








































Contents

1 Preface 1
1.1 Thesis contribution 3
1.2 Thesis Overview . 4

2 Notations and Definitions 7
2.1 Petri Nets (PNs) and Colored Petri Nets (CPNs) . 7
2.2 Hybrid Petri Nets (HPNs) 11

3 Issues about automated warehouse system model-
ing and control: a literature review 17
3.1 Warehouse Systems 22
3.2 Deadlocks . 24

4 Warehouse system models 27
4.1 Colored Timed Petri Net Model 27

4.1.1 CTPN Model of the IS 29
4.2 Colored Modified Hybrid Petri Net Model 34

4.2.1 Colored Modified Hybrid Petri Nets 35
4.2.2 Motivation Example 35
4.2.3 Formal definition 40
4.2.4 Model of the IS 42
4.2.5 Controller 42
4.2.6 Vehicles . 43
4.2.7 Zones . 45
4.2.8 A toy example 48
4.2.9 Branch points 49

i

4.2.10 Interface between the IS and bays 52
4.2.11 Liveness analysis 52
4.2.12 Deadlock prevention 62
4.2.13 Background 64
4.2.14 An aggregate view of the CMHPN model . . 66
4.2.15 Synthesis of deadlock prevention policy . . . 72

4.3 Conclusion and Future researches 75

5 CMHPNs Simulator 79
5.1 Simulation algorithm 79
5.2 Closed-loop system simulation 83

6 Case study 85
6.1 Plant description 86
6.2 System Performance 87
6.3 Simulations . 89

6.3.1 Simulations using a discrete model 89
6.3.2 Simulations using a hybrid model 92

6.4 Conclusions e Future researches 95

7 Identification 97
7.1 Literature review 99
7.2 Thesis contribution 103
7.3 Notations . 106

7.3.1 A preliminary result 107
7.3.2 Assumptions 109

7.4 The Algorithm . 110
7.4.1 Phase 1: System Observation 113

Choice of the input multiple sequence 115
Execution of phase 1 116

7.4.2 Phase 2: Conjecture Consistence Checking . 117
7.4.3 Phase 3: Algebraic Linear Constraint Sys-

tem Computation 117
7.4.4 Phase 4: ILP Problem Resolution 119
7.4.5 Stop Condition 120

7.5 Applications . 121
7.5.1 Example 1: the lift 121

ii

7.5.2 Example 2: the handling system 125
7.6 Conclusions and Future Researches 132

8 Table of Notations 135

Bibliography 139

iii

To my husband:
this thesis has been made because

he is able to understand before of everybody
what will be clear to the others only later.

Chapter 1

Preface

The term Discrete Event System (DES) was introduced in the
early 1980s to identify an increasingly important class of dynamic
systems in terms of their most critical feature: the fact that their
behavior is governed by discrete events occurring asynchronously
over time and solely responsible for generating state transitions.
Examples of such behavior abound in technological environments
such as computer and communication networks, automated man-
ufacturing systems, air traffic control systems, C3I (Command,
Control, Communication, and Information) systems, advanced mon-
itoring and control systems in automobiles or large buildings, intel-
ligent transportation systems, distributed software systems, mate-
rial handling systems and so forth. The operation of such environ-
ments is largely regulated by human-made rules for initiating or
terminating activities and scheduling the use of resources through
controlled events, such as hitting a keyboard key, turning a piece of
equipment “on”, or sending a message packet. In addition, there
are numerous uncontrolled randomly occurring events, such as a
spontaneous equipment failure or a packet loss, which may or may
not be observable through sensors.

DESs are particulary used in the field of the manufactured
systems, handling systems and transportation systems: even if
such system are being studying for long time, because of their
complexity, they still present many issues that attract research

2 1. Preface

interest.

In particular this dissertation focuses about handling system
modeling and DES identification.

Obtaining a good model of a system (both time-driven and
event-driven) allows to more easily execute operations as perfor-
mance analysis, control, monitoring of system evolution. However,
in some cases modeling of a system is not simple because of several
complications due to the behavior of the system or of the context
it belongs to.

As example, sometimes, especially in the context of material
handling and transportation, systems present both an event-driven
and a time-driven behavior. In all that cases a very hight accuracy
is not requested it is usual neglect the latter and “looking” at the
system as a DES (as example modeling a handling system it is
possible to be interested in knowing if a vehicle is or not in a zone
of the path while it is not important to know its exactly position).
When the time-driven behavior plays a fundamental role in the
obtaining the overall system performance, such dynamics can not
be neglected and they have to be explicitly modeled. This is the
case, as example, of the automated warehouse systems, where the
handling subsystem, as will be shown in the rest of this disser-
tation, presents time-driven dynamics that greatly influence the
warehouse’s performance. Consequently a new way to model the
system behavior has to be used.

However, there are situation in which the difficult issue is not
choosing the right formalism to model the system but it is the
modeling itself.

This is typical in many practical contexts, where it can occur
that one has to work with unknown ready made systems and no
documentation about their behavior is available, or the model of a
very complex system is needed. In these and other cases modeling
becomes hard and another way to obtain the model of the system
is needed: automated identification can be the solution.

1.1. Thesis contribution 3

1.1 Thesis contribution

In the modeling environment, contribution of this thesis consists in
presenting a new methodology to obtain a model oriented to the
control and performance analysis of complex material handling
systems that is highly modular, compact and made of parameter-
ized modules.

First a discrete event model is presented and then a new for-
malism that merges the concepts of Hybrid Petri Nets and Colored
Petri Nets is introduced: the Colored Modified Hybrid Petri Nets
(CMHPNs). Hence a new CMHPN model is proposed: it allows
to model both the event nature and the continuous nature of the
system. As more, to allow the monitoring of system evolutions, a
freeware simulation tool for the CMHPNs is presented.

Finally it is shown how the CMHPN model can be used to
execute analysis and performance evaluation. Liveness analysis is
performed by means of a hybrid automaton obtained from the net
model. A deadlock prevention policy is synthesized working on an
aggregated model. To prove the effectiveness of this new formalism
an existing large automated warehouse system is presented as case
study: its CMHPNs model is used to simulate the system behavior
and to analyze the warehouse’s performance.

In the identification environments, the guidelines of a new “ac-
tive” approach to identify the model of a preexisting system is
described. The proposed preliminary algorithm identifies a free
labeled PN model on the basis of the observed output sequences
and of the modifiable input consisting of the enabled controllable
transitions set.

The main idea is to use the knowledge of the set of enabled
controllable transitions together with additional information on
the conflicting transitions to accelerate the net identification with
respect to the passive identification approaches. In particular, the
system assumes that the maximum time that must elapse from
the enabling of a transition until it fires is known and that it is
possible to detect if the system is entered in a cyclic behavior.
Using this additional information, it is possible to determine a

4 1. Preface

set of constraints to represent sequences that are not accepted
by the system. Such constraints can be used to improve the net
identification.

1.2 Thesis Overview

The thesis is organized as follow:

Chapter 2 contains a brief background on Petri Net (PN), Col-
ored PN and Hybrid PN formalisms, necessary to un-
derstand the others chapters. Because of their impor-
tance in the developing of the contribute of this thesis,
a brief literature review about the Hybrid PNs is also
presented.

Chapter 3 introduces the problem of properly modeling a com-
plex automated warehouse system and compares the
proposed approach with the related works.

Chapter 4 describes two modular, compact, scalar approaches to
model complex automated warehouse systems, the first
based on the Colored Timed PN formalism and the
second based on a new Petri net formalism that merges
the concepts of Hybrid Petri Nets and Colored Petri
Nets.

Chapter 5 presents a CMHPNs simulator that allows to design
and simulate not only the net, but also the controller,
allowing the user to create models ad hoc for several
kinds of systems.

Chapter 6 deals with results obtained simulating the behavior of
a real warehouse system.

Chapter 7 introduces the problem of the system identification.
After a review of the existent literature, the guidelines
of a new active algorithm are described.

1.2. Thesis Overview 5

Chapter 8 contains a summary table of the notations used in the
dissertation.

Chapter 2

Notations and Definitions

In this Chapter the formalisms used in this dissertation are briefly
recalled.

At first PNs are introduced. Then, a brief overview on CPNs
is furnished. For further details on PNs and on simulation of Petri
Nets (PNs), the reader can refer to [Mur89] and to [BCC07b].

Finally a background on the Hybrid Petri Nets (HPNs) is pre-
sented.

2.1 Petri Nets (PNs) and Colored Petri
Nets (CPNs)

A Place/Transition (P/T) net is a 4-tuple N = 〈P, T,Pre,Post〉,
where P is a set of w places (represented by circles), T is a set of n
transitions (represented by black bars), Pre : P × T $→ N (Post :
P×T $→ N) is the pre (post-) incidence matrix. C = Post−Pre
is the incidence matrix. The net marking is represented as a vector
m ∈ Nm. The marking of a place p is a scalar value mp ∈ N. A
transition t is enabled atm iffm ≥ Pre(·, t) and this is denoted as
m[t〉. An enabled transition t may fire yielding the marking m′ =
m + C(·, t) and this is denoted as m[t〉m′. The symbols •p (•t)
and p • (t •) are used for the pre-set and post-set of a place p ∈ P
(transition t ∈ T), respectively, e.g. •t =

{
p ∈ P | Pre(p, t))= 0

}
.

8 2. Notations and Definitions

As shown in Fig. 2.1(a), there is a structural conflict when
•ti ∩• tj)= ∅. If ti and tj are both enabled, the conflict becomes a
behavioral conflict.

Let S = 〈N,m0〉 be a Petri net system, where N is a PN and
m0 is its initial marking. Marking of S can be (partially) observ-
able. In such a case, it can be divided in m = [mO,muO], where
mO(muO) is the marking of observable (unobservable) places. We
call PO(PuO) the set of observable (unobservable) places.

A firing sequence fromm is a sequence of transitions σ = t1 . . . tk
such thatm

[
t1〉m1

[
t2〉m2 . . .

[
tk〉mk, and this is denoted asm[σ〉mk.

An enabled sequence σ is denoted as m
[
σ〉, while ti ∈ σ denotes

that the transition ti belongs to the sequence σ. The function
σ : T → N, where σ(t) represents the number of occurrences of
t in σ, is called firing count vector of the firing sequence σ. As
it has been done for the marking of a net, the firing count vector
is often denoted as a vector σ ∈ Nn. Note that, if a sequence is
made by a single transition, i.e., σ = ti, then the corresponding
firing count vector is the i-th canonical basis vector denoted as ei.

A marking m′ is said to be reachable from m0 iff there exists
a sequence σ such that m0[σ〉m′. R(N,m0) denotes the set of
reachable markings of the net system 〈N,m0〉.

A net system S is bounded if there exists a positive constant
K such that m(p) ≤ K, ∀ m(p) ∈ R(N,m0).

A net system S is live if all its transitions are live. A transition
t is live under the initial marking m0 if for every marking m
reachable from m0, it exists a sequence σ, fireable from m, which
contains transition t. In other words, whatever the net evolution,
a possibility always remains for firing t.

A PN system S = 〈N,m0〉 is said to be reversible if, for each
marking m ∈ R(N,m0), m0 is reachable from m. Thus, in a
reversible net one can always get back to the initial marking.

The reachability graph of a bounded net S = 〈N,m0〉 is a
directed graph RG such that: i) the root node of RG is the initial
marking of the net; ii) the other nodes of RG are associated to the
reachable markings of S; iii) an arc labeled t between two nodes
X and Y of RG represents that the firing of transition t leads the

2.1. Petri Nets (PNs) and Colored Petri Nets (CPNs) 9

net system from the marking associated to the X to the marking
associated to Y

A net system S = 〈N,m0〉 is bounded, live and reversible iff its
reachability graph is finite, strongly connected and each transition
t labels at least one arc [DHP+93].

All the formal definitions given for PNs can be naturally ex-
tended to Colored PNs (CPNs). Formally, a CPN is a 6-tuple
C = 〈P, T,Pre,Post,Cl,Co〉. As in PNs, P is a set of m places
(represented by circles), T is a set of n transitions (represented
by bars). Cl is the set of colors. Co: P ∪ T −→ Cl is a
color function that associates to each element in P ∪ T a non-
empty ordered set of colors in the set of possible colors Cl. Forall
p ∈ P,Co(pi) = {ai,1, ai,2, ..., ai,ui} ⊆ Cl is the ordered set of
possible colors of tokens in pi, and ui is their number. Forall
t ∈ T,Co(tj) =

{
bj,1, bj,2, ..., bj,vj

}
⊆ Cl is the ordered set of possi-

ble occurrence colors in tj, and vj is their number. For each place
pi ∈ P , the marking mi is defined as a non-negative multi-set
over Co(Pi). The mapping mi : Co(Pi) → N associates to each
possible token color in Pi a non-negative integer representing the
number of tokens of that color that is contained in the place pi.
The column vector of ui non-negative integers, whose h-th com-
ponent mpi(h) is equal to the number of tokens of color ai,h that
are contained in pi, is denoted as mpi . The marking of a CPN is
an m-dimensional column vector of multisets: m = [mp1 ...mpm]

T .
For the sake of simplicity, a token of color “c1” contained in a
place pi will be indicated with the symbol (c1).

In literature, more than one formal definition for CPNs ex-
ist, depending on how the incidence matrix and transition col-
ors are defined. In the formalism chosen in this work, matrix
entries are represented by matrices. Pre and Post are the pre-
incidence and post-incidence w × n-sized matrices, respectively.
Pre(pi, tj) is a mapping from the set of occurrence colors of tj
to a non-negative multiset over the set of colors of pi, namely,
Pre(pi, tj) : Co(tj) → N(Co(pi)), for i = 1, ..., w and j = 1, ..., n.
Pre(pi, tj) represents a matrix of ui × vj non-negative integers
whose generic element Pre(pi, tj)(h, k) is equal to the weight of

10 2. Notations and Definitions

p

t
1

t
2

(a)

p

t
1

t
2

(b)

Figure 2.1 Conflict in Petri Nets: (a) structural conflict and (b) behavioral
conflict.

1 0
0 1

1
0

p

t
1 t

2

(c
1 ,1
) (c

2 ,1
, c

2 ,2
)

(c
1
, c

2
)

(a)

1 0
0 1

1
0

p

t
1 t

2

(c
1 ,1
) (c

2 ,1
, c

2 ,2
)

(c
2
) (c

1
, c

2
)

(b)

Figure 2.2 (a) Unmarked CPN ; (b) Marked CPN.

the arc from place pi w.r.t color ai,h to transition tj w.r.t color
bj,k. Post(pi, tj) : Co(tj) → N(Co(pi)), for i = 1, ...,m and
j = 1, ..., n. Post(pi, tj) represents a matrix of ui × vj non-
negative integers whose generic element Post(pi, tj)(h, k) is equal
to the weight of the arc from transition tj w.r.t color bj,k to place
pi w.r.t color ai,h. The incidence matrix C is a m × n matrix,
whose generic element C(pi, tj) : Co(tj) → Z(Co(pi)), for i =
1, ..., w and j = 1, ..., n, is the ui × vj matrix of integer num-
bers C(pi, tj) = Post(pi, tj)−Pre(pi, tj). The concepts of pre-set
and post-set of a place p ∈ P or a transition t ∈ T are nat-
urally inherited from PNs, but colors must be also considered:
•ticj =

{
ticj ∈ T | Pre(phck, ticj))= 0

}
.

In Fig. 2.2(a) a CPN with a structural conflict is shown. it
is made up of a place p, having Co(p) = {c1, c2}, and of two
transitions, t1 and t2 with Co(t1) = c1,1 and Co(t2) = {c2,1, c2,2}.
When t1 fires, one token, corresponding to color c1,1, is removed
from place p; t2 can fire both under color c2,1 and c2,2 and when
it fires, one c2,1 or c2,2 token, respectively, is removed from p. In
Fig. 2.2(b) a token is added to the CPN in Fig. 2.2(a); notice that
the conflict is still structural (not behavioral), since no c1,1 token

2.2. Hybrid Petri Nets (HPNs) 11

is present in p and, consequently, transition t1 cannot fire.
When time is added to PNs and CPNs a time function is de-

fined, which associates to each transition ti in the case of PNs, or
to each transition color ticj in the case of CPNs, a time duration
from enabling to firing. In this case the PNs and CPNs become
TPNs and CTPNs. Notice that timed and un-timed (also said
immediate in the next) transitions will be represented with empty
filled boxes and black bars, respectively.

2.2 Hybrid Petri Nets (HPNs)

A hybrid system is defined like a system consisting of a mixture
of a continuous time system and a discrete event system (DES),
having each one an own state space. These two systems are not
independent but they influence each other. For the continuous
time system, the influence of DES results in abrupt changes in the
dynamic and can occur either as switches in the vector field or as
jumps in the state. Reversely, the continuous evolution influences
the DES one by generating events that affect the discrete states
[PL95].

A continuous system can be described by differential equations

ẋ = f(x(t),u(t), t), x(0) = x0 (2.1)

y(t) = g(x(t),u(t), t) (2.2)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector and
y ∈ Rr is the output vector. In particular, if the interest is focused
on the class of hybrid systems having autonomous commutations,
i.e. systems for which changes in the dynamic occur if an analytical
boundary condition about the instantaneous state value is reached,
the equation

ẋ = f(x(t),u(t)) (2.3)

with

f =

{
f 1(x(t),u(t)) for h(x(t)) ≤ 0
f 2(x(t),u(t)) for h(x(t)) > 0

(2.4)

12 2. Notations and Definitions

can be used, where it has been supposed the system can switch
only between two possible dynamics (f 1 and f 2) and h is the
boundary condition.

For systems having linear, time-invariant, continuous part, like
the ones treated in this thesis, each dynamic in (2.4) can be written
as:

f i(x(t),u(t)) = Ai · x(t) +Bi · u(t) (2.5)

where Ai is a constant n-order square matrix and Bi is a (n×m)-
order matrix.

To model hybrid systems behavior HPNs can be used [PL95,
GU98, DA05, DPP09].

In more general hybrid systems, switching between different
dynamics is caused not only by the boundary conditions but also
by external input events, also called exogenous events. An ex-
ogenous event, as the term suggests, is an event originating from
the outside world; by opposition, a change in internal state, as
the occurrence of a boundary condition, can be called endogenous
event or internal event. The external events can be “controllable”
(i.e. their occurrence can be forced/disabled by an external agent,
for example by a controller) or not controllable (i.e. their occur-
rence cannot be forced/disable by an external agent); an endoge-
nous event is always not controllable. When changes in dynamic
are ruled also by exogenous events, the HPNs used to model the
system behavior are said synchronized, as those used in this dis-
sertation: for these HPNs, an external event is associated with
some transitions and the firing of these transitions occurs when
the transition is enabled and the associated event occurs. Tran-
sitions whose firing is controlled by the occurrence of an external
or internal event are called “synchronized”. If the external event
is a controllable event, then also transitions synchronized to such
an event are called controllable, otherwise if a transition is syn-
chronized to an uncontrollable event, then such a transition is said
uncontrollable.

A HPN can be view as the combination of a “discrete” PN and
a “continuous” PN.

Literature about HPNs is wide: a their complete presentation

2.2. Hybrid Petri Nets (HPNs) 13





 





Figure 2.3 A basic HPN.

is given in [DA05]; in [PL95] it is shown how HPNs can be used to
describe a general hybrid system having jumps in the state space
and switches in its dynamic. Application of HPNs to oil refinery
can be found in [WZC08, WCZ09, WCCZ10].

Several variants of HPNs have been proposed. Differential
Petri Nets (DPNs) are introduced the first time in [DK98]; in these
nets the marking of a differential place may be negative as well
as the weights of arcs to or from a differential place. In [DA05],
it has been shown how the behavior of DPNs can be obtained us-
ing HPNs whose transitions firing speeds is a function of the net
marking, and for this reason they are called Modified HPNs (MH-
PNs) [DA05]. Then, it is not a limitation the use of no-negative
markings and weights, as it is done in this dissertation.

To model systems having first-order continuous behavior, which
can be studied by linear algebraic tools, Balduzzi et al. introduce
the First-Order HPNs (FOHPNs) [BGM00] and use them to model
manufacturing systems [BGS01]. In FOHPNs continuous transi-
tion firing speeds are constant values, chosen by a control agent
in a fixed range. When an event occurs, the net state changes,
and a controller can decide to vary speed values, while between
two event occurrences the firing speeds remain constant. In this
thesis firing speed values are not chosen in a fixed set but they are
function of the marking of the net.

In formal way, a HPN is a 7-tupleH = 〈P, T,Pre,Post, h, δ,ν〉
such that: P = PD

⋃
PC , with PD

⋂
PC = ∅, where PD (PC)

is the set of wd discrete (wc continuous) places, drawn like one
(two) line circles; T = TD

⋃
TC , with TD

⋂
TC = ∅, where TD

is the set of nd discrete transitions, which can be both immediate
(drawn like black bars) and timed (drawn like white bars) and TC

is the set of nc continuous transitions, drawn as a two lines boxes;

14 2. Notations and Definitions

Pre : P×T → R+ is the pre-incidence matrix; Post : P×T → R+

is the post-incidence matrix; h : P
⋃
T → {D,C}, called ”hy-

brid function”, indicates for every node whether it is a discrete
node (sets PD and TD) or a continuous one (sets PC and TC);
δ : TD → (R+)nd is the firing delay vector, whose element δi is
the firing delay associated to each discrete transition tDi : if δi = 0
then the transition tDi is immediate, else if δi > 0 then tDi is timed.
Function ν : T c → (R+)nc is the firing speed vector. Note that in
case of discrete nodes, Pre and Post assume integer positive val-
ues. The incidence matrix of the net is defined as C = Post−Pre
and it can be written as the block matrix:

C =

(
CCC CCD

CDC CDD

)
(2.6)

where CCC is the block regarding connections between continuous
nodes, CDD is the block regarding connections between discrete
nodes, CCD is the block regarding connections between continuous
places and discrete transitions and CDC is the block regarding
connections between discrete places and continuous transitions.

HPN marking is a functionm =
{
mC ,mD

}
, withmC : PC →

R+, mD : PD → N, that assigns to each continuous place a real
number and to each discrete place a nonnegative integer number
of tokens (graphically represented as black dots in the discrete
places). The notation m(τk) is used to denote the value of the
marking of the net at the instant τk. The marking of a place p at
a time τk is denoted by mp(τk). The symbols •p (•t) and p • (t •)
are used for the preset and postset of a place p ∈ P (transition
t ∈ T), respectively, e.g. •t =

{
p ∈ P |Pre(p, t) > 0

}
.

A discrete transition tD is enabled at time τk if mp(τk) ≥
Pre(p, tD), ∀p ∈ •tD. A transition tD can be either autonomous
or synchronized to a logical expression, function of an external
control input g and/or of an internal condition e. Both g and e
are boolean functions g, e : TD → {0, 1}. The former becomes
true, so generating an exogenous event, when a controller sets
to true the external event it is associated to; the latter becomes
true, so generating an endogenous event, when the internal event

2.2. Hybrid Petri Nets (HPNs) 15

it is associated to is verified. A discrete transition tD can fire if
it is enabled and the associated logical expression becomes true,
i.e. both the endogenous and the exogenous events its firing is
synchronized to occur. As for example, in a system formed by
two masses traveling along a guidepath, an internal condition can
be associated to the reaching of a threshold distance that makes
masses decelerate; an external control input for the same system
is an asynchronous stop command arriving from an external con-
troller; a logical expression can be the logic function AND between
g and e, e.g. g ∧ e.

A continuous transition tC ∈ TC is enabled at time τk if i)
mD

pD(τk) ≥ Pre(pD, tC), ∀pD ∈ •tC and ii)mC
pC (τk) ≥ 0 ∀pC ∈ •tC .

To each continuous transition tCi is associated the instantaneous
firing speed (in the following also called simply firing speed) νi:
if tCi is disabled νi = 0; when tCi is enabled νi is equal to the
maximal firing speed ν̄i, indicated near the transition. The fir-
ing of continuous transitions cannot change the marking of dis-
crete places, consequently CDC(pD, tC) = 0, ∀pD ∈ PD, thus
CDC = 0. The time derivative of the marking of a continuous

place pC ,
dmpC

dt , is called balance and it is defined as: ṁpC = I−O
where I =

∑
tCj ∈•pC Post(pC , tCj)νj is the feeding speed of the place

pC , whileO =
∑

tCk ∈pC• Pre(pC , tCk)νk is the p
C draining speed. The

evolution of the net can be described by its fundamental equation
(written in a way pointing out the continuous part and the discrete
part):

[
mC(τk)
mD(τk)

]
=

[
mC(τk−1)
mD(τk−1)

]
+

+

[
CCC CCD

0 CDD

]([
0

σ(τk)− σ(τk−1)

]
+

∫ τk
τk−1

[
ν
0

])

(2.7)

where σ(τk) : TD → Nnd is the discrete firing vector whose com-
ponent σtDi (τk) represents the number of times the discrete tran-

sition tDi is fired up to the current time τk.
For the sake of clarity, from now on the term “synchronized

transition” will not be used any more and synchronized transitions

16 2. Notations and Definitions

will be called just controllable or uncontrollable.
A basic HPN is shown in Fig. 2.3, having:

• PC =
{
p1
}
, PD =

{
p2, p3

}
;

• TC =
{
t1
}
, TD =

{
t2, t3

}
where t3 is an immediate un-

controllable discrete transition, with associated the internal
condition e3 and t2 is a discrete timed transition;

• δ =
{
δ2
}
;

• C =




−1 0 0
0 1 −1
0 −1 1



.

For basic HPNs, the maximal firing speed of continuous tran-
sitions is a constant value, but powerful modifications have been
proposed where continuous transition maximal firing speed is a
function of the input places marking, of the input vector and of
the time:

νt(τ) = f(m(τ),u(τ), τ) (2.8)

These kind of HPNs are called Modified HPNs (MHPNs).

Chapter 3

Issues about automated
warehouse system
modeling and control: a
literature review

Since 1990 a big effort has been spent to find optimal strategies
for planning and control of warehouse systems. Planning involves
long-term optimization: it usually has a day or week time horizon
and it is based on simplified models of warehouse systems and
on statistical characterization of the system performance [Van99].
Conversely, a detailed model is used for the control which performs
the short-term optimization of handling sequences, that usually
has the objective to minimize the time to complete a little number
of picking or storage operations and it is based on the current
state of the system. A general warehouse architecture consists of
a number of aisles, each one served by a crane, an Interface System
(IS) and picking positions (see Fig. 3.1).

On both sides of each aisle there is a storage rack composed
of nr rows and nk columns; moreover, as it has been said, each
aisle is served by a crane, capable of moving both vertically and
horizontally at the same time, which performs the following oper-
ations: i) picking of the Stock Unit (SU) at the input buffer/bay

18
3. Issues about automated warehouse system modeling and

control: a literature review



 

Figure 3.1 Scheme of a general warehouse architecture

of the aisle to be stored in a rack location S; ii) storage of the SU
into the assigned location S of the rack; iii) movement to location
R where a retrieval has been requested; iv) retrieval of the SU
stored in R; v) movement to the output buffer/bay of the aisle to
deposit the SU. This set of operations is called, in the warehouse
system context, a Dual Command (DC) machine cycle [GHS77],
[BW84], [HMSW87], [LdSO96]. The DC cycle can be generalized
to the case of multiple storages and retrievals for cycle.

The IS consists of vehicles which can move a number of SUs.
The vehicles move along a mono-dimensional guidepath placed
orthogonally with respect to the aisle axis. They perform picking
actions (from the aisles output bays and from the picking area
output bays) and deposit actions (into the aisles input bays and
into the picking area input bays).

The picking area represents the output point of warehouse sys-
tems. A picking bay consists of a picking location connected via
conveyors to the IS input and output interfaces, so that a SU can
be partially emptied by a human operator and then carried back
to an aisle rack location.

An input buffer represents the interface of the warehouse with
the incoming area. It is used to load full SUs in the warehouse.

A set of missions is given as input to this kind of systems. Each
mission requires that a certain quantity of an item, which can be
stored in more than one aisle, is moved to a picking bay. Hence,

19

the execution of a mission requires the choice of the SU to move
among those containing the desired item (this choice includes also
the choice of the crane since there is one crane in each aisle), the
choice of a vehicle to transfer the SU to the picking area, the choice
of the picking bay, again the choice of a vehicle to return the SU
in the storage area and the choice of the location where the SU
must be stored among those available.

The control problem consists in assigning each available re-
source (a location, a picking bay, a crane or a vehicle) to a mission.
When one resource is available for a set of missions, a conflict oc-
curs. The output of the control problem consists in determining
Who has to do What and in Which Order in a manner that a
certain objective is reached over a certain time horizon. In other
words, the control must solve these conflicts. A detailed model is
needed since it is important to detect in which order these conflicts
occur.

This thesis focuses on how to obtain a model oriented to the
control and to the performance analysis of these systems. In par-
ticular, the complexity of modern warehouse systems, like the
real one considered in Chapter 5, requires big interfaces (e.g. a
carousel, shuttles, rail guided vehicles) between cranes and pick-
ing area and so many vehicles must be used. Furthermore, when
each crane cycle involves more than one picking and deposit, the
number of SUs moved by vehicles at a time in the interface area
grows, and then a significant time is required to cover the interface
guidepath.

Discrete event systems have been proposed to obtain such a
detailed model in [ABCC05] and in [DF05].

The challenging problem is the control of the IS since the con-
trol of the cranes has been studied a lot in the literature. In a
certain sense, the control of the whole warehouse reduces to that
of the cranes if the time to cover the IS is negligible. In [ABCC05]
it is shown that a key point in the development of the warehouse
optimization is that the crane optimization can be considered inde-
pendent of the vehicle optimization if a vehicle requires a negligible
time with respect to the crane mean cycle time to reach the crane

20
3. Issues about automated warehouse system modeling and

control: a literature review

bay from a picking bay. Thus, as soon as a cycle ends, a crane can
start another cycle.

Once a crane cycle has been created (i.e. the list of locations to
visit in a single travel to store and to pick SUs), the cycle time is
deterministic and it can be analytically computed. In this disser-
tation it is assumed that the cranes work according to an extended
version of the algorithm presented by the authors in [ABCC05] to
optimize DC cycles, but the effectiveness of the approach here
presented is independent of the crane algorithm.

Note that cranes have not a discrete event behavior. The dis-
crete event behavior of an automated warehouse is caused by the
IS. The activity of the IS is more relevant when the number of vehi-
cles and the number of interface bays grows, and consequently the
stop and go state of the vehicles related to event occurrences grows
(e.g. a collision of two vehicles must be avoided, a vehicle stops
when it reaches a certain interface bay, etc.). This increases the
time to move a SU from the picking area to the aisle input bays
and reduces the crane performances independently of the crane
optimization algorithm.

Moreover, when the size of the IS grows also its continuous time
phenomena cannot be neglected. Indeed, a more precise informa-
tion about vehicles position becomes relevant. Using Petri Nets
(PNs) [Mur89] a guidepath is represented by a number of places.
These places model the presence of a vehicle in a certain zone
of the IS. The exact position in this zone is unknown. A better
precision requires many places. On the other hand, a continuous
time system allows to represent the exact position as well as the
mode changing in dynamics of vehicles (acceleration, deceleration
or constant velocity).

In this dissertation a particular warehouse layout is considered,
presented in Fig. 3.2, where the interface system is made up of a
circular path where vehicles continually turns transporting SUs.
Indeed, during the researches made to write this thesis, it has
been pointed out how such a layout is very common in several real
warehouses (as the one presented in the case study).

For such automated warehouses together with the IS, a detailed

21



 



 

 

 












 




 






Figure 3.2 Layout of a general real warehouse architecture: at the top
aisles and crane bays (blocks C1 . . . CN represent the cranes serving the

respective aisles), at the bottom picking bays, in the center Interface System
routes with running vehicles (blocks Vi, with i = 1 . . . 6 represent the

vehicles).

22
3. Issues about automated warehouse system modeling and

control: a literature review

formal model is presented. Two different approaches have been
used: first a discrete event model based on the standard Colored
Timed Petri Net (CTPN) [Jen95, HHC98] formalism is proposed,
and then the same is obtained using Hybrid Petri Nets (HPNs)
[DA01]. Difference between the two approaches is that in the first
case both picking/crane bays and the IS have a discrete event
dynamic and for this reason they are modeled as DESs; in the
second case instead the IS is modeled as a continuous system.

The both models are highly modular, compact and made of pa-
rameterized modules: the reuse of model components to model dif-
ferent warehouse systems is very easy. In the both cases the overall
system model is obtained by composing elementary modules ac-
cording to the constraints [TTV06] represented by vehicles route.
The interface with a higher level scheduler (dispatcher) is embod-
ied in the obtained model, thus allowing off-line performance eval-
uation of state-dependent dispatching control algorithms, as well
as on-line implementation of complex control algorithms which are
based on look-ahead (or what-if) techniques [HC99].

As more, the models of warehouse systems are used to obtain
a deadlock prevention policy and to evaluate the systems perfor-
mance via an experimental campaign based on simulations of a
real case study in a very efficient way.

3.1 Warehouse Systems

A lot of results are available for unit-load automated storage sys-
tems, while few results are available for other storage systems
[RRS+00, GGM10]. Moreover, there is an enormous gap between
the published warehouse research results and the practice of de-
sign and operations. As raised in [GGM10], a challenge for the
research in this field is the integration of optimization, simulation
and modeling of the full warehouse systems, not only automated
storage and retrieval systems. One of the contributions of this dis-
sertation is to show the importance of an accurate modeling and
simulation of these systems. The optimization is not the topic of

3.1. Warehouse Systems 23

this thesis, but the experimental results presented in Chapter 5
show that it is greatly influenced by the model accuracy.

In [DF05] a unique model for automated storage and retrieval
systems, comprising rail guided vehicles and narrow aisle cranes,
is proposed. In the approach presented in this dissertation, differ-
ently from [DF05] the activity of automated storage and retrieval
subsystems reduces to a timed transition modeling the time to per-
form a given cycle: the aisles and their locations are not explicitly
modeled. This allows one to obtain a model of a reasonable size for
real warehouses like the one considered in the following chapters.
Model oriented to the control of an AS/RS system is presented
in [XWW+07]. Using P/T PN, the authors first obtain a model
of the system layout, than they simplify it to have a model more
convenient for analysis and simulation. Finally, colors and tempo-
rized transitions are introduced to solve merging traffic problem of
goods on conveyors. Colors are used to indicate the SUs destina-
tions while time properly model temporized actions, as the moving
of a SU from a conveyor to another one, in this way a FIFO rule for
the passage of SUs on the conveyors is implemented. Also in this
thesis a simpler model of the system, called aggregate model (see
Chapter 4, Section 4.2.14), is used to detect the possible presence
of deadlocks, but differently from [XWW+07] deadlock prevention
is carried out by means of an opportune resource allocation policy.
In [HCL07] a modular CTPN model of an automated warehouse
is presented. Each module describes a different action in the sys-
tem (i.e. loading/unloading of a pallet on a crane, entering of a
pallet in the warehouse...) and they can be composed to describe
the warehouse overall behavior. Inhibitor arcs are used and a new
kind of node is introduced, called virtual place, to accommodate
instructions from schedulers (i.e. fixing destination of a pallet,
what shuttle reserving for move the pallet...). The model is than
implemented in a C++ code to simulate the system behavior. In
the approach presented in this dissertation, neither inhibitor arcs
nor virtual places are used. TPNs are used in [XH11] to model
a logistic warehouse on the base of its operation procedure: the
result is a modular model that can be used to simulate the flow

24
3. Issues about automated warehouse system modeling and

control: a literature review

of the operations in the system. The model presented in this the-
sis model both the logical operation procedure and the physical
layout of the system.

Using commercial simulation tools like Arena c© or Automod c©

is possible to model systems like the one presented in this thesis.
However, they are not based on a formal model, and so, they are
not enough general to be applied to every ISs. Moreover, they can
be used only to simulation purposes, while a formal model allows
to check system properties (e.g. deadlock avoidance) by formal
analysis.

Among formal modeling methodologies, an appealing approach
is the matrix-based framework proposed by [TL97]. Application
to warehouse systems can be found in [GZNL08] where a variable
dispatching rule control approach is used for operational control
issues. In the same paper it is shown that the matrix-based model
can be included into a multi-level control architecture where the
model is used to determine when a control decision has to be
taken from upper levels, and to feature operational control tasks
too. Simulation is used to tune, off-line, some parameters of the
control law. In this thesis, a similar approach is followed in a
discrete as well as in a hybrid system context.

3.2 Deadlocks

Three basic approaches have been developed (see [FZ04] and the
reference therein) for the deadlock resolution problem in auto-
mated manufacturing approach, “deadlock detection and recov-
ery”, “deadlock avoidance” and “deadlock prevention”. In the
context of Interface Systems (ISs) “deadlock prevention” or “dead-
lock avoidance” approaches must be used. Indeed, these systems
have a very hight throughput and a deadlock recovery requires a
too high price in terms of time and cost. The first one consists
either to design a system such that deadlocks will never occur or
to add a control mechanism on resource requests which prevents
deadlocks to occur [HZL12]. The second one consists in using a

3.2. Deadlocks 25

real time deadlock controller to rule the resource assignment ap-
plying look–ahead strategies.

An IS can be considered a simple guidepath-based traffic sys-
tem [RR08], like Automated Guided Vehicle (AGV) or Rail Guided
Vehicle (RGV) systems, since it consists of a number of vehicles
that travel among a number of locations, following some prede-
termined paths. However, links of this guidepath network are
unidirectional, while in general case they are bi-directional; the
motion of the vehicles on these links is unidirectional; vehicles can
travel by following pre-specified routes in the guidepath network,
while in general case they develop their route in real-time, based
on the prevailing congestion conditions in the network; idle vehi-
cles remain in the guidepath network during their idling period
moving among various links, while in general case they are moved
only to clear the way for some other vehicles or they will retire to
a particular location of the guidepath network known as the sys-
tem docking station. In [RR08] the problem of enforcing liveness
for guidepath-based traffic systems is addressed in a discrete event
context.

In [DF07] a deadlock avoidance policy is presented for a RGV
system used to load/unload the automated warehouse where the
picking area bay has infinite capacity, cranes have capacity one,
and idle vehicles remain on the guidepath link until they receive
a new mission.

The wrong management of the vehicles in ISs, when they re-
main in the guidepath network during their idling period moving
among various links, can afford a particular deadlock condition,
called “livelock”: due to the bad vehicle assignment, picking and
crane bays can become completely full. As consequence no more
exchanges with the IS can occur. While in this condition the crane
system is blocked (busy cranes are unable to unload the SUs on the
bays and for this reason they are halted at the interface points),
the IS is not: busy vehicles continue to run along the path, wait-
ing for a free position on their bay destination. The system is not
physically blocked, but no missions can be completed, energy is
lost, and vehicles continue to run.

26
3. Issues about automated warehouse system modeling and

control: a literature review

The problem of livelocks in the AGV systems in a discrete-
event context with bidirectional guidepath network, unidirectional
vehicles, zone control for avoiding collisions, and dynamic route
planning is the topic of the preliminary paper [Ros02], and it has
been generalized in [RR08]. As it has been explained before, ISs
are simpler than AGV systems: there are not bidirectional paths
and they do not have bridges between routes but (in case) only
branches. Indeed, ISs are used to decouple the warehouse and the
picking area to empty SUs as soon as possible, then the layout is
chosen as simple as possible to make transport operations fast.

As for the blocking properties, another goal of this dissertation
is to show that a livelock can occur in ISs. Moreover, it is proposed
to achieve livelock-freeness enforcing policy by enforcing deadlock-
freeness on a discrete event model properly obtained from the
hybrid one.

Chapter 4

Warehouse system models

In this chapter two modular, compact, scalar approaches to model
complex automated warehouse systems are presented.

First a discrete event model based on the standard Colored
Timed Petri Net (CTPN) [Jen95, HHC98] formalism is proposed
and then a hybrid model based on a new Petri net formalism that
merges the concepts of Hybrid Petri Nets and Colored Petri Nets
then is discussed. Both the models of the warehouse can be used
for the performance evaluation as well as for online implementation
of control algorithms.

4.1 Colored Timed Petri Net Model

In the next it will be show how the IS can be considered made up
of several interacting modules, each one with own characteristics.
To properly model each module, the concept of CTPN block is
introduced:

Definition 4.1.1. A CTPN block is a tuple B = (C, Tin, Tout)
where C is a CTPN, Tin ⊂ T is the set of the input transitions,
Tout ⊂ T is the set of output transitions and Tin ∩ Tout = ∅.
Pre(p, t) and Post(p, t) matrices are diagonal matrices ∀p ∈ P
and ∀t ∈ T , i.e. firing of a transition t w.r.t. color ch only con-
sumes ch-color tokens from •t.

28 4. Warehouse system models

Input and output transitions allow connecting CTPN blocks
together by means of dummy places. When M blocks are con-
nected together a new CTNP block B′ = (C′, T ′

in, T
′
out) is obtained

where C′ = (P ′, T ′,Pre′,Post′, Cl′, Co′) with P ′ =
(⋃M

i=1 Pi

)⋃
D,

where Pi=block i encapsulated net place set and D=set of dummy
places needed to link blocks together; T ′ =

⋃M
i=1 Ti, where Ti=

block i encapsulated net transition set; Pre′ and Post′ are the
new pre and post incidence matrices; Cl′ =

⋃M
i=1 Cli, where Cli is

the block i encapsuled net color set; T ′
in =

{
t : t ∈ Tin,i,• t = ∅

}
,

with i = 1 . . .M and Tin,i=block i input transition set; T ′
out ={

t : t ∈ Tout,i, t• = ∅
}
, with i = 1 . . .M and Tout,i=block i output

transition set.
Ways to link blocks together are:

• “1 → 1” or sequence: given two blocks B1 = (C1, Tin,1, Tout,1)
and B2 = (C2, Tin,2, Tout,2) they are connected in 1 → 1 when
a dummy place d is added such that d ∈ •tin and d ∈ t•out,
with tin ∈ Tin,2 and tout ∈ Tout,1, Co(d) = Co(tout), Co(tin) ⊆
Co(tout).

• “N → M” or hub: given N blocks Bj = (Cj, Tin,j, Tout,j),
with j = 1 . . . N , they are connected in N → M way to
the blocks Bi = (Ci, Tin,i, Tout,i), with i = 1 . . .M , when a
dummy place d is added such that d ∈ •tin,i and d ∈ t•out,j,

with tin,i ∈ Tin,i and tout,j ∈ Tout,j, Co(d) =
⋃N

j=1 Co(tout,j).
If ∃(h, k) : h)= k, Co(tin,h) ∩ Co(tin,k))= ∅ with tin,h ∈
Tin,h, tin,k ∈ Tin,k then a structural conflict between tin,h
and tin,k occurs. When N = 1,M > 1 hub connection is
called branch; if M = 1, N > 1 hub connection is called
confluence.

For each connection presented above the following conditions have
to be respected:

(i)
⋃N

i=1 Co(tin,i) ⊆
⋃N

j=1 Co(tout,j);

(ii) Pre(d, t) = 0 ∀t /∈ Tin,i and Post(d, t) = 0 ∀t /∈ Tout,j;

4.1. Colored Timed Petri Net Model 29

(iii) Pre(d, t) (Post(d, t)) is a diagonal matrix;

(iv) |•tin,i| = 1 and |t•out,i| = 1.

Proposition 4.1.1. Connecting two or more CTPN blocks to-
gether, no synchronization is introduced.

Proof. A synchronization may occur if |•t| > 1 or Pre(p,t) is not
a diagonal matrix (two tokes of different colors in the same input
place are required to enable an output transition under a certain
color).

Because of condition (iv), the first case (i.e. |•t| > 1) cannot
occur.

When connection ofM CTPN blocks is performed the resulting
pre-incidence matrix is

Pre′ =

[
Pre1 . . . Prei . . . PreM

Pre(D, T1) . . . Pre(D, Ti) . . . Pre(D,TM)

]

where Prei is the block i encapsuled net pre-incidence matrix,
Pre(D,Ti) is the weights matrix of the arcs connecting dummy
places with block i encapsuled net transitions. Since Prei(p, t)
is a diagonal matrix ∀p ∈ Pi, t ∈ Ti and since Pre(d, t) is a
diagonal matrix ∀d ∈ D, t ∈ Ti, Pre′(p, t) is still a diagonal
matrix ∀p ∈ P ′, t ∈ T ′.

4.1.1 CTPN Model of the IS

A IS consists of a unidirectional path along which vehicles move.
This path, without loss of generality, can be divided in these basic
components:

1. Elementary zone, where a unique route is possible and there
are not interfaces with other subsystems.

2. Switching zone, where more than one route is possible since
the path can branch off in different lines of travel.

3. Interface zone, where a vehicle stops to load (unload) a SU
from (to) another subsystem bay.

30 4. Warehouse system models

1 0
0 1

1
0

p

t
1 t

2

(c
1 ,1
) (c

2 ,1
, c

2 ,2
)

(c
2
) (c

1
, c

2
)

(a)

e
1

p

t
1 t

2

(c
1 ,1
)

(c
2
)

(b)

Figure 4.1 (a) Marked CPN as seen in Chapter 2; (b) Marked CPN in (a)
with simplified notation.

In this section it is shown how these components can be mod-
eled each one by a single CTPN block, so the whole IS can be
modeled by a CTPN obtained properly connecting a set of CTPN
blocks. This formalism allows an easy conflicts detection and then
it allows an easy implementation of the controllers based on dis-
patching rules. The output of dispatching rules actions is to dis-
able all the events except one. Although such controllers produce
only a locally optimal solution to the conflicts problem, they are
simple to implement and they face the possible combinatorial ex-
plosion of the control of the mission-to-resource-assignment prob-
lem.

For the sake of simplicity, with reference to Chapter 2, some
special notations are used to draw CTPNs:

• When transition occurrence colors can fire under any input
place color, no colors are indicated at transition side [see
Fig. 4.1(b)] for transition t2). If a transition occurrence color
can fire only under some specific input place colors, they will
be indicated near the transition [see Fig. 4.1(b) for transition
t1].

• If no matrix is indicated near an arc, an identity matrix I is
intended to be associated to that arc [see Fig. 4.1(b); this is
the case of the arc from place p to transition t2].

• eh near an arc from place pi to transition tj or viceversa de-
notes a column vector of size ui, with the h-th element equal
to one and the other elements equal to zero [see Fig. 4.1(b);
this is the case of the arc from place p to transition t1].

4.1. Colored Timed Petri Net Model 31



















(a)






(b)

Figure 4.2 Elementary zones module: (a) CTPN; (b) block representation.

Colors can be used to discriminate a free vehicle from a busy
one, to identify where busy vehicles are directed and to identify
a SU. SU identification is not essential in the IS since SUs are
moved according to their destination in the IS path, but it is used
to associate the crane location once a SU reaches a crane. For this
reason, each net place has as many colors as the possible vehicles
destinations plus one color that identifies an empty vehicle, but a
SU number is associated to each token.

In real automated warehouses each zone can be occupied by
just one vehicle at time: a vehicle has to halt while the next zone
is busy.

Firing time of timed transitions depends on the length of the
zone and represents the time necessary to the vehicle to cross the
zone. For the sake of simplicity, in this first approach acceleration
and deceleration have been neglected. Hence, vehicles can have
only two speeds, v = 0 when they are stopped and v = Vmax when
they are moving. With these simplifications, a IS Elementary Zone
(EZ) can be modeled like a “simple belt conveyor”. This technique
simplifies also the modelling of interface zones since crane or pick-
ing bays consist of belt conveyors.

In Fig. 4.2 the block representation of an EZ is shown: in
Fig. 4.2(a) the CTPN model is visible, while in Fig. 4.2(b) the
black-box version of the same is reported.

Switching Zones (SZs) can be modeled as shown in Fig. 4.3.
Notice that a behavioral conflict occurs every time a token is
present in the place P2 of Fig. 4.3(a), while a confluence is present
at the beginning of Fig. 4.3(c).

32 4. Warehouse system models

 



















(a)









(b)





















(c)








(d)

Figure 4.3 Switching zone: (a-b) output branch point and (c-d) input
branch point .

In EZs and SZs the occurrence color of the firing output tran-
sitions is the same of the firing input transitions, i.e. no transfor-
mation color occur in the module.

Interface Zones (IZs) between vehicles and crane (or picking)
bays can be modeled as shown in Fig. 4.4. Dotted places Me and
Mf are not part of the modules but they are resource places needed
to model the conditions for enabling the SU exchange between
picking bays and vehicles. As example, in Fig. 4.4(a) [Fig. 4.4(b)]
exchange can occur only when transition tin2 (tout2) is enabled, i.e.
when a ce(ch)-color token is in resource Me (Mf), that model the
presence of a free (busy) vehicle in the IZ. When tin2 (tout2) fires,
a ch(ce)-color token is added in Me (Mf), modeling the new state
of the vehicle. After the adding of the new token, transition tout1
can fire and the token is passed in the next zone.

Unlike EZs and SZs, occurrence color of the IZs output transi-
tion tout (tout1 for the IZ modeling passage from IS to the bay) can
be different from the occurrence color of the input transition tin1.
This occur as consequence of a change in the state of the vehicle
(from busy to free and viceversa), when an exchange with the bay
occurs.

4.1. Colored Timed Petri Net Model 33


















































(a)











(b)
























 

















(c)



 






(d)

Figure 4.4 Interface zone: (a-b) passage of SUs from bay to vehicle and
(c-d) viceversa .

In the modules introduced above there are not synchronization,
but only choices and confluences appear in SZs and IZs. As more,
if only the skeleton of the nets are considered, without considering
resources, it can be noted that the nets modeling each modules
are State Machines. In the following the state machine definition
and the liveness property are recalled.

Definition 4.1.2 (see [Mur89]). A State Machine (SM) is an or-
dinary net such that each transition t has exactly one input place
and one output place, i.e.,

∀t ∈ T,
∑

p∈P

Pre(p, t) =
∑

p∈P

Post(p, t) = 1.

Theorem 4.1.2 ([Mur89]). A state machine 〈N,m0〉 is live iif
it is strongly connected and it has at least one token in its initial
marking.

Modularity is an advantage of the CTPN model presented: it
can be adapted at several layouts just adding or removing EZs; as

34 4. Warehouse system models































(a)
























 
































 













(b)

Figure 4.5 A possible IS layout; (a) physical layout and (b) its model.

more, if a new bay or a new route is added, it can be connected
at the IS just introducing the CTPN module modeling an IZ or a
SZ respectively.

As example, in Fig. 4.5(a) a possible layout is reported. Notice
how it can be modeled in a very simple way, properly connecting
2 EZs, 2 IZs and 2 SZs, forming a closed path [Fig. 4.5(b)].

4.2 Colored Modified Hybrid Petri Net
Model

The previous CTPN model has been obtained looking to the ware-
house system as if it is made up of only discrete event subsystem.
However, when the spatial extension of this kind of systems grows,
their continuous time behaviors cannot be neglected. Indeed, a
more precise information about the position/state of the vehicles
becomes relevant. As for example, using discrete event system
formalism like PNs, a path is represented by a number of places.
Such places model the presence of a vehicle in a certain zone. The

4.2. Colored Modified Hybrid Petri Net Model 35

 

 


 





Figure 4.6 Mass system used in the example of section 4.2.2.

exact position in the zone is unknown. A better precision requires
many places. On the other hand, a continuous time system allows
to represent the exact position but the mode changing in dynamic
of vehicles (acceleration, deceleration or constant velocity) as well
as the stop and go state of the vehicles (e.g. a vehicle stops when
it reaches a certain position) would not be easily modeled. Then a
possible solution is to use a hybrid model: this allows one to model
picking and crane bays still as discrete event systems (in particu-
lar like a sequence of belt conveyors) and, contemporaneously, to
model the IS as a continuous system.

Before to present the hybrid model the Modified Colored Hy-
brid Petri Net are introduced. An example is discussed in detail
to motivate the introduction of the new formalism.

4.2.1 Colored Modified Hybrid Petri Nets

In this dissertation MHPNs where (2.8) is a linear function ofm(τ)
and u(τ) are presented. In this way, systems switching between
several linear, time-invariant, continuous dynamics can be mod-
eled. Moreover, to compact the state representation, a structured
marking is used, as proposed in [GU98] and [CPV99]. In addition,
for the whole net, colors are used to define a more compact model
of the systems. This new kind of net is named Colored MHPN
(CMHPN). Before giving its formal definition, the CMHPN for-
malism is introduced by means of a motivation example.

4.2.2 Motivation Example

Consider two unitary masses moving, without friction, along a
path with a uniformly accelerated linear motion, as shown in Fig.

36 4. Warehouse system models












 



















Figure 4.7 A MHPN model of mass i moving along a path.

4.6. Each mass state is described by position x1 and speed x2,
related each other by the following equations:

(
ẋ1
ẋ2

)
=

(
0 1
0 0

)(
x1
x2

)
+

(
0
1

)
a (4.1)

where a is the constant acceleration. Assume the masses can ac-
celerate until (Vmax − x2) = 0, and then, they continue to move
with constant speed, so (4.1) becomes:

(
ẋ1
ẋ2

)
=

(
0 1
0 0

)(
x1
Vmax

)
(4.2)

To avoid collisions, the masses regulate their speed in the man-
ner that distance between them is equal or greater than a fixed
threshold Th. Moreover, each mass has to start to decelerate if its
position x1 is equal to a certain value posi. It decelerates until its
speed is zero, then it stays stopped for a time τstopi, and then it
starts to accelerate again only if the distance with the next mass
is still greater than the threshold.

To model each mass behavior the modified HPN shown in
Fig. 4.7 can be used: the marking of place pPositon represents
the actual mass position, while the marking of place pSpeed repre-
sents its actual speed. When the mass accelerates (decelerates),

4.2. Colored Modified Hybrid Petri Net Model 37

the speed value is incremented (decremented) by transition tAcc

(tDec) with a firing speed just equal to the input value a. Position
depends on the firing speed of transition tPos, which is equal to
pSpeed marking. Note that when mpSpeed

= 0, νPos = 0 and, conse-
quently, even if tPos is still enabled, it does not change mpPosition .
Transition tAcc (tDec) can fire only when discrete place pRise (pDec)
is marked. Firing of discrete uncontrollable transition t1 (t2) is
associated to the internal condition e1 (e2) that is verified when
the vehicle reaches the maximum allowed speed value (the vehi-
cle reaches a determinate position). When t1 fires, discrete place
pConst becomes marked: both tAcc and tDec are disabled, conse-
quently the marking of pSpeed remains constant (i.e. the vehicle
runs with constant speed). Uncontrollable discrete transition t4
fires when marking x2 is equal to zero (i.e. the vehicle is stopped):
in such a case a token is put in discrete place pStop, enabling dis-
crete timed transition t3. When a time equal to the firing delay
δt3 is expired, t3 fires, enabling tAcc (i.e. the vehicle starts to move
again).

The whole system is modeled replicating the net shown in
Fig. 4.7 for each mass. To have a more compact representa-
tion colors, presented in [Jen95] and [HK98], are introduced in
the HPN model. A different color is associated to each mass, so
the system can be modeled with just one net that evolves w.r.t.
two colors. For the sake of clarity, in Fig. 4.8 the marking of a
discrete place w.r.t. the color i is indicated as ci; the marking of
the continuous places is indicated as (x1)i or (x2)i in the manner
that its meaning is still obvious to the reader. Note that now firing
speeds (both instantaneous and maximal), firing delays and logical
expressions are column vectors, of dimension equal to the colors
number. The i-th element of firing speeds (firing delays or logical
expressions) vector associated to a continuous (discrete) transition
is the firing speed (firing delay or logic expression) associated to
the transition, w.r.t. the i-th color. Moreover, two new discrete
uncontrollable transitions, t5 and t6, have been added compared
to the single mass model; these transitions manage the mass speed
when the distance between the masses violates the threshold. In-

38 4. Warehouse system models







 





      

      





















          



          






   

Figure 4.8 The use of colors in a MHPN model of two masses moving
along a path.

deed, transition t5 fires when a threshold violation occurs (internal
condition e5 is verified). Its firing enables tDec w.r.t. the appro-
priate color so that the vehicle associated to such a color begins
to decelerate. Transition t6 fires if the distance between the two
masses is greater of the threshold (internal condition e6 is verified).
Threshold violation can be managed as an internal condition as-
sociated to t5 and t6, since the model represents the behavior of
both the masses; with the uncolored model of Fig. 4.7 threshold
violation can be detected only using an external controller that,
looking at the state of the two masses, properly manages their
speeds.

Finally, using a structured continuous marking, a more com-
pact representation of the masses state can be obtained, as shown
in Fig. 4.9. Now, the two state variables are collected in a vector
which is the marking of the new place pMass. This place is ob-
tained by the fusion of pPosition and pSpeed. There is a vector for
each place color and it is used the notation < x1, x2 >i=< x >i

to indicate the structured marking w.r.t. the color i. Marking of

4.2. Colored Modified Hybrid Petri Net Model 39

discrete places is still represented by ci. Notice that, for the logic
expressions, the following synthetic notations are used: given two
vectors, < x, y > and < w, z >, having two real components,
notation < x, y > + < w, z > stands for < (x + w), (y + z) >;
< x, y > − < w, z > stands for< (x−w), (y−z) >; (< x, y >) = 0
means (x = 0 and y = 0); (< x, y >) ! 0 means the vector has at
least one component greater than 0; < x,K >j is a vector having
as first component the first attribute of the marking, w.r.t. color
j, and as second element the constant value K.

Maximal firing speeds are still column vectors of two elements
(one for each color of the net), but now, the i-th element is ex-
actly either A · x +B · a or A · x (according to (4.1) and (4.2)),

with

(
0 1
0 0

)
= A,

(
0
1

)
= B and

(
x1

x2

)
= x; as for ex-

ample, supposing transition tAcc is firing during the time interval
[τk−1, τk], at the time τk, the state of the mass will be given by:






x1(τk) = x1(τk−1) +
∫ τk
τk−1

(x2(τ))dτ

x2(τk) = x2(τk−1) +
∫ τk
τk−1

(a)dτ
(4.3)

where with xi(τk−1) it is indicated the value of xi at the instant
τk−1.

Finally, note that the use of the structured marking requires
the introduction of new arcs, connecting continuous transitions
with place pMass, to modify separately masses position and speed,
during the different dynamics. The separation of the effects is
obtained using the following weights:

Post(pMass, tDec) =

[
π1 0
0 π1

]
,

Pre(pMass, tDec) =

[
π2 0
0 π2

]
,

Pre(pMass, tPos) =

[
π2 0
0 π2

]
,

40 4. Warehouse system models











    

       
         




    

    


       
       

  


          
          

  




          
            

 





      
        










Figure 4.9 A CMHPN model of two masses moving along a path.

Post(pMass, tAcc) =

[
π3 0
0 π3

]
,

Pre(pMass, tAcc) =

[
π2 0
0 π2

]

with

π1 =

[
1 0
0 0

]
,π2 =

[
0 0
0 1

]
,π3 =

[
1 0
0 2

]
.

These weights allow to represent with just one place and one tran-
sition concurrent decreasing of an attribute and rising of the other
one, while with the unstructured net they are modeled using two
separated continuous places.

4.2.3 Formal definition

A CMHPN is a four-tuple M =
{
H,Cl,Co,ν

}
where H is a HPN;

Cl is the set of colors. Co: P ∪ T −→ Cl is a color function
that associates to each element in P ∪ T a set of colors; for all
tCi ∈ TC , ν is the mapping Co(tCi) → R+ that associates an
instantaneous firing speed to each color of the continuous tran-
sition tCi . For all pi ∈ P , Co(pi) = {ai,1, ai,2, ..., ai,ui} ⊆ Cl is

4.2. Colored Modified Hybrid Petri Net Model 41

the set of possible colors of pi, and ui is their number. For all
tj ∈ T,Co(tj) =

{
bj,1, bj,2, ..., bj,vj

}
⊆ Cl is the set of possible oc-

currence colors of tj and vj is their number. For all pi ∈ PD, the
markingmD

pi is defined as the mapping Co(pi) → N that associates
to each possible color of pi a non-negative integer representing the
number of tokens of that color contained in place pi. For the
sake of simplicity, a discrete marking w.r.t. color r is indicated as
cr. Logical expressions associated to the discrete transitions are
column vectors of size vj: their r-th element corresponds to the
logical function associated to the transition firing color r.

For all pi ∈ PC , the structured marking mC
pi is defined as the

mapping Co(pi) → (R+)(q), thus, at each place pi ∈ PC , w.r.t. the
color r, a vector of q non-negative real numbers,

< x1 . . . xq︸ ︷︷ ︸
attributes

>r,

is associated. The q values of the marking are called “attributes”
and they completely describe the state of the system.

For all tCi ∈ TC , ν(tCi) = νi= (νi,1, νi,2, . . . , νi,vc)
T is the vector

of firing speeds of the continuous transition tCi . Its r-th element
νi,r, is the firing speed of tCi w.r.t. the color r and, when tCi is
enabled, it is a linear function of the marking of the tCi input
places. Similarly, ∀tDi ∈ TD, δi = (δi,1, . . . , δi,vd)

T is the column
vector of the discrete transition tDi firing delays. The r-th element
δi,r is the firing delay associated to the color r.

Pre(pi, tj) is a mapping Pre(pi, tj) : Co(tj) → R+(Co(pi)), for
i = 1, . . . , w = wd + wc and j = 1, . . . , n = nd + nc. At the same
way Post(pi, tj) is defined as the mapping Post(pi, tj) : Co(tj) →
R+(Co(pi)), for i = 1, . . . , w and j = 1, . . . , n. Pre(Post)(pi, tj)
is a matrix of dimensions ui × vj; the element Pre(pi, tj)(r, s) =
Preij,rs (Post(pi, tj)(r, s) = Postij,rs) is the weight of the arc con-
necting pi (ti) w.r.t. the color r (color s) to tj (pi), w.r.t. the
color s (color r). The nature of the element depends on the kind
of nodes it connects, e.g. weighs of arcs connecting transitions to
discrete places are non-negative integer numbers, while weighs of
arcs connecting transitions to continuous places are row vectors

42 4. Warehouse system models

of non-negative real numbers, with dimension equal to q. When
weights are diagonal matrices, having all the diagonal elements
equal to 1, weights are not reported near the arcs. The incidence
matrix C can be written as

C =

(
CCC CCD

CDC CDD

)
(4.4)

(the meaning of the blocks is the same of that in Chapter 2, Sec-
tion 2.2). Elements ofC are the matricesC(pi, tj) = Post(pi, tj)−
Pre(pi, tj) with dimension ui × vj.

4.2.4 Model of the IS

The IS can be viewed as formed of two interacting subsystems:
the guidepath and the vehicles (that move along the guidepath).
The guidepath subsystem can be divided in zones (or routes):

1. each zone can be traveled over by more than one vehicle at
time;

2. each zone can border with other routes.

Vehicles turn along the IS following a guidepath depending on
their destination. When they are in a zone, vehicles

1. can cross it with constant speed;

2. can stop at the interface points to load (unload) a SU from
(to) another subsystem bay;

3. can vary their speed with constant acceleration if a particular
condition occur (distance between two vehicles goes under a
threshold, a particular point is reached...).

4.2.5 Controller

Vehicles run along the guidepath to move SUs from an inter-
face point to another, where they halt to exchange SUs with the

4.2. Colored Modified Hybrid Petri Net Model 43

bays; the vehicle destination can be defined as one of the interface
points. When an exchange with a bay occurs, the vehicle desti-
nation changes (a free vehicle can become busy so its destination
becomes the bay where it has to unload the SU or, viceversa, a
busy vehicle can become free and its destination becomes the first
interface point where a SU is waiting to be loaded). As it is ob-
vious, a vehicle runs along the guidepath, stopping only if it is
too near to another vehicle: it has no information about its des-
tination. The assignment of destinations and the relative stops
are managed by an external controller, that interfaces with the
IS model by means of vectors of control inputs (refer to Section
4.2.6 for more details). On the basis of the vehicles destinations,
controller decides the next zone a vehicle will enter in (refer to
Section 4.2.9 for more details).

4.2.6 Vehicles

Vehicles subsystem is reported at the bottom of Fig. 4.10. The
colored continuous place ps models the vehicles state: it has Ns

different colors (where Ns is the number of the vehicles in the IS)
and a structured marking with two attributes. For each color, at-
tributes of the marking represent position x1 and speed x2 of the
corresponding vehicle: as it will be explained in Section 4.2.7, it is
0 ≤ x1 ≤ Li, where Li is the length of the zone the vehicle is travel-
ing along. Evolution of the vehicles state is due to the firing of the
colored continuous structured transitions tacc, tdec and tslow, tconst
(each one having Ns colors) that are enabled if vehicles are accel-
erating, decelerating or moving with constant speed, respectively;
the other discrete transitions have Ns colors and they govern the
vehicle dynamics switches: for the sake of simplicity, in Fig. 4.10,
the expressions of the internal conditions are not reported, but
they can be read in Table 4.11. Internal conditions are analyti-
cal expression of the marking mps ; the same synthetic notations
of Section 4.2.2 are used. When a vehicle is near to an interface
point where it has to stop, it starts to decelerate (it corresponds
to the firing of the discrete controllable transition tsl after that the

44 4. Warehouse system models





































 



















 

















 
 










































Figure 4.10 Model of one vehicle and two adjacent zones of the guidepath,
Zi and Zi+1.

4.2. Colored Modified Hybrid Petri Net Model 45

controller has set to 1 the corresponding element of the vector gsl).
In this way the vehicle arrives to the interface with x2 = 0, then
it steadies in that position for the time it takes to load (unload) a
SU (it corresponds to the firing of discrete controllable transition
tstop, first, and to the firing of timed transition tgo with firing de-
lay δgo, then). Post(ps, tdec) and Pre(ps, tdec)

(
Post(ps, tslow) and

Pre(ps, tslow
))

are two Ns-size diagonal matrices having, respec-
tively, the diagonal’s elements equal to π1 and π2 and the other el-
ements equal to a 2×2 null matrix; Pre(ps, tacc) and Post(ps, tacc)
are two Ns-size diagonal matrices having, respectively, the diago-
nal’s elements equal to π2 and π3 and the other elements equal
to a 2× 2 null matrix; Pre(ps, tconst) is a Ns-size diagonal matrix
having the diagonal’s elements equal to π2 and the other elements
equal to a 2×2 null matrix. Continuous transition maximal firing
speeds are linear functions of marking mps and of the input a.
They are column vectors of size Ns having the j-th element equal
to

A·xs+B ·a with A =

(
0 1
0 0

)
, B =

(
0
1

)
, and xs =

(
x1

x2

)
,

where x1 and x2 are the attributes of mps w.r.t. the color j;
Synchronization between vehicles and belts and vehicles and

SUs at the interface zone is obtained by means of the controllable
transitions tstop and tNOstop. They are the interface with the mod-
els of (picking and/or crane) bays and their firing depends on the
external control inputs gstop and gNOstop = NOT (gstop) (column
vectors with dimension Ns); for each firing color j, the j-th ele-
ment of gstop, gstop,j, is 1 iff exchange is possible (destination belt
is free or a SU is present to the interface point). If condition for
exchange is not satisfied, the vehicle does not stay but it starts to
move again soon after its stop.

4.2.7 Zones

At the top of Fig. 4.10 the model of two adjacent zones, Zi and
Zi+1, with length Li and Li+1, respectively, is shown. When the
IS is made up of more than two zones, subnet modeling Zi or Zi+1

46 4. Warehouse system models

F
ig
u
re

4
.1
1

Intern
al

con
d
ition

s
an

d
th
eir

m
ean

in
g.

Intern
al

E
xp

ression
of

th
e
j-th

elem
ent

C
on

d
ition

of
th
e
j-th

elem
ent

M
ean

in
g

e
k
1

[
(<

x
1 ,x

2
>

j
−

<
x
1 ,V

m
a
x
>

j)
=

0
∨

m
ass

sp
eed

is
equ

al
to

V
m

a
x
O
R

(<
x
1 ,x

2
>

j
−

<
x
1 ,V

in
>

j)
=

0
]

it
is

equ
al

to
th
e
d
esired

valu
e

e
k
2

[(<
x
1 ,x

2
>

j
−

<
x
1 ,x

2
>

k
−

<
T
h
,0

>
)≥

0
∧

d
istan

ce
b
etw

een
m
ass

j
an

d
k
is

≥
T
h
A
N
D

((<
x
1 ,x

2
>

j
−

<
x
1 ,0

>
j)

=
0
∨

(m
ass

sp
eed

is
=

0
O
R

(<
x
1 ,x

2
>

j
−

<
x
1 ,V

in
>

j))
=

0
]

m
ass

sp
eed

is
equ

al
to

a
d
esired

valu
e)

e
a

[
((<

x
1 ,V

m
a
x
>

j
−

<
x
1 ,x

2
>

j)!
0
∨

(sp
eed

valu
e
is

low
er

th
an

V
m

a
x
O
R

(<
x
1 ,V

in
>

j
−

<
x
1 ,x

2
>

j)!
0
)
∧

it
is

low
er

th
an

th
e
d
esired

valu
e)

A
N
D

((<
x
1 ,x

2
>

j
−

<
x
1 ,x

2
>

k
−

<
T
h
,0

>
)!

0
)
]

d
istan

ce
b
etw

een
m
ass

j
an

d
k
is

equ
al≥

T
h

e
d

[
(<

x
1 ,x

2
>

j
−

<
x
1 ,0

>
j)!

0
∧

(sp
eed

valu
e
is

¿0)
A
N
D

((<
x
1 ,x

2
>

j
−

<
x
1 ,V

in
>

j)!
0
∨

(sp
eed

is
greater

th
an

th
e
d
esired

valu
e
O
R

(<
T
h
,0

>
−

<
x
1 ,x

2
>

j
+

<
x
1 ,x

2
>

k)!
0
)
]

th
e
d
istan

ce
w
ith

th
e
n
ext

m
ass

is
<

T
h
)

e
s
to
p

[
(<

x
1 ,x

2
>

j
−

<
x
1 ,0

>
j)

=
0
]

m
ass

sp
eed

is
=

0.

4.2. Colored Modified Hybrid Petri Net Model 47

has to be repeated for each other zone to be added: in Fig. 4.10
doted arcs represent arcs connecting Zi and Zi+1 with the previous
and the next zone, respectively.

In the following, for the sake of brevity, only the description
about places and transitions of the Zi model are given: places and
transitions of Zi+1 have the same meaning.

The continuous colored place pi has Ns colors; its structured
marking is made up of just one attribute, x. Its value indicates if
a vehicle is totally in Zi, it is out of Zi or it is going in (out) to
Zi. In particular, said d the vehicle dimension, the marking of pi
is x = d, x = 0 or 0 < x < d, respectively. The colored continuous
transition ti models the going out of a vehicle from Zi. Discrete
colored transitions tout i and tin i enable and disable ti. All these
transitions have Ns colors. Transition tout i is associated to the
internal condition eout i whose j-th element

eout i,j = [< x1, x2 >j − < Li, x2 >j= 0] (4.5)

is the internal condition associated to the firing color j, where
< x1, x2 >j is the j-th vehicle state vector and < Li, x2 >j is
a vector having as elements the length of the zone the vehicle is
crossing and the vehicle speed; transition tin i fires, w.r.t. color j,
when vehicle j is completely in the next zone: it is associated to
the internal condition einNext i whose j-th element

einNext i,j = [< x >j= 0] (4.6)

is the internal condition associated to the firing color j, where
< x >j is the marking of place pi w.r.t. color j. When a vehicle
enters in a new zone a jump in its state occurs and the component
x1 of mps is forced to 0 by tin i. Pre(ps, tin i) is a Ns-size diagonal
matrix, having the diagonal’s elements equal to Li.

Maximal transition ti firing speed νi is function of mps (the
marking of the vehicle model continuous place, ps). In particular
each element νi,j is equal to the vehicle speed x2, consequently

xs =

(
x1

x2

)
,Ai =

(
0 1

)
and Bi = 0.

48 4. Warehouse system models




 


 
























Figure 4.12 Three masses moving along a circuit.

4.2.8 A toy example

Material handling systems, in general, present complex behaviors.
The basic task for this kind of systems is the handling of some-
thing along a path, from a source to a destination point, avoiding
collisions. In this section, the simple system of Fig. 4.12 is mod-
eled to show the effectiveness of CMHPNs in modeling warehouse
system.

Consider 3 unitary masses, of dimension d = 1m, named M1,
M2 and M3, moving along a ring, without friction, with initial
speed Vmax, that can be varied with constant acceleration, a. The
ring is divided in four zones, each one with the own length Li.
Each mass Mj moves along the path until an external controller
orders it to slow down so that Mj can stop at a desired position
xdi . At this point the mass stays for a time δstop after that it
starts to move again. Note that masses do not know neither where
nor when they have to stop. Moreover, the distance between two
consecutive masses has to be always less than or equal to a fixed
threshold. This system can be modeled using the net shown in
Fig. 4.10, adding to it other two colors and the subnets modeling
the other two zones of the path.

Results of the toy example simulation are reported in Fig. 4.13.
In Fig. 4.13a) the evolution of the relative distance between the

masses is shown: dij is the distance from Mi to Mj, moving in a
clockwise direction. Notice that only d31 goes under the threshold

4.2. Colored Modified Hybrid Petri Net Model 49

20 40 60 80 100 120

Relative Distance Between M1 and M2

time [s]

20 40 60 80 100 120

Relative Distance Between M2 and M3

time [s]

20 40 60 80 100 120

Relative Distance Between M3 and M1

time [s]

d31
Threshold

d23
Threshold

d12
Threshold

(a)

20 40 60 80 100 120

Relative Distance Between M3 and M1 vs M3 speed

time [s]

d31
Threshold
M3 speed

(b)

Figure 4.13 Results of the toy example simulation, with Li = 25m ∀i,
Vmax = 3m/s and a = 2m/s2: (a) evolution of the relative distances

between masses M1 and M2, masses M2 and M3 and masses M3 and M1;
(b) evolution of M3 speed w.r.t. relative distance between M3 and M1 .

during the system evolution, because of the masses initial dispo-
sition. As more, it can be seen how the relative distance is always
greater than 1m (the length of the masses), i.e. no collisions occur.
In Fig. 4.13b) evolution of M3 speed w.r.t. the evolution of d31
is shown: to avoid collisions, speed decreases each time d31 goes
under the threshold value.

4.2.9 Branch points

A branch point is a point where a zone ends and more than one
other zone starts: what is the next zone the vehicle will enter in

50 4. Warehouse system models



 





































Figure 4.14 Model of a branch point.

depends on vehicle destination. Branch points are modeled in easy
way linking the module of the generic i-th zone with that of all
the other following routes, as shown in Fig. 4.14 where, for the
sake of simplicity, only the continuous places corresponding to the
following zones and only the place ps have been drawn. Let N i

d be
the number of zones bordering on Zi, N i

d controllable continuous
transitions tiz, with z = 1 . . . N i

d are added. Each of these transi-
tions is associated to the logical condition eout i ∧ giz where eout i

is the internal condition whose element eout i,j is equal to 1 when
the j-th vehicle is arrived at the end of the zone Zi, while giz is an
external control input whose element giz,j is equal to 1 if the j-th
vehicle has to pass from zone Zi to zone Zz. As for the single zone,
maximal firing speed νik depends on the current speed value of the
j-th vehicle. Notice that transitions tiz with z = 1 . . . N i

d, are in-
volved in a conflict, but at each time ∃j|giz,j = 1, giz,l = 0, ∀l)= j
(i.e. the external control input solves the conflict so that vehicle
j cannot be moved to more that one destination).

4.2. Colored Modified Hybrid Petri Net Model 51



 

















(a)

  






















(b)

Figure 4.15 Interface points model (a) between a bay and the IS and (b)
between the IS and a bay .

52 4. Warehouse system models

4.2.10 Interface between the IS and bays

The interface between the IS and bays (and viceversa) can occur
only when a vehicle is aligned at an interface point. When this
happens a SU is passed from a bay to the vehicle or viceversa. In
Fig. 4.15 the nets modeling the exchanges are shown. Transition
tIP in (tIP out) is an immediate controlled colored transition, having
Ns firing colors, whose firing depends on the occurrence of the
logical condition gstop ∧ gIPh

. External input gstop is the same
condition managing the firing of controllable transition tstop in the
vehicles subsystem (refer to Fig. 4.10) and its j-th component
is equal to 1 if the j-th vehicle is arrived at the interface point it
was directed to. External input gIPh

is a vector of Ns elements:
the j-th element gIPh,j is equal to 1 if at the interface point h an
exchange with the vehicle j can occur. Notice that gstop is common
to all the interface points and can have more than one true element
at time, instead there is a gIPh

input for each interface point.
This meas that even if at the same time there are more than one
vehicle aligned to the bays (potentially even in the same zone),
gIPh

assures the exchange can occur only between the bay and
the vehicle aligned to it.

4.2.11 Liveness analysis

In this section liveness of the CMHPN model of the IS considered
in isolation (i.e. without the presence of the bay subsystems) is
discussed.

It will be shown that, unless controllable transitions are dis-
abled by the external controller, the CMHPN model of the IS is
live, otherwise a livelock condition can be established.

In a PN system S =
〈
N,m(0)

〉
a livelock occurs iif S is

deadlock-free and there existsm ∈ R(N,m(0)), whereR(N,m(0))=
the set of the reachable markings of the system, and t ∈ T s.t. t
is dead at m [HL09].

In Section 4.2.12, the relation between SUs exchange between
vehicles and bays and livelocks in the IS will be shown.

4.2. Colored Modified Hybrid Petri Net Model 53





































 



















 

















 
 










































Figure 4.16 Model of vehicles running in the zone Zi, w.r.t. color j.

A transition t is live under the initial marking m(0) if for
every marking m(τ) reachable from m(0), it exists a sequence σ,
fireable from m(τ), which contains transition t. In other words,
whatever the net evolution, a possibility always remains for firing
t. A transition t is “quasi-live” under the initial marking m(0)
if there is a fireable sequence from m(0) which contains t. In
other words, a transition is quasi-live if there is a chance that this
transition may be fired. A PN system S is live if all its transitions
are live.

54 4. Warehouse system models



























 



























Figure 4.17 Discrete PN obtained eliminating all the continuous nodes
from the net of Fig. 4.16.

Liveness of CMHPN system can be analyzed building a Hybrid
Automaton (HA) as it will be discussed in the following.

HAs are able to model several hybrid dynamic systems. They
were introduced for the first time in [ACH+95].

In [GAS05] an algorithm is proposed to translate a HPN in a
HA. Here, such an algorithm is adapted to translate a CMHPN in
a HA: steps of the algorithm presented in [GAS05] are repeated
for each color of the net model. For the sake of simplicity, in the
following the algorithm is recalled referring to a single color:

1. Isolate the discrete PN of the hybrid model and build its
equivalent automaton.

From the CMHPN eliminate all the continuous nodes, so to
obtain a pure discrete net. As for example in Fig. 4.16 the
net modeling one vehicle moving in a single zone of the IS is
shown; in Fig. 4.17 it is shown the discrete net obtained elim-
inating the continuous node from this net. Each reachable
marking of the discrete net corresponds to a different hybrid

4.2. Colored Modified Hybrid Petri Net Model 55








 











 










 










 










 

























 














































Figure 4.18 Translation algorithm Step 1: construction of
macro-locations.

system dynamic. An automaton can be associated to that
net; from now on, it is called equivalent automaton. Each
reachable marking of the net corresponds to a different state
of the equivalent automaton. Each state of this automaton is
called “macro-location”. In Fig. 4.18 the equivalent automa-
ton resulting from the net of Fig. 4.17 is shown: the marking
mD

k = [mpk ,mpa ,mpd ,mpsl ,mpstop ,mpin i ,mpout i] correspond-
ing to the macro-location Sk is indicated after the name of
the macro-location. If a transition is synchronized to a logi-
cal expression then the expression is indicated near the arc,
after the transition name; the same is done with the timed
transition firing delays.

2. Construct the HA corresponding to each macro-location of
the automaton resulting from the previous step.

Starting from the discrete net equivalent automaton, for each
macro-location:

a) Draw the corresponding continuous net, eliminating all

56 4. Warehouse system models





















































































Figure 4.19 Continuous PNs associated to each macro-locations of the
automaton of Fig. 4.18. For the sake of simplicity only the continuous net
corresponding to macro-locations where mpin = 0 and mpout = cj have been
drawn since the others are exactly the same unless the nodes pi and ti.

4.2. Colored Modified Hybrid Petri Net Model 57

the nodes from the CMHPN but the enabled continuous
transitions and their pre and postsets (see Fig. 4.19);

b) Referring to each obtained continuous net, for each con-
tinuous place pj, compute its balance ṁpj

(see Chap-
ter 2).

c) Individuate the conditions (in terms of marking val-
ues) each dynamic is valid for. At each macro-location
more than one continuous dynamic can be associated
and transitions between them are due only to the con-
tinuous nodes. As for example, consider the macro-
location Scruise2 in Fig. 4.19: two continuous dynamics
are associated to this macro-location. In the first one
mpi,j is greater than zero. Consequently the enabled
continuous transition ti fires with firing speed νi,j, de-
creasing mpi,j. When the marking of pi becomes zero,
even if the discrete marking is still the same, ti cannot
fire anymore: the second continuous dynamic has been
reached.

The output at the current step is a hierarchical automaton
whose macro-location contains a HA describing the contin-
uous dynamics in it. In Fig. 4.20a), for the sake of brevity,
only the part of the hierarchical automaton associated to the
macro-location Scruise1 and Scruise2 of the equivalent automa-
ton of Fig. 4.18, is shown: a structured notation is used to
indicate both the continuous markings value (refer to Part
I for the synthetic notation explanation) and their balance,
ṁps, ṁpi

, ṁpi+1
; < x1, x2 > indicates that the value of the

components of mps is any value in the set
[
0, Li

]
for x1 and[

0, Vmax

]
for x2 s.t. the shown condition is satisfy; < x >

is a value minor than or equal to d (the vehicle dimension);
Vcruise ∈

{
Vin, Vmax

}
, with Vmax ≥ Vin.

3. Replace transitions between macro-locations with transitions
between internal states. This step consists in associating
the input/output arcs of each equivalent automaton macro-

58 4. Warehouse system models




 





 
 






 
 






 
 








(a)





 





 
 








 
 






 
 






  

(b)

Figure 4.20 Translation algorithm Step 2: hierarchical hybrid automaton
construction for macro-locations Scruice1 and Scruice2.

location to its HA proper state, so that a unique automaton
is obtained, as it is shown in Fig. 4.20b).

In Fig. 4.21 the HA of the net in Fig. 4.16 is shown.

Once the HA has been built, liveness analysis can be per-
formed.

The definition of final given in [TS93] is recalled:
Given an oriented graph G = (V,E) where V is the nodes set

and E is the arcs set, the v ∈ V preset and postset are defined, re-
spectively, by: •v=

{
u ∈ V |W (u; v) > 0

}
, v•=

{
u ∈ V |W (v; u) >

0
}
, where W (u; v) (W (v; u)) is the weight of the arc going from u

to v (from v to u). The preset (postset) of a set of nodes is the
union of presets (postsets) of its elements.

Let U be a subset of nodes s.t. U ⊆ G, U is a final iff (U =

4.2. Colored Modified Hybrid Petri Net Model 59

Figure 4.21 Hybrid Automaton of the net show in Fig. 4.16.

60 4. Warehouse system models

{v} ∧ v• = 0) or the subgraph associated to U, G(U), is strongly
connected and U = succ(U), where succ(U) is the successor of U ,
i.e. the minimal set of nodes s.t. U• ⊆ succ(U) and succ(U)• ⊆
succ(U). In the first case U is called deadlock, in the second case,
it is called active final [TS93]. In words, a final represents a subset
of nodes where the net evolution cannot more exit once it enters
in.

To test liveness, in accord with its definition given at the be-
ginning of this section, it has to be established if all the transitions
are live. At this aim, the following checks, based on the concept
of finals usual in discrete PN analysis, can be used:

1. Verify if the HA is strongly connected: if so all the transitions
are live and, consequently, the CMHPN system is live.

2. Verify if in the HA there are finals being deadlocks: if so,
the net is not deadlock free and, consequently, it is not live
(refer to [TS93]).

3. Verify if in the HA there are active finals : if so, transitions
associated to the arcs of these sub-sets are live.

For synchronized CMHPNs, the firing of enabled transitions
is possible only if the associated enable conditions are verified.
Supposing that this is true, looking at the HA of Fig. 4.21, it can
be seen that the automaton is not strongly connected but there
exist three strongly connected sub-sets of nodes, Γ1, Γ2, Γ3 such
that a) Γ1 is the subset of states, drawn in blue in the figure, where
mpi,j = d− x; b) Γ2 is the subset of states, drawn in green in the
figure, where mpi,j = d; c) Γ3 is the subset of states, drawn in red
in the figure, where mpi,j = 0;

1. Γ3 is an active final.

2. Transitions tin i and tout i , managing vehicles passage be-
tween two adjacent zones, are “quasi-live”. Indeed, once the
system is arrived in Γ3, transitions tin i and tout i cannot fire
anymore.

4.2. Colored Modified Hybrid Petri Net Model 61

3. All the transitions managing the dynamics switching are live
(they belong to strongly connected sub-sets of nodes).

4. In the states Sstop1A, Sstop1B and Sstop2, x2 = 0 and all the
continuous transitions managing dynamics switching are dis-
abled, so x2 cannot change, but the system goes out from
these states after that the firing delay δgo, associated to the
timed transition tgo, is expired.

Points 1) and 2) imply that the net modeling one vehicle running
in a single zone is not live, indeed the active final is not live (a
final is live if it includes all the net transitions, see [TS93]) and
not all the transitions are live (once the place pi becomes empty
there is no way to change its marking again). However, the models
of real ISs are live since they are circular guidepaths made up of
at least two adjacent zones. As for example, consider the simple
IS layout shown in Fig. 4.22a) consisting in three zones, Zi, Zr

and Zk, and a branch point at the end of Zi. The corresponding
CMHPN model is shown in Fig. 4.22b). In Fig. 4.22c) a compact
version of its HA is reported: in each one of its nodes only the
changes in continuous places marking are reported. In particular,
nodes SinZi , SinZr and SinZk

group together states belonging to Γ3

respectively for the zone Zi, Zr and Zk: because of the presence of
the adjacent zones, the system can go out from those nodes and
it can return in the initial node where mpi = d. Thus, it can be
concluded that, even if the single zone model is not live, the IS
model is live (unless the enabled conditions are not verified). This
is true whatever is the number of zones of the IS.

Points 3) and 4) imply that a vehicle can move along the IS
unless its movement is not disabled by the external controller.
There are only two motivations to stop a vehicle: i) collision with
other vehicles has to be avoided (see Part I - Section IV-B); ii) an
interface point with a bay is reached. In the former case a vehicle
starts to run again when the previous one is sufficiently far from
it. This condition is always reached if Lc > Ns(Ls+Th) with Lc =
length of the interface guidepath, Ns= number of vehicles in the
interface guidepath, Ls = length of each vehicle and Th minimal

62 4. Warehouse system models

space between two vehicles to avoid a collision. So if the number
of vehicles has been chosen correctly, a vehicle can always start to
move again. In the latter case, a vehicle moves again soon after
the swap of the SU or immediately after the stop if the exchange
cannot be executed.

Stops of vehicles at the interface bays are ruled by means of
the immediate controllable transitions tstop and tNOstop whose fir-
ing is controlled by the external controller by means of the ex-
ternal inputs gstop and gNOstop respectively. As more gNOstop =
NOT (gstop) i.e. when the element gstop,j of the first condition is
equal to 1, the correspondent element gNOstop,j of the second one
is equal to 0 and viceversa. If it is no more possible to execute an
exchange with whatever bay, because the interface points are full
and they cannot be emptied, gstop,j = 0 ∀j and stopping of vehicles
at the interface points is disabled. As consequence macro-states
Sstop1A, Sstop1B and Sstop2 cannot be reached any more and the
CMHPN model of the IS is no more live but just not dead: i.e. a
livelock occurs.

4.2.12 Deadlock prevention

In Section 4.2.11 has been shown that the CMHPN system mod-
elling an IS, when its controllable transitions are not disabled by
a controller, is live. However, during a mission execution, when
vehicles have to interface with the bays, blocks can occur. Blocks
occurrence prevention in executing a mission is the topic of this
section.

The execution of a mission in a complex warehouse system
can be seen as the achievement of these subprocesses: a) passage
of a Stock Unit (SU) from its storage location to the crane and
viceversa, b) passage of a SU from the crane to the crane bay and
viceversa, c) passage of a SU from the crane bay to the IS and
viceversa, d) passage of a SU from the IS to the picking bay and
viceversa. All these subprocesses require the use of resources to be
completed. For example, passing a SU from the storage location to
the crane requires at least a free place on the crane as well as the

4.2. Colored Modified Hybrid Petri Net Model 63








(a)






























































(b)














 





 



 





 



 







 





 




(c)

Figure 4.22 A simple IS layout (a), its corresponding CMHPN (b) and a
compact version of its associated HA (c).

64 4. Warehouse system models

passage of a SU from the picking bay to the IS requires that there
is at least a free vehicle running along the path. While some of
these resources are used only by a specific subprocess (free places
on the picking bay can be occupied only by SUs arriving from the
IS), some others are shared between the subprocesses (free vehicles
in the IS can be used both to move a SU from the crane bay to
a picking bay and viceversa; free places on cranes can be used to
carry SUs from storage locations to crane bays and viceversa).

The presence of shared resources can cause the occurrence of
deadlocks, due to circular wait situations. It means that missions
cannot be completed anymore and the state of the system, meant
as the number of ended missions, is blocked.

4.2.13 Background

In this section some useful notions about S3PR and about liveness
in timed PN are reported: reader can refer to [ECM95] for more
details about S3PR.

Given a PN N,

• A siphon is a set of places S s.t. •S ⊆ S•; S is minimal
when any proper subset is not a siphon.

• A P-semiflow Y is a n-dimensional vector s.t. ∀p ∈ P ,
Y (p) ∈ N and Y T ·C = 0, where P is the places set of the
net and C is the incidence matrix.

• A support of a vector Y is the set ||Y || =
{
p ∈ P | Y (p))=

0
}

• A transition t is dead for a reachable marking m(τ) when t
cannot be fired at any state reachable from m(τ).

• N is live if from each reachable marking it is always possible
to fire any transition.

A S3PR is a state machine (i.e. a net where each transition
has exactly one input and one output place) plus a set of places

4.2. Colored Modified Hybrid Petri Net Model 65

modeling the availability of resources: these places are called re-
sources, while the other places are called holders. Processes that
can be modeled as S3PR have to satisfy the following constraints:

1. The process describes the set of possible sequences of op-
erations the system has to perform in order to complete a
task.

2. It has an initial and a finial state.

3. Choices are allowed but iterations are not.

4. Only one shared resource is allowed to be used at each state
in the process. The resource used in a state is released when
the system moves to the next state. Two adjacent states
cannot use the same resource.

5. Initial and final states do not use resources.

For a S3PR the following theorem is valid:

Theorem 4.2.1. Let 〈N,m(0)〉 be a marked S3PR, let m ∈
R(N,m(0)) and let t ∈ T be a dead transition for m(τ). Then,
there exists a reachable marking m(τ)′ ∈ R(N,m(0)) and a min-
imal siphon S such that mS(τ)′ = 0.

Therefore the following Corollary can be deduced:

Corollary 4.2.2. Let 〈N,m(0)〉 be a marked S3PR. then 〈N,m(0)〉
is live if and only if, for every S3PR reachable marking m ∈
R(N,m(0)) and every (minimal) siphon S, mS)= 0.

As consequence of Corollary 4.2.2 and how it has been explained
in [ECM95], a way to assure that a S3PR is live is detecting all
the siphons which can become empty (it means siphons that are
not support of P-Semiflow), and, for each of them, adding a new

66 4. Warehouse system models

place to the net (called virtual resource), having a proper initial
marking, which goal is to avoid the emptying of the siphon.

Generally speaking, liveness of a TPN system is not enlaced
by the liveness of its untimed version. Indeed, let 〈Nt,m(0)〉
be a timed PN system and 〈N,m(0)〉 be the untimed version
of the same system (i.e. N is obtained by replacing an immedi-
ate transition to each timed transition). Timing delay associated
to the timed transitions generates constraints on the evolution of
〈Nt,m(0)〉, which do not exist for the system 〈N,m(0)〉. It follows
that 1) the set of the reachable markings of 〈Nt,m(0)〉 is included
in the set of reachable markings of 〈N,m(0)〉, and that 2) the set
of possible firing sequences in 〈Nt,m(0)〉 is included in the set of
possible firing sequences in 〈N,m(0)〉. The consequence is that,
as a rule, the condition that an untimed PN system 〈N,m(0)〉 be
live for an initial marking m(0) is neither necessary nor sufficient
for the timed PN system 〈Nt,m(0)〉 to be live for the same initial
marking.

However, in case the set of firing sequences of the TPN coincide
with the ones of the untimed PN, liveness of the untimed PN
implies the liveness of the TPN.

In the following it is shown how to obtain an aggregate model
to compute a deadlock prevention policy.

4.2.14 An aggregate view of the CMHPN model

When crane and picking bays are totaly full and they cannot be
emptied because all vehicles are busy, a block occurs in the system.
It is due to a wrong resources allocation, in particular to a wrong
assignment of free vehicles. To design a control policy that solves
the problem, a model representing the missions’ execution steps,
where free vehicles are involved, is needed.

Independently of the warehouse system layout, missions’ exe-
cution can be divided in a given number of subprocesses that have
to be sequentially completed for performing the mission.

Each subprocess describes the handling of a SU from a start
point (e.g. its position on a crane, on a vehicle, on a conveyor

4.2. Colored Modified Hybrid Petri Net Model 67
































(a)
































(b)










(c)

Figure 4.23 Model of the h-th picking bay made up of 10 conveyor belts:
CTPN model (a); CPN model (b); picking bay reduced model (c).

belt) to a destination point (e.g. the belt at the interface point
between the crane and the crane bay, the interface point between
the vehicle and the picking bay). Model of these subprocesses can
be obtained from the models of the IS and of the bays using a
procedure presented in this subsection.

A bay is made up of a succession of conveyor belts. In Sec-
tion 4.2.10, the Colored Timed Petri Net (CTPN) model of the
conveyor belt interfacing with the IS has been shown. The CTPN
model of the whole bay is obtained concatenating as many net
modeling a belt as many are the belts composing the bay; as for

68 4. Warehouse system models

example, in Fig. 4.23a) a picking bay made up of 10 conveyor belts,
that have to move just one SU at time, is shown. Notice that the
immediate transitions tIP in and tIP out are two controllable tran-
sitions that rules the SUs exchanges between vehicles and bays
(see Section 4.2.10). From this model, information about SU posi-
tion in the bay and SU destination can be obtained. An untimed
version of the bay model can be obtained replacing all the timed
transition with an untimed one as in Fig. 4.23b). It is easy to see
that the two systems admit the same firing sequences and conse-
quently, as it has been explained in Section 4.2.13, liveness of the
net system in Fig. 4.23a) can be obtained imposing liveness for
the net in Fig. 4.23b).

The system of Fig. 4.23b), considered in isolation (i.e. without
interacting with the IS), is live unless controllable transition tIP out

is disabled. Indeed each time a new SU is put on the bay (i.e.,
tIP in fires), it advances until the last free belt on the bay: this
corresponds to the successive firings of the transitions tk, with
k = 2 . . . 10 of Fig. 4.23b). The arrival of a SU at the end of the
bay is modeled by the presence of a token in place pb10: firing
of tIP out, that is possible only if the external controller enable it,
free the last belt of the bay allowing the other SUs to advance in
the next position. Consequently, if it was occupied, the first belt
becomes free again and a new SU can be loaded on the bay (i.e.
tIP in can fire again). If it is no possible to free the last belt (i.e.
the firing of tIP out is disabled) the bay can contain as many SUs as
many are the belts it is made up of (10 for the bay of Fig. 4.23b)):
after the loading of such a number of SUs, the bay is blocked, i.e.
transitions cannot fire anymore and the net system is dead.

With this consideration in mind, for the liveness purposes, a
bay can be modeled as shown in Fig. 4.23c), indeed the marking of
place pfb indicates the number of free belts on the bay, and when
it becomes 0, the firing of tIP in is no more allowed, while the firing
of tIP out makes the marking of pfb to increase. As for the system
net of Fig. 4.23b), if tIP out is disabled, the net becomes dead after
a number of tIP in firings equal to the number of free places on
the bay. Therefore, when transitions of the system of Fig. 4.23c)

4.2. Colored Modified Hybrid Petri Net Model 69

results to be live (dead) in the net of the aggregate model, also the
system of Fig. 4.23b) (and as consequence the one of Fig. 4.23a)
is live (dead).

















































 













 
















  


 
 




















 



 























Figure 4.24 Relation between the CMHPN model and the aggregate
model of the subprocess “Passage of a SU from the IS to the picking bay”.

Once the aggregate model of a bay has been obtained, given
a generic warehouse system, to obtain the aggregate model of the
other subsystems, the following procedure has to be applied:

a) Individuate the phases the subprocess can be divided in.

Each subprocess can be modeled as a net such that: each
place of the net represents a phase of the process; actions to
be completed to pass from a phase to another one are mod-
eled by transitions. Two sets of places can be distinguished:
holders, discussed in this procedure step, and resources, dis-
cussed in the next one.

Holders can be further divided in two sets: “dummy places”
and “aggregated places”. Dummy places have not any con-

70 4. Warehouse system models

nections with the CMHPN model and they only point out
that an action is ended and the following one can start.

Aggregated places, instead, are directly obtained starting
from the CMHPN: they give information about the presence
of an element in a part of the system, without representing
the exact zone the element is in and without discriminating
between the elements (e.g. looking at the aggregate model
it is possible to know that a busy vehicle is running along
the IS, but it is not possible to know which is the vehicle).

An aggregate place is added to the aggregate model for each
live subnets of the original models describing the passage of
SUs from a bay zone to another one or the passage of vehicles
from an interface path zone to the next one.

Marking of the aggregate places depends on the one of the
CMHPN model. Colors of the live subnets can be divided in
two sets: 1) colors associated to elements that are involved
in a mission attainment and 2) colors associated to elements
that are not involved in the mission. Each time a live sub-
net of the original model has a marking greater than zero,
w.r.t. a color of the first set, a token is added to the relative
aggregate place, while, if the color belongs to the second set,
no tokens are added. Marking of dummy places depends on
the state of the system: a token is added each time the cor-
responding action is completed. Dummy places marking, as
well as aggregate places marking, can be greater than 1.

As for example, suppose to want to obtain the net modeling
the subprocess “passage of a SU from the IS to the picking
bay”, the following phases can be individuated: SU in IS
going to picking bay, SU at the interface point, SU on picking
bay. In Fig. 4.24 they correspond to the places P5, P6 and
P7, respectively.

Places P6 and P7 are dummy places: a token in P6 indi-
cates that a vehicle is aligned to the interface point and an
exchange can occur, while a token in place P7 indicates a

4.2. Colored Modified Hybrid Petri Net Model 71

SU is moving along the bay. P5 is an aggregated place asso-
ciated to the IS net (as for example, the one represented in
Fig. 4.22b)): just one aggregate place is necessary, since to
apply the deadlock prevention policy it is not important to
know what is the exact zone the vehicle is running in, but it
is enough to know that the vehicle is in the IS. A token in
P5 indicates that a busy vehicle is running in the IS to reach
a bay. Notice that, even if free vehicles run along the IS too,
their presence does not cause the adding of any token in P5.
In Fig. 4.24 it is supposed that the color j of the ps marking
is associated to a busy vehicle, so one token is present in P5.

b) Individuate resources involved in the subprocess.

A resource is something that is needed to perform the actions
associated to the subprocess; as for example, to complete
“passage of a SU from the IS to the picking bay” at least
a free vehicle is needed and at least a free place on the bay
is needed: these are the subprocess resources, so two places
modeling them have to be added. In Fig. 4.24 they are R3
= number of free vehicles and R4 = number of free places
on the picking bay. As well as for the aggregate places, they
are uncolored: the number of tokens of each resource place
is equal to the number of copies of that kind of resource that
there are in the original model.

c) Individuate phases transitions.

Transitions model actions needed to pass from a phase to
the following one. Transitions of the aggregate model are
uncolored copies of properly immediate discrete transitions
of the CMHPN. Each time the original transition fires in
the CMHPN, the corresponding transition of the aggregate
place fires adding (keeping) an uncolored token in (from) the
next (the previous) place.

As for example, consider again the subprocess “passage of a
SU from the IS to the picking bay”: two actions can be indi-
viduated 1) a busy vehicle is arrived at its destination point

72 4. Warehouse system models

2) a SU passing from the vehicle to the bay. In Fig. 4.24, the
first action is modeled by transition t8, while the second one
is modeled by transition t9. In particular, t8 is the uncolored
version of discrete controllable transition tstop of the vehicle
model. Transition t9 models the SU swap: it fires when tran-
sition tIP in of the bay model fires. Notice that time needed
to complete the exchange is neglected: passage of the SU
from the vehicle to the bay is considered instantaneous.

In this way an aggregate view of the CMHPN model is ob-
tained: in Fig. 4.25 all the subprocesses models are shown.

The firings of the discrete transitions of the aggregate model
occurs only when the firings of the associated immediate transi-
tions of the CMHPN/CTPN occurs. As consequence, detecting a
deadlock in the aggregate model means to detect a condition that
does not allow the CMHPN/CTPN model transitions to fire. In
particular, as for the IS model, immediate controllable transition
tSTOP is the only transition involved in the building of the aggre-
gate model (it rules firing of t8, see Fig. 4.24). Consequently when
a deadlock occurs in the aggregate model, since t8 cannot fire any
more, also tSTOP firing is disabled. As it has be seen in Section
4.2.11, when tSTOP is always disabled, a livelock is established in
the IS model. Then, if the aggregate model is live, then livelocks
cannot occur in the CMHPN model of the IS.

4.2.15 Synthesis of deadlock prevention policy

During their handling, SUs pass between adjacent zones carried
on vehicles which move in the rail guidedpath, following preas-
signed unidirectional routes. These passages can be modeled as
sequences: in case just choices and confluences are need.

SUs exchanges from vehicles to the interface points of the bays
(from the interface points to the vehicles) require that the second
ones are not busy: free places at the interface points (free vehicles
in the IS) are modeled as resources that have to be acquired during
the missions’ execution. Whit this consideration in mind, usually
it is possible to model each subprocess of a mission as an S3PR.

4.2. Colored Modified Hybrid Petri Net Model 73













 

(a)


























 







(b)















(c)



















(d)

















(e)



















(f)























 









(g)













 

(h)

Figure 4.25 PNs of the subprocesses composing a mission.

74 4. Warehouse system models

Figure 4.26 Minimal Siphons of the net shown in Fig. 4.28.

Siphon Places

S1 {P13A, P13B, R1A, R1B, R2, R3, R4, R5}
S2 {P5, P6, P13A, P13B, R1A, R1B, R2, R3, R5}
S3 {P11, P12A, P13A, R1A, R2, R3, R4, R5}
S4 {P5, P6, P11, P12A, P13A, R1A, R2, R3, R5}
S5 {P9, P10, R3, R4}

Figure 4.27 Marking, Pre-set and Post-set of the Virtual Resources.

Place Initial Marking •Vi V •
i

V1 42 {t16, t17} {t1, t2}
V2 32 {t7, t16, t17} {t1, t2, t11}
V3 41 {t16, t13} {t1, t4, t15}
V4 31 {t7, t16, t13} {t1, t4, t15, t11}
V5 29 {t11} {t7}

The advantage to obtain the aggregate model as an S3PR is
that in the literature there are several papers presenting policies
to ensure liveness for this class of nets: in this work the dead-
lock prevention policy of [ECM95] has been chosen to be applied.
However, a deadlock prevention policy can be applied also when
the obtained aggregate model does not belong to such a class con-
tinuing assuring the liveness of the CHMPN system.

In Fig. 4.28, the net describing the behavior of a system made
up of 1 crane bay, 1 picking bay and an IS with 20 vehicles is
shown. Resources involved in the process are the number of free
places on the crane, the number of free places on the bays and
the number of free vehicles running along the IS. The net is not
live, indeed there are 5 minimal siphons, which are not support of
P-Semiflows (they are reported in Table 4.26). To make this net
live, 5 virtual resources have to be added: their initial marking,
their preset and their postset are reported in Table 4.27.

From a practical point of view, in this example, the conse-
quence of the adding of the virtual resources is that a vehicle is
always reserved for the emptying of the picking bay and the pas-
sage of a SU from the crane bay to the IS is prevented until at

4.3. Conclusion and Future researches 75













 










 
















 


































 








 

Figure 4.28 S3PR modeling a system made up of 1 crane bay, 1 picking
bay, an IS with 20 vehicles and 50 SUs to move.

least a free place is present in the subsystem IS+picking bays.

4.3 Conclusion and Future researches

The automated warehouse models presented in this dissertation
allows to represent complex systems in compact way. Modularity,
compactness and reconfigurability are some of the advantages of
the CMHPN model presented: it can be adapted at several layouts
just adding or removing elementary zones. As more, the adding of
a new bay just correspond to the adding of new stop conditions,
while adding (removing) colors allows to increase (decrease) the
number of vehicles in the IS. If a new route is added, it can be
connected at the IS just introducing the arcs linking it to the
guidepath model. Future research can extend the approach for
PNs to fault analysis and diagnosability [BCD12] to CMHPNs.
The model can be used:

76 4. Warehouse system models

1. To make offline system performance analysis. Using
the simulation environment the model can be used to test
the performance of a certain control strategy. The controller
manages SUs destinations and it uses this information to
decide where and when vehicles must stop. A typical time-
performance measure, for the activities of such a system, is
the so-called “Makespan” defined as the time required to the
system to complete a set of missions. In contexts where mis-
sions have very different time durations it can happen that
there is one last resource involved in a long mission, while
quite all the resources have completed their jobs, thus being
available for new jobs. In this case the makespan behaves
like non-balanced measure thus not capturing the goodness
of a control action. For this reason the “Average of the End-
ing Times” of resources can also be used. However, other
performance measures can be considered. Thanks to the
clear interface between the model and the control action,
any control strategy can be efficiently tested.

2. To make online parallel forward simulations. The
model can be used also as a tool to make online simulations:
it is possible to recur at forward simulations each time it is
possible to choose between different possibilities to complete
a mission (i.e. more than one SU can be retrieved, a SU can
be stored in more than one storage location, a free vehicle
is required by more than one bay at the same time, etc).
Using online simulations, starting from the current system
state (number of active missions, state of resources, states
of the warehouse) and looking at a prefixed short horizon,
the best solution can be determined: parallel simulations
using different strategies are executed and the local optimal
solution is found. Any time a choice occurs, a new set of
forwards simulations starts.

3. To decide strategies to prevent potential deadlocks.A
structural analysis of the model can be made to individuate
probable deadlocks (i.e. waiting conditions that occur be-

4.3. Conclusion and Future researches 77

cause of wrong resources sharing policies). In addition, the
model can be used to synthesize deadlock prevention strate-
gies that can be simulated to observe the system behavior.

Using a CMHPN model compared to use a discrete PN one,
implies the following advantages:

• A more compact representation of the system: using a dis-
crete PN model, N discrete places to model a zone of length
L have to be used to know vehicle positions with a desired
precision L/N ; it means that to have a greater precision the
number of places has to be increased (e.g. if L = 10m and
N = 2 a precision of 5m is obtained while if N = 10 precision
raises to 1m). With the hybrid model just one place is al-
ways used whichever is the length of the zone and whichever
is the desired precision.

• Any possible configuration of the real system is represented:
using the hybrid model the vehicle position can assume any
real value between 0 and the length of a route (each vehi-
cle can assume any real position), while it can assume just
a finite set of values if a discrete event model is adopted.
Thanks to such a continuous nature of the position, an in-
crement in system performances can be obtained, since the
controller knows the system’s state with a precision better
than the one achievable with a discrete event system.

• Switching between continuous time phenomena, as acceler-
ation, deceleration or constant velocity, can be represented.

As more, future researches want to show how the use of the
Colored Modified Hybrid Petri Nets, can be extended also in dif-
ferent contest, as the one of unmanned aerial vehicles, as shown
in [BCCG12] where CMHPNs have been used to obtain compact
models for online monitoring of aerial service robots.

Chapter 5

CMHPNs Simulator

In this chapter, a simulator for CMHPNs, developed by the Au-
tomatic Control Group of University of Salerno, is presented. It
allows to design and simulate not only the net, but also the con-
troller, allowing the user to create models ad hoc for several kinds
of systems. The simulator has been obtained as an evolution of
PNetLab, see [pne] and [BCC07b], a freeware simulation and anal-
ysis tool for PN/CPN model. It presents a graphical user interface
to draw the net and the advantage to allow the definition of the
controller as a standard C/C++ program, implementing logical
predicates. All the features of the previous version have been
held (i.e. it can be used also to work with basic PN/CPN): the
important new feature is that it allows simulating of CMHPNs
continuous part with variable sample rate. The simulation tool
will be used in the Chapter 5 to evaluate the performance of a
real warehouse system.

5.1 Simulation algorithm

At each instant τk, the current state m(τk) of the system, start-
ing from its previous state, m(τk−1), i.e. the state the system
moved in, at the observation instant τk−1, are given as output by
a simulation. To do it, the simulator has to follow the evolution
both of the discrete and the continuous component of the systems.

80 5. CMHPNs Simulator



































    


    








    

  








    





































 



 




Figure 5.1 Architecture of the hybrid systems simulator.

While changes in the discrete part happen only when particular
events occur, continuous state changes nonstop. So, to determine
changing in the discrete state, the simulator has to know what
events occurred (i.e. what discrete transitions fired), while it has
to define a sample rate (τs) to update the continuous state. The
simulator’s behavior (that will be described in the following) is
shown in the Fig. 5.1.

The net can move in a new state for three reasons: i) at least a
discrete transition fires; ii) it is expired a time equal to τs, during
which at least a continuous transition has been enabling; iii) it
is expired a time equal to τs, during which at least a continuous
transition has been enabling and at least a discrete transition is
fired. At the instant τk, an enabled discrete transition tD fires
only if τk = τk−1 + δtD , where δtD is the tD firing delay . At each
step of simulation, the list of the enabled discrete transitions and
their firing delays is contained in the Scheduled Event List (SEL)
[CL08]. After every firing of a discrete transition, the list has to
be update: after the reaching of the new state m′(τk), calculated

5.1. Simulation algorithm 81

in according with (2.7) and after the controller has generated the
control events g(τk), new enabled transitions are added to the
SEL, while the disabled ones are deleted. The outputs obtained
from the SEL are: the firing vector ∆σ′(τk) = σ′(τk) − σ′(τk−1)
that has all components equal to 0 but those associated to enabled
discrete transitions are equal to 1; the list C-list(τk) of conflicting
transitions (i.e. set of enabled transitions where only one tran-
sition can effectively fire) contained in ∆σ′(τk). The scheduler
solves the conflicts according to a certain strategy and produces a
new firing vector ∆σ(τk) that is used to update the marking.

Evolution of continuous part is simple: at each sample instant,
the simulator, looking at the state of the net, obtained using (2.7),
determines which are the enabled transitions and calculated their
firing speed.

As it has been discussed in Chapter 2, Section 2.2, changes
in continuous marking can influence enabling of discrete transi-
tions and viceversa. Discrete transitions that are not influenced
by changing on continuous state will be called “continuous inde-
pendent”; viceversa, discrete transitions that can be enabled (dis-
abled) after a changing on continuous state will be called “contin-
uous dependent”. When an update of continuous state occurs, the
value of the internal condition e(τk) is calculated for each con-
tinuous dependent discrete transition and, if it is necessary, the
contents of the SEL are changed. After the firing of a discrete
transition, the new state is observed to determine if a change in
the continuous dynamic occurred: if so the new firing speeds, to
use in the next sample instant, are calculated.

After every simulation step, the next observation time is cal-
culated as:

τk = τk−1 +min(δ1, τs)

where, since the SEL is sorted on a smallest-scheduled-time-first,
δ1 is the lowest firing delay of the enabled discrete transitions and
τs is the sample rate.

With the goal of improving the simulator performances, a not
fixed sample time has been chosen. Indeed, the simulation time
of a continuous time system is improved if a variable simulation

82 5. CMHPNs Simulator











 


















Figure 5.2 Simulation step time update.

step time is used. However, in a hybrid context the updating of
simulation step time must consider also the interaction between
discrete and continuous parts. In words, if a too large step time is
used, boundary conditions which depend on the values of contin-
uous time variables could be detected with a not negligible error.
Since, enabling conditions of non autonomous discrete transitions
can depend on these boundary conditions, a function f1 evaluates
this error (see Fig.5.2), and if a threshold error is exceeded, the
step time is decreased according to a function f2.

Functions f1 and f2 are written by the user and they depend on
what is the system whose behavior has to be simulated: i.e. for the
toy example presented in Section 4.2.8, a possible choice for f1 can
be f1 = gsl ·(x1−xf), where xf is the slow down point. Because of
the sampling, generally the simulator cannot detect exactly when
the mass is in xf , so the start of the deceleration phase takes place
when x1 > xf . Consequently the mass will stop after the designed
point xdi and the distance between the real stop point and the
desired one is as greater as f1 is bigger. Choosing the sample
rate in the manner that f1 ≤ errmax assures the mass exceeds
the desired stop point at most of a prefixed quantity, function of
errmax.

5.2. Closed-loop system simulation 83

5.2 Closed-loop system simulation

The control of automated warehouse systems is usually imple-
mented in two levels [ABCC05]. A lower level is dedicated to the
control and coordination of the plant devices (conveyors, buffers,
cranes, shuttle, etc.), essentially to enforce logical constraints such
as deadlock freeness, mutual exclusion in using common resources,
etc. An upper level is dedicated to the performance optimization.

At the lower level, supervisory control theory [RW89, CAD99]
can be used to design an agent, called supervisor, that disables a
controllable transition when a logical constraint could be violated.
A supervisor can be modeled by a PN (CPN), or more in general
by an algorithm [BCG07, BCC07a]. When the supervisor is mod-
eled by a net system, the closed-loop simulation can be carried out
directly in PNetLab. Indeed, a boolean variable whose value can
be set by the supervisor is associated to each controllable tran-
sition (to each controllable transition color) in the plant model.
Moreover, PNetLab allows the integration of a PN/CPN/CMHPN
model with a standard C/C++ control algorithm thus allowing
closed-loop simulations of supervised systems in the most general
case. It is also easy to integrate external tools for the solution of
programming problems in order to implement very sophisticated
supervisory control algorithms. As for the controller implementa-
tion, if the supervisor is a PN, CPN, it can be implemented on a
PC/PLC using one of the approaches in [FCSS99a, FCSS99b] or
[BC07] or an object-oriented approach using UML [BCD09b]. If it
is an algorithm, the C/C++ code tested on the PNetLab platform
can be directly implemented on a PC where the access to the field
signal is available.

The closed-loop system (plant plus supervisor) seen from the
upper level can result in a non-deterministic system since conflicts
may occur, i.e. more than one transition is enabled but only one
can effectively fire. Since real systems must be deterministic, a
scheduling strategy to be implemented at the upper level is re-
quired in addition to the supervisor. To this purpose the tool
recognizes such conflicts. A scheduler solves them according to

84 5. CMHPNs Simulator

a certain policy. The scheduler can be directly implemented in
PNetLab or the simulation engine, without the graphical inter-
face, can be linked to a program implementing such a scheduler.
In both cases, the simulation of the closed-loop system plus the
scheduler is achieved. Moreover, thanks to the possibility to be
linked externally, PNetLAB can be used to develop schedulers
based on look-ahead and what-if techniques. At this aim, the
scheduler can also impose a given state to the PN model of the
plant. The scheduler tested by PNetLab is an algorithm, or a set
of dispatching rules that can be implemented on a PC/workstation
connected with the machine where the supervisor is implemented
too.

PNetLab is available free of charge to interested readers and is
downloadable from http://www.automatica.unisa.it.

Chapter 6

Case study

Figure 6.1 Layout of a real warehouse and its zones: crane bays (at the
top), picking bays (at the bottom), direct link between aisle1 and bay1 (at

the left), carousel routes and branch points (in center).

In this chapter results obtained simulating the behavior of a
real warehouse system are reported. A comparison between perfor-
mance obtained using the discrete CTPN model and the CMHPN,
introduced in Chapter 4, is presented.

86 6. Case study

6.1 Plant description

The warehouse is divided in 10 aisles, each served by one crane.
On both sides of each aisle there is a storage rack composed of 17
rows and 47 columns. The whole system is made up of 15980 loca-
tions. Each location can store one or more SUs, depending of their
dimensions (mm x mm): EURO1, 800x1200; EURO3, 1200x1200;
MINIJUMBO, 1600x1200; JUMBO, 2500x1200. In the warehouse
47940 EURO1 SUs can be stored. The crane moves along hori-
zontal (vertical) axis with a maximum speed 4m/s (0.8m/s).

The picking area consists of 9 bays where SUs are emptied by
human operators. Aisle1 and bay1 are directly connected by a sys-
tem of conveyors and they can move only Jumbo SUs. The other
9 aisles are connected with the remaining 8 bays by a carousel
(Fig. 6.1) where up to 23 vehicles can be moved. Carousel presents
several parts: an “outer ring” (blue path in Fig. 6.1) where the
carousel interfaces with cranes or picking bays; an “inner ring”,
connected with the “outer ring” by 6 switching points (named
NW, N, NE, SE, S, and SW in Fig. 6.1), with 4 alternative routes
(from NW to N, from N to NE, from SE to S, from S to SW) ve-
hicles can use to arrive at a specific set of bays; a “rail of parking”
(brown path in Fig. 6.1) where vehicles can be stopped when they
are not useful.

Vehicles can move in continue way with constant speeds or
with a uniformly accelerated motion, depending on the part of
carousel they are going through (on linear rail they can move with
maximal speed, but they must slow down in climb/dismount or in
bend). As more if the distance between the following vehicle goes
under a fixed threshold the speed is slowed down with constant
acceleration.

In the warehouse, full SUs are transported in and out from
the aisles, to be (partially) emptied at the picking bays. The
replenishment of the items in the structure represents the 10% of
the warehouse activity, and it is performed during the night, in
the manner it does not influence warehouse performance. For this
reason, at the start of any working-day, it can be assumed all the

6.2. System Performance 87

items necessary to satisfy the orders are already present in the
warehouse.

6.2 System Performance

In the literature, the automated warehouse systems performance
optimization usually reduces only to the crane subsystems one,
since the crane subsystem is considered to be independent of the
performance of the IS. This is true when a vehicle requires a neg-
ligible time with respect to the crane mean cycle time to reach the
crane bay from a picking bay.

As for cycle time performance, automated warehouse systems
are usually sized according to FEM 9.851(see [Eur03]). More in
detail, the performance of each aisle is estimated by computing
the time needed to perform a dual command cycle, named FEM
cycle, consisting of storing a SU and retrieve another one in spe-
cific points of storage rack. The coordinates of these points are
obtained from rack geometry. A similar approach could be used
also in general case, where the cranes in a single cycle can store
and retrieve more than one SU (in the case study up to 2 SUs).

The estimated average cycle time for each crane of the consid-
ered warehouse is 50 SUs/h (500 SUs/h for the overall system),
but, as it will be shown later, this is not realistic. Indeed, this
could be acceptable when the carousel effects can be neglected.

In the real warehouse considered here, the size of the system
makes the crane subsystem performance to be dependent on the
carousel ones. In this case, an effective way to estimate warehouse
performance is simulating its behavior, as done in this thesis.

In case of simulation, the activity of each crane reduces to a
single timed transition whose firing delay is fixed after the cycle has
been created. When two SUs to be stored in a certain aisle reach
the crane bay, a crane cycle is built by the controller properly
adding two pickings so that the crane performance is optimized
(see [ABCC05]). Details on this are omitted here, since this is not
the focus of this dissertation and it is a well known problem in the

88 6. Case study

literature.
Warehouse performance optimization can be obtained devised

several control laws, also very complex, both for the crane system
than for the IS. As for example, dispatching rules can be adopted
as suggested in [ABCC05] to obtain a short-term optimization,
that usually has the objective to minimize the time to complete a
little number of picking or storage missions and it is based on the
current state of the system.

Performance optimization is out of the scope of this disser-
tation. For this reason the following control strategies, actually
adopted in the real plant, have been used in the simulation both
with the discrete and with the hybrid model:

• Storage Control Policy

For each SU waiting for a storage:

1. For each aisle, create the associated storage queue (i.e.
the list of items to be stored in the aisle free locations)

2. Create a list of free locations having the same size of
the SU.

3. Select the free location whose aisle has the shorter stor-
age queue.

4. Change in “Reserved” the state of the selected location.

• Vehicle Assignment Policy

Create a list of SU waiting for a storage. For each SU waiting
at an interface point between crane/picking bays and IS:

1. For each free vehicle compute the time it will take to
carry on the SU.

2. Select the closet vehicle respect the SU.

3. Set the bay interface point as the destination of the
selected vehicle.

6.3. Simulations 89

6.3 Simulations

Machine used to carry out the simulations is a workstation equipped
with 2 Quad-Core CPU Intel! Xeon! E5530@2.40GHz, 12GB
RAM, and Windows 7 Professional 64-bit operative system. PNet-
Lab has been used as simulation environment (see [pne] and [BCC07b])
for simulating the CTPN model, while the extended version for
CMHPNs of PNetLab, presented Chapter 5, has been used as
simulation tool for CMHPN model.

6.3.1 Simulations using a discrete model

First the simulation of the CTPN model of the case study ware-
house is presented: it is obtained properly connecting the CTPN
modules introduced in Chapter 4. The firing delay of timed tran-
sitions depends on the length of the zone and represents the time
necessary to the vehicle to cross the zone. For the sake of simplic-
ity, acceleration and deceleration have been neglected, since the
modeling of such continuous dynamics requires the implementa-
tion of a too complex discrete model. Hence, vehicles can have
only two speeds, v = 0 when they are stopped and v = Vmax when
they are moving.

Simulations with different values of system parameters have
been made, showing that crane and IS are not independent and
the whole system has a nonlinear behavior. In particular, starting
from an initial warehouse occupation of about 80%, the behavior
of the real warehouse during a single working-day including 6000
missions has been simulated varying vehicle speed. The missions
required SUs equally distributed in each aisles. Simulation have
shown that:

A. Varying of vehicle speed influences the crane subsystem per-
formances in a nonlinear way. In particular, named crane
occupation time the percentage of time a crane remains
busy during a simulation, it depends on how much time the
carousel spends to deposit on crane bays SUs that must be
stored in the aisles. Indeed, if there are not SUs on the bay,

90 6. Case study

a crane must wait and as consequence the crane occupation
time decreases;

B. A typical time-performance measure, for the activities of
such a system, is the so-called “makespan” defined as the
time required to the system to complete a set of missions.
Studying variation of makespan depending on vehicle speed,
it has been shown that an increment of vehicle speed does
not produce mandatorily an increment of the makespan: a
nonlinear behavior is obtained, due to the stop and go events
of the vehicles that halt to load (unload) SUs at the interface
zones;

C. Increasing the number of vehicles in the carousel does not
imply a consequently increment of the performance. Indeed,
after a threshold (20 vehicles) adding other vehicles chokes
up the carousel and gets worse the performances. This result
confirms the nonlinear behavior due to the interface zones
where the discrete event dynamic is relevant.

Successively, an aggregate model of the CTPN model has been
obtained using the same algorithm shown in 4.2.14 for the CMH-
PNs, with the difference that, in this case, the marking of the
aggregate places has been obtained starting from the marking of
live CTPN subnets in stead of CMHPN ones.

Starting from the aggregate model, the same deadlock preven-
tion control policy of Section 4.2.12 has been implemented using
the approach presented in [BC07] and the set of the previous sim-
ulations has been repeated.

Performances are shown in Fig. 6.2 and Fig. 6.3. Previous
considerations are still true. Notice that with 20 vehicles in the
carousel, a makespan of 15.09 hours is obtained that corresponds
to an average cycle time of 398 SUs/h. As more, comparing these
results with the previous one, it can be seen how the deadlock
prevention policy makes the system slower. Indeed when a bay
becomes completely busy, a vehicle is reserved to be used only to
empty that bay. As consequence the available vehicles number
decreases and the makespan increases.

6.3. Simulations 91





 





















      









(a)



































      









(b)

Figure 6.2 Variation of the system performances with 20 vehicles in the
carousel, using a discrete model, increasing vehicles speed: (a) percentage of

cranes occupation; (b) makespan .




 



















   









Figure 6.3 Variation of makespan, using a discrete model, increasing the
number of vehicles, with vehicle speed Vmax = 1.5m/s.

92 6. Case study

6.3.2 Simulations using a hybrid model

The use of a CMHPN model, instead of a discrete one, leads to
more accurate results with the same computational efforts.

In this section, simulations of a CMHPN model of the case
study warehouse are presented: the model has been obtained using
the CMHPN modules presented in Part 1 - Section IV;

Two sets of analysis have been made:

1. valuation of the dependence of warehouse system perfor-
mance on the value of simulator parameters (as sample time
and kind of simulator used);

2. valuation of the dependence of warehouse system perfor-
mance on the value of system parameters (as number of ve-
hicles running in the carousel and maximal vehicles speed).

In the first set, simulations using fixed and variable sample
time simulator has been executed.

Results obtained with a fixed sample time τs are reported in
Fig. 6.4a) and in 6.5a): better performances are obtained decreas-
ing τs. Indeed, since the state of the system is frozen between
two sample times, the controller knows the vehicle position with
a precision depending on the number of the samples: as bigger is
the number, as greater is the precision. That allows the controller
to better manage the interactions between vehicles and bays.

Using a variable sample time, at particular vehicles configu-
rations, the allowance by which a target position is considered
reached does not depend on the value of the sample rate but it
is fixed a priori. Indeed, with a variable sample time simulator,
τs can vary in the range

[
τsMin, τsMax

]
. At any simulation step,

τs is set equal to τsMax but it is decreased any time the system
state needs to be observed with a better precision (e.g. the error
between a target position and that of a vehicle, obtained with the
current τs, is greater than a fixed threshold). In that case, the
previous state of the system is re-established and a new value of
τs is calculated, using an appropriate function, depending on the
nature of the system. In Fig. 6.4b) and 6.5b) results obtained

6.3. Simulations 93





















































Figure 6.4 System performance on a working-day with 20 vehicles and: a)
different fixed sample rates; b) different variable sample rates.





 



  















   















Figure 6.5 Duration of the simulation increasing fixed and variable sample
rate.

with τsMin = 0.05s and τsMax ∈
[
0.1, 0.66

]
s are reported: perfor-

mances are a little bit minor than those obtained with the fixed
sample rate simulator. It is because with fixed τs target position
is considered reached with a great allowance (e.i. about 1m in the
case of τs = 0.66s) while in the second case, for each sample time,
tolerance is fixed at 0.15m.

With the second set of analysis, nonlinear makespan behav-
ior respect to the variations of the number of vehicles running
in the carousel has been confirmed (see Fig. 6.6): 20 vehicles is
the threshold value after that makespan increases again. Notice
that also in this case the maximum makespan corresponds to an
average cycle time, 398 SUs/h, that is minor than the estimate
one (500 SUs/h). As more, also the influence of vehicles speed
on crane performance is confirmed: cranes percentage occupation
and makespan, obtained varying vehicles speed, are reported in
Fig. 6.7a) and Fig. 6.7b), respectively.

94 6. Case study





 















   









Figure 6.6 Hybrid model variation of makespan, increasing the vehicles
number. A variable sample rate τs = 0.66s is used.



































      




(a)





  

















      









(b)

Figure 6.7 Hybrid model variation of (a) cranes percentage occupation
and (b) makespan, increasing vehicles speed, with 20 vehicles in the carousel

and variable sample rate τs = 0.66s.

6.4. Conclusions e Future researches 95

Finally, it is worth to note that using a variable sample time
simulator and setting τs = 0.5s and τs = 0.66s a duration of
simulation of 7.97 hours and 7.64 hours respectively, has been ob-
tained. With the same initial warehouse configuration, the same
set of missions, the same number of vehicles in the carousel (20)
and running the simulator on the same machine, duration of sim-
ulation using the CTPN model of Section 6.3.1 is equal to 7.25
hours: even if the use of a hybrid model allows to represent sys-
tems behavior with a greater precision, the computational efforts
is, practically, the same.

6.4 Conclusions e Future researches

The results of the experimental campaign based on simulation con-
firm the effectiveness of the CMHPN model. Moreover, a maxi-
mum error smaller than 6% between simulation and real data has
been obtained. This is a reasonable error in this field.

Current research activity is focusing on the reduction of the
simulation time. It seems reasonable to reduce the ratio between
real time and simulation time so that the model can be used to
make online forward simulations in order to choose between dif-
ferent possibilities to complete a list of missions.

Chapter 7

Identification

System identification is a classical problem in system theory: it
consists in determining the mathematical model that describes the
behavior of a given system from the observation of the inputs and
outputs evolution.

The interest for the identification of DESs usually comes from
reverse engineering for (partially) unknown systems, fault diagno-
sis, or system verification [FS08, BCD09a]. Inputs and/or outputs
sequences are observed in a passive way during the operation of the
system within its environment. Then, the system is assumed to
be controlled and the resulting model is a closed-loop model. This
makes sense when the main goal of the identification is to evalu-
ate the discrepancy between a desired behavior and the effective
behavior.

The methods presented in the literature for the identification of
DESs produce a mathematical model expressed as a PN or a finite
state automaton model of the system behavior from sequences
observed during the system operation. A survey can be found in
[LML10] and in [CDFS11].

When the resulting model is a PN, the net structure (places,
transitions and arcs) and its initial marking must be identified.
Measurable places represent the sensors of the system and transi-
tions represent the observed events. In the identification procedure
signals from sensors are considered as outputs, while the observed

98 7. Identification

events are considered as inputs.

At the best of our knowledge, in all the proposed approaches in-
puts cannot be modified: the identification mode is said to be pas-
sive. From DES control perspective, another identification mode
is also of interest. If it is allowed to force/enable inputs to the
actual system, the term active identification is used. Active iden-
tification could be useful when a supervisory control system must
be designed. Indeed, a model of the system to be supervised is
not always available.

The goal of the supervision is the coordination of devices, ma-
chines, robots. Each device can be modeled as a DES when it is
of interest its behavior in terms of controllable and uncontrollable
events [RW89, CAD99]. The occurrence of a controllable event can
be disabled by an external agent called supervisor, while the oc-
currence of an uncontrollable event cannot be disabled. However,
a plant is composed of devices built by different manufactures, and
they do not provide DES models of the devices.

The supervisory control problem is, known the occurred events,
to enable/disable controllable events in such a manner that a
desired behavior is obtained. In DES control theory it is as-
sumed that a symbol is associated to each event and the behavior
of a DES can be described in terms of generated sequences of
events/symbols. Consider for instance working cells composed by
machines, conveyors and buffers: uncontrollable events can be the
end of a working sequence, the arriving of a part at the end of a
conveyor, the end of the loading of a part from a buffer; control-
lable events can be the start of a working sequence, the loading
of a part on a conveyor, the loading of a part from the buffer.
Desired behaviors can be a correct machine and buffers loading
sequence, avoiding buffer overflows, mutual exclusion when using
shared resources. Notice that controllable events are enabled by
the supervisor, but they are not forced to occur.

The possibility to explore the system behavior by enabling in-
puts can make the online identification faster. Indeed, the fact
that certain outputs have been generated when certain controllable
events are enabled adds information to the identification process.

7.1. Literature review 99

Moreover, if the system is observed in a passive mode, some out-
put events can be seen only after a very long time, since a conflict
between a set of events could be solved always in a manner that
certain sequences are not generated. Active identification speeds
up the identification process making the observed behavior more
information rich, since varying input signals different sequences
can be observed.

7.1 Literature review

The pioneer approach at the active identification is that proposed
in [Ang87] to identify an automaton using examples (behaviors
accepted by the system as well as by the conjecture) and coun-
terexamples (behaviors accepted by the system but not of the the
conjecture). Two agents are defined: a Learner, that have to iden-
tify the unknown system, and a Teacher, that known the behavior
of the system. The first one interrogates the Teacher by means
of so called memberships queries, sending to it some inputs and
waiting for the answer (examples). When it has sufficiently infor-
mation, it builds a hypothesis and, using an equivalence query, it
asks the Teacher if such a hypothesis correspond to the unknown
system. If it is the case, identifications ends else the Teacher send
to the Learning a counterexample, i.e. a behavior the hypothesis
is not consistent with. In the paper it is shown that the number
of membership queries needed to identify the system with a fixed
accuracy, depends on the number of states of the current hypothe-
sis. The Angluin’s algorithm is at the base of several other works,
for example in [SHM11] the Angluin’s algorithm is extended to
identify a Meanly machine, while in [Jar10] it is used to identify
Timed Event System.

A limitation of Angluin’s method is that it needs the automa-
ton is reset to the initial state after each query. Rivest and
Schapire extend it and provide a polynomial time algorithm for
inferring any finite automaton from a single continuous walk (i.e.
without return the system in its initial state after each test) on

100 7. Identification

the target automaton [RS, RS94]. They use the concept of hom-
ing sequences in lieu of the reset: an homing sequence is an input
that leads the system in a known state that is used as initial state
for the successive interrogation. In [FKR+97] the concept of local
homing sequence is introduced: this is a sequence of inputs that is
guaranteed to orient the learner, but only if the observed output
sequence match a particular pattern. Advantage respect the pre-
vious ones is that the local homing sequences are shorter and for
this reason arriving in a known state can be more frequent than
when homing sequences are used.

Even if active learning has been the object of numerous re-
searches, there are very few applications in PN system identifica-
tion while very common are passive approaches.

In [ELS11] an active learning for Workflow PNs (WPNs) is
presented: once again identification is carried out by means of a
Learner and a Teacher agent. Membership queries consist in a
firing sequence of the WPN transitions; if such a sequence is com-
patible with the net to identify, the Teacher’s answer with another
firing sequence that extend the previous one, else it answers no.
On the base of the Teacher answers the reachability graph of the
net is built and then the corresponding WPN is obtained. There
are two principal differences between [ELS11] and the approach
presented in this dissertation: 1) PN is directly obtained solving
the ILPP and 2) the Identifier does not send queries to a Teacher
but directly stimulates the system, makes it changes its state. In
this way when a new interrogation is executed, system can be in
a state different from its initial one.

As said before, principal approaches to PNs identification are
passive ones. They can be divided in three groups: 1) on-line iden-
tification based on the measurable state observation; 2) I/O based
identification; 3) Integer Linear Programming Problem (ILPP)
based identification.

Here below they are briefly recalled and summarized in Fig. 7.1:

1) In [MCLM05] Meda-Campaña at el. propose an asymptotic
identification approach consisting in compute on-line an IPN
model Qi, describing the behavior of an unknown system Q,

7.1. Literature review 101

from the measure of its output symbols (the marking of the
subset of observable places). Every time a cyclic behavior is
detected, the previous computed model Qi−1 is updated such
that the new (updated) model Qi acquires more detail of the
system than Qi−1.

Differently from the approach proposed in this thesis, the one
proposed by Meda-Campaña et al. needs the presence of mea-
surable places since the output of the system is define as the
marking of such places. As more a cycle is defined in terms
of the observable marking: said ϕMi the observable marking
at step i, after k steps the system is considered entered in a
cycle if ϕM0 = ϕMk. In this dissertation an operative cycle
definition based on the observation of repetitions in firing of
transitions is proposed.

2) In [EVLLM11], Estrada-Vargas et al. present a black-box method-
ology to identify a PLC-based controlled DES.

It is based on the observation of inputs (firing transitions) and
output (marking of the observable places) of the system: first
a sufficiently long I/O sequence is obtained, than it is trans-
formed in a sequence of events related to the changes in the
observable marking. The identification result is a safe IPN
having a place for each state of the system and a transition
for each detected event. Such net is not minimal: to elimi-
nate redundant nodes some transformations are necessary. At
this aim in [EVLLM12] a method based on the study of direct
and indirect causality matrices is performed to establish the
relation between two events, allowing to reduce the number of
nodes of the net. Notice that the net does not represent the
actual language of the system but the sampled output language
of length k + 1 of the DES. The parameter k is used to adjust
the accuracy of the identified model, similarly as proposed in
[KLL05].

The result of the algorithm proposed in this dissertation does
not need any simplification because it is already the minimal
PN able to describe the observed language; as more it can be

102 7. Identification

not safe (an upperbound of the marking value is supposed to be
preliminary known: this allow to distingue cyclical behaviors
even in the case of places with marking greater of 1).

3) Identification based on the solving of a Integer Linear Program-
ming Problem (ILPP) is argument of several works: it was in-
troduced for the first time by Giua and Seatzu in [GS05] where
authors show that the language of a free-labeled Petri net sys-
tem can be described by a set of linear constraints. As more
they demonstrate that the PN obtained as solution of the sys-
tem of constraints generates the desired language. Successively
the work has been extended to the labeled PN in [CGS07].
However in the both works, the language of the system (firing
sequences with maximal length equal to k) is supposed to be
known, consequently not a really identification but a synthesis
is carried on.

In [DFM08] ILP is used by Dotoli et al. to identify pre-incidence
and post-incidence matrices and the initial marking of an IPN
when the number of places and transitions is given and a firing
sequence and the corresponding marking are (partially) observ-
able. The difference with [GS05] is that the whole language of
the system is not known: a word (a sequence of event belong-
ing to the DES alphabet) of length h are obtained observing
the evolution of the system in terms of occurred events and
the available output vectors, that correspond to the markings
of the measurable places. Any time a new event occurrence is
detected, the word w is updated (w = wξi, where ξi is the last
event occurred) then, the corresponding ILP problem is con-
structed. Solving it the minimal IPN describing the observed
language is obtained. Soon after the algorithm start to wait
a new event: hence, the algorithm refines recursively the IPN
modeling the DES using the on-line solution of the ILP prob-
lem. In [DFMU11] the real time identification is extended to
systems having unobservable transitions: since the observable
part of the system is known the algorithm can detect the oc-
currence of an event associated to an unobservable transition.

7.2. Thesis contribution 103

When this occurs a new ILP is built on the base of the last
observation and the initial model is updated with the adding
of the unobservable transitions.

The active approach described in the following is based on the
resolution of an ILPP. As in [DFM08], the language of the DES
is considered unknown but resolution of the ILPP does not
start after any event occurrence but only after that a cyclical
behavior has been detected.

7.2 Thesis contribution

In Fig. 7.2 the abstract model of the proposed algorithm is re-
ported. The block DES represents the system to be identified: it
is partially observable and some information about its behavior
are preliminary known. The block Identifier represents an agent
that can observe the DES output yk but it can also produce inputs
uk to send to the DES. These inputs enable/disable controllable
events of the system, triggering its evolution. Such inputs are gen-
erated by Identifier on the basis of previous observations and of
additional information about the system. After the observation
of a sufficient number of system outputs, a conjecture about its
model is produced: it is an approximation of the actual system
behavior.

The approach is inspired by the offline approach based on Inte-
ger Linear Programming (ILP) proposed in [CGS07] and extended
to the real time identification in [DFM08]. Enabling of transitions
and their firings is characterized in terms of linear constraints. For
selecting among different solutions, a performance index involving
the arc weights and the number of tokens in the initial markings
is minimized.

In this thesis it is assumed to know the set of conflicting con-
trollable events, i.e. controllable events whose firing disables the
firing of the other events in the same conflicting set. A set of
conflicting events is represented by a set of transitions having a
common input place in a PN.

104 7. Identification

P
a
p
er

P
ro

p
erty

R
esu

lt
P
relim

in
a
ry

K
in
d

o
f

Id
en

tifi
er’s

B
eh

av
io
rs

In
fo
rm

a
tio

n
S
y
stem

In
p
u
ts

[M
C
L
M
05]

on
-lin

e;
IP

N
m
easu

rab
le

p
laces

closed
loop

ob
servab

le
m
arkin

g
con

cu
r.;

gray
b
ox;

cyclical
ch
oice;

asym
p
totic

syn
ch
.

[E
V
L
L
M
11]

off
-lin

e;
IP

N
m
easu

rab
le

p
laces

closed
loop

I/O
sequ

en
ce

con
cu

r.;

[E
V
L
L
M
12]

b
lack-b

ox;
cyclical

ch
oice;

b
ased

on
k-

accu
racy

syn
ch
.

[G
S
05]

off
-lin

e;
free

lab
eled

P
N

lan
gu

age
L

w
h
atever

fi
rin

g
seq.

con
cu

r.;

gray
b
ox;

ch
oice;

syn
ch
.

[C
G
S
07]

off
-lin

e;
lab

eled
P
N

lan
gu

age
L

w
h
atever

fi
rin

g
seq.

con
cu

r.;
gray

b
ox;

ch
oice;

syn
ch
.

[D
F
M
08]

on
-lin

e;
free-lab

eled
P
N

alp
h
ab

et;
E

w
h
atever

fi
rin

g
seq.;

con
cu

r.;

gray
b
ox;

m
easu

rab
le

p
laces

ob
servab

le
m
arkin

g
ch
oice;

asym
p
totic

syn
ch
.

[D
F
M
U
11]

on
-lin

e;
P
N

alp
h
ab

et
E
;

w
h
atever

fi
rin

g
seq.;

con
cu

r.;
gray

b
ox;

m
easu

rab
le

p
laces

ob
servab

le
m
arkin

g
ch
oice;

asym
p
totic

syn
ch
.

F
ig
u
re

7
.1

S
u
m
m
ary

tab
le

of
p
rin

cip
al

p
assive

id
entifi

cation
ap

p
roach

es.

7.2. Thesis contribution 105



 







Figure 7.2 Experimental Based Identification of DES.

It is also assumed that if no events are observed for a certain
time under the same control inputs, the system is blocked. This
is reasonable for a live system where some control inputs are dis-
abled. In this case, the deadlock is induced by the identification
procedure. Similarly, it is assumed that a system is entered in a
cycle if the same sequence is observed for a certain number of times
under the same control inputs. In other words, it must be possi-
ble to detect cyclic behavior. The detection of such deadlocks as
well as cyclic behaviors induced by the controller allows to obtain
additional information speeding up the model identification.

Note that the plant must be controlled in a safety mode other-
wise during the identification, plant devices may be damaged. This
aspect is not relevant in a software engineering or re-engineering
context. However, also during a passive identification process the
existence of a controller exciting the devices is needed such that
the behavior process plus the controller can be observed. In the
problem addressed in this dissertation, such a controller is needed,
but some control inputs can be disabled, since they are control-
lable.

This preliminary work on the topic of active identification of
DESs, presents a procedure to obtain a Place Transition (P/T)
PN model of the system. Such a procedure is here named Exper-
imental Based Identification (EBI).

106 7. Identification

7.3 Notations

Let consider a system affected by different types of events then it
is possible define an event (discrete) set E whose elements are all
these events.

The event set E is partitioned in the set Ec of controllable
events and in the set Euc of uncontrollable events. Transitions
associated to controllable (uncontrollable) events are drawn like
white (black) bars.

Throughout this chapter the following notations will be used:

• Let s be a sequence of events belonging to E. It is said:

- empty, if it has no events, ε is used to denote the empty
sequence.

- elementary, if it is made up of just one event: s = ξi,
where ξi ∈ E;

- composed, if it is made up of more than one event: s =
ξ1ξ2ξ1ξ3 . . . ξq;

• Any interval of the system observation, during which system
input is kept constant, is said step. Each step is denoted by
an integer number.

• enabled(ξi, k) :
{
(ξi, k), ξi ∈ Ec, k ∈ N

}
→

{
0, 1

}
is the

enabling function that returns 1 if the event ξi is enabled in
the step k, 0 otherwise.

• The input uk is the set of events ξi ∈ Ec with enabled(ξi, k) =
1 at the step k. For the sake of clarity, a notation without
brackets will be used, i.e. assumed Ec = {a, b}, notation
uk = a, uk = b and uk = ab will be used instead of uk = {a},
uk = {b} and uk = {a, b}. Notice that the controllable events
are concurrently enabled by Identifier I, so uk = ab = ba
since the input uk is a set of enabled events.

7.3. Notations 107

• The output sequence yk = out(uk) is the sequence of events
belonging to E produced by the system as output to the
input uk.

Definition 7.3.1 (Multiple Sequence). An input (output) mul-
tiple sequence U (Y) is the succession of the inputs (output se-
quences) sent to (received from) system S for a number of consec-
utive steps:

U = u1 → u2 → · · · → ul(Y = y1 → y2 → · · · → yl)

The symbol → is used to remark that the set of enabled con-
trollable events changes, y1 → y2 means that y2 follows y1 when
the set of enabled controllable events changes from u1 → u2.

7.3.1 A preliminary result

Using results presented in [DFM08] the following proposition can
be proved.

Proposition 7.3.1. Consider u is given as input to the system
when it is under the marking m′

0, and let w = t1t2 . . . tl be the
output sequence observed. The system evolution is

m′
0[t1〉m′

1[t2〉m′
2 . . . [tl〉m′

l

.

108 7. Identification

Let ζ(u, w) be the following set of constraints






m′
j −m′

j−1 = (Post′ −Pre′) · ej (7.1a)

m′
j−1 ≥ Pre′ · ej (7.1b)

−Ksk +m′
j−1 −Pre′ · ek ≤ −1 (7.1c)

∀tk : (tk /∈ w) ∧
(
(tk ∈ u) ∨ (tk /∈ Ec)

)

1T · sk ≤ m− 1 (7.1d)

∀tk : (tk /∈ w) ∧
(
(tk ∈ u) ∨ (tk /∈ Ec)

)

m′
j(pi) = mO(pi) ∀pi ∈ PO (7.1e)

m′
j ∈ Nm (7.1f)

Pre′ ,Post′ ∈ Nm×n (7.1g)

sk ∈
{
0 , 1

}m
(7.1h)

j = 1 . . . l (7.1i)

where m′
j, Pre′, Post′ are unknown variables related to a net with

m places and n transitions and K is a sufficiently large nonnega-
tive integer to be a bound for the place marking.

If the system S = 〈N,m′
0〉 is a solution of ζ(u, w), then

m′
0[w〉

i.e. word w is enabled from m′
0.

Proof. Since transition tj is enabled at the marking m′
j−1, the

following condition holds: ∀tj ∈ σ, m′
j−1 ≥ Pre · ej. Moreover,

for each fired transition, state equation m′
j = m′

j−1 +C(·, t) has
to be satisfied, hence, m′

j −m′
j−1 = (Post−Pre) · ej.

Transition tk does not fire because 1) it is not enabled from
the marking m′

j−1 or 2) it is a controllable transition and it is
not enabled by Identifier I. In case 1) it exists at least a place
pi s.t. m′

j−1 < Pre(pi, tk). As shown in [CGS07] satisfaction of
this condition correspond to satisfy constraints (7.1c), (7.1d) and
(7.1h). In case 2), no constraints can be written because when a
transition is not enabled by Identifier I its firing is prevented even
if the marking of the net satisfies (7.1b).

7.3. Notations 109

For any observable place pi, the value of the marking must be
equal to the value received as output from the system, i.e. equation
(7.1e) must hold.

Equations (7.1f) and (7.1g) in ζ(u, w) are derived by the def-
inition of marking as well as of pre and post incidence matrices.
"

Note that the number of places of the net to be identified is
unknown. As usual, in identification approaches based on mathe-
matical programming tentative values must be used.

7.3.2 Assumptions

The approach described in this chapter works under the following
assumptions.

Assumption 1 (Free labeled nets). There is an isomorphism be-
tween the event set E and the transitions set T . !

As consequence of Assumption 1, in this chapter, the name of
the event is used to indicate the associated transition.

Assumption 2. S is live, bounded and reversible. !

Assumption 2 implies that: i) if a block occurs in S, it is caused
by the particular set of enabled/disabled control transitions, im-
posed by Identifier I; ii) the reachability graph RG of system S is
finite and strongly connected; iii) systems have a cyclic behavior,
with cycles of finite length.

Liveness and reversibility assumptions can be removed to ex-
tend the approach presented in this chapter to systems having
blocking behaviors. In such a case, an opportune constraint set
has to be used to represent a dead marking. However, this is out
of the topic of this preliminary work.

Assumption 3. There are not cycles in the net involving only
uncontrollable transitions. !

110 7. Identification























Figure 7.3 A free choice net.

Assumption 3 is usual in the supervisory control theory.

Assumption 4. S has only free choices, i.e.

∀p ∈ P, card(p•) ≤ 1 or •(p•) = {p}; equivalently1

∀p1, p2 ∈ P, p1
• ∩ p2

•)= ∅ ⇒ card(p1
•) = card(p2

•) = 1

In words, it is a PN such that every arc from a place is either a
unique outgoing arc or a unique ingoing arc to a transition. If the
PN with only free choices is an ordinary PN, then it is called Free
Choice net [Mur89](see Fig. 7.3). !

7.4 The Algorithm

Calling S = 〈N,m0〉 the P/T net system modelling the real be-
havior of the DES, a conjecture model S′ = 〈N′,m0

′〉 is computed,
on the base of the system observation.

To do it, the following preliminary information about S are
needed:

• The set E of the system events and the set Ec of all the
controllable events;

1Given a set S, card(S) denotes the cardinality of S.

7.4. The Algorithm 111

• The maximal time Tmax Identifier I has to wait before to
conclude the system is entered in a still marking.

Definition 7.4.1 (Still Marking). At the step k, system S
is said to be in a Still Marking under the input uk if for a
time at least equal to Tmax, no events have occurred. !

In words a still marking represents a deadlock state induced
by the fact that some controllable transitions are disabled
by the input uk. It is assumed that the identification proce-
dure starts with uk = ∅ and when a still marking has been
reached. This is always possible when all controllable tran-
sitions are disabled, since there are not cycles involving only
uncontrollable transitions. Then, without loss of general-
ity we assume that the initial marking m0 of the observed
system is always a still marking.

• The minimum number Rcycle ∈ N of times an output se-
quence has to be repeated before Identifier I can conclude
the system is entered in a cycle.

In this chapter it is assumed that Identifier I is able to detect
when system S enters in a cycle. For this purpose an oper-
ative definition of cycle, based on the observation for Rcycle

times of the same output multiple sequence, in correspon-
dence of the same input multiple sequence, is introduced in
the following:

Definition 7.4.2 (Cycle). A system is assumed to be in a
cycle, starting from the step k if one of the two conditions
holds.

1. A sequence of events is repeated consecutively Rcycle

times in the output sequence yk. As example, given
Rcycle = 2, if yk = abab, Identifier I can conclude that
the system entered in a cycle since sequence ab is re-
peated for a number of times equal to Rcycle.

112 7. Identification

2. Starting from the step k, a succession YC is contained
consecutively Rcycle times in Y . As for example, given
Rcycle = 2, if Y = bc → d → bc → d, then starting
from step 2 the system entered in a cycle because the
subsequence YC = bc → d is repeated consecutively 2
times in Y . !

• The set Choices consisting of all the possible conflicting set
of controllable events. Both controllable and uncontrollable
events can be involved in a conflict; it is assumed that all the
conflicts involving only controllable events are known and a
symbol (e.g. ch1, ch2 etc..) is assigned at each conflict.
Given the set Choices, eventsOf(·) : Choices → E is the
function that for each conflict chi ∈ Choices returns the
set of events involved in such a conflict, e.g. in Fig. 7.3
Choices = {ch1} and eventsOf(ch1) = {a, b}.

From now on a controllable event that is enabled (disabled) by
Identifier I, is said control enabled (disabled); an event that is
enabled (disabled) by the current marking of the system is said
state enabled (disabled). Notice that a controllable event can be,
at the same time, control enabled but not state enabled.

EBI algorithm is repeated cyclically: each new execution is
called iteration i of the EBI algorithm.

If an output multiple sequence observed at the last observa-
tion is enabled for the conjecture S′

i−1, obtained at the end of the
previous iteration, the algorithm will not update it. Then, the
definition of conjecture consistent sequence is given.

Definition 7.4.3 (Conjecture Consistence Sequence). Let Yi be
the output multiple sequence produced by system S during the i-
th iteration when the input multiple sequence Ui is given as input.
Let S′

i−1 be the conjecture obtained from the (i− 1)-th algorithm
iteration. If sending as input Ui to the conjecture S′

i−1, it is pro-
duced the output multiple sequence Yi, conjecture S′

i−1 is said to
be consistent with reference to the i-th observation. !

7.4. The Algorithm 113

At each algorithm iteration i, system dynamic is observed and
a conjecture S′

i, consistent with reference to the i-th observation,
is given as result of the iteration.

Each iteration i can be divided in 4 phases:

• Phase 1: System Observation – Identifier I sends the set of
control enabled controllable events as input to system S and
it records the output sequence;

• Phase 2: Conjecture Consistence Checking – The consis-
tence of the last conjecture w.r.t. the current observation is
checked to decide if starting a new iteration or continuing
with execution of Phase 3 and 4.

• Phase 3: Algebraic Constraint System Construction – A set
of linear constraints, describing the observed dynamic of the
system during the current iteration, is built;

• Phase 4: ILP Resolution – A consistent conjecture is ob-
tained from the resolution of an ILP problem associated to
the set of constraints obtained in Phase 3.

While Phase 1 is always executed at each iteration, Phase 3 and
4 are executed only if the conjecture S′

i−1, obtained at the end of
the previous iteration, is not consistent w.r.t. the i-th observation,
otherwise S′

i = S′
i−1.

EBI algorithm is reported in Fig. 7.4; in the next, each phase
will be explained in detail.

7.4.1 Phase 1: System Observation

EBI algorithm remains in Phase 1 until a cycle is detected (notice
that for Assumption 2 this always occurs).

From now on, the index i will be used to indicate the i-th algo-
rithm iteration while the index k will be used to indicate the k-th
step of the System Observation executed during the i-th iteration.

114 7. Identification

Requires: E, Ec, Choices, Rcycle, Tmax.

(* Set of all the possible multiple input sequences construction *)
Ueq=ComputeAllPossibleMultipleInputSequences(Ec,Choices)
(* Iteration number initialization *)
i=1
(* Start of identification*)
Repeat
(* Selection of the input multiple sequence for the current step *)
U i=SelectOneInputMultipleSequence(Ueq,S ′

i−1
);

(* Start of Phase 1: System Observation *)
[Yi, Ui]=SystemObservation(Ui, Rcycle, Tmax);
(* Start of Phase 2: Conjecture Consistence Check *)

if NotConsistent(Yi, Ui, S ′)
(* If the current conjecture S ′

i−1
is not consistent w.r.t. the i-th observation*)

(* Start of Phase 3: Algebraical Constraint Computation *)
(* Computation of system Ai(Ui, Yi) *)

Ai=ConstraintsComputation(Yi, Ui, E ,Ec, Choices);
(* Computation of system A(U, Y) *)
A=ComputeNewSys(Ai, A)
(* Start of Phase 4: ILP Resolution *)
(* New conjecture S ′

i computation *)
S′

i=SolvingILP(A);
end

(* Iteration number incrementing *)
i=i+1

Until Stopped
(* Identification ends when no new consistent conjectures are produced *)

Figure 7.4 Experimental Based Identification algorithm.

7.4. The Algorithm 115

Choice of the input multiple sequence

At each step of the i-th System Observation, a set of controllable
events has to be control enabled.

Controllable events can be enabled in more than one way (a
single event at time, more events contemporaneously, in different
order respect to a previous enabling). Each of these combinations
can be seen as a different input multiple sequence.

Let Ueq be the set of all the possible input multiple sequences,
obtaining with nEc controllable events. Its cardinality is

NU = nEc! + ns (7.2)

where

0 ≤ ns ≤
neq∑

p=2

[neq!

(neq − p)!p!
· (nEc − p+1)! ·maxj(eventsOf(chj))

]

and neq = nEc + nch −
∑nch

j=1 eventsOf(chj).
Term nEc! is the number of all the possible input multiple se-

quences obtaining enabling in succession one controllable event
at time, considering all the possible orders of enabling. Term ns

is the number of the input multiple sequences obtained enabling
p events at the same time and the others in succession, less the
number of forbidden input multiple sequences, i.e. the number of
input multiple sequences in which events belonging to the same
choice chj are enabled at the same time. Indeed in each multiple
sequence only one event at time for each conflict can be enabled
by Identifier I to explore the alternatives of the net behavior.

As example, assume Ec =
{
a, b, c

}
, then 13 input multiple

sequences are possible: a → b → c, a → c → b, b → a → c, b →
c → a, c → a → b,c → b → a, ab → c, c → ab, ac → b, b → ac,
cb → a, a → cb, abc. Consider the previous example, assuming
that controllable events a and b are involved in the conflict ch1,
only the following 10 multiple sequences could be considered: a →
b → c, a → c → b, b → a → c, b → c → a, c → a → b,c → b → a,
ac → b, b → ac, cb → a, a → cb.

116 7. Identification























Figure 7.5 Induced Net obtained starting from the one of Fig. 7.3, after
the disabling of the controllable event a and the enabling of the controllable

event b.

Allowing that just one event for each conflict is enabled at each
step of each iteration means that, at each step, conflicts are solved
and a new net is obtained, called Induced Net. The Induced Net
structure is equal to the net of system S after the clearing of all
the disabled controllable transitions. In Fig. 7.5, it is shown the
Induced Net obtained from the net of Fig. 7.3, when Identifier I
enables the event b and keeps a disabled. The behavior of sys-
tem S under a given input in terms of observed sequences can be
explained on the basis of the induced net.

Execution of phase 1

After the choice of the input multiple sequence U i, the following
two actions are cyclically repeated:

A1: Step k Induced Net construction: At each step k of the i-th
System Observation, the input uik of U i is control enabled,
i.e., if U i = a → bc at the step 1, ui1 = a will be enabled
while at the step 2, ui2 = bc will be enabled.

Each sequence uik is kept enabled during the whole step k.

A2: Step k Induced Net evolution observation: Identifier I sends
to the system the enabled input uik and it records the system
output yik.

7.4. The Algorithm 117

Each observation step ends either when a cycle is detected, or
when a still marking is detected.

If a cycle is detected, Phase 1 is stopped even if the end of U i

has not been reached, as example if U i = a → bc and at step 1,
with ui1 = a, a cycle starts, System Observation ends but ui2 = bc
has not been enabled.

If a still marking is detected a new observation step starts, and
actions A1 and A2 are repeated.

If the end of U i has been reached without a cycle has been
detected, Identifier I continues to trig the system, starting again
from the first input of the succession, until a cycle is detected. As
example, assuming again U i = a → bc, if after the second step no
cycles have been detected, step 3 starts and ui3 = ui1 = a.

At the end of Phase 1, said L the number of steps executed
during System Observation, input (output) multiple sequence Ui =
ui1 → · · · → uiL (Yi = yi1 → · · · → yiL), is obtained as the succes-
sion of the inputs (output sequences) sent (received) by Identifier
I at each step of the System Observation.

7.4.2 Phase 2: Conjecture Consistence Check-
ing

When a conjecture S′
i−1 = 〈N ′

i−1,m′
0i−1〉 obtained as solution of

the previous iteration of the EBI algorithm is available, a check to
determine if it is consistent w.r.t. the current observation is done,
If S′

i−1 is consistent, Phase 3 and 4 are not executed and a new
iteration i+ 1 starts with a System Observation.

7.4.3 Phase 3: Algebraic Linear Constraint Sys-
tem Computation

During Phase 3, a properly set of algebraic constraints, describing
the observed system evolution, is formulated.

To do it, first of all the set of constraints presented in Propo-
sition 7.3.1 is written for each step of System Observation.

118 7. Identification

Let yik be the observed word when uik is given as input to
system S and suppose that l is its length. The notation m′

ikj is
used to indicate the marking of the system after that the j-th
event of yik has occurred, consequently the marking of the system
at the beginning of the step k is m′

ik0.
The set of constraints ζ(uik, yik) enforces that the conjecture

enables yik under the marking m′
ik0.

The congruence marking equation has to be added to ζ(uik, yik):

• For i = 1 and k = 1

m′
110 = m0 (7.3)

• For i > 1 and k = 1

m′
ik0 = m′

(i−1)ql (7.4)

where m′
(i−1)ql s.t. m

′
(i−1)00[Y(i−1)〉m′

(i−1)ql.

• For all k > 0
m′

ik0 = m′
i(k−1)l (7.5)

where m′
i(k−1)l s.t. m

′
i(k−1)0[yi(k−1)〉m′

i(k−1)l.

Equation (7.3) enforces the initial marking of the first iteration to
be equal to the initial marking of the unknown system; equation
(7.4) enforces the conjecture marking at the beginning of iteration
i to be equal to the one it reached at the end of the previous
iteration; equation (7.5) enforces the conjecure marking at the
beginning of step k to be equal to the marking it reached after
the firing of the last event in the output sequence yi(k−1) of the
previous step.

As more, further constraints, obtained by the additional infor-
mation and preliminary assumptions, are added to the previous
ones:

for each conflict chi ∈ Choices
{
Pre′i(p, ξj) ≥ 1 ∀ξj ∈ eventOf(chi) (7.6a)

Pre′i(p, ξj) = 0 ∀ξj /∈ eventOf(chi) (7.6b)

7.4. The Algorithm 119

where p ∈ •(chi)
Equations (7.6a) - (7.6b) enforces that controllable events in-

volved in the same conflict have the same input place p.
Let Ai(Ui, Yi) be the constraint set made up of: i) as many

repetitions of ζ(uik, yik) as the number of step of the current Sys-
tem Observation; ii) the (7.4) only for the first step of the current
System Observation (if it is the first iteration, equation (7.3) is
used); iii) the repetition of equation (7.5) for all the other steps;
iv) equations (7.6a) and (7.6b) repeated for all the controllable
conflicts of system S (only for the first System Observation).

Such a set is used to update the total one, A(U, Y), obtained in
the following way: if it is the first algorithm iteration, A(U, Y)=
A1(U1, Y1). For all the successive iterations, if it does not exist a
conjecture S′

i−1 resulting from the previous iteration s.t. it is con-
sistent w.r.t. the current system observation, all the constraints
of Ai(Ui, Yi) are added to A(U, Y).

7.4.4 Phase 4: ILP Problem Resolution

Since more than a PN system can satisfy the constraint setA(U, Y)
obtained in the Phase 3, a selection among all these solutions has
to be done minimizing a given cost function f(m0

′
i,Pre′i,Post

′
i).

In particular a solution to the identification problem can be com-
puted by solving the following Integer Programming problem

min
s.t.

A(U, Y)

f
(
m0

′
i,Pre′i,Post

′
i

)
, (7.7)

as it has been proposed in [CGS07].
Different choices can be made for the cost function. If f(·) is

chosen linear in the unknowns, then (7.7) becomes an Integer Lin-
ear Programming (ILP) problem. In particular if the cost function
is chosen as

f
(
m0

′
i,Pre′i,Post

′
i

)
= 1T

m ·m0
′
i + 1T

m ·
(
Pre′i +Post′i

)
· 1n ,

the solution minimizes the sum of the tokens in the initial marking
and of the arc weights [CGS07, FS08].

120 7. Identification

At the end of this phase a new conjecture S′
i = 〈N ′

i ,m0
′
i〉 is

obtained, with N ′
i =

(
P, T,Pre′i,Post

′
i

)
.

7.4.5 Stop Condition

Conjecture S′
i, obtained as result of the iteration i is consistent

with the output multiple sequences observed until the i-th itera-
tion but it can result consistent also with the other Yj obtainable
starting from still untested U j. Let UC

i be the set of the input mul-
tiple sequences the conjecture S′

i is consistent with and let NiC be
its cardinality.

To obtain such a set the following algorithm can be applied
distinguishing between two cases:

Case A: i = 1 or S′
i)= S′

i−1

1. given S′
i, draw its reachability graph RGi;

2. At each node of RGi add a self loop, for each controllable
event that has been tested to be state disabled under the
marking corresponding to such node: as example, suppose
that at the beginning of step k of the i-th iteration, the
marking of S′

i is m′
ik0 and the input u(ik = ξj is given ; if

the corresponding output is y(ik = ε (i.e. a still state is
detected) then ξj is control enabled but not state enabled.
As consequence a self loop labeled ξj and drawn as a dashed
arc has to be added to the node of RGi corresponding to
m′

ik0.

3. Find the node corresponding to m′
iql, that is the marking of

S′
i at the end of i-th iteration. Starting from such a node

individuate all the input multiple sequences that bring S′
i

back to m′
iql. These input multiple sequences are the ones

belonging to UC
i .

Case B: i > 1 and S′
i = S′

i−1

1. Said UC
i−1 the set obtained for S′

i−1, and U i the input multiple
sequence tested at the iteration i, then

UC
i = UC

i−1

⋃{
U i

}

7.5. Applications 121

.

2. If new still states have been discovered, add the correspond-
ing dashed arcs to RGi.

Consequently Ueq
i = Ueq − UC

i is the set of input multiple se-
quences that have to be tested to establish if S′

i is the model of
the system and its cardinality is NUi = card(Ueq

i) = NU −NiC .
Then the following stop condition can be defined:

Definition 7.4.4 (Stop Condition). The EBI algorithm stops
when the current conjecture S′

i results to be consistent with all
the NUi successive iterations obtained testing all the input multi-
ple sequences of the set Ueq

i .

7.5 Applications

In the following two applications of the EBI algorithm are dis-
cussed. In the first one the algorithm is used to identify the model
of a lift, in the second a simple version of a handling system is
used as object of the identification.

7.5.1 Example 1: the lift

Consider a lift able to move up and down for reaching different
levels. It can be moved acting on two controllable signals, from
now on called ”go up” and ”go down”.

Initially the lift is stopped at a level: when the command ” go
up” is sent by the controller, the lift goes up to the next level (if
it does not exist the lift remains at the current level), when the
command ”go down” is sent, the lift goes down to the previous
level (if it does not exist the lift remains at the current level).

Such a lift can be modeled as shown in Fig. 7.6 (the meaning
of each place and transition is reported in Table 7.7). The set of
events is E : {u, d, n, p}. Its controllable events set is Ec = {u, d}.

122 7. Identification



 











Figure 7.6 Petri Net model of a lift, able to move between 3 levels and
starting from the lowest one.

Place Meaning

P1 lift at the level
P2 number of next levels
P3 number of previous levels
P4 lift going up
P5 lift going down

Event Meaning

d go down
u go up
n arrived to the next level
p arrived to the previous level

Figure 7.7 Meaning of places and transitions of Fig. 7.6.

7.5. Applications 123



 











(a)

















 







 













































(b)

Figure 7.9 (a) Conjecture S′1 obtained after the first EBI iteration and (b)
its reachability graph.

Since when the lift is stopped at a level, in general it is possible
to chose if moving it up or down, the corresponding controllable
signals are involved in a choice and hence Choices = {(u, d)}.

Since nc = 2, nch = 1; neq = 1 and ns = 0, hence for the (7.2),
the number of all the possible input multiple sequences is NU = 2.

As more, Rcycle = 4 and Tmax = 30s are given as input data to
the identification problem. The value of Rcycle is determined on
the base of the largest number of levels the lift can move across
and Tmax on the maximal time the lift takes to arrive to another
level.

The set Ueq contains 2 different input multiple sequences: u →
d and d → u. In the table of Fig. 7.8, the iterations executed to
identify the system are summarized. For the sake of readable the
following compact notations have been used:

• ξ1ξ2 . . . ξn · · · ξ1ξ2 . . . ξn︸ ︷︷ ︸
q times

=(ξ1ξ2 . . . ξn)q

• ξ1ξ2 → · · · → ξn · · · ξ1ξ2 → · · · → ξn︸ ︷︷ ︸
q times

=(ξ1ξ2 → · · · → ξn)q

i= 1: The selected U1 is u → d. At step 1 event u is control
enabled and the output y1 = (un)3 is observed. Since se-

124 7. Identification

i
k

U
i

u
ik

y
ik

U
i

Y
i

Y
′i

C
om

m
ents

1
1

u
→

d
u

(u
n
)
3

(u
n
)
3

still
state

2
d

(dp)
3

(u
n
)
3
→

(dp)
3

still
state

3
u

(u
n
)
3

(u
n
)
3
→

(dp)
3
→

(u
n
)
3

still
state

4
d

(dp)
3

[(u
n
)
3
→

(dp)
3] 2

still
state

5
u

(u
n
)
3

[(u
n
)
3
→

(dp)
3] 2

→
(u
n
)
3

still
state

6
d

(dp)
3

[(u
n
)
3
→

(dp)
3] 3

still
state

7
u

(u
n
)
3

[(u
n
)
3
→

(dp)
3] 3

→
(u
n
)
3

still
state

8
d

(dp)
3

(u
→

d)
4

[(u
n
)
3
→

(dp)
3] 4

n
on

e
cycle

F
ig
u
re

7
.8

S
ystem

O
b
servation

of
E
xam

p
le

1.

7.5. Applications 125

quence un is repeated only 3 (< Rcycle) times, no a cycle
but a still state is detected.

At step 2 event d is control enabled and the corresponding
output y2 = (dp)3 is observed. As at the previous step a
still state is reached.

Since all the events composing U1 have been tested without
a cycle detection, from step 3 until the end of iteration the
rule ui = u1+i−3 is applied (i.e. u3 = u1, u4 = u2 and so on
- refer to 7.4.1).

At step 8 a cycle is detected since output multiple sequence
(un)3 → (dp)3 has been observed for 4 (= Rcycle) times
successively. Consequently the iteration stops.

Since no other conjectures have been made previously, Phase
3 starts and the set of constraints A(U, Y)= A1(U1, Y1) is
obtained.

The resulting ILP problem is solved in Phase 4: the net of
Fig. 7.9(a) is assumed as consistent conjecture S′

1.

The corresponding reachability graph RG1, completed with
control disabled event arcs, is shown in Fig. 7.9(b). W.r.t.
the figure, at the end of the iteration the final marking of
the system is supposed to be m′

0, consequently the set UC
2

is
{
u → d, d → u

}
. As consequence Ueq

1 = ∅ and NU1 = 0:
i.e. identification ends and S′

1 is assumed as the desired
model.

7.5.2 Example 2: the handling system

Consider the simple handling system shown in Fig. 7.10: it is made
up two vehicles, v1 and v2, able to move two kind of items from
two starting points, PA and PB, (indicated with the green flags in
the figure) to two destination points, DA and DB (indicated with
the red flags in the figure).

Each vehicle is dedicated to handling a different kind of item.
Items of kind 1 are loaded at the starting point PA, while items of

126 7. Identification










































Figure 7.10 A simple handling system.



  

 





 

 

Figure 7.11 PN model of the handling system of Fig. 7.10.

kind 2 are loaded at the starting point PB.
Items starting from PB can arrive to their destination point

following two alternative routes and vehicle v2 can choose between
them before starting the handling. As more, along one of the two
routes, after it is arrived at the destination, v2 has to stop and
wait for a starting command.

The PN of Fig. 7.11 models such a system: meaning of each
place and transition is reported in Table 7.12

For this net the set of events is E =
{
a, b, c, d, e, f

}
and the

set of controllable events is Ec =
{
a, b, e, f

}
. Since vehicle v2 can

choose between two mutual exclusive route, one conflict involv-
ing controllable events is present, Choices = {(a, b)}. As more,
Rcycle = 2 and Tmax = 120s are given as input data to the identi-
fication problem.

The set Ueq contains 58 different input multiple sequences: for
the sake of brevity only some of all the possible iterations are
reported in the following and are summarized in Table 7.13.

7.5. Applications 127

Place Meaning

p1 free vehicle at PA

p2 free vehicle at PB

p3 vehicle going to S1

p4 vehicle going to destination DB along route 1
p5 vehicle going to destination DB along route 2
p6 vehicle going to destination DA

Event Meaning

a start from PB and go along route 1
b start from PB and go along route 2
e return to PB

f start from PA

g return to PA

Figure 7.12 Meaning of places and transitions of Fig. 7.6.



  

 



 


(a)
















(b)

Figure 7.14 (a) Conjecture obtained after the first observation and (b) its
reachability graph.

i= 1: The selected U1 leads to a cycle detection, starting from the
step 1. As consequence Phase 1 is ended before the enabling
of the other inputs in U1 and U1 is effectively given to the
system.

Since no other conjectures have been made previously, Phase
3 starts and the set of constraints A(U, Y)= A1(U1, Y1) is
obtained.

The resulting ILP problem is solved in Phase 4: the net of
Fig. 7.14(a) is assumed as consistent conjecture S′

1.

128 7. Identification

i
k

U
i

u
ik

y
ik

U
i

Y
i

Y
′i

1
1

f
→

a
→

e
→

b
f

f
gf

g
f

f
gf

g
n
on

e
cycle

2
1

b
→

f
→

e
→

a
b

bdbd
b

bdbd
ε

cycle
3

1
a
→

e
→

f
→

b
a

ac
still

state
2

e
e

still
state

3
f

f
gf

g
a
→

e
→

f
ac

→
e
→

f
gf

g
a
→

ε
→

ε
cycle

4
1

a
→

b
→

e
→

f
a

ac
still

state
2

b
ε

still
state

3
e

e
still

state
4

f
f
gf

g
a
→

b
→

f
ac

→
ε
→

e
→

f
gf

g
ac

→
ε
→

e
→

f
gf

g
cycle

5
1

a
→

f
→

e
→

b
a

ac
still

state
2

f
f
gf

g
a
→

f
ac

→
f
gf

g
ac

→
ε

cycle

F
ig
u
re

7
.1
3

S
ystem

O
b
servation

.

7.5. Applications 129



 





 

 

(a)







 























(b)

Figure 7.15 (a) Conjecture obtained after the second observation and (b)
its reachability graph.

RG1 is shown in Fig. 7.14(b): at the end of the first iter-
ation S′

1 is returned in its initial marking. On the base of
RG1, the input multiple sequences that return S′

1 in m′
i00

are f → ∗ 2 i.e. all that U i starting with event f . Their
number is N1C = 10 consequently S′

1 = S iif it results con-
sistent with the 48 input multiple sequences of Ueq

1 .

i= 2: At step 1 a cycle is detected and Phase 1 is ended.

During Phase 2, consistence of S′
1 w.r.t. the current ob-

servation is tested: given U2 as input, the output multi-
ple sequence produced by S′

1, Y
′
2 , is not the same of Y2, it

means S′
1 is not consistent w.r.t. the current observation.

As consequence Phase 3 and 4 are execute and the net of
Fig. 7.15(a) is assumed as consistent conjecture S′

2.

At the end of the second iteration m′
2ql = m′

200 [indicated
as m′

0 in Fig 7.15(b)]: from RG2, shown in Fig 7.15(b),UC
2

is made up of f → ∗ and b → ∗: identification will end if
conjecture S′

2 results consistent with all the 36 remaining
input multiple sequences of Ueq

2 .

i= 3: At step 1 of the third iteration, u31 = a; the system out-
put is y31 = ac. After the firing of c the reaching of a still

2Notation ξ1 → ξ2ξ3 → . . . ξn → ∗ indicates all the input multiple se-
quences having ξ1 → ξ2ξ3 → · · · → ξn as prefix

130 7. Identification





 





 

 

 
(a)







 



































(b)

Figure 7.16 (a) Conjecture obtained after the third observation and (b) its
reachability graph.

marking is detected, since for a time longer than Tmax, no
other events have occurred. Consequently a new observa-
tion step starts: at step 2, u32 = e; the system output is
y32 = e. After the firing of e, another still marking is de-
tected and a new step starts. At step 3, u33 = f ; the system
output is y33 = fgfg, then a cycle is detected and System
Observation ends.

Since S′
2 is not consistent w.r.t. the current observation,

Phase 3 and Phase 4 are executed and the net of Fig. 7.16(a),
with the reachability graph of Fig. 7.16(b), is assumed as
consistent conjecture S′

3.

Since again m′
3ql = m′

300 [m′
0 in Fig. 7.16(b)], UC

3 is
{
a →

e → ∗; (ae) → ∗; b → ∗; f → ∗; e → f → ∗; e → b →
∗; (be) → ∗; (fe) → ∗

}
; its cardinality is N3C = 34, hence

identification will end if conjecture S′
3 results consistent

with the remaining 30 input multiple sequences belonging
to Ueq

3 .

i= 4: Iteration 4 ends after 4 steps: in each one of the first three
steps a still marking is observed, then a cyclic behavior is
detected at step 4.

During Phase 2, since Y ′
4 is the same of Y4 it is concluded

S′
3 is a consistent conjecture w.r.t. the current observation.

7.5. Applications 131






 



































Figure 7.17 Reachability graph of Conjecture obtained after the fourth
observation.






















 


























 

Figure 7.18 Reachability graph of conjecture S′5.

Consequently Phase 3 and Phase 4 do not start and the
net of Fig. 7.16(a) is assumed as consistent conjecture (i.e.
S′
4 = S′

3). Consequently Ueq
4 = Ueq

4 −
{
U4

}

As more its reachability graph is updated since a new in-
formation has been obtained during this iteration: events b
is not state enabled w.r.t. marking m′

4 of Fig. 7.16, hence
the graph RG4 is obtained adding the label b to the dashed
arc entering in m′

4 (see Fig. 7.17).

i= 5: Iteration 5 ends after 2 steps: at the first step a still state
is detected and then a cycle is detected at step 2.

Since S′
4 is not a consistent conjecture, a new ILP problem

is resolved and the net of Fig. 7.11 is assumed as consistent
conjecture S′

5.

At the end of iteration, the final marking ism′
2 (see Fig. 7.18).

132 7. Identification

Consequently UC
6 =

{
f → ∗; a → f → ∗; (af) → ∗; b →

f → ∗; (bf) → ∗; a → b → f → e; b → a → f → e; e →
a → f → b; b → e → a → f ;

}
; its cardinality is N5C = 24,

hence identification will end if S′
5 results consistent with the

remaining 34 input multiple sequences of Ueq
5 .

i>5: For all the following iterations, whatever is the selected
input multiple sequence U i, the conjecture S′

i−1 result to
be consistent w.r.t. the current observation.

7.6 Conclusions and Future Researches

In this chapter an active, iterative preliminary approach for the
identification of free labeled PN models has been proposed. Re-
spect to the passive identification methods, the presence of con-
trollable events, seen as modifiable inputs, allows a faster iden-
tification of all the possible evolutions of the system. A gray-
box identification method has been used: conflicting controllable
events are assumed to be known as well as the maximum time
that must elapse from the enabling of a transition until it fires.
Moreover, it is assumed possible to detect if the system is entered
in a cyclic behavior. The identification procedure is based on the
solving of an Integer Linear Programming Problem.

Future researches are focused principal about how to select the
next input multiple sequences in the manner to faster complete the
system identification.

In this preliminary approach each U i is chosen in a random
way between all the input multiple sequences in Ueq

i . But gener-
ally speaking, some input multiple sequences can better aid the
identification process than others: goal of future works is individ-
uate such a sequence that allows to discover the largest number
of yet unknown behaviors, basing such a research on the liveness
and reversible property of the system.

As more a stronger stop condition is under investigation: at the
moment, a system is considered identified if all the possible tests

7.6. Conclusions and Future Researches 133

succeeded; in future works it will be investigated the possibility to
reduce the number of iterations.

Finally the extension of the approach to timed PNs is studying:
activity of real systems are characterized by a finite duration. i.e.
each task needs some time to be completed. Timed PNs allows
to model this duration. As more, as shown in [BCCDT11] time
information can be used to accelerate the system identification,
with respect to the untimed approaches. In particular, exploiting
the timing it is possible to determine a set of counterexamples that
can be used to improve the net identification.

Chapter 8

Table of Notations

Table 8.1: Table of notations.

Notation Meaning

B = (CT, Tin, Tout) CTPN block
C incidence matrix
C = 〈P, T,Pre,Post,Cl,Co〉 Colored Petri net
Choices set controllable conflicting
chj j-th choice
Cl set of colors
Co : P ∪ T −→ Cl color function
Co(pi) = {ai,1, ai,2, ..., ai,ui} ordered set of possible colors of

tokens in pi
Co(tj) =

{
bj,1, bj,2, ..., bj,vj

}
ordered set of possible occurrence
colors in tj

ξ event
D set of dummy places
δ : TD → (R+)nd firing delay vector
e internal condition
ei i-th canonical basis vector
E set of events
EC set of controllable events

Table 8.1: Table of notations (continued)

136 8. Table of Notations

Table 8.1: Table of notations (continued)

Notation Meaning

Euc set of uncontrollable events
enabled(ei, k) enabling function
eventsOf(·) function that returns the set of

events involved in a given conflict
ε empty sequence
g control input
H = 〈P, T,Pre,Post, h, δ,ν〉 Hybrid Petri net
h : P

⋃
T → {D,C} hybrid function

I identifier
I feeding speed
M =

{
H,Cl,Co,ν

}
Colored Modified Hybrid Petri
net

m marking vector
m0 initial marking vector
mO marking of observable places
muO marking of unobservable places
mC marking of continuous places
mD marking of discrete places
m

[
σ〉 enabled sequence σ

ṁpC balance
N = 〈P, T,Pre,Post〉 Place/Transition Petri net
n number of transitions
nd number of discrete transitions
nc number of continuous transitions
nEc number of controllable events
neq number of equivalent events
nch number of choises
NiC cardinality of UC

i

NU cardinality of Ueq

ν : T c → (R+)nc firing speed vector
O draining speed
P set of places

Table 8.1: Table of notations (continued)

137

Table 8.1: Table of notations (continued)

Notation Meaning

PO subset of observable places
PuO subset of unobservable places
PD set of discrete places
PC set of continuous places
Pre pre-incidence matrix
Post post-incidence matrix
Pre(pi; tj)(hk) weight of the arc from place pi,

w.r.t. color ai,h, to transition tj,
w.r.t. color bj,k

Post(pi; tj)(hk) weight of the arc from transition
tj, w.r.t. color bj,k, to place pi,
w.r.t. color ai,h

•p (•t) place p (transition t) pre-set
p • (t •) place p (transition t) post-set
R(N,m0) set of reachable markings
RG reachability graph
S Siphon
s sequence
S = 〈N,m0〉 Petri net system
σ firing sequence
σ firing vector
T set of transitions
Tin set of input transitions
Tout set of output transitions
TD set of discrete transitions
TC set of continuous transitions
U input multiple sequence
uk input: set of control enabled

events at step k
ui cardinality of Co(pi)
Ueq set of all the possible input mul-

tiple sequences

Table 8.1: Table of notations (continued)

138 8. Table of Notations

Table 8.1: Table of notations (continued)

Notation Meaning

UC
i set of consistent input multiple

sequences
Ueq

i set of the input multiple se-
quences for the i-th iteration

vj cardinality of Co(tj)
w number of places
wd number of discrete places
wc number of continuous places
Y P-semiflow
yk output sequence
Y output multiple sequence

Table 8.1: Table of notations

Bibliography

[ABCC05] F. Amato, F. Basile, C. Carbone, and P. Chiacchio,
An approach to control automated warehouse sys-
tems, Control Engineering Practice 13 (2005), no. 10,
1223 – 1241.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine, The algorithmic analysis of hybrid sys-
tems, Theor. Comput. Sci. 138 (1995), no. 32, 3–24.

[Ang87] D. Angluin, Learning regular sets from queries and
counterexamples, Information and Computation 75
(1987), no. 2, 87–106.

[BC07] F. Basile and P. Chiacchio, On the implementa-
tion of supervised control of discrete event systems,
IEEE Transactions on Control Systems Technology
15 (2007), no. 4, 725 –739.

[BCC07a] F. Basile, C. Carbone, and P. Chiacchio, Feedback
control logic for backward conflict free choice nets,
IEEE Transaction on Automatic Control 52 (2007),
no. 3, 387–400.

[BCC07b] , Simulation and analysis of discrete-event
control systems based on Petri nets using PNetLab,
Control Engineering Practice 15 (2007), 241 – 259.

140 BIBLIOGRAPHY

[BCCDT11] F. Basile, P. Chiacchio, J. Coppola, and G. De Tom-
masi, Identification of Petri nets using timing in-
formation, 3rd International Workshop on Depend-
able Control of Discrete Systems (DCDS 11), Saar-
brucken, Germany (2011), 154 –161.

[BCCG12] F. Basile, P. Chiacchio, J. Coppola, and D. Gerbasio,
A hybrid Petri nets approach for unmanned aerial ve-
hicles monitoring, 2012 IEEE Conference on Emerg-
ing Technologies and Factory Automation (ETFA
2012), Krakow, Poland (2012).

[BCD09a] F. Basile, P. Chiacchio, and G. De Tommasi, An effi-
cient approach for online diagnosis of discrete event
systems, IEEE Transaction on Automatic Control 54
(2009), no. 4, 748–759.

[BCD09b] F. Basile, P. Chiacchio, and D. Del Grosso, A two-
stage modelling architecture for distributed control
of real-time industrial systems: Application of UML
and Petri net, Computer Standards & Interfaces 31
(2009), no. 3, 528–538.

[BCD12] F. Basile, P. Chiacchio, and G. De Tommasi, On
K-diagnosability of Petri nets via integer linear pro-
gramming, Automatica 48 (2012), 2047–2058.

[BCG07] F. Basile, P. Chiacchio, and A. Giua, An optimization
approach to Petri net monitor design, IEEE Transac-
tion on Automatic Control 52 (2007), no. 2, 306–311.

[BGM00] F. Balduzzi, A. Giua, and G. Menga, First-order Hy-
brid Petri Nets: a model for optimization and control,
IEEE Transactions on Robotics and Automation 16
(2000), no. 4, 382 –399.

[BGS01] F. Balduzzi, A. Giua, and C. Seatzu, Modelling and
simulation of manufacturing systems with first-order

BIBLIOGRAPHY 141

hybrid Petri nets, International Journal of Produc-
tion Research 39 (2001), no. 2, 255 – 282.

[BW84] Y. A. Bozer and J. A. White, Travel-time models
for automated storage/retrieval systems, IEE Trans-
actions 16 (1984), no. 4, 329–338.

[CAD99] F. Charbonnier, H. Alla, and R. David, The super-
vised control of discrete event system, IEEE Transac-
tion on Control System Technology 7 (1999), no. 2,
175–187.

[CDFS11] M.P. Cabasino, P. Darondeau, M.P. Fanti, and
C. Seatzu, Model identification and synthesis of
discrete-event systems, in Contemporary Issues in
Systems Science and Engineering, 2011.

[CGS07] Maria Paola Cabasino, Alessandro Giua, and Carla
Seatzu, Identification of Petri nets from knowledge of
their language, Discrete Event Dynamic Systems 17
(2007), 447–474.

[CL08] Christos G. Cassandras and Stéfane Lafortune, Intro-
duction to discrete event systems, 2nd ed., Springer,
2008.

[CPV99] R. Champagnat, H. Pingaud, and R. Valette, An ex-
tension of high-level Petri nets for modelling batch
systems, IMACS/IEEE International Conference on
Circuits, Systems, Communications and Computers
(CSCC’99) (1999), 2621–2625.

[DA01] R. David and H. Alla, On hybrid Petri nets, Discrete
Event Dynamic Systems 11 (2001), 9–40.

[DA05] , Discrete, continuous and Hybrid Petri Nets,
2005.

142 BIBLIOGRAPHY

[DF05] M. Dotoli and M. Fanti, A coloured Petri net model
for automated storage and retrieval systems serviced
by rail-guided vehicles: A control perspective., Inter-
national Journal of Computer Integrated Manufac-
turing 18 (2005), no. 2, 122–136.

[DF07] M. Dotoli and M.P. Fanti, Deadlock detection and
avoidance strategies for automated storage and re-
trieval systems, IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews
37 (2007), no. 4, 541 –552.

[DFM08] M. Dotoli, M.P. Fanti, and A.M. Mangini, Real time
identification of discrete event systems using Petri
nets, Automatica 44 (2008), no. 5, 1209 – 1219.

[DFMU11] M. Dotoli, M.P. Fanti, A.M. Mangini, and
W. Ukovich, Identification of the unobservable be-
haviour of industrial automation systems by Petri
nets, Control Engineering Practice 19 (2011), no. 9,
958 – 966.

[DHP+93] F. DiCesare, G. Harhalakis, J.M. Proth, M. Silva,
and F.B. Vernadat, Practice of Petri Nets in Manu-
facturing, Chapman and Hall, 1993.

[DK98] I. Demongodin and N.T. Koussoulas, Differential
Petri nets: representing continuous systems in a
discrete-event world, IEEE Transactions on Auto-
matic Control 43 (1998), no. 4, 573 –579.

[DPP09] M.A. Drighiciu, A.P. Petrisor, and M. Popescu, A
Petri Nets approach for hybrid systems modeling, In-
ternational Journal of Circuits, Systems and Signal
Processing (2009).

[ECM95] J. Ezpeleta, J.M. Colom, and J. Martinez, A Petri
net based deadlock prevention policy for flexible man-

BIBLIOGRAPHY 143

ufacturing systems, IEEE Transactions on Robotics
and Automation 11 (1995), no. 2, 173 –184.

[ELS11] J. Esparza, M. Leucker, and M. Schlund, Learning
Workflow Petri Nets, Fundamenta Informaticae 113
(2011), no. 3-4, 205–228.

[Eur03] European Federation of Material Handling, Fem
9.851 - performance data of storage and retrieval ma-
chines: cycle times, 2003.

[EVLLM11] A.P. Estrada-Vargas, J.-J. Lesage, and E. Lopez-
Mellado, Stepwise identification of automated dis-
crete manufacturing systems, 2011 IEEE 16th Con-
ference on Emerging Technologies Factory Automa-
tion (ETFA), September 2011, pp. 1 –8.

[EVLLM12] , Identification of industrial automation sys-
tems: Building compact and expressive Petri net
models from observable behavior, ”2012 American
Control Conference (ACC’12), Montréal : Canada
(2012), June 2012.

[FCSS99a] K. Feldmann, A. Colombo, C. Schnur, and
T. Stöckel, Specification, design and implementation
of logic controllers based on colored Petri net models
and the standard IEC 1131 part I: Specification and
design, IEEE Transaction on Control System Tech-
nology 7 (1999), no. 6, 657–665.

[FCSS99b] , Specification, design and implementation of
logic controllers based on colored Petri net models
and the standard IEC 1131 part II: Design and im-
plementation, IEEE Transaction on Control System
Technology 7 (1999), no. 6, 666–674.

[FKR+97] Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R.E.
Schapire, and L. Sellie, Efficient learning of typical

144 BIBLIOGRAPHY

finite automata from random walks, Information and
Computation 138 (1997), no. 1, 23–48.

[FS08] M.P. Fanti and C. Seatzu, Fault diagnosis and iden-
tification of discrete event systems using Petri nets,
9th International Workshop on Discrete Event Sys-
tems (WODES’08), Goteborg, Sweden (2008), 432
–435.

[FZ04] M.P. Fanti and MengChu Zhou, Deadlock control
methods in automated manufacturing systems, IEEE
Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans 34 (2004), no. 1, 5–22.

[GAS05] Latefa Ghomri, Hassane Alla, and Zaki Sari, Struc-
tural and Hierarchical Translation of Hybrid Petri
Nets in Hybrid Automata, IMACS05 (2005).

[GGM10] Jinxiang Gu, Marc Goetschalckx, and Leon F.
McGinnis, Research on warehouse design and per-
formance evaluation: A comprehensive review, Eu-
ropean Journal of Operational Research 203 (2010),
no. 3, 539 – 549.

[GHS77] S. C. Graves, W. H. Hausman, and L. B. Schwarz,
Storage-retrieval interleaving in automatic warehous-
ing systems, Management Science 23 (1977), no. 9,
935–945.

[GS05] A. Giua and C. Seatzu, Identification of free-labeled
Petri nets via integer programming, Decision and
Control, 2005 and 2005 European Control Confer-
ence. CDC-ECC ’05. 44th IEEE Conference on, dec.
2005, pp. 7639 – 7644.

[GU98] A. Giua and E. Usai, Modeling hybrid system by high-
level Petri nets, API - JESA 32 (1998), no. 9, 9–10.

BIBLIOGRAPHY 145

[GZNL08] V. Giordano, J.B. Zhang, D. Naso, and F. Lewis,
Integrated supervisory and operational control of
a warehouse with a matrix-based approach, IEEE
Transaction on Automation Science and Engineering
5 (2008), no. 1, 53–70.

[HC99] S. Hsieh and Y.F. Chen, Agvsimnet: A Petri-net-
based AGVS simulation system, The International
Journal of Advanced Manufacturing Technology 15
(1999), 851–861.

[HCL07] Shan-Jun He, Fei Cheng, and Jian Luo, Modeling and
implementing of an automated warehouse via Colored
Timed Petri Nets; a behavior perspective, IEEE In-
ternational Conference on Control and Automation,
2007. ICCA 2007. (2007), 2823 –2828.

[HHC98] S. Hsieh, J.S. Hwang, and H.C. Chou, A Petri net
based structure for AS/RS operation modeling, Int.
Journal of Production Research 36 (1998), no. 12,
3323–3346.

[HK98] S. Hsieh and M.Y. Kang, Developing AGVS Petri net
control models from flowpath, Journal of Manufactur-
ing Systems 17 (1998), no. 4, 237–249.

[HL09] H. Hu and Z. Li, Local and global deadlock prevention
policies for resource allocation systems using partially
generated reachability graphs, Computers & Indus-
trial Engineering 57 (2009), 1168–1181.

[HMSW87] M. H. Han, L.F. McGinnis, J. S. Shieh, and
J. A. White, On sequencing retrievals in an auto-
mated storage/retrieval system, IEE Transactions 19
(1987), no. 3, 56–66.

[HZL12] H. Hu, M.C. Zhou, and Zhiwu Li, Liveness and
ratio-enforcing supervision of automated manufactur-
ing systems using Petri nets, IEEE Transactions on

146 BIBLIOGRAPHY

Systems, Man, and Cybernetics-Part A: Systems and
Humans 42 (2012), no. 2, 392–403.

[Jar10] D. E. Jarvis, An identification technique for timed
event systems, Discrete Event Systems, 2010.
WODES’10. 10th International Workshop on (Berlin,
Germany), vol. 10, September 2010, pp. 191–196.

[Jen95] K. Jensen, Colored Petri nets. basic concepts, analy-
sis methods and pratical use. volume 1, Monographs
on Theoretical Computer Science, Springer Verlag,
New York, 1995.

[KLL05] Stephane Klein, Lothar Litz, and Jean-Jacques
Lesage, Fault detection of discrete event systems
using an identification approach, 16th IFAC world
Congress, Praha, Tchèque, République, 2005.

[LdSO96] S.G. Lee, R. de Souza, and E.K. Ong, Simulation
modelling of a narrow aisle automated storage and
retrieval system (AS/RS) serviced by rail-guided ve-
hicles, Computers in Industry 30 (1996), no. 3, 241
– 253.

[LML10] Ana Paula Estrada-Vargas Ernesto Lopez-Mellado
and Jean-Jacques Lesage, A Comparative Analy-
sis of Recent Identification Approaches for Discrete-
Event Systems, Mathematical Problems in Engineer-
ing (2010).

[MCLM05] M. E. Meda-Campana and E. Lopez-Mellado, Iden-
tification of concurrent discrete event systems using
Petri nets, Proceedings of IMACS world congress,
2005, pp. 11–15.

[Mur89] T. Murata, Petri Nets: Properties, analysis and ap-
plications, Proceedings of IEEE 77 (1989), no. 4,
541–580.

BIBLIOGRAPHY 147

[PL95] S. Pettersson and B. Lennartson, Hybrid modelling
focused on Hybrid Petri Nets, in 2nd European Work-
shop on Real-time and Hybrid systems (1995), 303–
309.

[pne] PNetLab, by Automatic Group of Salerno, http://
www.automatica.unisa.it/PnetLab.html.

[Ros02] Elszbieta Roszkowska, Undirected colored Petri net
for modelling and supervisory control of AGV sys-
tems, Proceedings of the 6-th International Workshop
on Discrete Event Systems (WODES’02) (2002).

[RR08] E. Roszkowska and S.A. Reveliotis, On the liveness of
guidepath-based, zone-controlled dynamically routed,
closed traffic systems, IEEE Transactions on Auto-
matic Control 53 (2008), no. 7, 1689 –1695.

[RRS+00] B. Rouwenhorst, B. Reuter, V. Stockrahm, G.J. van
Houtum, R.J. Mantel, and W.H.M. Zijm, Warehouse
design and control: Framework and literature review,
European Journal of Op. Research 122 (2000), no. 3,
515 – 533.

[RS] R.L. Rivest and R.E. Schapire, Inference of finite au-
tomata using homing sequences.

[RS94] R. L. Rivest and R. E. Schapire, Diversity-based
inference of finite automata, Journal of the ACM
(JACM) 41 (1994), no. 3, 555–589.

[RW89] P.J. Ramadge and W.M. Wonham, The control of
discrete event systems, Proc. of IEEE 77 (1989),
no. 1, 637–659.

[SHM11] Bernhard Steffen, Falk Howar, and Maik Merten, In-
troduction to active automata learning from a prac-
tical perspective, Formal Methods for Eternal Net-
worked Software Systems 6659 (2011), 256–296.

148 BIBLIOGRAPHY

[TL97] D.A. Tacconi and F.L. Lewis, A new matrix model
for discrete event systems: application to simulation,
IEEE Control Systems Magazine 17 (1997), 62–71.

[TS93] E. Teruel and M. Silva, Liveness and Home States
in Equal Conflict Systems, vol. 691, pp. 415–432,
Springer, 1993.

[TTV06] George J. Tsinarakis, Nikos C. Tsourveloudis, and
Kimon P. Valavanis, Modeling, analysis, synthesis,
and performance evaluation of multioperational pro-
duction systems with hybrid timed Petri nets, IEEE
Transaction on Automation Science and Engineering
3 (2006), no. 1, 29–46.

[Van99] J.P. Van den Berg, A literature survey on planning
and control of warehousing systems, IIE Transactions
31 (1999), 1–13.

[WCCZ10] N. Q. Wu, F. Chu, C. B. Chu, and M. C. Zhou,
Hybrid Petri net modeling and schedulability analy-
sis of high fusion point oil transportation under tank
grouping strategy for crude oil operations in refinery,
IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C 40 (2010), no. 2, 159–175.

[WCZ09] N. Q. Wu, F. Chu, and M. C. Zhou, Short-term
schedulability analysis of multiple distiller crude oil
operations in refinery with oil residency time con-
straint, IEEE Transactions on Systems, Man, and
Cybernetics, Part C 39 (2009), no. 1, 1–16.

[WZC08] N. Q. Wu, M. C. Zhou, and F. Chu, A Petri net-based
heuristic algorithm for realizability of target refining
schedule for oil refinery, IEEE Transactions on Au-
tomation Science and Engineering 5 (2008), no. 4,
661–676.

BIBLIOGRAPHY 149

[XH11] Jingjing Xue; and Dawei Hu, Modeling of logistics
warehousing system based on Timed Petri Net, 11th
International Conference of Chinese Transportation
Professionals (ICCTP). Nanjing, China. (2011).

[XWW+07] Xiaowei Xu, Zhiyan Wang, Yanyan Wang, Xiaoye
Cao, Yinghong Liang, and Yaohua Wu, A novel
modeling design method for automated storage and
retrieval system based on Petri nets, IEEE Inter-
national Conference on Automation and Logistics,
(2007).

