring signature scheme. Appl.
Algebra Eng. Commun. Comput., 24(3-4):255–275, 2013.

[96] Krzysztof Pietrzak. Delayed authentication: Preventing replay
and relay attacks in private contact tracing. In Karthikeyan
Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran, edi-
tors, Progress in Cryptology - INDOCRYPT 2020: 21st Interna-
tional Conference in Cryptology in India, volume 12578 of Lec-
ture Notes in Computer Science, pages 3–15, Bangalore, India,
December 13–16, 2020. Springer, Heidelberg, Germany.

[97] Benny Pinkas and Eyal Ronen. Hashomer – privacy-preserving
bluetooth based contact tracing scheme for hamagen. In Work-
shop on Secure IT Technologies against COVID-19 (Coron-
aDef), 21 February, 2021. ISBN: 1-891562-72-X.

[98] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak
a secret. In Colin Boyd, editor, Advances in Cryptology – ASI-
ACRYPT 2001, volume 2248 of Lecture Notes in Computer Sci-
ence, pages 552–565, Gold Coast, Australia, December 9–13,
2001. Springer, Heidelberg, Germany.

[99] Adam Krellenstein Rosario Gennaro and James Krellenstein.
Exposure notification system may allow for large-scale voter sup-
pression. https://static1.squarespace.com/static/5e937

235

https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://eprint.iacr.org/2018/728
https://pact.mit.edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-ver-0.1.pdf
https://pact.mit.edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-ver-0.1.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf

afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/159

8531714869/Exposure_Notification.pdf, 2020. Accessed:
2020-08-23.

[100] Antonio Russo, Antonio Fernández Anta, Maŕıa Isabel González
Vasco, and Simon Pietro Romano. Chirotonia: A scalable and
secure e-voting framework based on blockchains and linkable
ring signatures. In 2021 IEEE International Conference on
Blockchain (Blockchain), pages 417–424, 2021.

[101] Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In Gilles Brassard, editor, Advances in Cryptology –
CRYPTO’89, volume 435 of Lecture Notes in Computer Science,
pages 239–252, Santa Barbara, CA, USA, August 20–24, 1990.
Springer, Heidelberg, Germany.

[102] Otto Seiskari. Contact Tracing BLE sniffer PoC. https://gi

thub.com/oseiskar/corona-sniffer, 2020. Accessed: 2020-
06-02.

[103] Semaphore Team. Semaphore. https://semaphore.appliedz

kp.org/, 2020. Accessed: 2020-09-15.

[104] Victor Shoup. Practical threshold signatures. In Bart Preneel,
editor, Advances in Cryptology - EUROCRYPT 2000, Inter-
national Conference on the Theory and Application of Crypto-
graphic Techniques, Bruges, Belgium, May 14-18, 2000, Proceed-
ing, volume 1807 of Lecture Notes in Computer Science, pages
207–220. Springer, 2000.

[105] Swiss Federal Office of Public Health. New coronavirus: Swiss-
covid app and contact tracing. https://www.bag.admin.ch

/bag/en/home/krankheiten/ausbrueche-epidemien-pande

mien/aktuelle-ausbrueche-epidemien/novel-cov/swiss

covid-app-und-contact-tracing/datenschutzerklaeru

ng-nutzungsbedingungen.html#-11360452, 2020. Accessed:
2020-08-23.

[106] TU DARMSTADT SYSTEM SECURITY LAB, CYSEC.
TraceCORONA: Anonymous distributed contact tracing for

236

https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://github.com/oseiskar/corona-sniffer
https://github.com/oseiskar/corona-sniffer
https://semaphore.appliedzkp.org/
https://semaphore.appliedzkp.org/
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452

pandemic response. https://tracecorona.net/, 2020. Ac-
cessed: 2020-09-05.

[107] Qiang Tang. Privacy-preserving contact tracing: current solu-
tions and open questions. CoRR, abs/2004.06818, 2020. https:
//doi.org/10.48550/arXiv.2004.06818.

[108] TCNCoalition. TCN Protocol. https://github.com/TCNCoal
ition/TCN#the-tcn-protocol, 2020. Accessed: 2020-05-03.

[109] DP3T Team. DESIRE: A Practical Assessment. https://gith
ub.com/DP-3T/documents/blob/master/Security%20analy

sis/DESIRE%20-%20A%20Practical%20Assessment.pdf, 2020.
Accessed: 2020-06-01.

[110] DP3T Team. Privacy and Security Risk Evaluation of Digital
Proximity Tracing Systems. https://github.com/DP-3T/do

cuments/blob/master/Security%20analysis/Privacy%20an

d%20Security%20Attacks%20on%20Digital%20Proximity%20

Tracing%20Systems.pdf, 2020. Accessed: 2020-04-21.

[111] DP3T Team. Response to ’Analysis of DP3T: Between Scylla
and Charybdis’. https://github.com/DP-3T/documents/bl

ob/master/Security%20analysis/Response%20to%20’Analy

sis%20of%20DP3T’.pdf, 2020. Accessed: 2020-04-23.

[112] DP3T Team. Secure upload authorisation for digital proximity
tracing. https://github.com/DP-3T/documents/blob/maste
r/DP3T%20-%20Upload%20Authorisation%20Analysis%20an

d%20Guidelines.pdf, 2020. Accessed: 2020-05-03.

[113] Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, Fritz
Schmid, and Dominique Schröder. Verifiable timed linkable ring
signatures for scalable payments for monero. In Vijayalakshmi
Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and
Weizhi Meng, editors, ESORICS 2022: 27th European Sympo-
sium on Research in Computer Security, Part II, volume 13555
of Lecture Notes in Computer Science, pages 467–486, Copen-
hagen, Denmark, September 26–30, 2022. Springer, Heidelberg,
Germany.

237

https://tracecorona.net/
 https://doi.org/10.48550/arXiv.2004.06818
 https://doi.org/10.48550/arXiv.2004.06818
https://github.com/TCNCoalition/TCN#the-tcn-protocol
https://github.com/TCNCoalition/TCN#the-tcn-protocol
https://github.com/DP-3T/documents/blob/master/Security%20analysis/DESIRE%20-%20A%20Practical%20Assessment.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/DESIRE%20-%20A%20Practical%20Assessment.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/DESIRE%20-%20A%20Practical%20Assessment.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Response%20to%20'Analysis%20of%20DP3T'.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Response%20to%20'Analysis%20of%20DP3T'.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Response%20to%20'Analysis%20of%20DP3T'.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20-%20Upload%20Authorisation%20Analysis%20and%20Guidelines.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20-%20Upload%20Authorisation%20Analysis%20and%20Guidelines.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20-%20Upload%20Authorisation%20Analysis%20and%20Guidelines.pdf

[114] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Mar-
cel Salathé, James R. Larus, Wouter Lueks, Theresa Stadler,
Apostolos Pyrgelis, Daniele Antonioli, Ludovic Barman, Sylvain
Chatel, Kenneth G. Paterson, Srdjan Capkun, David A. Basin,
Jan Beutel, Dennis Jackson, Marc Roeschlin, Patrick Leu, Bart
Preneel, Nigel P. Smart, Aysajan Abidin, Seda Gurses, Michael
Veale, Cas Cremers, Michael Backes, Nils Ole Tippenhauer,
Reuben Binns, Ciro Cattuto, Alain Barrat, Dario Fiore, Manuel
Barbosa, Rui Oliveira, and José Pereira. Decentralized privacy-
preserving proximity tracing. 2020. https://github.com/DP-3
T/documents/blob/master/DP3T%20White%20Paper.pdf.

[115] Serge Vaudenay. Analysis of DP3T. Cryptology ePrint Archive,
Paper 2020/399, 2020. https://eprint.iacr.org/2020/399.

[116] Serge Vaudenay. Centralized or decentralized? the contact trac-
ing dilemma. Cryptology ePrint Archive, Paper 2020/531, 2020.
https://eprint.iacr.org/2020/531.

[117] Serge Vaudenay and Martin Vuagnoux. Analysis of swisscovid.
https://lasec.epfl.ch/people/vaudenay/swisscovid/swi

sscovid-ana.pdf, 2020. Accessed: 2020-08-23.

[118] Serge Vaudenay and Martin Vuagnoux. Swisscovid in the per-
spective of its goals. Digital Threats, 3(3), feb 2022.

[119] Ivan Visconti. Zero-knowledge proofs. In D. Pointcheval, editor,
Asymmetric Cryptography: Primitives and Protocols, chapter 3,
pages 63–80. Wiley, 2022.

[120] Zachary J. Williamson. Aztec. https://github.com/Aztec

Protocol/AZTEC/blob/master/AZTEC.pdf, 2018. Accessed:
2020-09-15.

[121] H. Yang. EC Cryptography Tutorials - Herong’s Tutorial Exam-
ples. Herong’s Tutorial Examples. Herong Yang, 2019.

[122] Tsz Hon Yuen, Joseph K. Liu, Man Ho Au, Willy Susilo,
and Jianying Zhou. Efficient Linkable and/or Threshold Ring

238

https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/531
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf

Signature Without Random Oracles. The Computer Journal,
56(4):407–421, 2013.

[123] Tsz Hon Yuen, Joseph K. Liu, Man Ho Au, Willy Susilo, and
Jianying Zhou. Efficient linkable and/or threshold ring signature
without random oracles. Comput. J., 56(4):407–421, 2013.

[124] Gongxian Zeng, Junzuo Lai, Zhengan Huang, Yu Wang, and
Zhiming Zheng. Dag-Σ: A dag-based sigma protocol for rela-
tions in CNF. In Shweta Agrawal and Dongdai Lin, editors, Ad-
vances in Cryptology - ASIACRYPT 2022 - 28th International
Conference on the Theory and Application of Cryptology and In-
formation Security, Taipei, Taiwan, December 5-9, 2022, Pro-
ceedings, Part II, volume 13792 of Lecture Notes in Computer
Science, pages 340–370. Springer, 2022.

[125] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and
Elaine Shi. Town crier: An authenticated data feed for smart
contracts. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016: 23rd Conference on Computer and Communications
Security, pages 270–282, Vienna, Austria, October 24–28, 2016.
ACM Press.

[126] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven
Goldfeder, and Ari Juels. DECO: Liberating web data using
decentralized oracles for TLS. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020:
27th Conference on Computer and Communications Security,
pages 1919–1938, Virtual Event, USA, November 9–13, 2020.
ACM Press.

[127] Fangguo Zhang and Kwangjo Kim. ID-based blind signature
and ring signature from pairings. In Yuliang Zheng, editor, Ad-
vances in Cryptology – ASIACRYPT 2002, volume 2501 of Lec-
ture Notes in Computer Science, pages 533–547, Queenstown,
New Zealand, December 1–5, 2002. Springer, Heidelberg, Ger-
many.

239

[128] Guomin Zhou, Peng Zeng, Xiaohui Yuan, Siyuan Chen, and
Kim-Kwang Raymond Choo. An Efficient Code-Based Thresh-
old Ring Signature Scheme with a Leader-Participant Model.
Secur. Commun. Networks, 2017:1–7, 2017.

[129] Guomin Zhou, Peng Zeng, Xiaohui Yuan, Siyuan Chen, and
Kim-Kwang Raymond Choo. An efficient code-based threshold
ring signature scheme with a leader-participant model. Secur.
Commun. Networks, 2017:1915239:1–1915239:7, 2017.

[130] ZkDAI Team. Zkdai. https://github.com/atvanguard/eths
ingapore-zk-dai, 2020. Accessed: 2020-09-15.

[131] ZoKrates Team. Zokrates. https://zokrates.github.io/,
2020. Accessed: 2020-09-15.

240

https://github.com/atvanguard/ethsingapore-zk-dai
https://github.com/atvanguard/ethsingapore-zk-dai
https://zokrates.github.io/

	Introduction
	Provable Security: the Good, the Bad, and the Ugly
	Our Contributions
	First Contribution: Automatic Contact Tracing
	The Response of the Scientific Community
	The Move of Apple and Google
	Security Issues of DP3T/GAEN
	Provable Security and Automatic Contact Tracing
	Security Assessments by the DP3T Team
	Our Contributions in ACTs

	Second Contribution: Threshold Cryptography
	Threshold Ring Signatures
	Proofs over Threshold Relations
	The Chase for Compact and Practical PTRs
	Extendable Threshold Ring Signatures
	 and Count-Me-In Applications
	Our Contributions in Threshold Cryptography

	Preliminaries
	Notation
	Number-theoretic Assumptions
	Cryptographic Tools
	Proof Systems

	Automatic Contact Tracing
	Brief Description of DP3T
	Related Work
	Towards Secure ACTs: Pronto-C2 and Pronto-B2
	High-Level Overview of Pronto-B2 and Pronto-C2
	Threat Model
	Privacy Attacks for Mass Surveillance
	Other Attacks
	Pronto-B2 and Pronto-C2: Design and Analysis
	Analysis of Pronto-C2
	Suggestions for a Practical Realization of our ACTs
	Disproving some DP3T's Claims
	Provable Security of our ACTs

	False Alerts Injection: the Terrorist Attack
	Terrosist Attack: Our Contribution
	Trading TEKs in GAEN Systems
	Connecting Smart Contracts to TLS Sessions
	Other Subtleties: Details

	Threshold Cryptography
	Proofs over Threshold Relations
	Related work
	Proofs over Threshold Relations: Our Contribution
	Technical Overview of GGHK21
	Our Techniques
	Threshold Ring Signatures
	On the Security Proofs of GGHK21

	Extendable Threshold Ring Signatures
	Related Work
	Our Contributions
	A Closer Look to the Results of PKC:AHNPY22
	Preliminaries
	Groth-Sahai Proofs
	Extendable Threshold Ring Signature
	Extendable Non-interactive Witness Indistinguishable Proof of Knowledge
	Our Extendable Threshold Ring Signature
	Security of Our Extendable Threshold Ring Signature
	Our Extendable Non-Interactive Witness Indistinguishable Proof of Knowledge
	GS Proofs of Partial Satisfiability
	High-level Overview of our ENIWI.
	Our ENIWI

	Conclusion

